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Abstract

In this paper, an optimal gain tuning method for PID controllers is proposed using a novel combi-
nation of a simplified Ant Colony Optimization algorithm and Nelder-Mead method (ACO-NM)
including a new procedure to constrain NM. To address Proportional-Integral-Derivative (PID)
controller tuning for the Automatic Voltage Regulator (AVR) system, this paper presents a meta-
analysis of the literature on PID parameter sets solving the AVR problem. The investigation con-
firms that the proposed ACO-NM obtains better or equivalent PID solutions and exhibits higher
computational efficiency than previously published methods. The proposed ACO-NM appli-
cation is extended to realistic conditions by considering robustness to AVR process parameters,
control signal saturation and noisy measurements as well as tuning a two-degree-of-freedom PID
controller (2DOF-PID). For this type of PID, a new objective function is also proposed to manage
control signal constraints. Finally, real time control experiments confirm the performance of the
proposed 2DOF-PIDs in quasi-real conditions. Furthermore, the efficiency of the algorithm is
confirmed by comparing its results to other optimization algorithms and NM combinations using
benchmark functions.

Keywords:
Automatic Voltage Regulator, PID controller, Optimization, Nelder-Mead algorithm, Ant
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1. Introduction

The PID controller is ubiquitous in a variety of industrial systems and processes [1]. Its de-
sign relies on determining controller parameters to achieve closed loop system requirements.
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Several methods and tuning rules have been proposed specifically for conventional PID con-
trollers. Although there are classical tuning methods, such as Ziegler-Nichols, pole placement
and Cohen-Coon, these methods rely on low order model approximations, hardly achieve high
dynamic performance and barely cope with process constraints, which are omnipresent and es-
sential in a realistic context [2, 3]. To cope with uncertainty and repeating disturbances, iterative
learning control methods are efficient. They can achieve low transient tracking error, but they can
only be applied to single and repeated operations [4]. Therefore, for industrial systems subjected
to rapid and unpredictable changes, other intelligent control strategies, such as neural network
(NN) controllers, can be applied. For example, an auto-tuning controller method based on intelli-
gent NN and relay feedback approach is proposed in [5]. For systems with unknown parameters
or uncertainties, NN based on PID using an extended Kalman filter algorithm [6] as well as grey
relational analysis based approach [7] can be effective to improve controller performances.

Each controlled system has its own particularities and operating conditions, which the con-
troller tuning method must consider. Henceforth, modern heuristic optimization (MHO) tech-
niques, such as Particle Swarm Optimization (PSO) [8], Genetic Algorithms (GA) [9] and Arti-
ficial Bee Colony algorithm (ABC) [10] among others, have grown during the last two decades
and have been applied to various control systems [11] handling performance assessment, design
specification, and other attributes as multimodality and non-linearities [12]. Moreover, multiple
system requirements can also be met during PID controller tuning [3].

To enhance PID tuning performances, several modifications within MHO algorithms have
been proposed. For example, a modified version of PSO yields high performance with regard
to robust PID controller design of two MIMO systems, a distillation column plant and a control
system of an aircraft [13]. In [14], a combination of a stochastic population based optimization
technique and a pattern search based method has been proposed for PI controller tuning, where an
efficient combination strategy merges the advantage of each optimization algorithm. Following
this line, in [15], PID tuning for a motion system with flexible transmission is performed with a
combination of Ant Colony Optimization (ACO) [16] and Nelder-Mead method (NM) [17]. This
proposition exhibits higher computational performances and the tuned PID achieves a better
system response than controllers tuned by ACO or NM separately.

Indeed, different ACO-NM algorithms have been proposed in the literature. The combination
in [15] is the original ACO algorithm with the unconstrained NM method. In this work, the
changeover criterion to pass from ACO to NM is a fixed number of ACO iterations. In [18]
and [19], this combination is thoroughly analyzed; sensitivity curves with respect to a stagnation
criterion are proposed to make the ACO-NM tuning easier. Since some specific applications
require parameter positivity, a positivity constraint procedure for the NM algorithm is proposed
in [20]. It has been demonstrated that this constraint procedure is more effective than limiting
the values near its constraints [21]. Table 1 shows different propositions presenting by columns
the version of ACO algorithm, the changeover criterion to pass from ACO to NM, and the type
of NM algorithm used. For example, in [22], a modified ACO, ACOg, which includes a Gaus-
sian kernel function, is proposed in order to suit better continuous optimization than the original
ACO algorithm for benchmark functions. Its changeover criterion refers to a threshold on stan-
dard deviation between ACO solutions. Similarly, in [23], an Hybrid Continuous Interactive Ant
Colony algorithm (HCIAC) combined with the original NM is proposed for large set of bench-
mark functions optimization. To make ACO parameter tuning easier, a probability function is
proposed as a threshold to pass from ACO to NM. In [24], the ACOy, strategy merged with an
upper and lower constrained NM method for bankruptcy prediction in banks is proposed. In this
approach, the authors introduce a reflection procedure to constrain NM; the variable is reflected
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Table 1: Characteristics of various ACO-NM propositions

ACO Changeover NM
Z o
g 2 —
- = g £ = £ g
. E = § £ 12 5 =2 |E& %
Application/Purpose & 8 ) a. bl g 8 2 &
s = T 213 F £ |:g £
g 5 5 ©
E] ]
Z. &5
PID tuning with anti-windup [15]
for grinder table positioning v v v
Statistical analysis of ACO for PID tuning [18, 19] v v v
Tuning of four controller structures
for grinder table positioning [20] v v v
Benchmark function evaluations [22] v v v
Benchmark function evaluations [23] v v v
Feed forward neural networks
for bankruptcy prediction [24] v v v
The proposed algorithm - v v
PID and 2DOF tuning for AVR system

when it exceeds its constraint. The ACO switches to the constrained NM algorithm when either
ACO reaches a limited number of iterations or the standard deviation between ACO solutions
comes to a specific value. From this ACO-NM algorithm review, this paper proposes an optimal
controller tuning method using a new constrained ACO-NM algorithm. The main novelty of the
proposed ACO-NM is that, unlike the other methods in Table 1, it uses a simplified version of
ACO with a new constraint procedure for NM.

In this work, the proposed ACO-NM is applied to tune controllers for the original AVR system
[25]. This controller tuning problem has received much interest in recent years; due to the amount
of research on this system, it has become a solid benchmark for testing optimization algorithms.
A comprehensive review of the numerous optimization algorithms that have been proposed for
PID tuning for the original AVR system [25]-[40] are presented in Table 2.

Table 2: Optimization algorithms and cost functions for PID controller tuning for the original AVR system
Scenario  Ref.  Optimizer Compared to Cost function

A [26] BA [27] B Bt —

B 7 pso 0s] ITAE X (1= ¢ P)(V,,,, + Eg) + Pt~ 1)

C [25] PSO GA (1 = eP)V,,, + Eg) + e Pty —1,))

Continuous Action Reinforcement s A,

D 81 eaming Automata (CARLA) (251 (1= e™XMp + Ess) + €7 = 1)
1000

E [29]  Third PSO 2} > kly(k) = yr(k)| + 2 + 10°M;,
k=1

Bacterial Foraging - eP(ty/max(t) + aM,)

F BO1 Genetic Algorithm (BFGA) GA, PSO and GA-PSO « * By
G. [ AWt +G, [ ud(odi+

G [31]  Extended DARLA ZN, DARLA and GA de(r)
GuMp + G,E + G,jsuplwl

H [32]  Simplified PSO o ITAE

I [33] TLBO %) ITAE

J [34] Bacterial Foraging Algorithm ZN and PSO IAE

K [35] Pattern Search [38] ITAE+ oy XE+ o X ts+ a3 X tp +a XV,

L [36] Modified PSO GA and PSO 0.5(1 + Mp)(t, + 1)

M [37] PSO %] wp,Mp + w1, + wy,

N [38] ABC PSO and DE ITSE

(0] [39] Many Liaison Optimization PSO a) X ITAE + ay Xty + a3 XV,

P [40] Local Unimodal Sampling Algorithm [38] ay XISE+ayxt, +az*V;,
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Regardless of the optimization algorithm, the cost function should reflect the control design
expectations, i.e. a lower value of the objective function should provide better system responses
according to the system requirements. There are typical criteria for PID tuning, such as the
integral of time-weighted absolute error (ITAE), the integral of absolute error (IAE), the integral
of time-weighted squared error (ITSE) and the integral of squared error (ISE). In [32, 33], [38],
the authors use one of these typical criteria. However, in some cases, a lower value of typical
criteria can provide an inferior system response quality [41]. To overcome the disadvantages
of the typical criteria and target specific system requirements, other cost functions have been
suggested. For example, in [25], the author proposes PSO to minimize a cost function, which
specifically penalizes the system response characteristics, the rising time 7., the settling time
ts, the steady-state error E and the maximum peak value of the system response V; . In
[26, 27], this cost function multiplied by ITAE is optimized with Bat Algorithm (BA) and PSO
respectively. PSO is also used in [37] and PSO based algorithms are proposed in [29], [36]
to tune the PID controller for the AVR system with a different cost function respectively. The
authors in [31] and [35] propose elaborated cost functions, but it can be challenging to tune them.

Whatever the optimization algorithm and the cost function, the ultimate goal for the system
under study is to obtain a fast stable and robust system response with minimal overshoot. With
this objective, the proposed ACO-NM tunes the PID controller for the original AVR system and
it is extended to more realistic conditions by considering control signal saturation and filtering
derivative action by means of a two degree of freedom PID structure [42]. Therefore, the re-
mainder of this paper is organized as follows: §2 details the proposed ACO-NM, §3 presents
ACO-NM performance compared with other algorithms thanks to well known benchmark func-
tions, §4 introduces the AVR system and the PID controller, §5 presents the AVR system results
and discussion where a new objective function is also proposed to manage control signal lim-
its and real control experiments in quasi-real conditions are performed and §6 draws the main
conclusions and presents future work.

2. The proposed ACO-NM

ACO is a metaheuristic inspired by ants behaviour within a colony initially proposed for com-
binatorial optimization [16] while NM method is a local unconstrained optimization method
based on simplex [17]. It is the powerful ACO global search combined with the precise NM
local optimization that makes the ACO-NM effective.

2.1. ACO algorithm

An ant colony facing multiple paths between their nest and a source of food has the tendency
of taking the shortest road. This is explained by the fact that ants communicate via their environ-
ment by depositing traces of pheromones. The paths with the most pheromones are more attrac-
tive to other ants. Initially, ants take different paths from each other. However, the ant that takes
the shortest road will do more round trips than others. Therefore, the amount of pheromones in-
creases more rapidly on the shortest path attracting more and more ants. Eventually, all ants will
take the same path, i.e. the shortest path. Henceforth, the solution emerges from the collective
interaction of the ants.

An approach to exploit the ants’ behavior in optimization is by representing the problem by
an optimization graph as shown in Fig. 1 [43]. The ants move probabilistically on the opti-
mization graph trying to minimize an objective function. They deposit pheromones on the nodes
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of the traveled graph, which is represented by a pheromone matrix. The quantity of deposited
pheromones, which are the pheromone matrix weights, increases with the quality of the response.

Start : Finish

Figure 1: Optimization graph for ACO [43].

2.2. Nelder-Mead

Nelder-Mead simplex search is part of a general class of direct search methods. It is one of the
most popular algorithms for solving unconstrained nonlinear optimization problems without us-
ing derivatives [17]. Generally, it is used for local optimization. NM algorithm tends to minimize
a nonlinear scalar function of n variables by using only the evaluation of the objective function.
Initially, NM algorithm performs its first simplex, A, of n + 1 vertices from a starting point x,
where a vertex represents a variable set, x, of n parameters. Thereafter, the simplex moves in
the unconstrained search space in order to minimize an objective function according to different
steps [17] ; i) Ordering, ii) Reflection, iii) Expansion, iv) Contraction and v) Shrinkage.

2.3. The proposed ACO-NM detailed

The proposed ACO-NM combines a simplified ACO algorithm with a new constrained NM
algorithm. Simplified ACO means the construction of the ACO solution is only based on the
pheromone matrix without weight. The advantages are: i) the simplified ACO is easier to tune
than the original ACO ii) it suppresses the balancing requirement between the weights of the
pheromone and the heuristic information matrices while the original ACO requires this balanc-
ing [16], and iii) it uses fewer mathematical operations within the algorithm. The changeover
criterion to pass from ACO to NM refers to the stagnation of the cost function for a ¢ number
of consecutive ACO iterations [19]. This changeover is independent of the other parameters of
the algorithm, which means no modifications or only a few trials are necessary when the pro-
posed ACO-NM is applied to a different system. From the best ACO solution found, xsco,,,
the constrained NM algorithm makes the first simplex, A, of n + 1 vertices. The simplex moves
in the constrained search space according to different steps [17] until it reaches one of its stop
criteria. The proposed constraint procedure for NM manages any interval of search space values
and considers the interaction among the variables to optimize, as opposed to [20] and [21], [24]
respectively.

The simplified ACO followed by the constrained NM algorithm is performed iteratively mini-
mizing a cost function f until the ACO-NM stop criterion is reached. The procedure is presented
in Table 3.
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Table 3: The proposed ACO - NM structure
ACONMInitialisation(UserInput)
while not (ACONMStopCriterion) do
ACOInitialisation(r)
while not(ACOStopCriterion) do
fork=1:m
X(k,x;) = BuildSolution
fval, (k, fvalx]() = SolutionEval(x;)
end
ACOevaluation
UpDatePheromoneMatrix
end while
Ay = PerformFirstSimplex(xAcgbfSI)
while not(NMStopCriteria) do
OrderingVertices
(x,, f,) = ComputeReflectionPt
if " < 0 <
BoundedTest(x,)
Introduce(x,)
elseif £ < f](“)
(x., fo) = ComputeExpansionPt
if £ <
BoundedTest(x,)
Introduce(x,)
else
BoundedTest(x,)
Introduce(x,)
end
elseif £ < 1" < f;i’l
(Xocs foc) = ComputeOutsideContractionPt
if fol < f"
BoundedTest(x,.)
Introduce(x,.)
else
PerformShrinkage
end
else
(Xic, fic) = ComputelnsideContractionPt
fLS <
‘BoundedTest(x;c)
Introduce(x;)
else
PerformShrinkage
end
end
end while
end while
Result: XACO-NM s

Fraley 0wy

The ACONMInitialisation initializes the proposed ACO-NM according to the user’s speci-
fications. These specifications includes the cost function f to minimize, the lower and upper
bounds for the search range, ¢,,;,, and ¢,,,., and the ACO-NM’s parameters.

The ACO-NM'’s parameters are the number of ants within the colony, m, the search space
discretization, ds, and the search space divisor, div. These values, m = 15, ds = 20 and div =
100, are effective according to the statistical results presented in [18, 19]; there are used as
default values. The div value is used to create the ACO search space either when the bounds
have opposite sign or when one of them is zero. For example, for the variable i, if ¢,,;,(1)=0,
the search space for this variable is a vector of ds values logarithmically spaced from ¢, (1)/div
to @,,.:(1). If the area near O is critical, div value should be higher than 100. Moreover, the
user must provide at least one parameter of NMStopCeriteria; the others will be inactive. The
NMStopCeriteria includes the maximum iteration number of NM, «, the maximum number of
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function evaluations per NM iteration, Q, and the tolerance of fval,., o, where fval, is the function
value for x. The ACONMStopCriterion is the maximum number of function evaluations, .

The ACOInitialisation initializes the pheromones matrix 7 of dimension n X div.

The BuildSolution refers to the ants moving probabilistically on the optimization graph shown
in Fig. 1. From left to right, the ants choose one node in each column in order to build a complete
solution. This graph can be represented by a matrix N, n X ds, where each column corresponds
to one variable to optimize and each node is a quantized value within the search space. This
representation allows the proposed ACO-NM to easily add or remove variables according to the
optimization problem.

The first row of N is subjected to ¢,,;, and the last row to ¢,,,.. The probability of an ant k
choosing a parameter N(i, j) depends on:

[Tij(t)]

= (1)
ds
i [ruo)]
where 7;;(f) is the quantity of pheromones for the parameter N(i, j) stored in the pheromone
matrix 7.
The SolutionEval steps saves the cost function value fval,, for an ant k in the vector fval,,.
The ACOevaluation finds the best solution for the actual ACO iteration: fval,,

min{fval,}. The best solution found prior to the actual iteration is defined as fval, COpy” If

fvaleCOir < fvalembm , fvaly, ., » takes the fvalem” value and the stagnation parameter, stag, is
reset to 0. If not, one is added fo stag. When stag reaches the g value, the ACO algorithm stops
and the constrained NM algorithm starts with x4co,,,. The g determination is based on [18]; its
default value is 5.

The UpDatePheromoneMatrix is the memory process of ants’ search, where a quantity of
pheromone, VT, is deposited. A promising parameter receives more pheromone than a poor one.

This step is computed as:

T+ 1) = 70 + ) ITHD, VG, j) € x* )
k=1
(fval,, . fval ) fvaly,
valy, , fval, ==
VTff ) = 8 k ACOpeg fvaleCObcw 3)
0 otherwise
7= (1 ="0)7,YG, J) )

where Vrf.‘j(t) is the quantity of pheromones deposited on the value N(i, j). The variable T
is the evaporation rate; its default value is 0.2. The evaporation phenomenon avoids unlimited
accumulation of pheromones and allows previous bad decisions to be forgotten. The evaporation
phenomenon can be enforced on very poor parameters. For example, for PID tuning, if the system
response is unstable according to the Routh-Hurwitz criterion, the evaporation phenomenon is
applied twice and no pheromone is deposited on this solution.

The PerformFirstSimplex makes the first simplex A; from x4co,,,. The procedure is presented
in Table 4.

The OrderVertices puts in ascending order, at the beginnings of uth iteration, the vertices of
A, as x(l"),...,x:fr)l such that fl(”) < fz(”) <. < frfz)l, where fi(”) means f(x?")) [17]. Since the
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Table 4: PerformFirstSimplex procedure
Compute the vertex foreachx Vjel,...,n
for j=1:n

Xj = XACOpes
ifx;(D#0
x,(j) = (1 +0.05)%4c0,,, ()
if x;(J) < @pin(J)
Apound = @min(J) = Prmax (D)
X () = @pin()) + 0.25p0una
end
if x;(J) > @ar())
Avound = 1@ pin(J) = Prmax (]
X (/) = @pax () = 0.25Ap0und

end
else
x;(j) = 0.00025
end
end
A1 = (xacop,,-xj) wherej=1,..,n

algorithm aims to minimize f, x(1“> refers to the best point, x(2”) to the second best point, and so on

to finish with the worst point, xfl“:l. If there is a tie between function values, the first value found
dominates over the second.

The ComputeReflectionPt step computes the reflection point x, as follows:

xr=f+P(-i'_xn+1) (5)

where ¥ = )7, x;/n is the centroid of the n best points and p = 1 [17].

The BoundedTest performs the NM constraint procedure presented in Table 5. For some op-
timization problem, the variables to optimize are interdependent. For that reason, the constraint
procedure takes into account this interdependency during the optimization tuning. If more val-
ues are out of bounds, the procedure takes the highest ratio of the excess value over the distance
between the new value and the value to be replaced. Then, the shrinkage is performed by this
ratio on all the variable of the vertex. Afterwards, the new point is evaluated.
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Table 5: BoundedTest procedure
Compute the excess of the lower and upper bound limits of x Vi€ 1,...,n:
Initialization: 8,,;; = 0, 8,ax = 0
fori=1:n
if X(0) < @5,0)

Opin(i) = (@) = @, (D]
elseif x(i) > Qyax(i)
Omax(i) = (@) = @0, (D

end

end

if Opmax O || Opmin 0
fori=1:n

Compute the difference, d, between x and the vertex to be replaced, x,,41,
d(i) = (i) = x,1 ()|

Compute the bound ratios of the excess value, 8,,;, and 8,4, relative to the distance, d

ifdi)>0
Fiower(1) = Omin(D)/d (D), Fupper(i) = Opmax(i)/d(i)
else
Fiower(D) = 0, Fypper(i) = 0
end
end

Compute the gain of the higher ratio:
Fiax = MAX{Fjower: Fupper}
fori=1:n
Proceed to the overall shrinkage:
if x() < X1 (D)
x(0) = X(i) + Fmax X d(i)

else
x(i) = x(i) = Fypax X d(i)
end
Verify that the new computed vertex is within the bounds* x Vi€ 1,...,n

if x(0) > @)
Apound = 1Pmax(i) = Punin(D]
X(0) = Prax (D) = 0.75Ap0una
elseif x(i) < 9,1, (i)
Apound = 1Pmax(() = Pin(D]
X(i) = @i (D) + 0.75Abouna
end
end
Evaluate f(x)
end
*This procedure has also been added to the reflection constraint [24] for comparison.
This procedure has been added to avoid bouncing between the bounds.

The Introduce step refers to replacing x,,; by the new x. After that, unless the NMStopCri-
teria or the ACONMStopCriterion is met, the constrained NM algorithm starts over with Order-
ingVertices and so on.

The ComputeExpansionPt computes the expansion point x, as follows:

x, = (1 +px)X — pxXus (6)

where y = 2 [17].
The ComputeOutsideContractionPt performs an outside contraction point x,,. as follows:

xie = (1 + py)X — pyXuqi 7

where y = 1/2 [17].
The ComputelnsideContractionPt computes an inside contraction point x;. as follows:
9



xie=(1- 7)-72' + YXn+1 (8)

The PerformShrinkage shrinks the simplex from the best point x(l”), fori =2,....,n+1 as
follows:

vi =X +0(x; —Xx1) )

where o = 1/2 [17]. After the shrinkage, the constrained NM algorithm starts over with
OrderingVertices unless the NMStropCriteria or the ACONMStopCriterion is met.

3. Benchmarking the proposed ACO-NM

The proposed ACO-NM is compared to various optimization algorithms, such as GA, Dif-
ferential Evolution (DE), ABC, PSO, Teaching learning based optimization (TLBO), NM, NM-
PSO and ACOy under the same conditions as the results presented in [22], [44, 45]. The pro-
posed ACO-NM is tested over well known benchmark functions with distinctive characteristics
in order to demonstrate its efficiency for solving diverse real optimization problems. The bench-
mark function characteristics (C) are defined as unimodal (U), multimodal (MU), separable (S),
non-separable (N) as well as by their dimension (D) [44]. As opposed to unimodal functions,
multimodal functions have more than one local optimum. The challenge with these functions is
to catch the global optimum among the several local minima areas. Non-separable functions’ p-
variables are more difficult to optimize as it is impossible to express them as a sum of p functions
[46].

A successful minimization refers to a difference of less than 0.001 between the known opti-
mum and the solution found by the algorithm. The s-rate represents the percentage of successful
minimization [22] [44]. The f-obj value refers to the average difference between the best point
found and the known global optimum for the successful minimization only. ME refers to the
average value of the solutions while SD indicates the standard deviation. The f-evals value refers
to the average number of function evaluations required to reach the best solution. The ACO-NM
default parameter values as presented in §2 are used for all comparisons.

Table 6 presents the results compared to [44]. The simulation conditions are the same than
[44], which means k¥ = 500,000 and the value under 10e-12 are assumed to be 0. The NM-
StopCriteria are @ = 10,000, Q = 10,000 and p=1e-12. The proposed ACO-NM presents
similar performance for Branin, Matyas and Hartman-3 functions, but significantly dominates
for PowerSum and Perm functions.

Table 6: Comparison of optimization algorithms over 30 runs
GA PSO DE ABC TLBO

The proposed

Function

[44]

[44]

[44]

[44]

[44]

ACO-NM

Branin

0.397887
0

0.39788736
0

0.3978874
0

0.3978874
0

0.3978874
0

0.39788736
0

Matyas

D-2

0
0

0
0

0
0

0
0

0
0

0
0

PowerSum

C:MUN
D-4

0.010405
0.009077

11.390448
7.3558

0.0001425
0.000145

0.0029468
0.002289

0.0000743
0.0001105

0
0

Perm

C: MU,N
D4

0.302671
0.193254

0.0360516
0.048927

0.0240069
0.046032

0.0411052
0.023056

0.0006766
0.0007452

0.000166
0.000282

Hartman-3

C: MU,N
D-3

-3.86278
0

-3.6333523
0.116937

-3.862782
0

-3.8627821

0

-3.862782
0

-3.8627821
0
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The results of the proposed ACO-NM compared to [45] are in Table 7. The proposed com-
bination of ACO with NM differs from the NM and PSO in [45]. Therefore, the 1,000 X n
algorithm iterations used as a stop criterion in [45] would lead to an unnecessary excessive num-
ber of function evaluations for the proposed ACO-NM. For fair comparison, the ACO-NM stop
criterion « is the biggest number of the f-evals among [45] according to the benchmark function.
The NMStopCriteria are @ = 1,000 X n, Q is inactive and o = 10e-12. Since ABC is a popular
optimization algorithm and presents many advantages compared to other algorithms [10], the
ABC [47] has been added to this benchmark test. A tuning procedure to set the number of bees,
the abandonment limit parameter and the acceleration coefficient has been performed to achieve
better results than those obtained with the ABC defaults values [47]. Moreover, because of its
performance in solving complex non-linear problems [48], DE presented in [49] has also been
added to this benchmark test. Its parameters have been chosen according to the parameters’ study
presented in [50]. Furthermore, the method to constrain NM in [24], which this paper refers to
as reflection constraint, is inserted in the proposed ACO-NM instead of the proposed constraint
procedure. This enables to fairly compare both NM constraint procedures. The CPU-time refers
to the time needed for the algorithm to converge.

Table 7: Comparison of optimization algorithms over 100 runs

NM PSO GCPSO  NM-PSO ABC DE The proposed ACO-NM The proposed
Function [45] [45] [45] [45] with the reflection constraint [24] ACO-NM
C:MUN s-rate (%) 0 0 0 82 21 35 100 100
D-10 f-obj - - - 1.040e-11  6.6198¢-04 0 0 0
Griewank* [-50,50] ME 1.040 0.123 0.088 0.017 0.0064 0.009 0 0
«=500,000 f-evals 3,270 504,657 9,253 14,076 935,547 42,279 35,930 39,228
CPU-time (s)™* - - - 37.539 0.82077 0.85285 1.2684
C:MUS s-rate (%) 100 100 100 100 100 100 100 100
D-2 f-obj 2.622¢-8 3.060e-8 9.722e-8  1.266e-9  5.6969¢-07  7.6729e-22 2.2629¢-25 2.3014e-25
Booth [-50,50] ME 2.622e-8 3.060e-8 9.722e-8  1.266e-9  5.6969¢-07  7.6729e-22 2.2629e-25 2.3014e-25
& =4,000 f-evals 145 3,848 2,128 1,065 7,438 3,940 994 887
CPU-time (s)™ - - - - 0.34085 0.04583 0.05951 0.04375
C:UN s-rate (%) 52 100 100 100 100 100 88 100
D-2 f-obj 4.757¢-9 5.986¢-8 3.689¢-8  1.607¢-9 3.038¢-6  2.7631e-21 2.1552¢-26 1.8844¢-26
Beale [-50,50] ME 0.845 5.986e-8 3.68%-8  1.607e-9 3.038e-6  2.7631e-21 0.0434 1.8844e-26
« =5,000 f-evals 2,742 5,440 2,792 1,458 8,940 4,932 1,348 1,510
CPU-time (s)™ - - - - 0.41869 0.04319 0.05408 0.07618
C:UN s-rate (%) 74 94 100 100 100 100 100 100
Powell badly D-2 f-obj 8.591e-6 9.896e-6 2.668¢-6  3.785¢-6  9.3787¢-6  8.8032¢-8 9.3279¢-29 8.0027¢-29
scaled function [-50,50] ME 0.475 692,348,675.92  2.668¢e-6  3.785e-6  9.3787e-6  8.8032e-8 9.3279%¢-29 8.0027e-29
k=20,000  fevals 631 20,144 12,375 2,971 15,687 6,830 2,177 2,144
CPU-time (s)™ - - - - 0.68528 0.06330 0.08654 0.07804
C:MUS s-rate (%) 0 30 0 60 0 29 94 95
D-10 f-obj - 1.080e-4 - 1.911e-11 - 0 2.0598e-15 2.4121e-15
Rastrigin® [-50,50] ME 1,164.238 1.021 7.771 4.836 8.9372 1.0646 0.0597 0.0497
«=500,000 f-evals 2,887 509,193 11,146 12,376 771,212 24,980 202,303 208,175
CPU-time (s)™* - - 29.898 0.50458 5.10 7.30

*Since the global optimum is near 0 for these function, div = 1,000
** The CPU-time is computed with Intel(R) Core(TM) i5-5200U CPU @ 2.20Ghz 2.19 GHz with 4.00Go RAM on Windows 10 Professional with Matlab R2015b.

For the five benchmark functions, the s-rate, the f-obj and the ME are significantly better
or equals with the proposed ACO-NM than [45]. Moreover, the proposed ACO-NM reaches
better f-obj, ME, f-evals and CPU-time than ABC. Likewise, the proposed ACO-NM achieves
significantly better or equals s-rate, f-obj, ME and f-evals than DE, except for Rastrigin function.
For that function, DE reaches a lower f-obj, f-evals and CPU-time, but the proposed ACO-NM
still gets appreciably higher s-rate and lower ME. For Griewank, Booth and Powell, the proposed
ACO-NM achieves similar results than those obtained with the proposed ACO-NM with the
reflection constraint. However, for Beale function, the proposed ACO-NM has a significantly
higher s-rate and a lower ME. For Rastrigin function, the s-rate is slightly higher and ME is
considerably lower with the proposed ACO-NM than those obtained with the proposed ACO-
NM with the reflection constraint.

Table 8 presents the results compared to [22] under the same conditions than [22]; o and
Q are inactive and « = 1000 x D function evaluations. The f-evals are lower than [22] ex-
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cept for Griewank function. However, all the s-rate of the proposed ACO-NM are significantly
higher. The proposed ACO-NM compared to the proposed ACO-NM with the reflection con-
straint achieves similar results for Ackley and Rastrigin functions, but reaches a higher s-rate
with a lower f-evals for Griewank function.

Thus, the results over different benchmark functions with different characteristics confirm the
efficiency of the proposed ACO-NM and its constraint procedure.

Table 8: Comparison ACOg and ACO-NM algorithms over 100 runs

ACO-NM  ACOg The proposed ACO-NM The proposed

Function [22] [22] with the reflection constraint [24] ACO-NM
Ackle C:MUN s-rate (%) 79 81 100 100
Y D-2 [-30,30] [f-evals 713 1,252 159 154
Griewank C:MUN s-rate (%) 1 28 57 66

D-10[-50,50]  f-evals 2,102 2,680 3,993 4,890

Rastrigin C:MUS s-rate (%) 56 63 100 100
Strig D-2[-1,1] [f-evals 807 1389 104 105

4. AVR system and PID structure

The purpose of an AVR system is to maintain the voltage terminal of a synchronous gener-
ator at a specific value [25]. It is composed of an amplifier, exciter, generator and sensor. Its
constituents can be represented by the transfer functions as presented in Fig. 2 [25],[51]. The
generator output voltage, V;, is continually sensed to rectify its magnitude by the PID controller
in order to reach the reference voltage, V,.r [32].

Amplifier Exciter Generator

Vg (s)—e(s)| pp | Vuls) K, v, K, W K, | V(s
——>| > >
+ controller l+7,s l+7es 1+7,s
RA Sensor
S
l+7gs

Figure 2: AVR system model with PID controller.

PID control is introduced in a system in order to improve its dynamic response. PID algorithm
in time domain for parallel form is:

V() = Kpe(t) + Kif e(t)dt + Kd% (10)
0

where V, is the control signal; e is the error between the reference V.. r and the measurement of
output signal Vy, and K, K; and K, are the coeflicients of the proportional, integral and derivative
terms respectively.

The PID tuning challenge is to find the optimal parameter set in order to minimise the rise time
t,, the settling time #;, and the maximum overshoot M. PID tuning by optimization requires a
cost function, which defines a compromise among the performance criteria.
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5. AVR system results and discussion

5.1. Overview of previous PID controllers for AVR system

Some PID tuning algorithms are more efficient and have a more appropriate cost function for
PID controller adjustments. To conduct a suitable choice of cost function and to ascertain that
the parameter set of the PID controller is better than others, a survey of the PID controller tuning
of the AVR system is performed according to the final closed loop response of the AVR system.
This survey considers the PID adjustment works of the original AVR system [25] where K, = 10,
K.=1,K,=1,K;=1,7,=01,7, =04, 7, =1 and 7, = 0.01. To maintain consistency in
the comparison, the thresholds for #; is ST = 2% with respect to the reference value and for ¢, is
RT = 10% to 90% of the steady-state value. For the publications where ST and RT values are
unmentioned, a simulation is performed with the proposed solutions to obtain the characteristic
measures. M), value refers to the difference in percentage between the maximum peak value of
the response V;, and the reference value V,.r. Table 9 resumes the proposed PID solutions and
their performance characteristics obtained for the AVR system; the optimization algorithms are
listed in Table 2.

Table 9: Optimization results for other proposals solving PID controller tuning for the AVR system

Scenario  Ref. Cost function J(x) = K, K; Ky M,y(%)  ty(s) 1,(s)

A 6 o e 0.6668 04825 02262 200 05628 02837
By [TAEXU=eNVi +E)+ e =0) 6443 04700 02423 044 1.1025 02800
c 25 (1= eP)V,, +Esy) + e Pty — 1)) 0.6570 05389 02458 116 04114 02723
D 28] (1= e DM, + Ey) + et — 1,)) 10184 02809 02308 1296 44145 0.2285

1000
E [29] 3 kly(k) =y, (0] + 22 + 10502 05069 03633 01513 0.62  0.6343 04080

k=1

e P(t;/max(t) + aM,)
F [30] ¢ R T L E,, 0.6728 04787 02299 197 04180 02795
(03

G. [] At + G, ) @i+
G B de(t) 0948 0256 0232 1007  4.8424 0.2365

GuMp + G Egs + Ggsupl———|

d(t)

H 32 ITAE 05857 04189 01772 195 05155 03433
1 [33] ITAE 19522 04515 04753 2827 27161 01321
J [34] IAE 09951 02773 02238 1258  4.4394 0.2339
K [35] ITAE+aiX&+aaxt+as Xt +asx Vi 12771 08471 04775 1693  0.8039 0.1438
L [36] 0.5(1 + Mp)(t, +1,) 04500 02900 0.1300 0.00  0.8169 04822
M [37] M Mp + Wity + Wy, 07080 0.6560 02820 2.60  0.8133  0.2400
N 38 ITSE 1.6524 04083 03654 2501  3.0939 0.1557
o 39 a1 X ITAE + ay Xty + a3 X V. 05473 03556 0.1668 0.00  0.5864 0.3744
p [40] I XISE+ay*ty+ a3+ V,,. 0.6190 04224 02058 0.59 04778 03123

Regarding only £, scenario C is better. Combining 7, and M), values as a performance mea-
surements, scenarios C, F, H, O and P seem interesting. However, considering also the ¢, value,
scenario C dominates. Regardless of the optimizer used, this review highlights the performance
of the cost function proposed by scenario C. Also, this cost function contains only one parameter
to set. Therefore, this cost function (11) is chosen for the PID AVR tuning with the proposed
ACO-NM:

Jx) = (1= eP)V,,, +Eg) +e Pt~ 1) (1)

where x is [K),, K;, K41, B is a weighting factor, V;, _is the maximum peak value in the system
response and E; is the steady-state error. Although E; is null in the final system response due
13



to the presence of the integrator, this term helps the optimization process to reach the desired
solution faster.

5.2. PID controller of AVR system - PSO compared to the proposed ACO-NM

The proposed ACO-NM is compared to PSO (Scenario C of Table 9) under the same conditions
than [25], which means the cost function J(x) is (11), « = 10,000, ¢,,;, = [0 0 0l, ¢,,,., =
[1.5 1.0 1.0] and the Routh-Hurwitz criterion for closed loop stability has been added. The
ACO-NM parametrization [19] is @« = Q = 600, o0 = le, m =157 = 0.2, r = 20, q=>5
and div = 100. The evaporation rate is enforced and the J(x) value is penalized on parameters
leading to an unstable system response or undefined transient response characteristic values.

The proposed PID controller parameter sets are compared in Table 10 to PSO-PID [25] and
to the set obtained with the SIMC method [52]. SIMC method is based on earlier ideas of
Ziegler-Nichols tuning method and Internal Model Control. Some extra work for proportional
gain tuning for SIMC method was necessary.

Table 10: Best PID controller over 100 runs (ST = 2%, RT = 10% to 90 %)

B Optimizer K, K; Ky My(%) Eg  t;(s) 1, (s) J(x)
10 PSO 0.6570  0.5389 0.2458 1.16 0 04114 02723 0.6906
: ACO-NM  0.67387 0.59506 0.262173 1.67 0 03860 0.2580 0.6898
15 PSO 0.6254  0.4577 0.2187 0.44 0 0.4609 03007 0.8160
ACO-NM  0.63475 0.48005  0.22665 0.61 0 04451 02918 0.8159
SIMC-PID _ 0.5075 _ 0.3500 _ 0.1575 0 0 06621 0.4060 B

The proposed ACO-NM achieves lower J(x) values than PSO for both  values, which means
a better efficiency for the proposed ACO-NM. According to the system response characteristics,
ACO-NM-PID provides lower ¢, and t; values while PSO-PID and SIMC-PID present a little less
overshoot M),. Fig. 3 shows the terminal voltage step response of the AVR system and its zoom
on the maximum overshoot.

-

PSO-PID controller
/ —— ACO-NM-PID controller
! —+=-=-= SIMC-PID controller

o
o

o

[N

oS
©

o
©

o
3

03 04 05 06 07 08 09 1 11
Time(s)

Zoomed terminal voltagev‘,(v) Terminal voltage V[,(V)

Figure 3: Terminal voltage step response of AVR system with its zoom for § = 1.0.

A second simulation scenario has to be performed to draw stronger conclusions about the
proposed ACO-NM since the ST and RT values are unmentioned in [25]. To obtain exactly the
14



same t; and ¢, values of the AVR controlled with the PID tuned as in [25], it is necessary that
ST = 2.625% and RT= 8.84% to 90% for § = 1.0 as well as ST=2.43 % and RT=8.48% to
90% for B = 1.5. As these thresholds affect the cost function value, the proposed ACO-NM
is performed with these thresholds. Table 11 shows again how ACO-NM-PIDs have a lower
J(x) value. Moreover, the maximum overshoot M, the settling time ¢,, and the rise time ¢, of
ACO-NM-PID controller system response are lower than PSO-PID controller for both g values.

Table 11: Best PID controller solutions over 100 runs

B Optimizer K, K; K4 M,(%) Eg;  to(s) t (s) J(x)

10 PSO[25] 0.6570  0.5389  0.2458 1.16 0 04025 0.2767 0.6857
"~ ACO-NM 0.66862 0.54774 0.25808 1.14 0 03871 0.2668 0.6836
15 PSO[25] 0.6254  0.4577  0.2187 0.44 0 04528 0.3070 0.8128
~  ACO-NM 0.63041 0.4498 0.22250  0.27 0 04478 03033 0.8113

Table 12 presents the convergence of the proposed ACO-NM, the PSO [25], the proposed
ACO-NM with the reflection constraint [24], ABC [47], DE [49] and GA [53] over 100 runs.
Regarding 8 = 1.5, GA-PID has the lowest J(x), Jyux and AE (AE = Jar(X) — Join(x)) val-
ues among all algorithms. However, GA-PID overtakes the proposed ACO-NM-PID only by
0.0000051 for J(x) and the f-evals as well as the CPU-time for GA-PID are among the ones with
the highest values; they are significantly higher than those obtained with the proposed ACO-NM-
PID. Concerning NM constraint procedure comparison, the proposed ACO-NM-PID reaches a
lower J(x), Jax and AE than the ACO-NM-PID reflection constraint, but the f-evals is a little
higher.

For 8 = 1.0, DE-PID presents the lowest J (), Juax and AE values, but has the highest f-evals
and CPU-time among all algorithms. The proposed ACO-NM-PID reaches a slightly higher J(x)
value, but f-evals and CPU-time are considerably lower. Furthermoer, the proposed ACO-NM-
PID still reaches a lower J(x) value than the one obtained with the ACO-NM-PID reflection
constraint for a lower f-evals and CPU time values. The proposed NM constraint procedure is
more efficient than the reflection constraint because it considers the interdependency between
the parameters to be adjusted. According to the AVR system and the benchmark function overall
results, the proposed ACO-NM is more effective than the other compared algorithms; it reaches
high quality response with a high computational performance.

Table 12: Comparison of computation efficiency over 100 runs

Jinax Tonin(X) J(x) AE f-evals  CPU-time (s)*

proposed ACO-NM-PID 0.8116850 0.8112899 0.8113127 0.0004 4,429 341

p=15 ACO-NM-PID reflection constraint [24]  0.8119710 0.8112899 0.8113139 0.0045 3,983 304
* PSO-PID [25] 0.8149300 0.8129420 0.8136034 0.0020 - -

ABC-PID 0.8136967 0.8115569 0.8122818 0.0021 8,096 619

DE-PID 0.9285182  0.8112900 0.8124623 0.1172 9,842 873

GA-PID 0.8114100 0.8112911 0.8113076 0.0001 9,726 847

p=10 proposed ACO-NM-PID 0.6843690  0.6836069 0.6836410 0.0007 3,693 284

" ACO-NM-PID reflection constraint [24]  0.6843690 0.6836069 0.6836485 0.0007 4,566 356

ABC-PID 0.6854456  0.6836886 0.6842643 0.0018 8376 652

DE-PID 0.6836070  0.6836070  0.6836070 0 9,873 766

GA-PID 0.6836920  0.6836084 0.6836209 0.00006 9,698 712

The CPU-time is computed with Intel(R) Core(TM) i5-5200U CPU @ 2.20Ghz 2.19 GHz with 4.00Go RAM
on Windows 10 Professional with Matlab R2015b.
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5.3. Closed loop system analysis

The closed loop zeros and poles, the damping ratio and the natural frequencies when the AVR
system is controlled with the PSO-PID [25] and the proposed ACO-NM-PID are presented in
Table 13. All the closed loop poles of the system are lying to the left of the s-plane, which means
the controlled AVR system is stable. The damping ratio value gives information concerning the
oscillatory nature of the transient response. A larger value produces transient response with less
oscillations. The damping ratios of ACO-NM-PIDs and PSO-PIDs are very similar as well as
their natural frequencies. This analysis confirms the stability of ACO-NM-PIDs for the AVR
system.

Table 13: Closed loop characteristics of PID controllers

Optimizer Closed-loop poles Zeros Damping ratio  Natural frequencies (rad/s)
-1.1920 £ 0.7031i  -1.3365 + 0.6374i 0.8611 1.3843
PSO -5.2186 + 6.5303i %] 0.6243 8.3594
B=1 -100.6788 -100.0000 1.0000 100.6743
-1.1554 £ 0.7157i  -1.2954 + 0.6666i 0.8501 1.3591
ACO-NM  -5.2382 + 6.79491 oz 0.6105 8.5796
-100.7128 -100.0000 1.000 100.7128
-1.3031 £ 0.3920i  -1.4298 + 0.2201i 0.9576 1.3608
PSO -5.1450 £ 5.9117i %] 0.6565 7.8371
B=15 -100.6038 -100.0000 1.0000 100.6038
-1.2945 £ 0.33261  -1.4167 +0.1211i 0.9685 1.3365
ACO-NM  -5.1484 + 6.0052i %] 0.6509 7.9100
-100.6143 -100.0000 1.0000 100.6143

5.4. Robustness analysis

Table 14 presents the robustness analysis of the proposed ACO-NM-PIDs which is performed
by varying the time constant values of the AVR components (+50% and +25%) [35],[37]. The
dynamic performances of the transient response are contained within the expected range [54] and
the average of maximum deviation is comparable to [32], [37]. For the case of +50% for 7, vari-
ation, the deviation on 7, may be perceived as high. However, ST is fixed for high performance
i.e. 2%. The results in Table 15 confirm that the system is still stable and the damping ratios are
acceptable considering the values in [32], [35], [38]. According to this analysis, ACO-NM-PIDs
are robust.

Table 14: Deviation range and maximum deviation of the system for ACO-NM-PIDs

Deviation range / Maximum deviation (%) Deviation range / Maximum deviation (%)
B=10 B=15

Parameter V. (V) 1, (5) t, (s) Vi (V) t; (s) t(s)

Tq 0.0666/6.45 1.0011/335.64 0.0291/11.57 0.0641/6.33 0.2640/120.86 0.0441/16.24
T, 0.0477/4.06 1.2169/470.45 0.1638/34.42 0.0527/4.95 0.7920/274.79 0.1746/32.74
Ty 0.0574/7.27 1.8295/633.98 0.2288/45.54 0.0426/5.65 1.4670/506.89 0.2568 / 44.50
Ty 0.0107/1.05 0.4643/122.64 0.0161/3.25 0.0087/0.86 0.4965/114.08 0.0175/3.12
Average 0.0456/4.71 1.1279/390.67 0.1094/23.70 ~ 0.0420/4.44 0.7549/254.18 0.1232/24.15

5.5. Practical PID controller

In a practical context [3], the control signal V,, should be taken into account. Therefore, a first
order filter on the derivative (D) part helps to avoid problems related to real implementation of
derivative on noisy signals. The PID with derivative filter expression PIDy(s) is:
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Table 15: ACO-NM-PIDs closed loop characteristics (+50% on 7, value)
Closed loop poles Damping ratio
B=10 B=15 =10 B=15
-1.0369 + 0.9143i  -1.1726 £ 0.6744i  0.7501  0.8669
-5.3046 + 4.8481i  -5.2019 +4.05991 0.7382  0.7883
-100.4836 -100.4176 1.0000  1.0000

K; N
PID¢(s) = K, + — + Kd—l
s 1+N-
S

12)

where N is the filter coefficient. By incorporating the parameter N in the controller tuning
(N € [10,...,150]) with the proposed ACO-NM, the control signal is acceptable and the AVR
system response is adequate. Table 16 shows the results compared to [55], which used a smaller
search space (0.3 < K, < 0.6, 0.1 < K; < 0.5 and 0.01 < K; < 0.4 ) and divided the filter
coefficient N in two independent variables (0.1 < N’ < 2 and 0.01 < T(s) < 0.1) such that
N=N’/T. The ACO-NM-PIDy provides a stable response faster.

Table 16: Controller solutions (ST= 2% and RT = 10% to 90 %)(8 = 1)
Kp Ki Kd N Mp(%) E.xs Iy (S) I (S) J<x)
ACO-NM-PID  0.67387 0.59506 0.262173 2] 1.67 0 03860 0.2580 0.6898
ACO-NM-PIDy 0.6268 0.5564 0.2404 130.6039 1.76 0 04049 0.2662 0.6944
TLBO-PID; [55] 0.5302  0.4001 0.1787  175.2661 1.00 0 05603 0.3537 B
*The value N refers to N/T = 1.9104/0.0109 in [55].

rrrrr

it is irrelevant to mention the value J(x).

Following the objective of this section, a PID controller output saturation has been included
per [56]; where V,,, <V, <V, such that —-0.07 < V, < 0.5. As shown in Fig. 4, AVR

system controlled with the previous ACO-NM-PID has a poor performance since the control

signal saturates over a long time period.
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Figure 4: Terminal voltage of AVR system response for ACO-NM-PID when control signal is saturated (V,,,, < Vi <

min —
Vitnar)-

The incorporation of specific constraints can complicate the optimization process [3]. To
manage this scenario, a 2DOF-PID controller is used [1]. This structure has two extra degrees
of freedom, which enables to weight the setpoint V,.r(s) before passing through the Proportional
(P) and Derivative (D) actions [1]. The control signal is computed as follows:

K N
Va(s) = Kp [wpVres(s) = Vils)] + ~ E@+ K [0 Vier () = Vi) | —— 13)
1+N-
N

where w,, and w, are the weights on the P and D actions respectively. For this case, the decision
variables refer to x = [K,, K;, K4, N, wp, w,]. Two simulation scenarios are performed to tune the
2DOF-PID structure with the proposed ACO-NM with this new fitness function (14):

1x) = (1 = ePYV,,.. + Ess) + e P(ts —1,) + OD(x) (14)
where © is a weighting coefficient and ®(x) is
flvu - Vum,‘nl lf Vu < Vu

@) =1 [Vi~Vipo if V> Vi
0 otherwise

'min

15)

Notice that, if @ = 0, (14) equals (11).

Two parameters’ value on the ACO-NM parametrization are changed, m=75 and r = 25 in or-
der to achieve accurate results [19]. The search ranges for the new parameters are w), € [0,..., 1],
wy €[0,...,1Tand N € [10,..., 150]. Table 17 and Fig. 5 show the results.

Table 17: 2DOF-PID controller solutions (8 = 1.0)

Scenario K, K; Ky N wp wy M, (%) 15 (s) 1, (s) O value I(x)
a 1.2468 0.6943 0.2579 138.0926 0.8241 0.0222 0.58 0.7767 0.4624 0 0.7517
b 0.6366792  0.6219553  0.1290376  10.3772549 0.7087421 0.0100648 1.73 0.8344 0.5120 10,000" 0.7618

*@ = 10,000 for a hard penalty on violation of the control signal limit

As (14) specifically penalizes the violation of the 2DOF-PID controller output, it is expected
that the control signal remains under its saturation limits. The limitation on the control signal
18
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Figure 5: Terminal voltage of AVR system response with its control voltage output for 2DOF-PID for two scenarios (a:
® =0; b: ® = 10,000).

slows down the ¢, and 7. Despite this, the tuned controller still provides satisfactory closed loop
response [54].

6. Real tests with 2DOF-PIDs tuned with the proposed ACO-NM

6.1. Experimental set-up

The performance and the robustness of the controllers tuned by the proposed ACO-NM is
confirmed experimentally. The experimental validation is performed with the G26/EV process
simulator from Elettronica Veneta S.P.A. [57]. This simulator is composed of different blocks.
Each block develops a separate linear or non-linear function, which can be connected for the lay-
out of the control configuration. Terminals at the input and output of each functional block enable
qualitative and quantitative measurements of the variables in the control chain. The G26/EV
process trainer is used for educational purposes as well as for testing control algorithms under
quasi-real conditions.

The process is configured using the four following blocks :

Vul(s) _

Vs(s)

9.8487
1+0.09s

1
1+0.7395s

1
1+ 1.0015s

G(s) =

1
1+0.001$] 16

Due to prototype physical limitations, the real process implemented (16) differs from the nom-
inal AVR process stated in §5 but, the system is still in its parameter range [25]. Then, the
experiments test the controller performance as well as its robustness. A computer with a data
acquisition system is connected to the process via A/D and D/A converters as shown in Fig. 6.
The computer runs NI-Labview program which implements a digital 2DOF-PID with a 5 ms
sampling period.
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Figure 6: Experimental set-up: Closed loop implemented with a digital controller programmed in NI-LabVIEW and
G26/EV process trainer simulator.

Real experiment

Ref
9.8487 1 1
PID(s) L JE N N S
€)1 0.09s+1 0.73955+1 "' T.00155+1

Saturation Amplifier Exciter Generator

Step

PID Controller (2DOF)

1

le
0001s+1 [*

Sensor

Real experiment

Figure 7: Simulink diagram for 2DOF-PID simulations.

6.2. Experimental results

The two 2DOF-PIDs of Table 17, tuned for the nominal AVR system, are implemented. As
explained in previous sections, the tuning procedure was performed off-line and the resulting pa-
rameters were set in the real controller. Since the controller parameters have been tuned using the
nominal AVR system values [25], a previous closed loop simulation using the Matlab/Simulink
model presented in Fig. 7 has been performed to verify the closed loop stability.

After closed loop stability verification, the real control experiments are performed. The exper-
imental results obtained are presented in Fig. 8 and 9. Even though the model used by the tuning
method differs from its real process as well as the form of PID used by the method (continuous)
from its implemented version (discrete), the experimental 2DOF-PIDs provide satisfactory con-
trol performance. Furthermore, the 2DOF-PIDs robustness is confirmed under real control tests
and the previous closed loop performances obtained with nominal model shown in Fig. 5 are
maintained. The noises and disturbances observed are inherent to real experiments.

7. Conclusion

This paper presents an optimal gain tuning method for controller parameters for the orig-
inal AVR system using a new constrained ACO-NM algorithm. Its performances have been
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Figure 8: Terminal voltage of AVR system with its control voltage output for 2DOF-PID controller of Table 17 (Scenario-
a) : Experimentation vs Simulation.
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Figure 9: Real terminal voltage of AVR system with its control voltage output for 2DOF-PID controllers of Table 17 for
two fitness functions.

confirmed by: i) achieving better or equivalent PID solutions according to the overall transient
response than other AVR tuning propositions, if) having higher computational efficiency, iif) ana-
lyzing its robustness, iv) validating the 2DOF-PIDs performance experimentally, and v) compar-
ing simulation results with already published algorithms over benchmark functions with different
characteristics. The proposed ACO-NM is promising because unlike many other algorithms used
in this field, it has demonstrated that it effectively manages constraints and system requirements
and works with both a realistic system and benchmark functions with different characteristics.
Therefore, the proposed ACO-NM has the elements required to both be applied to other complex
control structures and to account for a greater number of requirements. This paper demonstrated
that taking into account the interdependency of the PID controller parameters in the NM con-
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straint procedure is effective. This improvement to the number of the cost function evaluations
should prove beneficial when using this method for online optimization problems. Furthermore,
real control tests have shown the robustness and performance of the resulting tuned PID. For
future work, robustness tests should be included during the controller tuning procedure, and the
proposed ACO-NM will be applied to tune the controllers for the swing-up and stabilization for
a pendulum-cart system.
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