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Identifying central and peripheral nerve fibres with an
artificial intelligence approach

David Gil**, Jose Luis Girela”, Jorge Azorin®, Alba De Juan®, Joaquin De
JuanP

@Computing Technology and Data Processing, University of Alicante, Spain
b Department of Biotechnology, University of Alicante, Spain

Abstract

Distinguishing axons from central or peripheral nervous systems (CNS or PNS,
respectively) is often a complicated task. The main objective of this work was
to facilitate and support the process of automatically distinguishing the differ-
ent types of nerve fibres by analysing their morphological characteristics. Our
approach was based on a multi-level hierarchical classifier architecture that can
handle the complexity of directly identifying nerve-fibre groups belonging to ei-
ther the CNS or the PNS. The approach adopted comprises supervised methods
(multilayer perceptron and decision trees), which are responsible for distinguish-
ing the origin of the axons (CNS or PNS), whereas the unsupervised method
(K-Means clustering) performs nerve fibre clustering based on similar charac-
teristics for both the CNS and PNS. Our experiments produced results with
an accuracy higher than 88%. Our findings suggest that the development and
implementation of a multi-level system improves automation capabilities and
increases accuracy in the classification of nerves. Furthermore, our architecture
allows for generalisation and flexibility, which can subsequently be extended to
other biological control systems.

Keywords: artificial neural network, k-means clustering, decision trees,
decision support system, nerve fibres, multi-level classifier

1. Introduction

The number of published works related to nerve fibres has progressively
increased from the beginning of the 20th century as shown in Figure 1. A rapid
search in PubMed revealed the publication of approximately 130,000 pertinent
papers during this period. Almost 40% of these, approximately 50,600 articles,
were published in the first 14 years of the 21st century, with most (78%) in the
last ten years.
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Figure 1: Cumulative number of publications on morphometric research in nerve fibres

The first studies registered in PubMed using morphometric techniques date
back to 1969 [1]. Approximately 1600 articles on morphometric research in
nerve fibres have been published in the same period, with approximately 30%
of these within the last decade. Among them, we could only locate starting in
1969, approximately 400 studies using morphometric methods associated with
electron microscopy. Furthermore, publications related to morphometric and
ultrastructural studies have been less abundant, especially those related to optic
nerve fibres (73 articles) and cochlear nerve fibres (16 articles).

The morphometric study of nerve fibres is a useful approach to research
several subjects related to the nervous system, such as development ([2], [3],
aging, [4] [5] [6] [7] [8]) and pathological conditions both in peripheral [9] [10]
[11] [12] and central nerve fibres [13].

Several morphometric studies have shown a similar relationship between
functional features of nerve fibres and their morphological and morphometric
parameters, such as (a) number, density, and diameter of nerve fibres [14] [15]
[16] [17] [18] [19] [20] [21] [22] [23] (b) in vertebrates, the myelin sheath that
encircles large axons determines the fibre conduction velocity. In fact, myelin
thickness is related to the speed at which an axon can transmit electrical im-
pulses [24] [25], and for this reason myelin sheath characteristics are also of
interest [26] [27] [18] [28] [29] [30] [23] as well as axonal cytoskeletal components
2] [31] [32] [33].

Classically, morphometry was performed manually. However, numerous lo-
cations in the nervous system contain exceedingly large numbers of nerve fibres;
for example, the rat optic nerve contains more than 100,000 fibres [17] and the
human optic nerve more than a million [34] [35] [36]. In these cases, manual
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morphometry is very monotonous, tiring, time-consuming, and predisposed to
error [37]. Hence, researchers have been adopting different analysis systems to
study the morphological and morphometric features of nerve fibres [8] [36] [38]
[39] in order to significantly reduce data input and processing times. A variety
of sampling schemes claim to be capable of resolving this problem and guarantee
the reliability of morphometry [37]. Consequently, there is high motivation for
for the development of automatic morphometry systems.

The application of automatic image processing in fibre recognition has drawn
much attention from the image processing and neurology communities. Mor-
phometry that is entirely automated has certain disadvantages, namely, miss-
detection and false positives [37]. This manner of automatization has been
previously discussed in the literature in cases where the axon is small, illegible,
or irregular and could be undervalued due to low contrast as well as other issues
related to the automated identification of contours. [40] [41] [42]. Currently,
automatic morphometry combining interactive image processing has made sig-
nificant progress [43] in terms of miss-detection and false positives.

This paper proposes a multi-level classifier architecture to resolve the com-
plexity of automatically identifying whether a nerve fibre belongs to the central
or peripherical nervous system (CNS or PNS). In particular, we used two super-
vised techniques, multilayer perceptron (MLP) and decision trees (DT), [Polat
and Gunes, 2009] and an unsupervised technique, K-Means clustering. The
supervised method is responsible for distinguishing the origin of the nerve fi-
bres (CNS versus PNS) whereas the unsupervised one performs the division of
clusters or groups with similar characteristics either for the CNS or PNS.

Recently, advances in Al methods have made possible the development of
expert and decision support systems (DSS) in many different areas, such as
business analytics, medical diagnostics, psychology, and environmental science.
Specifically, a review of the evolution of medical data analysis from a machine
learning perspective [44] indicates how AI methods have been applied in the
medical field. A study by [45] proposed a hybrid artificial intelligence (based on
a fuzzy rule-based system) to forecast outpatient visits with high accuracy. In
[46], a trained artificial neural network (ANN) model was developed to predict
the weekly number of infectious diarrhoeas by using meteorological factors as
input variables.

Among the several useful classifiers in the AT field, we highlight ANN and
DT as those most frequently chosen for the construction of DSS [47]. The goal
is normally to establish groups or clusters with similar features from the data.
Since there are no references or expected classification and the classification is
data driven, the system is unsupervised.

We have previously demonstrated that ATl methods are capable of improving
the accuracy of the final classification as well as of selecting the best features
because very often there are many features to control. For instance, we have
experience in classification tasks for male fertility [48] [49], urology diagnosis
[50] [51], and brain ventricles in MR images [52]. In [53], a model to diagnose
urological dysfunction is presented. The aim of the study was to correlate the
neurological aetiology with the neural centres involved in the two urological
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phases of voiding and micturition. This previous experience may lead to knowl-
edge discovery regarding databases, data mining, or the process of extracting
patterns from large datasets. Nowadays, these techniques are also starting to
be used in the field of big data [54] [55].

In the present study, the main objective was to develop a classifier architec-
ture based on Al methods that could distinguish different types of nerves and
classify two main types of nerve fibres (CN versus PN nerve fibres).

The novelty and the main contribution of this work is the proposal of a
multi-level hierarchical classifier architecture, which comprises supervised as
well as unsupervised methods. The hierarchical classifier simplifies the com-
plexity of identifying whether a nerve fibre belongs to the CNS or the PNS
and their respective characteristics. Moreover, it allows using different classifi-
cation methods according to the specific semantic level by providing a flexible
approach.

In general, a multi-level hierarchical architecture provides the benefit of a
classification where the number of variables is reduced from the higher to the
lower levels of the system. Hence, the classifiers for lower levels could be sim-
pler due to reduction in the variable domain. However, in the case of a complex
problem, it is not always possible to select the variables that allow the specifica-
tion of a detailed taxonomy. Finally, the multi-level architecture allows for the
selection of the most appropriate classification for the study of the problem in
terms of resolution level. Therefore, this approach could be used to study other
biological problems.

This work was concerned with the most relevant parameters for both optic
and cochlear nerve fibres. The number of parameters is often large and therefore,
weighing is crucial to choose only key parameters involved in the classification
process of nerve fibres. The approach chosen to address this issue involved us-
ing different AI methods that are both supervised and unsupervised, specifically
DT, MLP, and unsupervised k-means. The general differences between central
and peripheral nerve fibres are well known, and a trained pathologist can distin-
guish between them easily under the microscope. Nevertheless, the advantage
of this approach is the possibility of automating the identification procedure. In
addition, it allowed us to identify the hierarchy present in the characteristics of
each fibre, providing a new interpretation of the evolution and development of
the nervous system.

The remaining part of the paper is organized as follows: First we start by
defining the materials and methods of the study (samples of the study). Then,
we continue with a brief description of the AI methods used in this paper: MLP,
DT, and K-means. Then we proceed by describing the design of our proposed
architecture and the experiments carried out in the Results section: the available
data as well as a detailed explanation of the different values of our database.
Finally, we describe the subsequent testing carried out to analyse the results
and draw relevant conclusions.
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2. A bio-inspired multi-level classifier of nerve fibres

2.1. Architecture

A generic machine learning approach is able to extract a model from data
to predict or classify new inputs. Hence, a classifier could be designed using
machine learning techniques to learn the type of fibre characteristics irrespective
of the level of the taxonomy to be applied (i.e. the fibre belongs to the CNS
or the PNS, to a cochlear or sciatic nerve, to a sensory or motor fibre, and
others). The diagram in Fig. 1 shows the procedure followed to classify the
different fibres in the nerves. A tissue is obtained, processed for transmission
electron microscopy, and analysed to obtain morphometric parameters (a set
of characteristics that describe a fibre) that can be used as input for a single
classifier. At Level 1, the classification system can model the type of fibre
according to whether it belongs to the CNS or the PNS.

Morphological
characteristics

Digital Image Analysis

Transmission Electron
Microscope

Level 0
Input

Level 1

Type Single
—

Level 2 classifier

Level n

Figure 2: Our proposed multi-level hierarchical classifier

Initially, we carried out some experiments to establish the best approach
to group the different types of nerve fibres. We tried to identify the different
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groups of fibres from the complete set of input data'. Although we could observe
a general grouping trend between central and peripheral nerve fibres, notably,
most of the clusters misclassified a significant number of fibres. To ensure that
this was not an exceptional error but a common problem that needed to be
addressed, we carried out a second set of experiments with a reduced number of
input parameters. The results indicated that in this case the misclassification
was worse. Hence, we decided to use the multi-level approach.

The complexity of directly identifying nerve-fibre groups belonging to the
CNS or PNS, is due to the similar morphological characteristics of the fibres.
Morphological characteristics define similar input samples for different classes
making it difficult for a direct classifier to accurately separate them.

The misclassification problem has been addressed by proposing a multi-level
hierarchy classifier. The objective is to distinguish the class that the sample be-
longs to by a process guided by the level of taxonomy. The classifier can identify
fibre groups as a generic classifier based on the level of taxonomy (see Fig. 3). It
is a bio-inspired system based on the anatomical or functional differences of the
nervous system (see Fig. 4). Specifically, the set of fibre characteristics are clas-
sified according to the specific level of taxonomy using a hierarchical strategy.
The classifier at levelL,, uses information derived from the previous level L,,_1.
This multi-level architecture permits different classification methods to be used
accordingly for each specific level, providing a flexible approach. Thus, the most
suitable machine learning method is used depending on the expected output.
For example, the machine learning approach selected to distinguish between a
cochlear or sciatic nerve could be different to the one selected for distinguishing
between a sensory or a motor fibre.

The approach based on the multi-level classifier is similar to the deep learning
method in the sense that both consist of a multi-level structure to provide a
classification. However, while the deep learning method requires thousands of
instances to adequately train the network, the proposed approach is designed to
train a machine learning system with a low number of samples, as is generally
the case with biological problems. In any case, a deep learning method could
be incorporated at any level in our approach.

Type L1 Type L2 Type Ln-1

Fiber Level 1 Level 2

Leveln
classifier classifier "t classifier

Figure 3: The proposed multi-level hierarchy architecture to classify fibres according to the
level of selected taxonomy.

In this work, the objective was to automatically distinguish the different

IThe dataset has been donated to the repository uci machine learning
(http://archive.ics.uci.edu/ml/index.php)

Type Ln
—

Page 6 of 27



types of nerve fibres based on their morphological characteristics. The study
involved a morphological taxonomy based on two levels: the first level focused
on identifying whether the fibre belongs to the CNS or the PNS and the second
level used the information obtained from the first level to cluster the fibre types.
Figure 4A shows the specific architecture proposed in this paper, where we used
the optic nerve as an example of a CNS nerve and the cochlear nerve as an
example of a PNS nerve (Figure 4B).

a) b)
Level 0
Type L1 X
Fiber Optical/Cochlear b Fiber character.i Group Level 1
e —
classifier classifier
L) L]
: Optical nerves Cochlear nerves
‘- Supervised methods - Unsupervised methods y—]—‘ y—’—y
Level 2 |

Optic nerves fibers Cochlear nerves fi

Figure 4: The multi-level architecture used to classify nerve fibres based on the morphological
taxonomy.

2.2. Central versus peripheral classifier

In this paper, to evaluate the flexibility provided by the multi-level hier-
archical architecture, tests were performed at the first level with two different
machine learning classifiers: decision trees and multilayer perceptron. These
two methods are the most common techniques of supervised learning. We com-
bined the decision trees and artificial neural networks. On one hand, DT offers
the representation of rules, which can be readily understood or used directly in
databases. On the other hand, MLP is a bio-inspired method, which is very
suitable in this context.

There exist diverse algorithms to represent DT such as [56] C4.5 [57], and
CART [58]. The classification and regression trees (CART or C&RT) method
of Breiman, Friedman, Olshen, and Stone ([58]) generates binary decision trees.
Although real-life scenarios are not always as simple as binaries, binary decision
trees are in fact an excellent as well as an easier method of interpreting and
analysing the environment ([59] and [60]). Therefore, in our case, we used DT
to classify the differences between the optic and cochlear nerves.

An MLP comprises usually three layers of neurons, where every layer is en-
tirely connected to the next one. The first input layer receives external inputs,
then one hidden layer (which is the most complex layer as it needs to be con-
figured for and adapted to every situation), and finally, an output layer which
achieves the classification results [61] [62][63] (see figure 5).
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Hidden

Optic
Output
Type of nerve

Input data

Cochlear

Mieline Thickness

Figure 5: The architecture of the MLP network (input layer, hidden layer, and output layer).
The input layer represents the input data (the input dataset is described in section 3.2). The
usage of a hidden layer enables the representation of datasets that are not linearly separable.
The output layer represents the classification result and it contains as many outputs as the
problem has classes. The weights and the threshold of the MLP are calculated during an
adaptation process.

The training of the MLP is carried out by backpropagation, which is a su-
pervised learning method. It uses a gradient descent method for the adaptation
of the weights. A detailed explanation of this algorithm can be found in [64].

2.8. Fibre type classifier

For the second decision layer, an unsupervised method was used in order to
classify the fibre type. Unlike the first level of the taxonomy, the morphological
characteristics of the fibres are not well studied. There is no clear consensus
regarding the types presented in the nerves. Hence, unsupervised methods will
be able to provide knowledge to the biological area since they are able to cluster
similar characteristics that cannot be easily extracted by an expert. In this
case, an initial study using k-means was considered to be the machine learning
method of our hierarchical architecture.

2.3.1. K-Means clustering

Clustering is a process of partitioning or grouping a set of data objects into
clusters.

Given a set of observations (z1,x2,?,x,), where each observation is a d-
dimensional real vector, k-means clustering aims to partition the n observations
into k sets (k < n)S = S1,52,7,Sk. Assuming an initial set of k means
ml1(1),?, mk(1), the algorithm [65] proceeds by alternating between two steps:

e Assignment step: Assign each observation to the cluster whose mean yields
the least within-cluster sum of squares. Since the sum of squares is the
squared Euclidean distance, this is intuitively the "nearest” mean. (Math-
ematically, this denotes partitioning the observations according to the
Voronoi diagram [66] generated by the means)
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e Update step: Calculate the new means to be the centroids of the observa-
tions in the new clusters.

The algorithm has converged when the assignments no longer change.

There exists extensive literature on algorithms for unsupervised clustering
[67], [68], [69] with the k-means method [70] [71] being one of the most popular
choices.

Despite the advantages of k-means as a traditional cluster analysis method,
this technique is sensitive to the choice of a starting point for partitioning the
items into K initial clusters. Due to the weakness of the K-means method,
prior literature proposes to adopt a two-staged clustering method [72]. In this
regard, this study applied the K-means technique to determine the clustering
boundaries from the results of the supervised methods, DT or MLP. In the first
stage, a dataset is clustered via adopting the type of nerve to centre the data
type to decide the number of data clusters (k). In the second stage, the derived
approximation of the clusters (k) determined in the first stage is used with the
K-means method.

Finally, in this section, it is interesting to indicate that the method used
to evaluate these Al methods was to obtain certain measures to evaluate clas-
sification accuracy, sensitivity, specificity, positive rate, negative rate, and a
confusion matrix. A confusion matrix [73] contains information regarding ac-
tual and predicted classifications performed by a classification system.

3. Computational experiments

In this section, we describe the experiments carried out in order to validate
the proposed multi-level architecture, and afterwards, we describe the results
obtained. First, we conducted a supervised experimentation to classify between
the optic and cochlear nerves as the first level of the architecture. Second,
unsupervised experimentation was performed to distinguish the types of fibres
within each type of nerve as the second level of the architecture.

3.1. Samples of the study

Optic and cochlear nerves from rat were processed for electron microscopy
techniques. Three 1-year-old albino Wistar rats were anesthetized with 35%
chloral hydrate (1 ml/kg, i.p) and transcardially perfused with 4% paraformalde-
hyde, 2% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). Prechiasmatic
portions of the optic nerve and fragments of the cochlear nerve were dissected
and maintained overnight in the same fixative at room temperature, post-fixed
in 2% 0sO4 for 1 h and embedded in Epon 812. In figure 6 are presented the
main components of a nerve fibre. One of the main objectives of this work was
to discover which are the most important input data correlated with the output.
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FD = Fibre Diameter

AD = Axon Diameter

ML = Myeline Lamellae

EM = Myelin Sheath Thikness
MT = Microtubules

NF = Neurofilaments

M = Mitochondria

ER = Endoplasmic Reticulum

Figure 6: Main components of a nerve fibre.

8.1.1. Morphometry analysis

Electron micrographs were obtained with a ZEISS C-10 electronmicroscope
and printed at a final magnification of x 140,000. With the aid of a computer-
linked planimeter and a morphometrical package designed by [32]. The following
axonal parameters were determined: area of cross-sectioned axons and fibres,
number of microtubules and neurofilaments, myelin sheath thickness, and the
G-ratio (axon diameter/fibre diameter). These parameters were measured on
100 axons per section randomly chosen from photomicrographs as previously
described [2] [17].

3.2. Differences between central and peripheral nerves

In this section, we present the experiments and the results of the supervised
experimentation to classify between the optic and cochlear nerves. Of the mor-
phological parameters obtained from the biological samples, we used as input
data those indicated in Table 1.

Table 1: Input and output data.

Name Type

Axon Diameter Input data

Fibre Diameter Input data

G-Ratio Input data

R-Proportion Input data

Myelin Thickness | Input data

Type of nerve Output: Optic Nerve = CNS, Cochlear Nerve = PNS

The experimentation was carried out using the WEKA software [74] that
contains most of the machine learning techniques.

10
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Axon Diameter

>0.71 >0.55

Fibre
diameter

| Optic (10.0) || Cochlear (2.0) | Optic (3.0)

Optic (171.0)

Cochlear (87.0)
Myelin sheath

thickness

<=0.355

Cochlear (3.0)

>0.355 <=2.62

Figure 7: This figure shows the execution carried out with a decision tree. This figure could
help establish what are the fields most important for the output.

We used cross-validation as the method to assess the generalization of a
network; specifically, for this study we applied a ten-fold cross-validation for
the performance assessment. All data were divided into training data (for the
process of constructing the model) and test data (data used to validate the
model). The baseline experiments were carried out to determine the fibre types
without taking into account whether they belonged to the optic or cochlear
nerve. The direct clustering for the second level results obtained a 15.6% of
instances incorrectly classified. With the proposed architecture, the instances
incorrectly classified were reduced to less than 2%.

Figure 7 represents the decision tree of this experimentation. The figure
shows the differences to classify between the optic and cochlear nerves and the
most important fields to establish the output correlated with the input data.
It also shows how the ”Axon Diameter” variable performs the first division,
which renders it the most important variable. This can also be applied to the
remaining features along the tree (G-Ratio, myelin sheath thickness, and fibre
diameter).

For the construction of the MLP architecture, we can conclude that layer 1
and 3 are the simplest ones (1 corresponds directly to the input vector and 3
is the output layer with two outputs for classification: central and peripheral
nerves. Layer 2 (the hidden layer) consists of the number of hidden neurons
and is the most elaborate in the network’s architecture. The number of hidden
neurons represents a trade-off between performance and the risk of overfitting.
In fact, this number will significantly influence the network’s ability to general-
ize from the training data to unknown examples [75]. To achieve high accuracy

11

Page 11 of 27



without overfitting in order to generalize, the experiments carried out showed
that a low number of neurons for this layer resulted in a poor performance for
both the training and test datasets. By contrast, a high number of neurons
performed very well in the training and test datasets, although the risk of over-
fitting was high. The various tests carried out between these extreme options
provided us with nine neurons as the optimal solution for this layer. The learn-
ing algorithm used was backpropagation with adaptive learning rate, constant
momentum, and an optimized algorithm based on the gradient descent method.
The backpropagation training parameters are shown in Table 2. We used the
default values, except for the parameter epochs, which we tuned to 100, 1000,
and 10000 to analyse the different results. All the experiments presented in the
tables for MLP were conducted with these parameters.

Table 2: Backpropagation training parameters.
Parameters Value
Learning rate 0.01
Adaptive learning rate 0.1
Constant momentum 0.2
Epochs 100-1000-10000
Minimum performance gradient | le=>

The results of the experimentation of this first level of supervised classifica-
tion are shown in Tables 3 and 4. The MLP outperformed the DT. The MLP
could classify 98.9% of the samples without false alarms (100% specificity)

Table 3: Definition of the confusion matrix for the central versus peripheral nerve classification
with the values for every measure of the MLP and DT classifiers. O = Optic nerve C =
Cochlear nerve.

MLP DT
Actual | Predicted Predicted
(@) C (@) C
O 91 1 90 2
C 0 | 184 3 | 181

Table 4: Classification results according to the MLP and DT classifiers for the central versus
peripheral nerve experiment.

MLP | DT
Classification accuracy (%) 99.6% | 98.2%
Sensitivity (%) 98.9% | 97.8%
Specificity (%) 100% | 98.4%
Positive rate (%) 100% | 96.8%
Negative rate (%) 99.4% | 98.9%
12
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Figure 8: Representation of the three optic nerves clusters.

3.8. Intrafibre differences: different types of fibre within the optic and cochlear
nerves

In the first phase of experimentation, we obtained five clusters of nerve fi-
bres, for both the optic and cochlear nerves, using the k-means unsupervised
algorithm. However, two of these classes had very few instances and whereby
unbalanced classes would be created. Previous studies [20] have shown that
three groups were required for a optimal solution for this classification. There-
fore, in our experiments we ”forced” the algorithm to produce an output with
only three clusters and we observed that this change produced better results.

This process of analysis known as k-means allowed us to identify different
groups of fibres in each type of nerve by creating these guided groups.

For each type of nerve, the centroids were identified with the main features
of representative fibres in each group. In Tables 5 and 6 the values of these
centroids are shown. By plotting the fibres forming each of these groups, it
was revealed that they were sufficiently separated for the differences in their
characteristics to become apparent. Figure 8 shows the distribution of fibres of
the optic nerve using a discriminant analysis whereas Figure 9 is its equivalent
to the cochlear nerve.

To assess that the cluster created were appropriated, we carried out several
additional experiments. We again used the supervised MLP and DT algorithms.
The results showed that the cluster chosen were correct since high accuracy was
obtained for both the optic and cochlear nerves. In Table 7 we can see the four
confusion matrices. It is shown that only a few of the fibres were incorrectly
classified outside the diagonal in the matrix. Moreover, Table 8 presents the

13
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Table 5: Distribution of the optic clusters and their centroids.

Cluster centroids (optic)
Cluster
Attribute Full Data | 0 1 2
Number of cases 184 119 | 38 27
FIBRE DIAMETER | 0.68 0.54 | 15.43 | 0.08
G-RATIO 0.54 0.45 | 0.48 1
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Figure 9: Representation of the three cochlear nerves clusters.
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Table 6: Distribution of the cochlear clusters and their centroids.

Cluster centroids (cochlear)

Cluster
Attribute Full Data | 0 1 2
Number of cases 92 26 30 36
AXON DIAMETER | 1.57 1.75 1.81 1.24
MT NUMBER 52.43 30.92 | 70.76 52.69
NF DENSITY 112.02 45.92 | 123.81 | 149.95

Table 7: Definition of the confusion matrix for the clusters of the optic and cochlear nerves
fibre. This table indicates the values for every measure of the MLP and DT classifiers. C1,
C2, and C3 refer to the clusters obtained with the three type of nerve fibres.

Optic Cochlear
MLP DT MLP DT
Actual Predicted Predicted Predicted Predicted
Cl | C2]|C3 Cl | C2|C3 Cl1|C2|C3 C1|C2|C3
C1 117 | 2 0 116 | 2 1 23 |1 2 21 | 2 3
C2 0 38 [0 4 34 0 29 |1 2 28 | 0
C3 0 0 27 0 0 27 1 1 34 2 2 32

parameters that confirm the high accuracy obtained for the cluster classification.

Table 8: Equations according to the MLP and DT classifiers.

Optic Cochlear

MLP | DT MLP | DT
Classification accuracy (%) | 98.9% | 96.2% 93.5% | 88%
TP Rate (%)
Cluster 0 98.3% | 97.5% 88.5% | 80.8%
Cluster 1 100% | 89.5% 96.7% | 93.3%
Cluster 2 100% | 100% 94.4% | 88.9%
TP Rate Precision (%)
Cluster 0 100% | 96.7% 95.8% | 84%
Cluster 1 9%5% | 94.4% 93.5% | 87.5%
Cluster 2 100% | 96.4% 91.9% | 91.4%

Finally, Figures 10 and 11 show the accuracy of the decision trees obtained
with the multi-level approach, providing a clear and comprehensive representa-
tion of how nerve fibres can be classified in groups once the first level has been
established, CNS (optic) or PNS (cochlear).

4. Discussion

In this study, we adopted a bio-inspired multi-level classifier architecture of

nerve fibres as a novel architecture approach for the automation of image anal-
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Figure 10: Decision tree representing the three optic-nerve clusters.
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Figure 11: Decision tree representing the thee cochlear-nerve clusters.

Cluster 1 (30.0/1.0)
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ysis in clinical diagnosis. As a first step, we compared the accuracy of several
artificial intelligence methods. Due to the complexity of biological systems, and
particularly of the nervous system, it was not been possible to accomplish this
task directly. The biological system of nerve fibres makes it necessary to develop
a multi-level architecture because the classification task becomes complicated
when we need to identify the location at the nerve fibre level (level 2), and we
are not only concerned with whether the fibre belongs to the CNS or the PNS
(level 1). Distinguishing between a central or a peripheral nerve fibre is a simple
task for a trained pathologist who may be able to interpret the surrounding el-
ements. However, for an automated system, the task becomes complicated due
to the similar morphological features obtained from the morphometric analysis
of the nerve fibres. In this study, we also identified the main morphometric
parameters that define the type of fibre observed. Moreover, we demonstrated
that the classification task only requires a small number of features, rendering
it simpler than expected. This approach may lead to new studies based on
different aspects of nerve-fibre development or the comparison of normal and
pathological nerve fibre samples. In order to deal with this problem, we de-
cided to implement a multi-level architecture. For the first level, we evaluated
supervised methods such as DT and MLP, whereas for the second level we used
unsupervised clustering techniques.

Artificial Intelligence methods have been used to improve a complex classi-
fication to distinguish between nerve fibres derived from central and peripheral
nerves. In particular, we used two supervised techniques, MLP and DT, and
an unsupervised one, K-Means clustering. The supervised methods classify the
type of nerve fibre whereas the unsupervised one divides different types of fibres
within the optic and cochlear nerves into clusters. Furthermore, to test the
clusters created, we carried out several additional experiments with the MLP
and DT algorithms. The AI methods achieved high accuracy, with MLP being
more accurate (approximately 2% more, in general) than DT. However, this
minor lower accuracy of DT is compensated by DT being more graphical and
visual, which makes it easier to understand and interpret. K-Means clustering
was also tested by testing the accuracy of the classification and prediction of
these groups. Table 7 and 8 corroborate this unsupervised method with excel-
lent results, in many cases with accuracy very close to 100%, which validates
our proposed clustering.

Some AI methods have been effectively used in the field of the biological
nervous systems in recent years, producing good results as well as reasonable
expectations of ongoing improvements and evolution. Some of these methods
have been presented by [76] and [77]. To the best of our knowledge, most of
these studies used supervised methods to classify the different types of nerves
and especially ANN. In our case, we contribute with this unsupervised method
to create nerve-fibre clustering, as well as with the DT to render the results more
visible and easier to interpret. The generalizable multi-level approach proposed
in this study could improve the accuracy in comparison with our first approach.

One of the main objectives was to facilitate the routine tasks by automa-
tization as well as to reduce costs in design and time. In this regard, a new
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nerve fibre could be correctly classified between the optic and cochlear nerves.
Then, it could be identified in the most suitable group, either in the optic or
the cochlear nerve. The authors have experience in the medical field by apply-
ing several Al techniques in classification and prediction tasks with very good
results [50] [51] [48].

Additionally, our architecture, characterized by complexity, generalization,
and flexibility, can be extended to other biological control systems. To the
best of our knowledge, this is the first time that a multilayer approach with AT
methods (MLP, DT, and K-means) has been employed for the classification of
nerve fibres.

In conclusion, the architecture developed in the present study allows for the
correct classification of different types of nerve fibres. A multi-level structure is
needed, in which supervised and unsupervised methods are used, in this order
at different levels. This scheme improves classification accuracy and opens the
possibility of its use in automated tasks. We demonstrated that the identifica-
tion and classification of different types of nerve fibres can be carried out with
a reduced number of characteristics.

In future research, one of the main objectives is to further the study of
the nervous system, including other AI techniques and data mining, especially
the mixed supervised-unsupervised techniques. This protocol, together with
the incorporation of 3D imaging techniques, could improve accuracy and could
facilitate the acquisition of more knowledge and experience in this domain. In
addition, it should contribute to expanding the number of data repositories to
improve storage, allowing the connection to data warehousing and big data,
providing meaningful indicators and dashboards.
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- Difficulties to distinguish between nerve fibers from central or peripheral Nervous System.
- The main aim is to distinguish nerve fibers based on their morphological characteristics.

- Our approach consists of a multilevel hierarchical classifier.

- This multilevel architecture comprises supervised and unsupervised methods.

- Our approach is characterized by complexity, generalization, and flexibility.
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