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- A two-stage selection strategy has been proposed on the basis of both the R2 

indicator and the reference vector guided objective space partition 

- An R2 indicator based achievement scalarizing function has been designed for the 

primary selection 

- A reference vector guided secondary selection has been adopted for objective space 

partition 

- An evolutionary algorithm based on the two-stage selection strategy has been 

developed for many-objective optimization 

- Experimental results demonstrate the competitive performance of the proposed 

evolutionary algorithm in comparison with some state-of-the-art algorithms for 

many-objective optimization 
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Abstract

R2 indicator based multi-objective evolutionary algorithms (R2-MOEAs) have

achieved promising performance on traditional multi-objective optimization prob-

lems (MOPs) with two and three objectives, but still cannot well handle many-

objective optimization problems (MaOPs) with more than three objectives. To

address this issue, this paper proposes a two-stage R2 indicator based evolu-

tionary algorithm (TS-R2EA) for many-objective optimization. In the proposed

TS-R2EA, we first adopt an R2 indicator based achievement scalarizing func-

tion for the primary selection. In addition, by taking advantage of the reference

vector guided objective space partition approach in diversity management for

many-objective optimization, the secondary selection strategy is further applied.

Such a two-stage selection strategy is expected to achieve a balance between

convergence and diversity. Extensive experiments are conducted on a variety of

benchmark test problems, and the experimental results demonstrate that the

proposed algorithm has competitive performance in comparison with several

tailored algorithms for many-objective optimization.

Keywords: R2 indicator, reference vector, two-stage selection strategy,
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many-objective optimization, evolutionary algorithm.

1. Introduction

A multi-objective optimization problem (MOP), which involves more than

one conflicting objectives to be optimized simultaneously, can be formulated as

follows:

min F (x) = (f1(x), f2(x), ..., fm(x))

s.t. x ∈ Ω
(1)

where x = (x1, x2, ..., xn) is the decision vector, n is the dimension of decision5

space, Ω is the decision space, m is the number of objectives, F (x) is the m

dimensional objective vector and fi(x) is the ith objective to be optimized.

A solution x1 in the decision space is said to dominate another solution

x2 (x1 ≺ x2) if and only if fi(x
1) ≤ fi(x

2) for every i ∈ {1, ...,m}, and

fj(x
1) < fj(x

2) for at least one index j ∈ {1, ...,m}. A solution x∗ is a Pareto10

optimal solution if there is no other solution x ∈ Ω such that x ≺ x∗, and

correspondingly, F (x∗) is called a Pareto optimal vector. Due to the conflicting

nature of MOPs, any improvement of a Pareto optimal vector in one objective

will deteriorate at least one other objective. A set of Pareto optimal vectors

in objective space is called Pareto front (PF) while the corresponding image in15

decision space is known as Pareto set (PS) [1, 2].

Since population based metaheuristics such as evolutionary algorithms (EAs)

can obtain a set of candidate solutions in a single run, the multi-objective evo-

lutionary algorithms (MOEAs) have witnessed a rapid development during the

last two decades [3]. Nevertheless, although most MOEAs perform well on20

MOPs with two and three objectives, they are confronted with various issues

when applied to many-objective optimization problems (MaOPs) with more

than three objectives. In recent years, the development of MOEAs for solving

MaOPs has attracted increasing interest in the literature [4]. As one major

reason behind the failure of traditional MOEAs in solving MaOPs, the phe-25

nomenon called dominance resistance causes severe loss of convergence pressure

2
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towards the Pareto front [5]. In order to enhance the performance of MOEAs

in many-objective optimization, various approaches have been proposed during

the last few years. They can be divided into three categories.

The first category is still Pareto dominance based MOEAs, where the basic30

idea is to enhance the selection pressure by applying various modified domi-

nance relations or novel diversity management strategies. Some representative

modified dominance relations include the fuzzy dominance [6, 7], grid dom-

inance [8] and preference-inspired method [9]. Instead of applying modified

dominance relations to enhance convergence in an explicit manner, some work35

tries to implicitly improve the convergence quality via diversity management.

For example, Li et al. proposed a modified crowding distance diversity criterion

for Pareto dominance based MOEAs, namely, the shift-based density estima-

tion (SDE) strategy [10]. Recently, Zhang et al. proposed a knee point-driven

evolutionary algorithm for many-objective optimization, namely, KnEA [11].40

The second category is the decomposition based evolutionary algorithms.

The most representative MOEAs based on decomposition are C-MOGA [12],

MOEA/D [13] and MOEA/D-M2M [14]. Recently, some MOEAs based on

both dominance and decomposition have also been proposed [15, 16, 17].

The third category is known as the indicator based MOEAs. As the most45

prevalent performance indicator in the literature, the hypervolume indicator is

strictly monotonic with regard to Pareto dominance [18, 19], and the repre-

sentative MOEAs based on it include the SMS-EMOA [20] and the HypE [21].

More recently, an evolutionary algorithm based on both Pareto dominance and

performance indicator (Two Arch2) has also been proposed [22]. Although hy-50

pervolume indicator based MOEAs are able to transform an MOP/MaOP into

an SOP, they suffer from a serious curse of dimensionality due to the exponen-

tially increasing computational cost of the hypervolume calculation.

Apart from the hypervolume indicator, there are also some other perfor-

mance indicators in the literature such as GD [23], IGD+ [24, 25] and ∆p [26].55

Recently, the R2 indicator, which strikes a comprehensive balance between con-

vergence and diversity, has attracted increasing interest [27]. Given a set of

3
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reference vectors, the R2 indicator can be regarded as the mutual preference

based on the population contribution to each reference vector by ranking the

population. There are some desirable properties such as weak monotonicity to60

the Pareto dominance and low computational complexity which make it a vi-

able candidate to be embedded into indicator based MOEAs, often known as

the R2-MOEAs [27, 28, 29].

Compared to other existing MOEAs, the R2-MOEAs have some advantages,

e.g., the scalability in terms of the number of objectives [30], robustness to65

noisy problems [31], simple hybridization with other metaheuristics [32, 33],

etc. Generally, an R2-MOEA consists of three main components: reference

vector generation [34], scalarizing function formulation [35] and nadir point

updated strategy [36]. Firstly, systematic sampling methods such as DBEA [37]

and RVEA [38] are commonly used to generate reference vectors for an R2-70

MOEA. Secondly, a variety of scalarizing methods are also available, including

the prominent examples of weighted sum, Tchebycheff and augmented weighted

Tchebycheff method [35]. Thirdly, the most commonly used nadir point updated

strategies include fixed nadir point, adaptive nadir point adjustment and record

data structure nadir point adjustment [36].75

Although R2-MOEAs have been successfully applied to solving bi-/three-

objective MOPs [39], as pointed in [27], research on R2-MOEAs for solving

MaOPs is still in the infancy. Inspired by the recently proposed reference vec-

tor guided evolutionary algorithm (RVEA) [38], we propose an enhanced R2

indicator based MOEA, known as the TS-R2EA, where the main motivation is80

to take the advantages of both R2 indicator and reference vector guided selection

strategy in RVEA to strike a good balance between convergence and diversity

for many-objective optimization. To this end, a two-stage selection strategy

is proposed, where the primary and secondary selections are based on the R2

indicator and guided by reference vectors, respectively. The primary selection85

first ranks the population based on the R2 indicator, and the candidate solu-

tions which are located in the first rank will be selected. Then, the secondary

selection is guided by a set of reference vectors, where the remaining candidate

4
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solutions in the partitioned subspaces are further selected to maintain a proper

population diversity.90

The rest of this paper is organized as follows. Section 2 introduces the

background and motivation of this work. Section 3 describes the proposed

TS-R2EA for many-objective optimization in detail. Section 4 presents test

problems, performance indicators and algorithm settings used for the empirical

studies. Section 5 provides the extensive experimental results and discussions.95

Finally, conclusions and future work are given in Section 6.

2. Background and Motivation

In this section, we first provide some basic knowledge about the R2 indi-

cator. Then, we briefly introduce the general mechanism of RVEA [38] and

R2-MOEAs [27], which are directly related to the proposed TS-R2EA. Finally,100

the motivation of this work is given.

2.1. R2 Indicator

The R2 indicator is designed on the basis of utility functions which map

the candidate solutions from the objective space into utility space for perfor-

mance assessment [27, 28]. Among various utility functions, the most widely

used ones are the weighted sum (WS) [40] and the Tchebycheff (TCH) [30]

utility function, both of which are well suited for solving bi-/three-objective

optimization problems [36]. However, their performance deteriorates rapidly as

the number of objectives increases [30]. As suggested in some recent studies [36],

an achievement scalarizing utility function (ASF) is more suitable for solving

MaOPs. Therefore, we decided to incorporate the ASF into the R2 indicator in

this work:

ASF (⃗a, z∗, λ⃗) = max
i∈{1,...,m}

{
1

λi
|z∗i − ai|

}
, (2)

where a⃗ denotes a candidate solution, z∗ is the ideal point which minimizes

all objective functions, and each ith component is defined as z∗i = mina⃗ fi(⃗a),

5
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λ⃗ = (λ1, ..., λm) represents a user specified reference vector, λi ≥ 0 for all105

i ∈ {1, ...,m}, m is the number of objectives.

Given an approximation set A, a set of reference vectors V , and the utility

function u, the unary R2 indicator can be calculated as follows:

R2(A, V ) =
1

|V |
∑
λ⃗∈V

min
a⃗∈A

{
uλ⃗(⃗a)

}
. (3)

After properly choosing the utility function as given in Eq. (2), we put the

ASF formula into Eq. (3). Finally, we can calculate the R2 with respect to the

candidate solution set A as follows:

R2(A, V ) =
1

|V |
∑
λ⃗∈V

min
a⃗∈A

{
max

i∈{1,...,m}
{ 1
λi
|z∗i − ai|}

}
. (4)

Correspondingly, the contribution of a candidate solution a⃗ ∈ A to the R2

indicator can be calculated as:

CR2(⃗a,A, V ) = R2(A, V )−R2(A\{a⃗}, V ). (5)

2.2. RVEA

The basic idea of RVEA [38] is to guide the search of an MOEA using a set of

reference vectors by partitioning the objective space into a number of subspaces.110

In each generation of RVEA, at most one candidate solution can be selected in

each subspace according to the selection criterion known as the angle penalized

distance (APD). To deal with scaled problems where the objective functions

are not well normalized, RVEA adopts a reference vector adaptation strategy to

dynamically adjust the distribution of the reference vectors, such that a uniform115

distribution of the candidate solutions can be guaranteed. As reported in [38],

RVEA has a promising performance on a variety of MaOPs in comparison with

some state-of-the-art MOEAs for many-objective optimization.

2.3. R2-MOEAs

Similar to RVEA, R2-MOEA first specifies a set of reference vectors that120

uniformly spread over the objective space. In each generation of R2-MOEAs,

6
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a non-dominated sorting procedure is first applied to divide the combined pop-

ulation into several ranks. Candidate solutions in the first-rank front have the

highest priority to be selected. The second-rank candidate solutions will be

identified in the same manner from the remaining candidate solutions. The125

procedure will continue until all the candidate solutions have been ranked. As

a consequence, the candidate solutions in the last acceptable front are selected

using R2 contributions as given in Eq. (5). It is worth noting that the num-

ber of candidate solutions to be selected in each generation is always equal to

the number of reference vectors in R2-MOEAs, while in RVEA, due to the fact130

that some subspaces can be empty, it is possible that the number of selected

candidate solutions is smaller than the number of reference vectors.

2.4. Motivation for TS-R2EA

It has been widely reported that the R2 indicator can well balance conver-

gence and diversity when solving bi-/three-objective MOPs [39]. However, as135

presented in some recent work [36], its performance substantially deteriorates

when R2-MOEAs are applied to the optimization of MaOPs. In the proposed

TS-R2EA, we are motivated to enhance the diversity management by taking ad-

vantage of the reference vector guided selection strategy adopted in the recently

proposed RVEA [38], such that a better balance between diversity and conver-140

gence can be achieved in the R2 indicator based evolutionary many-objective

optimizer.

In order to have a clear understanding of selection strategies in tradition-

al R2-MOEAs and the proposed TS-R2EA, we provide an illustrative example

in Fig. 1, where {s1, s2, s3, s4, s5, s6} are the combined candidate solution-145

s, and {λ1, λ2, λ3} and {M1,M2,M3} are a set of reference vectors and the

corresponding subspaces respectively. The traditional R2-MOEAs only select

candidate solutions {s1, s2, s3}, although s6 in the subspace M2 has a sig-

nificant contribution to the population diversity. Fortunately, RVEA selects

candidate solutions {s1, s6, s3}, where the candidate solution s6 is crucial to150

the diversity maintenance. Thus, the two-stage selection strategy in TS-R2EA

7



Page 10 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: Illustrations of the proposed TS-R2EA. {s1, s2, s3, s4, s5, s6} are the combined can-

didate solutions. {λ1, λ2, λ3} are a set of reference vectors, where the corresponding subspaces

are {M1,M2,M3}.

not only selects the candidate solutions in the first rank, namely {s1, s2, s3},

but also selects s6 according to the reference vector guided selection strategy.

Consequently, the two-stage selection strategy is able to strike a good balance

between convergence and diversity.155

3. Proposed Algorithm: TS-R2EA

3.1. Framework of TS-R2EA

Essentially, the proposed TS-R2EA is still an elitist MOEA based on the R2

indicator. However, the main difference between TS-R2EA and MOMBI-II [36]

lies in the fact that the reference vector guided secondary selection strategy is160

adopted.

The main framework of the proposed TS-R2EA is presented in Algorithm 1

and Fig. 2. Firstly, a number of N candidate solutions and reference vectors are

8
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Algorithm 1 TS-R2EA Main Loop

1: Initialization (P0, V0)

2: gen← 0

3: repeat

4: Qgen+1 ← Reproduction (Pgen)

5: Pgen+1 ← TS-R2EA-Selection (Pgen ∪Qgen+1)

6: gen← gen+ 1

7: until Termination condition satisfied

8: Return P

Figure 2: Illustration of the main loop of TS-R2EA. Pgen and Qgen+1 are the parent pop-

ulation and the offspring population respectively. PR2 and PRV are the selected candidate

solutions obtained by adopting the two-stage selection strategies.

initialized in P0 and V0 respectively. In the main loop, the offspring population

is first generated using genetic operators such as the simulated binary crossover165

(SBX) [41] and the polynomial mutation (PM) [42]. Then, the TS-R2EA s-

election strategy is used to select a new population for the next generation.

Specifically, the TS-R2EA selection consists of two components in Fig. 2: PR2

and PRV , which are selected by adopting the R2 indicator based primary selec-

tion approach and the reference vector guided secondary selection method. In170

the following subsections, each main component in TS-R2EA will be explained

9
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step-by-step.

3.2. Initialization Procedure

0
00

0.5f3

f1f2

0.50.5

1

11

Boundary
Inside

Figure 3: Illustration of the two-layered reference points (with six points on the boundary

layer (H1 = 2) and three points on the inside layer (H2 = 1)).

The initialization procedure of TS-R2EA involves two aspects: the initial

parent population P0 and a set of reference vectors V0. More specifically, P0175

is randomly sampled from the decision space via a uniform distribution. What

follows is to generate a set of uniformly distributed reference vectors. To be

specific, a set of uniformly distributed reference points is first generated on a

normalized hyperplane using the canonical simplex lattice design method [43].

A number of N = Cm−1
H+m−1 reference points, with a uniform spacing of 1/H,180

where C is the Combinatorial operation and H > 0 is the number of divisions

considered along each objective coordinate, are sampled on the simplex for any

number of objectives. As illustrated in Fig. 3, we adopt two layers of reference

points with small values ofH, whereH1 is used for the boundary layer andH2 is

used for the inside layer. Thus, a number of N = Cm−1
H1+m−1+Cm−1

H2+m−1 reference185

10
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points are generated. The corresponding reference vector V0 is then obtained

by projecting the reference points from the hyperplane to the hypersphere.

3.3. TS-R2EA Selection Strategy

In principle, the offspring population Qgen+1 can be generated by any ge-

netic operator. In this paper, we use the simulated binary crossover (SBX) [41]190

and the polynomial mutation (PM) [42]. After the generation of the offspring

population, it is combined with the parent population Pgen to undergo the s-

election strategy as presented in Algorithm 2. R is the combined population

which combines Pgen and Qgen+1. FR is the corresponding objective values of

R. FR is translated into FR by subtracting the ideal point z∗ at Step 2 in195

Algorithm 2. Then, the two-stage selection procedure will be performed.

Firstly, in the R2 indicator based primary selection as illustrated from Step

3 to Step 5 in Algorithm 2, the R2 contribution of each candidate solution is

calculated using Algorithm 3, and as a consequence, candidate solutions with

non-zero contributions are selected.200

Secondly, the objective space is partitioned into a number of subspaces using

Algorithm 4. The remaining candidate solutions that have no contribution to

the R2 indicator will further undergo the reference vector guided secondary

selection as illustrated from Step 6 to Step 20 in Algorithm 2. More specifically,

the angle penalized distance (APD) [38] is used as the selection criterion here:

APD = (1 +m · ( gen
Gen

)α · (β
γ
)) · ∥FS∥, (6)

where m is the number of objectives, α is a user defined parameter to balance

the convergence and diversity, β is the acute angle between the candidate solu-

tions and the corresponding reference vector, gen and Gen are the current and

maximal iterations respectively, γ is the smallest angle value between reference

vector and the other reference vectors in the current iteration, ∥FS∥ denotes205

the convergence criterion.

Consequently, the candidate solutions selected via the two-stage selection

strategy, namely PR2 and PRV , are combined to be the parent population Pgen+1

11
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Input: The parent population Pgen, the offspring population Qgen+1;

Output: The selected population Pgen+1;

1: R← Pgen ∪Qgen+1, FR← F (Pgen) ∪ F (Qgen+1);

2: FR← Translate objective values of FR by subtracting the ideal point z∗;

3: /∗ R2 indicator based primary selection ∗/

4: Contr ← R2 contribution (FR, V ) in Algorithm 3;

5: PR2 ← Select the candidate solutions where Contr is larger than 0;

6: /∗ Reference vector guided secondary selection ∗/

7: M ← OSP (R,FR, V ) in Algorithm 4;

8: M(PR2)← ∅; /∗ Delete subspaces and their solutions occupied by PR2 ∗/

9: for i ← {1, ..., |V |} do

10: if subspace M(i) is not empty then

11: S ←M(i), FS ← FR(S);

12: if the size of S is more than one then

13: Calculate the acute angle β;

14: Calculate the convergence criterion ∥FS∥;

15: Calculate the APD value using Eq. (6);

16: /∗Solution with the minimum APD value survives∗/

17: PRV ← PRV ∪ S(min(APD));

18: end

19: end

20: end

21: /* Population combination */

22: Pgen+1 ← PR2 ∪ PRV ;

23: if mod(gen,fr ∗Gen) ← 0 then

24: V V ← V0 ∗ (zmax − z∗);

25: V ← V V
∥V V ∥ ;/∗ Reference vector adaptation ∗/

26: end

12
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Algorithm 3 Calculation of R2 contribution

Input: The normalized objective values FR, a set of reference vectors V ;

Output: The R2 contribution Contr;

1: for each reference vector k ← {1, ..., |V |} do

2: for each candidate solution j ← {1, ..., |FR|} do

3: /∗Calculate the utility function value∗/

4: ASF (k, j)← max
i∈{1,...,m}

{
|FRi(j)|
λi(k)

}
;

5: end

6: /∗Obtain the minASF and its corresponding Index in the FR ∗/

7: (minASF, Index)← Find the minimum value of ASF and its Index;

8: /∗Calculate the R2 contribution of each individual∗/

9: Contr ← Add the minASF together as each individual R2 contribution;

10: end

11: Return: Contr

of the next generation at Step 22 in Algorithm 2. After obtaining the population

Pgen+1, we calculate the maximal objective values of Pgen+1, namely zmax.210

Meanwhile, z∗ represents the minimal objective values calculated from Pgen+1.

Then, we adopt the reference vector adaptation method according to the ranges

of the objective values at Step 24 and Step 25.

In the following, we will further detail the R2 contribution calculation proce-

dure and the reference vector guided objective space partition approach adopted215

in the primary and secondary selections respectively.

3.3.1. R2 indicator based primary selection

There are various potential choices of existing utility functions for the R2

indicator, e.g., the weighted sum, the weighted Tchebycheff functions or the

hybridization of both. As for TS-R2EA, we choose the achievement scalarizing220

function (ASF) metric [36] as the utility function to calculate the R2 contribu-

tion of each candidate solution.

Traditional utility functions only calculate the indicator values of the can-
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Algorithm 4 Reference vector guided objective space partition (OSP)

Input: The population R and the normalized objective values FR, a set of

reference vectors V ;

Output: The objective subspace set M ;

1: for each candidate solution i← {1, ..., |FR|} do

2: for each reference vector j ← {1, ..., |V |} do

3: /∗Cosine similarity between FR and V ∗/;

4: cos δi,j ← FR(i)·λ(j)
∥FR(i)∥ ;

5: end

6: end

7: /∗Find the closest subspace∗/

8: for each candidate solution i← {1, ..., |FR|} do

9: c← arg max
j∈{1,...,|V |}

cos δi,j ;

10: /∗Add R into the nearest subspace M ∗/

11: M(c)←M(c)
∪
{R(i)};

12: end

13: Return: M
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didate solutions with respect to each reference vector. By contrast, the R2

indicator not only considers the utility function value towards each reference225

vector but also adds these values together as the R2 contribution of each candi-

date solution. Algorithm 3 describes the calculation of R2 contribution Contr

via introducing the achievement scalarizing utility function. We obtain the ASF

value of FR corresponding to each reference vector from Step 2 to Step 5 in

Algorithm 3. For each reference vector, the best candidate solution and its cor-230

responding ASF value is preserved, while the ASF value of the other candidate

solutions to this reference vector will be 0 at Step 6 and 7. After getting the

ASF value of each candidate solution with respect to each reference vector, we

sum up the contribution values of each candidate solution as its R2 contribution

Contr at Step 8 and 9.235

Once the R2 contribution values of the candidate solutions are obtained

using Algorithm 3, the primary selection method based on the R2 indicator from

Step 4 to Step 5 in Algorithm 2 can be operated. Consequently, the candidate

solutions having non-zero R2 contribution values are selected and preserved in

PR2.

Table 1: Illustration of the R2 contribution calculation in Fig. 1. (s1, s2, s3, s4, s5, s6) are

candidate solutions, (λ1, λ2, λ3) are reference vectors, Contr denotes the R2 contribution.

S \ V λ1(1,0.001) λ2(0.5,0.5) λ3(0.001,1) Contr

s1(0,1) 1000 2 1 1

s2(0.2,0.8) 800 1.6 200 1.6

s3(1,0) 1 2 1000 1

s4(1.8,0.5) 500 3.6 1800 0

s5(0.4,1.2) 1200 2.4 1200 0

s6(1.5,1.5) 1500 3 1500 0

240

In order to better understand the R2 indicator based primary selection

scheme, we present an illustrative example. Given a set of reference vectors

V = {λ1, λ2, λ3} and a set of candidate solutions S = {s1, ..., s6} in Fig. 1, Ta-

ble 1 summarizes the R2 indicator contribution values in terms of the achieve-
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ment scalarizing utility function. The best utility function values and the best245

R2 contribution values of the candidate solutions are in gray background in

Table 1. According to the R2 contribution values, to be specific, {s1, s2, s3}

will be selected by the primary selection strategy, whereas the remaining can-

didate solutions {s4, s5, s6} will be discarded. However, as will be presented in

the following, since s6 is crucial to the population diversity, it will be further250

preserved by the secondary selection.

3.3.2. Reference vector guided secondary selection

The candidate solutions with promising convergence are preserved by the R2

indicator based primary selection. However, how to maintain a good balance

between convergence and diversity is crucial to the performance of the proposed255

TS-R2EA. Therefore, it is expected that the secondary selection is capable of

well managing the population diversity. As reported in [38], the reference vector

guided objective space partition is particularly useful for diversity management

in many-objective optimization. To be specific, Algorithm 4 first divides the

objective space into a number of |V | subspaces M1,M2, ...,MV by associating260

each candidate solution with its closest reference vector. To determine the

spacial relationship between the candidate solutions and the reference vectors,

the acute angles between them are calculated. In this way, each candidate

solution is allocated to a subspace Mj if and only if the acute angle between

this candidate solution and λ(j) is minimal (i.e., the cosine value is maximal)265

among all the reference vectors.

After associating each candidate solution with its closest reference vector, we

delete subspaces occupied by PR2 and their corresponding candidate solutions

at Step 8 in Algorithm 2. Once the objective space is divided into a group of

subspaces M1,M2, ...,MV , selection is performed inside each subgroup indepen-270

dently from Step 9 to Step 20 in Algorithm 2. More specifically, if a subspace

Mi is non-empty, we adopt the APD metric to select the solution which has the

best APD value. Finally, all selected candidate solutions from the non-empty

subspaces will be merged into PRV .
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3.4. Computational Complexity of the Proposed TS-R2EA275

In this subsection, we analyze the computational complexity of the proposed

TS-R2EA. The main computational cost results from the two-stage selection

strategy apart from the variation operation. As shown in Algorithm 2, the two-

stage selection strategy consists of four main components: the objective value

translation, the primary selection, the secondary selection and the reference280

vector adaptation procedure.

The time complexity of the objective value translation is O(m|R|), where m

is the number of objectives and |R| is the size of candidate solution set. Then,

the computational cost of the primary selection strategy is O(|R||V |(log|R|+m))

as shown in Algorithm 3, where |V | is the size of reference vector set. As for285

the secondary selection strategy [38] in Algorithm 2, the time complexity for the

objective space partition strategy is O(m|R|2). The cost of calculating the APD

and the corresponding selection are O(m|R|2) and O(|R|2) in the worst case,

respectively. In addition, the computational complexity for the reference vector

adaptation procedure is O(m|R|/(fr ∗ Gen)), where fr and Gen denote the290

frequency to employ the reference vector adaptation strategy and the maximal

number of generations, respectively. Therefore, the overall complexity of the

proposed TS-R2EA at each generation is O(m|R|2).

3.5. Discussions

It should be noted that, although the proposed TS-R2EA is partially inspired295

by MOMBI-II and RVEA, there are also some significant differences which can

be summarized as follows.

As for TS-R2EA and MOMBI-II, both of them employ the R2 indicator to

perform selection without adopting any Pareto dominance method. However,

there are two major differences between the two algorithms. Firstly, TS-R2EA300

adopts a reference vector guided secondary selection strategy to maintain the

diversity while MOMBI-II only adopts the fast R2 ranking strategy for selection.

Secondly, to handle badly-scaled Pareto fronts, TS-R2EA adopts an adaptation
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strategy to normalize the reference vectors, while MOMBI-II adopts the nor-

malization of the objective values using the historical information. For example,305

TS-R2EA preserves {s1, s2, s3, s6} while MOMBI-II only selects {s1, s2, s3} as

shown in Fig. 1, despite that s6 is crucial to the population diversity.

As for TS-R2EA and RVEA, both of them adopt a reference vector guided

selection strategy for diversity management in the high-dimensional objective

space. Nevertheless, TS-R2EA performs a two-stage selection strategy, where310

the primary selection is based on the R2 indicator and the secondary selection

is based on the reference vector guided strategy; by contrast, the selection s-

trategy in RVEA is merely guided by reference vectors. To be specific, RVEA

only selects {s1, s3, s6} according to the reference vector guided objective s-

pace partition strategy and the APD metric as shown in Fig. 1. However, the315

candidate solution s2, which has an important contribution to the population

convergence, will be discarded by RVEA.

In summary, our major motivation is to exploit the merits of both R2 indica-

tor and reference vector guided selection approaches for balancing convergence

and diversity in evolutionary many-objective optimization. In the next sec-320

tion, the performance of our proposed TS-R2EA will be assessed on a set of

benchmark test problems in comparison with some other tailored algorithms for

many-objective optimization.

4. Experimental Study

This section presents an experimental setup for investigating the perfor-325

mance of TS-R2EA. First, a set of benchmark test problems used in the ex-

periments are given. Then, we introduce performance indicators to assess the

convergence and diversity of these MOEAs. Finally, the experimental settings

adopted in this study are provided.

4.1. Benchmark Test Problems330

Empirical experiments are conducted on two well-known test suites for many-

objective optimization, i.e., the Deb-Thiele-Laumanns-Zitzler (DTLZ) [44] and
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the Walking-Fish-Group (WFG) [45] test suites. These test suites can be scaled

to have any number of objectives. For each test problem, the number of objec-

tives is varied from three to fifteen, i.e., m ∈ {3, 5, 8, 10, 15}. As for the DTLZ335

test suite, the total number of decision variables is given by n = m + k − 1. k

is set to 5 for DTLZ1, 10 for DTLZ2 to DTLZ4. For the WFG test instance,

as suggested in [45], the number of decision variables is set as n = k + l, where

k = 2 ∗ (m − 1) is the number of position-related variables and l = 20 is the

number of distance-related variables.340

4.2. MOEAs for Comparisons

In the experimental studies, we have selected four popular MOEAs for com-

parisons, namely, MOMBI-II [36], DBEA [37], MOEA/D-PBI [13], and RVEA

[38]. MOMBI-II is an R2 indicator based MOEA; MOEA/D-PBI and DBEA

are two decomposition based MOEAs; and as aforementioned, RVEA [38] is a345

state-of-the-art MOEA for solving MaOPs, where the reference vector guided

selection strategy and the angle penalized distance metric are specifically tai-

lored for many-objective optimization. In the following paragraphs, we present

different parameter settings for each compared algorithm.

Table 2: Settings of the population size N , the boundary layer parameter H1 and the inside

layer parameter H2.

Parameters m = 3 m = 5 m = 8 m = 10 m = 15

(H1,H2) (12,0) (6,0) (3,2) (3,2) (2,1)

N 91 210 156 275 135

1) Population size: the settings of population size N for different numbers of350

objectives are summarized in Table 2. They are determined by the two design

factors H1 and H2 together with the objective number m. H1 and H2 are used

to generate uniformly distributed reference vectors on the outer boundaries and

the inside layers, respectively. The size of reference vector set is equal to the

population size.355
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2) SBX and PM operators: the reproduction procedure consists of the SBX

[41] operator and the PM operator [42]. More specifically, as for the SBX

operator, the distribution index is set to ηc = 30 in TS-R2EA, MOMBI-II,

DBEA and RVEA while ηc = 20 in MOEA/D-PBI algorithm, and the crossover

probability is pc = 1.0 in all algorithms, as recommended in [36] and [38]. As360

for the PM operator, the distribution index is set to ηm = 20 and its mutation

probability is pm = 1/n, as recommended in [2].

3) Specific parameter settings in each algorithm: For MOMBI-II, the thresh-

old of variance, the tolerance threshold and the record size of nadir vectors are

set to 0.5, 0.001 and 5, respectively, as recommended in [36]. For DBEA, there is365

no additional parameter to be specified. For MOEA/D-PBI, the neighborhood

size T is set to 20, and the penalty parameter θ in the penalty-based boundary

intersection (PBI) approach is set as 5.0, as recommended in [13]. For RVEA

and TS-R2EA, the index α used to control the rate of the convergence and di-

versity is set as α = 2.0 and the reference vectors are adaptively updated using370

a parameter fr = 0.1, as recommended in [38]. For all the MOEAs, Gen is the

maximal number of generations, which are summarized in Table 3. The source

code of MOMBI-II and DBEA is provided by the authors. MOEA/D-PBI and

RVEA are implemented in the PlatEMO [46].

Table 3: The maximal number of generations Gen for different test instances.

Problems m = 3 m = 5 m = 8 m = 10 m = 15

DTLZ1 400 600 750 1000 1500

DTLZ2 250 350 500 750 1000

DTLZ3 1000 1000 1000 1500 2000

DTLZ4 600 1000 1250 2000 3000

WFG1-WFG9 400 750 1500 2000 3000

4.3. Performance Indicators375

To assess the performance of each algorithm, we consider the following two

widely used performance indicators, namely, the modified inverted generational
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distance (IGD+) [24, 25] and hypervolume (HV) [21]. Both of them can simul-

taneously assess the convergence quality and diversity quality of a given solution

set.380

The IGD+ is calculated with respect to a set of reference points sampled on

the true Pareto front. In this work, the size of the reference set is the same as

the number of reference vectors used in each algorithm. The HV is calculated

with respect to a given reference point zr = (zr1 , ..., z
r
m)

T
. zr = (1, 1, ..., 1)T

is used for DTLZ1 and zr = (2, 2, ..., 2)T for DTLZ2, DTLZ3 and DTLZ4 test385

instances while zr = (3, 5, ..., 2m+1)T is used for WFG1 toWFG9. For problems

with fewer than 5 objectives, the recently proposed fast hypervolume calculation

method is adopted to calculate the exact hypervolume, while for 5-, 8-, 10- and

15-objective problems, the Monte Carlo method with 1,000,000 sampling points

is adopted to obtain the approximate hypervolume values. All the experiments390

have been independently run for 21 times. The statistical experimental results

of IGD+ and HV are summarized in the corresponding tables for performance

comparison, where the Wilcoxon rank sum test at a significance level of 5% is

further conducted to examine the statistical results obtained by TS-R2EA and

the compared algorithms.395

5. Experimental Results

In this section, the performance of TS-R2EA is assessed according to the

experimental setup described in Section 4. Our experiments consist of five com-

ponents. First of all, TS-R2EA is compared with MOMBI-II, DBEA, MOEA/D-

PBI and RVEA on the DTLZ test problems. Secondly, we compare these algo-400

rithms on the WFG benchmark test problems. Thirdly, the effectiveness of the

R2 indicator based primary selection and the reference vector guided secondary

selection is investigated. Moreover, different variants of TS-R2EA are further

assessed in order to validate the effectiveness of the two-stage selection strategy

which is based on both the R2 indicator and the reference vector guided objec-405

tive space partition method. Finally, the parameter sensitivity analysis is also
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performed on a representative subset of the DTLZ and WFG test instances.

5.1. Performance Comparisons on DTLZ Test Suite
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(a) TS-R2EA
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(b) MOMBI-II
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(c) DBEA
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(d) MOEA/D-PBI
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(e) RVEA

Figure 4: The representation of the nondominated solutions obtained by each algorithm on

the fifteen-objective DTLZ1 instance with the median IGD+ value.

The main challenge of DTLZ1 lies in the large number of local PFs. As

indicated by the statistical results via adopting Wilcoxon rank sum test in Ta-410

bles 4 and 5, TS-R2EA has achieved the competitive performance among the

other compared algorithms. MOMBI-II, DBEA and MOEA/D-PBI perform

significantly worse than TS-R2EA as well as RVEA. As can be further observed

from Fig. 4, the representation of the nondominated solutions obtained by each

algorithm on DTLZ1 with 15-objective, which further confirms the outstand-415

ing performance of TS-R2EA in terms of both convergence and diversity of the

obtained candidate solutions.

DTLZ2 is a relatively simple test problem with a spherical PF compared

with DTLZ1. From the statistical results in Tables 4 and 5, TS-R2EA shows

a competitive performance among the remaining algorithms especially in high-420

dimensional objective space in terms of both IGD+ and HV values. By contrast,
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by each algorithm on the DTLZ test suite. Best performance is shown in gray background. +,

≈ and − denote that TS-R2EA performs significantly better than, equivalent to, and worse

than the compared algorithm, respectively.

IGD+ m TS-R2EA MOMBI-II DBEA MOEA/D-PBI RVEA

DTLZ1

3
2.209E−03

+
2.455E−02

+
5.749E−03

+
4.162E−03

+
2.600E−03

1.068E−03 2.107E−03 4.213E−03 2.543E−03 1.368E−03

5
1.404E−03

+
6.928E−02

+
2.078E−01

+
4.152E−03

−
1.080E−03

5.054E−04 5.295E−03 3.068E−01 4.867E−03 2.847E−04

8
3.433E−03

+
1.570E−01

+
5.946E−01

+
2.448E−02

+
4.566E−03

4.971E−04 4.644E−03 4.566E−01 2.695E−02 2.104E−03

10
3.045E−03

+
1.741E−01

+
2.956E−01

+
4.040E−02

+
4.615E−03

4.982E−04 2.970E−03 6.897E−02 4.730E−02 2.420E−03

15
3.945E−03

+
2.551E−01

+
9.124E−01

+
2.278E−01

+
7.527E−03

2.159E−03 1.216E−02 5.383E−01 6.028E−01 4.630E−03

DTLZ2

3
4.746E−03

+
3.355E−02

+
2.086E−02

−
3.704E−03

−
3.856E−03

6.340E−04 1.419E−03 4.485E−03 6.126E−04 6.714E−04

5
7.966E−03

+
1.025E−01

+
3.377E−02

−
3.263E−03

−
5.208E−03

7.271E−04 2.034E−04 9.886E−03 3.545E−04 5.291E−04

8
1.323E−02

+
3.937E−01

+
5.464E−02

+
1.852E−02

−
9.805E−03

1.259E−03 1.071E−02 8.751E−03 4.071E−02 8.796E−04

10
1.218E−02

+
4.959E−01

+
5.887E−02

−
7.867E−03

−
9.006E−03

9.831E−04 1.012E−02 9.357E−03 2.647E−03 6.251E−04

15
5.770E−03

+
7.533E−01

+
9.057E−01

+
2.336E−01

+
2.712E−02

8.919E−04 1.089E−02 3.354E−09 3.757E−01 7.072E−02

DTLZ3

3
1.151E−02

+
3.517E−02

+
3.604E−01

+
1.669E−02

≈
1.078E−02

6.978E−03 2.290E−03 9.289E−01 5.591E−03 3.340E−03

5
9.872E−03

+
1.375E−01

+
1.894E−02

+
5.426E−01

≈
7.858E−03

3.933E−03 1.220E−02 1.433E−02 1.240E+00 3.192E−03

8
2.100E−02

+
4.239E−01

+
7.446E−01

+
1.087E+01

≈
2.094E−02

7.487E−03 4.948E−03 1.346E−01 2.932E+01 6.053E−03

10
1.272E−02

+
4.978E−01

+
8.339E−01

+
1.852E−02

−
1.052E−02

2.230E−03 5.888E−03 1.835E−05 7.665E−03 1.703E−03

15
1.051E−02

+
7.438E−01

+
9.058E−01

+
2.819E+01

+
2.313E−02

3.975E−03 4.329E−03 7.437E−05 4.665E+01 4.264E−02

DTLZ4

3
2.382E−03

+
5.176E−02

+
1.043E−01

+
6.817E−02

−
1.872E−03

3.148E−04 6.169E−02 1.169E−01 1.214E−01 1.588E−03

5
4.030E−03

+
1.024E−01

+
1.455E−01

+
3.396E−02

−
1.759E−03

3.595E−04 2.506E−04 1.024E−01 5.648E−02 1.203E−04

8
1.106E−02

+
3.983E−01

+
1.441E−01

+
7.037E−02

+
1.701E−02

1.640E−02 1.873E−02 3.979E−02 5.196E−02 2.854E−02

10
6.684E−03

+
5.095E−01

+
1.157E−01

+
5.907E−01

+
1.241E−02

4.701E−04 3.162E−02 1.903E−02 9.779E−02 1.893E−02

15
1.852E−02

+
7.684E−01

+
9.058E−01

+
1.115E−01

+
2.271E−02

2.128E−02 3.541E−02 8.203E−05 1.804E−01 2.886E−02

+/ ≈ /− 20/0/0 20/0/0 17/0/3 9/3/8
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each algorithm on the DTLZ test suite. Best performance is shown in gray background. +,

≈ and − denote that TS-R2EA performs significantly better than, equivalent to, and worse

than the compared algorithm, respectively.

HV m TS-R2EA MOMBI-II DBEA MOEA/D-PBI RVEA

DTLZ1

3
9.732E−01

+
9.662E−01

+
9.725E−01

+
9.726E−01

+
9.731E−01

2.430E−04 1.971E−04 9.809E−04 9.033E−04 3.087E−04

5
9.990E−01

+
9.966E−01

+
8.266E−01

+
9.979E−01

+
9.984E−01

7.870E−05 7.138E−04 3.114E−01 2.220E−04 4.051E−05

8
9.995E−01

+
9.879E−01

+
5.691E−01

+
9.940E−01

≈
9.991E−01

1.281E−05 1.665E−03 3.179E−01 1.583E−02 4.807E−06

10
9.995E−01

+
9.901E−01

+
8.617E−01

+
9.629E−01

+
9.980E−01

2.236E−07 7.871E−04 1.082E−01 8.963E−02 9.119E−07

15
9.995E−01

+
9.494E−01

+
3.438E−01

+
7.913E−01

+
9.947E−01

1.325E−06 4.157E−03 3.394E−01 2.917E−01 1.270E−05

DTLZ2

3
7.406E+00

+
7.376E+00

+
7.398E+00

≈
7.406E+00

−
7.407E+00

1.202E−03 2.402E−03 2.601E−03 3.132E−03 1.041E−03

5
3.167E+01

+
3.154E+01

+
3.166E+01

−
3.169E+01

−
3.168E+01

9.913E−03 1.407E−02 1.096E−02 9.302E−03 2.530E−03

8
2.558E+02

+
2.456E+02

+
2.556E+02

+
2.556E+02

−
2.559E+02

2.057E−02 6.822E−01 2.426E−02 3.238E−01 7.823E−03

10
1.024E+03

+
9.789E+02

≈
1.022E+03

≈
1.023E+03

+
1.021E+03

2.166E−02 3.026E+00 2.945E−02 2.876E−02 8.784E−03

15
3.277E+04

+
2.921E+04

+
1.638E+04

+
3.007E+04

≈
3.276E+04

7.300E−02 2.144E+02 5.359E−05 5.887E+03 7.317E−02

DTLZ3

3
7.393E+00

+
7.376E+00

+
5.639E+00

+
4.243E+00

−
7.399E+00

1.280E−02 7.492E−03 6.946E+00 5.432E−03 6.011E−03

5
3.166E+01

+
3.132E+01

+
3.165E+01

+
2.704E+01

≈
3.169E+01

1.319E−02 8.397E−02 2.206E−02 8.866E+00 7.199E−03

8
2.556E+02

+
2.434E+02

+
1.446E+02

+
2.174E+02

−
2.558E+02

1.707E−02 6.455E−01 3.553E+01 9.369E+01 9.928E−03

10
1.024E+03

+
9.780E+02

+
5.120E+02

≈
1.023E+03

+
1.022E+03

3.262E−02 3.660E+00 9.396E−03 2.990E−02 1.034E−02

15
3.277E+04

+
2.906E+04

+
1.638E+04

+
1.472E+04

≈
3.276E+04

1.200E−01 3.278E+02 1.218E+00 1.670E+04 1.410E−01

DTLZ4

3
7.410E+00

+
7.282E+00

+
6.995E+00

+
7.023E+00

≈
7.411E+00

5.599E−04 3.007E−01 5.262E−01 8.105E−01 2.812E−03

5
3.169E+01

+
3.154E+01

+
3.100E+01

+
3.156E+01

−
3.170E+01

7.533E−03 1.147E−02 7.058E−01 2.391E−01 3.212E−03

8
2.558E+02

+
2.456E+02

+
2.554E+02

+
2.556E+02

+
2.557E+02

6.298E−02 5.537E−01 3.248E−01 2.754E−01 8.127E−02

10
1.024E+03

+
9.784E+02

+
1.020E+03

+
8.596E+02

+
1.022E+03

2.769E−02 2.968E+00 8.992E−02 1.476E+02 3.100E−02

15
3.277E+04

+
2.931E+04

+
1.638E+04

+
3.250E+04

+
3.276E+04

1.456E−01 2.459E+02 1.344E+00 8.466E+02 1.347E−01

+/ ≈ /− 20/0/0 19/1/0 16/3/1 9/5/6
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MOEA/D-PBI and RVEA have obtained the better convergence and diversity

on the instances with 3-, 5- and 8-objective. MOMBI-II and DBEA are slightly

outperformed by TS-R2EA.

DTLZ3 is a highly multimodal problem in order to verify whether an MOEA425

has the ability to jump out of local PFs. The performance of TS-R2EA and

RVEA is significantly better than the other three compared algorithms on all in-

stances with 3 to 15 objectives as shown in Tables 4 and 5. To be specific, RVEA

is more suitable for coping with instances with 3-, 5- and 10-objective, whereas

TS-R2EA has achieved the better performance on the 15-objective instance.430
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(c) DBEA
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(d) MOEA/D-PBI
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(e) RVEA

Figure 5: The representation of the nondominated solutions obtained by each algorithm on

the fifteen-objective DTLZ4 instance with the median IGD+ value.

DTLZ4 is designed to investigate an algorithm’s ability to maintain the dis-

tribution of candidate solutions given that the PF is highly biased. According

to the Tables 4 and 5, TS-R2EA shows better performance on instances with 8-,

10- and 15-objective in terms of both IGD+ and HV values. By contrast, RVEA

is more suitable for dealing with instances with 3- and 5-objective; MOMBI-435

II, DBEA and MOEA/D-PBI perform significantly worse than TS-R2EA and

RVEA. Fig. 5 gives the parallel coordinates of the nondominated solutions ob-
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tained by each algorithm on 15-objective DTLZ4 with the median IGD+ value.

TS-R2EA is able to achieve a well converged and widely distributed approxima-

tion PF. MOMBI-II, DBEA and MOEA/D-PBI are only able to obtain some440

parts of the true PF due to the biased distribution of the candidate solutions.

Fig. 5 (e) shows that RVEA performs better than the traditional R2 indica-

tor and decomposition based evolutionary algorithms. Nevertheless, the overall

best optimizer is still the proposed TS-R2EA, especially in high-dimensional ob-

jective space as shown in Fig. 5 (a). This is due to the fact that the two-stage445

selection strategy in TS-R2EA is able to well balance convergence and diversity,

which is particularly meaningful in high-dimensional objective spaces.

In order to validate the experimental results, the supplementary material

gives the statistical results by the two-sided sign test at a significance level of

5% [47]. Similar to the observations obtained by adopting the Wilcoxon rank450

sum test, TS-R2EA and RVEA also perform best on most of 20 comparisons

and significantly outperform other compared algorithms on DTLZ1-DTLZ4.

5.2. Performance Comparisons on WFG Test Suite

WFG1 is introduced to test the ability of each algorithm to tackle flat bias

and mixed structure of the PF. As shown in Table 6, despite that TS-R2EA is455

slightly outperformed by MOMBI-II in terms of HV values, its performance is

significantly better than the remaining MOEAs. WFG2 tests the optimizer’s

ability to deal with disconnected PF. MOMBI-II has obtained the best HV

values on instances with 3 to 10 objectives, and DBEA and MOEA/D-PBI

show poor performance on this problem. By contrast, the proposed TS-R2EA460

is the second-best algorithm on it. The PF shape of WFG3 which can be

seen as the connected version of WFG2 is linear and degenerate. In term of HV

values in Table 6, the overall performance of TS-R2EA is better than RVEA and

DBEA, while MOMBI-II has obtained the best HV values among the compared

algorithms in most cases.465

The remaining six test problems have the same PF shape in the objective

space while their characteristics are different in the decision variable space. More
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suite. Best performance is shown in gray background. +, ≈ and − denote that TS-R2EA

performs significantly better than, equivalent to, and worse than the compared algorithm,

respectively.

HV m TS-R2EA MOMBI-II DBEA MOEA/D-PBI RVEA

WFG1

3 5.021E+01 + 4.970E+01 + 4.843E+01 + 8.062E+00 + 4.812E+01

5 4.674E+03 − 7.495E+03 + 4.289E+03 + 1.020E+03 + 4.347E+03

8 1.535E+07 − 3.269E+07 − 1.994E+07 + 3.645E+06 + 1.233E+07

10 6.199E+09 − 1.339E+10 ≈ 9.675E+09 + 1.603E+09 + 4.874E+09

15 9.620E+16 − 1.777E+17 ≈ 6.224E+16 + 2.263E+16 ≈ 8.928E+16

WFG2

3 9.246E+01 ≈ 9.584E+01 + 9.000E+01 + 8.486E+01 + 9.032E+01

5 9.683E+03 − 1.026E+04 ≈ 9.712E+03 + 9.357E+03 ≈ 9.891E+03

8 3.031E+07 − 3.314E+07 ≈ 2.422E+07 + 2.828E+07 ≈ 2.971E+07

10 1.268E+10 − 1.338E+10 + 9.010E+09 + 1.178E+10 ≈ 1.250E+10

15 1.606E+17 ≈ 1.614E+17 + 7.950E+16 ≈ 1.449E+17 ≈ 1.657E+17

WFG3

3 7.334E+01 − 7.455E+01 + 7.019E+01 + 6.315E+01 + 6.896E+01

5 6.870E+03 + 6.678E+03 + 6.566E+03 + 5.972E+03 + 6.150E+03

8 1.521E+07 − 2.285E+07 + 2.017E+06 ≈ 1.500E+07 + 1.023E+07

10 4.426E+09 − 9.230E+09 + 6.523E+08 − 5.514E+09 + 3.574E+09

15 3.839E+16 − 1.178E+17 + 6.122E+15 − 4.973E+16 ≈ 3.964E+16

WFG4

3 7.181E+01 − 7.295E+01 + 7.082E+01 + 6.815E+01 − 7.296E+01

5 8.555E+03 + 7.992E+03 + 8.442E+03 + 8.347E+03 ≈ 8.581E+03

8 3.009E+07 + 1.931E+07 ≈ 3.024E+07 + 1.766E+07 + 2.939E+07

10 1.263E+10 + 8.003E+09 − 1.300E+10 + 4.389E+09 + 1.224E+10

15 1.800E+17 + 7.077E+16 + 7.814E+16 + 5.525E+16 + 1.092E+17

WFG5

3 7.043E+01 + 6.991E+01 + 6.953E+01 + 6.548E+01 − 7.091E+01

5 8.475E+03 + 7.357E+03 + 8.442E+03 + 8.007E+03 − 8.491E+03

8 3.041E+07 + 1.769E+07 + 2.966E+07 + 1.479E+07 ≈ 3.032E+07

10 1.256E+10 + 6.757E+09 + 1.233E+10 + 3.467E+09 + 1.248E+10

15 1.773E+17 + 6.086E+16 + 3.983E+16 + 3.379E+16 + 1.764E+17

WFG6

3 7.048E+01 ≈ 7.092E+01 + 6.969E+01 + 6.610E+01 ≈ 7.099E+01

5 8.581E+03 + 6.981E+03 ≈ 8.576E+03 + 7.638E+03 ≈ 8.612E+03

8 3.045E+07 + 1.698E+07 ≈ 3.063E+07 + 1.327E+07 + 3.014E+07

10 1.262E+10 + 6.985E+09 ≈ 1.261E+10 + 3.269E+09 ≈ 1.254E+10

15 1.781E+17 + 5.969E+16 + 7.101E+16 + 3.283E+16 ≈ 1.730E+17

WFG7

3 7.207E+01 − 7.239E+01 ≈ 7.096E+01 + 1.626E+01 ≈ 6.214E+01

5 8.586E+03 + 7.657E+03 − 8.989E+03 + 1.937E+03 + 5.232E+03

8 2.052E+07 ≈ 1.698E+07 ≈ 1.727E+07 + 3.739E+06 + 1.049E+07

10 8.178E+09 ≈ 7.921E+09 ≈ 7.167E+09 + 1.386E+09 + 4.646E+09

15 6.247E+16 ≈ 6.647E+16 + 5.211E+16 + 1.758E+16 + 2.225E+16

WFG8

3 4.305E+01 − 4.837E+01 + 4.025E+01 + 3.313E+01 + 4.104E+01

5 5.065E+03 + 4.009E+03 + 4.927E+03 + 3.486E+03 + 4.427E+03

8 9.534E+06 − 1.380E+07 − 1.449E+07 + 5.756E+06 + 7.060E+06

10 3.901E+09 − 5.844E+09 + 1.377E+09 + 1.903E+09 + 3.239E+09

15 4.404E+16 − 5.055E+16 + 6.720E+15 + 7.069E+15 + 2.118E+16

WFG9

3 6.748E+01 + 6.582E+01 + 6.736E+01 + 6.245E+01 ≈ 6.745E+01

5 7.818E+03 + 6.439E+03 + 7.805E+03 + 7.431E+03 + 7.184E+03

8 2.493E+07 + 1.651E+07 − 2.623E+07 + 2.069E+07 + 1.958E+07

10 1.044E+10 + 6.551E+09 ≈ 1.021E+10 + 9.072E+09 + 6.624E+09

15 1.054E+17 + 5.774E+16 + 4.797E+15 ≈ 1.083E+17 + 5.752E+16

+/ ≈ /− 22/6/17 28/12/5 40/3/2 28/14/3
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(a) TS-R2EA
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(b) MOMBI-II

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Objective No.

0

5

10

15

20

25

30

O
b

je
ct

iv
e 

V
al

u
e

(c) DBEA
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(d) MOEA/D-PBI
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(e) RVEA

Figure 6: The representation of the nondominated solutions obtained by five algorithms on

the fifteen-objective WFG4 instance with the median HV value.

specifically, WFG4 is a multi-frontal optimization problem with a concave PF.

As shown by the statistical results in Table 6, RVEA has obtained the best

performance on instances with 3- and 5-objective, while DBEA has achieved470

the best performance on instances with 8- and 10-objective. TS-R2EA achieves

the competitive performance when the number of objectives is 15. As further

observed in Fig. 6, TS-R2EA can obtain well converged and widely spreading

solution sets close to the true Pareto fronts on 15-objective WFG4 test instance.

Regarding WFG5, which introduces deceptive characteristic in decision vari-475

able space, TS-R2EA shows a competitive performance compared with the other

algorithms, especially in high-dimensional objective space while RVEA has ob-

tained best performance on instances with 3- and 5-objective as shown in Table

6.

For WFG6, which is designed with nonseparable and reduced characteristics,480

TS-R2EA still achieves the competitive performance on 10- and 15-objective

instances, whereas RVEA has achieved the better performance on instances

with 3- and 5-objective as illustrated in Table 6. DBEA has a competitive
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(a) TS-R2EA
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(b) MOMBI-II
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(c) DBEA
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(d) MOEA/D-PBI
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(e) RVEA

Figure 7: The representation of the nondominated solutions obtained by five algorithms on

the fifteen-objective WFG8 instance with the median HV value.

performance with respect to TS-R2EA on instances with 5-, 8- and 10-objective

in term of HV values. MOMBI-II and MOEA/D-PBI perform worst on most485

instances of WFG6, where it obtains the smallest HV values.

WFG7 is a separable and uni-modal problem with parameter dependency.

In terms of HV values, TS-R2EA, MOMBI-II and DBEA have obtained simi-

lar performance. RVEA and MOEA/D-PBI are not quite suitable for solving

WFG7.490

Concerning the WFG8 test instance, which has a higher parameter depen-

dency, MOMBI-II is the best optimizer as evidenced by Table 6 and Fig. 7.

To be specific, MOMBI-II is able to converge to the true PF while TS-R2EA

achieves the better distribution as illustrated in Fig. 7 (b) and (a), respective-

ly. In addition, TS-R2EA shows the better performance when the number of495

objective is 5, and DBEA has obtained the best performance for 8-objective

instance.

WFG9 is a difficult problem due to the characteristics of non-separability,

multi-modality, deceptiveness and parameter bias. As a result, TS-R2EA has

29



Page 32 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

shown the most competitive overall performance while DBEA and MOEA/D-500

PBI have obtained promising results for 8- and 15-objective instances, respec-

tively. By contrast, the performance of MOMBI-II and RVEA are significantly

worse than TS-R2EA.

m=3 m=5 m=8 m=10 m=15
The number of objective space dimension

100

101

102

103

104

R
u

n
ti

m
e/

s

DTLZ4

MOEA/D-PBI
RVEA
DBEA
MOMBI-II
TS-R2EA

(a) The runtime of DTLZ4
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(b) The runtime of WFG4

Figure 8: The computational time required by TS-R2EA, MOMBI-II, DBEA, MOEA/D-PBI

and RVEA for the DTLZ4 and WFG4 test instances, respectively.

As shown by the results in Table 6, Fig. 6, Fig. 7, in summary, none of the

five algorithms is able to perform very well on all of the nine test problems. To505

be specific, TS-R2EA can properly deal with WFG4, WFG5, WFG6, WFG7 and

WFG9 while MOMBI-II has achieved the best HV values on WFG1, WFG2,

WFG3 and WFG8; DBEA is suitable for solving medium-scale problems, es-

pecially on WFG4, WFG6, WFG7 and WFG8; RVEA has achieved the best

performance on 3- and 5-objective WFG4, WFG5 and WFG6 test instances.510

After considering the supplementary material, the statistical results show the

similar observation by adopting the Wilcoxon rank sum test. Fig. 8 shows the

average computational time required by each of the compared algorithms on

the DTLZ4 and WFG4 test instances with 3 to 15 objectives. We can observe

that the proposed algorithm performs the medium computational efficiency be-515

tween RVEA and MOMBI-II. The other two compared algorithms, DBEA and

MOEA/D-PBI, take substantially more computational time. In summary, it can

be concluded that RVEA is the most efficient among the compared algorithms
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while the computational complexity of TS-R2EA is also acceptable.

5.3. Assessment of Primary and Secondary Selections in TS-R2EA520

The TS-R2EA selection strategy consists of two selection stages: the R2

indicator based primary selection and the reference vector guided secondary

selection. Therefore, PR2 and PRV will be preserved after employing the two-

stage selection mechanism. Furthermore, to assess the effectiveness of the two

selection stages, the proportion of the candidate solutions selected via each of525

them is recorded. Specifically, the proportion of the candidate solutions selected

by the primary strategy is defined as PR2/(PR2+PRV ) while PRV /(PR2+PRV )

is the proportion of the candidate solutions selected by the secondary selection

method.

For the DTLZ test suite, the two-stage selection strategy plays a crucial role530

in balancing convergence and diversity especially for 15-objective problems. For

example, DTLZ1 is a challenging problem for most MOEAs due to a large num-

ber of local fronts in the objective space. As shown in Fig. 9 (a), the reference

vector guided secondary selection is essential for maintaining a proper popula-

tion diversity to escape from local optima at the early search stage; meanwhile,535

the R2 indicator based selection plays a dominant role in the later search stage.

Another example is the 15-objective DTLZ4 which has a strongly biased Pareto

set. As shown in Fig. 9 (b), the candidate solutions selected via the R2 indica-

tor always occupies the majority of the offspring population, especially as the

number of generation increases. Generally, the secondary selection strategy can540

comprehensively balance the convergence and diversity by interacting with the

primary selection at an earlier stage of the evolutionary procedure. In addition,

since the Pareto fronts of DTLZ1 to DTLZ4 are of regular shapes, which are

consistent with the distribution of the predefined reference vectors, the propor-

tion of the candidate solutions selected by the secondary selection strategy is545

almost zero at the later stage of the evolutionary procedure as shown in Fig. 9

(a) and (b).

For the WFG test suite, the two-stage selection strategy also plays an im-
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(a) DTLZ1-15
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(b) DTLZ4-15
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(c) WFG4-15
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(d) WFG6-15

Figure 9: The proportion of candidate solutions selected via the R2 based primary selection

and the reference vector (RV) guided secondary selection on some typical DTLZ and WFG

problems.

portant role, though the observations are a little different from those obtained

on the DTLZ test suite. To clarify the two-stage selection strategy, we take550

WFG4 and WFG6 with 15 objectives as examples. As shown in Fig. 9 (c)

and (d), the proportion of the candidate solutions selected by the primary s-

election is dominant at the early stage while the importance of the reference

vector guided secondary selection increases rapidly as the number of iterations

increases. More specifically, the primary selection plays a dominant role at the555

early evolutionary stage in Fig. 9 (c), and as the number of iterations increases,

the secondary selection begins to play a dominant role. The final proportion

of the candidate solutions selected by the primary and secondary selections are
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Figure 10: The proportion of candidate solutions selected via the R2 based primary selection

and the reference vector (RV) guided secondary selection (without reference vector adaptation)

on the 15-objective WFG4.

about 85% and 15% respectively.

In Fig. 9, it is interesting to see that the proposed two-stage selection s-560

trategy performs slightly different when solving the DTLZ and WFG problems.

This is due to the fact that the objectives of the WFG problems are scaled to

different ranges, which will frequently trigger the adaptation of candidate solu-

tions selected by the reference vector guided secondary selection. By contrast,

since the objectives of the DTLZ problems are normalized, the distribution of565

the candidate solutions is relatively more stable. In order to examine this obser-

vation, we conduct an additional experiment by disabling the reference vector

adaptation strategy in the secondary selection in TS-R2EA. Consequently, as

shown in Fig. 10, TS-R2EA shows stable performance as those in 9 (a) and (b).
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test problems. Best performance is shown in gray background. +, ≈ and − denote that

TS-R2EA performs significantly better than, equivalent to, and worse than the other three

variants, respectively.

HV m TS-R2EA TS-R2EA-v1 TS-R2EA-v2 TS-R2EA-v3

DTLZ1
10 9.995E-01 + 9.993E-01 ≈ 9.994E-01 + 9.992E-01

15 9.995E-01 ≈ 9.993E-01 ≈ 9.994E-01 + 9.992E-01

DTLZ2
10 1.024E+03 ≈ 1.023E+03 + 1.022E+03 + 1.021E+03

15 3.277E+04 + 3.271E+04 ≈ 3.276E+04 ≈ 3.275E+04

DTLZ3
10 1.024E+03 ≈ 1.023E+03 ≈ 1.022E+03 ≈ 1.023E+03

15 3.276E+04 ≈ 3.276E+04 ≈ 3.275E+04 ≈ 3.277E+04

DTLZ4
10 1.024E+03 ≈ 1.023E+03 ≈ 1.023E+03 ≈ 1.021E+03

15 3.276E+04 − 3.277E+04 − 3.277E+04 ≈ 3.277E+04

WFG1
10 6.199E+09 − 6.672E+09 + 5.026E+09 − 9.156E+09

15 9.620E+16 ≈ 1.017E+17 + 8.210E+16 + 7.282E+16

WFG2
10 1.268E+10 + 1.180E+10 + 1.184E+10 + 1.158E+10

15 1.606E+17 ≈ 1.652E+17 + 1.570E+17 + 1.477E+17

WFG3
10 4.426E+09 − 5.090E+09 − 6.525E+09 + 3.928E+09

15 3.839E+16 + 3.503E+16 ≈ 4.944E+16 + 3.473E+16

WFG4
10 1.263E+10 + 1.143E+10 + 1.224E+10 + 1.082E+10

15 1.800E+17 + 1.574E+17 + 1.249E+17 + 1.269E+17

WFG5
10 1.256E+10 + 1.149E+10 + 1.194E+10 + 1.105E+10

15 1.773E+17 + 1.587E+17 + 1.575E+17 + 9.745E+16

WFG6
10 1.262E+10 + 1.164E+10 + 1.210E+10 + 1.061E+10

15 1.781E+17 + 1.352E+17 + 1.499E+17 + 7.766E+16

WFG7
10 8.178E+09 ≈ 7.979E+09 + 4.729E+09 ≈ 8.073E+09

15 6.247E+16 ≈ 5.719E+16 + 3.323E+16 ≈ 6.066E+16

WFG8
10 3.901E+09 + 3.101E+09 + 3.549E+09 + 2.589E+09

15 4.404E+16 + 2.102E+16 + 3.197E+16 + 7.459E+15

WFG9
10 1.044E+10 + 9.300E+09 + 8.299E+09 + 9.060E+09

15 1.054E+17 ≈ 1.015E+17 + 6.523E+16 ≈ 1.003E+17

+/ ≈ /− 13/10/3 17/7/2 17/8/1
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5.4. Different Variants of TS-R2EA570

The aforementioned experimental results as given in Section 5.1 and 5.2

have validated the competitive performance of TS-R2EA through comparative

analyses. In the following, we further assess the effectiveness of the three main

components in the proposed T2-R2EA, namely, the R2 indicator based selec-

tion strategy, the reference vector guided selection method and adaptive angle-575

penalized distance. To be specific, we conduct some experiments to compare

three different variants of T2-R2EA:

1. TS-R2EA-v1 : This variant adopts constant parameter 1 instead of adap-

tive penalty parameter in the APD utility function.

2. TS-R2EA-v2 : In order to further assess the effectiveness of the APD580

metric, we first remove the primary R2 indicator based selection. Then,

the PBI approach with θ = 5.0, as recommended in [13], is adopted instead

of the APD metric as the evaluation indicator in the secondary selection.

3. TS-R2EA-v3 : In this variant, only the R2 indicator based primary selec-

tion is adopted, while the reference vector guided secondary selection is585

removed. The major purpose of this variant is to assess the effectiveness

of reference vector guided objective space partition selection strategy.

As demonstrated by the experimental results in Table 7, compared with

the three variants, TS-R2EA shows similar performance on the 10- and 15-

objective DTLZ test instances, and significantly better performance on the590

high-dimensional WFG test instances. To be specific, as for TS-R2EA-v1 which

adopts the constant parameter rather than the adaptive APD utility function,

it shows poor performance on WFG4 to WFG9; as for TS-R2EA-v2 which only

adopts reference vector guided selection strategy based on the PBI decomposi-

tion method, it fails to achieve a good balance between convergence and diversity595

for most of test instances. In addition, the effectiveness of the reference vec-

tor guided secondary selection strategy is also verified, as TS-R2EA performs

better than, worse than and similar to TS-R2EA-v3 on 17, 1 and 8 out of 26

comparisons. Therefore, in summary, both stages in the selection strategy play

35



Page 38 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

an essential and effective role for the proposed TS-R2EA to achieve a balanced600

convergence and diversity for high-dimensional many-objective optimization.

5.5. Parameter Sensitivity Analysis
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Figure 11: Median IGD+ values obtained by TS-R2EA with 20 different combinations of fr

and α on DTLZ1, DTLZ3, WFG4 and WFG8 problems with three objectives.

There are two additional parameters to be specified in TS-R2EA: α which

regulates the rates of changes of APD utility function and fr which controls

the frequency of employing the reference vector adaptation. To further study605

the sensitivity of the performance of TS-R2EA to the settings of fr and α,

we choose some special values for each parameter: fr ∈ {0.01, 0.05, 0.1, 0.5}

and α ∈ {1, 3, 5, 7, 9}, as recommended in [38]. The additional experiments are

conducted on 3-objective test instances of DTLZ1, DTLZ3, WFG4 and WFG8,

respectively, to compare the performance of all 20 different configurations. Each610
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configuration on each test instance has been run 21 times.

We first perform the sensitivity analysis of parameter fr. In the light of

Fig. 11 (a) and (b), the frequently used reference vector adaptation strategy,

such as given by fr = 0.01 or fr = 0.05, will lead to a slight deterioration of

TS-R2EA in terms of IGD+ values on the DTLZ1 and DTLZ3 test instances.615

As shown in Fig. 11 (c) and (d), different combinations can lead to different

characteristics on distinct test instances. To be specific, fr = 0.01 is suitable for

the WFG4 instance while the proper fr for solving the WFG8 problem is 0.1. In

addition, fr = 0.5 is unsuitable for the WFG4 and WFG8 test instances. Based

on these observations, we suggest that a medium value of fr should be adopted620

(e.g. fr = 0.1). Secondly, it turns out that different α shows the different

performance in Fig. 11. Furthermore, it can be seen that α = 5 and α = 7 are

not suitable for the DTLZ1 instance as illustrated in Fig. 11 (a). In addition,

as indicated by Fig. 11 (c), the relatively larger α, such as α = 7 and α = 9,

obtain the higher IGD+ values. α = 1 and α = 3 show the similar performance625

on the respective DTLZ and WFG test suites. In general, it is better to choose

fr = 0.1, and α between 1 and 3.

6. Conclusion

This paper has proposed an enhanced R2 indicator based evolutionary al-

gorithm, namely, TS-R2EA, for many-objective optimization. The algorithm630

adopts a two-stage selection strategy which combines the R2 indicator based

primary selection and the reference vector guided secondary selection, where

the motivation is to take advantages of both selection stages. In the proposed

TS-R2EA, inspired by [38], a reference vector adaptation strategy has been

adopted to deal with badly-scaled problems; and the convergence and diversity635

are well balanced by the angle penalized distance (APD) utility function.

According to the empirical results, TS-R2EA has shown highly competitive

performance on benchmark problems up to fifteen objectives in comparison with

four state-of-the-art MOEAs, namely, MOMBI-II, DBEA, MOEA/D-PBI and
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RVEA. Besides, in order to analyze the effectiveness of the R2 based prima-640

ry selection, the reference vector guided secondary selection and the adaptation

mechanism, we have conducted some experiments to compare the performance of

original TS-R2EA with three different variants as well. Our experimental results

indicate that, by adopting the proposed two-stage selection together with the

reference vector adaption strategy and the angle penalized distance (APD) util-645

ity function, TS-R2EA has achieved promising performance on many-objective

optimization problems (MaOPs) with up to 15 objectives.

In the future, we would like to further investigate how to modify the proposed

TS-R2EA algorithm to cope with constrained [48], or large-scale many-objective

optimization problems [49].650
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