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A B S T R A C T 

Financial credit scoring is one of the most crucial processes in the finance industry 

sector to be able to assess the credit-worthiness of individuals and enterprises. 

Various statistics-based machine learning techniques have been employed for this 

task. “Curse of Dimensionality” is still a significant challenge in machine learning 

techniques. Some research has been carried out on Feature Selection (FS) using 

genetic algorithm as wrapper to improve the performance of credit scoring models. 

However, the challenge lies in finding an overall best method in credit scoring 

problems and improving the time-consuming process of feature selection. In this 

study, the credit scoring problem is investigated through feature selection to improve 

classification performance. This work proposes a novel approach to feature selection 

in credit scoring applications, called as Information Gain Directed Feature Selection 

algorithm (IGDFS), which performs the ranking of features based on information 

gain, propagates the top m features through the GA wrapper (GAW) algorithm using 
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three classical machine learning algorithms of KNN, Naïve Bayes and Support Vector 

Machine (SVM) for credit scoring. The first stage of information gain guided feature 

selection can help reduce the computing complexity of GA wrapper, and the 

information gain of features selected with the IGDFS can indicate their importance 

to decision making. 

Regarding the classification accuracy, SVM accuracy is always better than KNN and 

NB for Baseline techniques, GAW and IGDFS. Also, we can conclude that the IGDFS 

achieved better performance than generic GAW, and GAW obtained better 

performance than the corresponding single classifiers (baseline) for almost all cases, 

except for the German Credit dataset, IGDFS+KNN has worse performance than 

generic GAW and the single classifier KNN. Removing features with low information 

gain could produce conflict with the original data structure for KNN, and thus affect 

the performance of IGDFS+KNN. 

Regarding the ROC performance, for the German Credit Dataset, the three classic 

machine learning algorithms, SVM, KNN and Naïve Bayes in the wrapper of IGDFS 

GA obtained almost the same performance. For the Australian credit dataset and the 

Taiwan Credit dataset, the IGDFS+Naive Bayes achieved the largest area under ROC 

curves.  

 

Keywords: Feature selection; Genetic algorithm in wrapper; Support vector machine; K 

nearest neighbour clustering; Naive Bayes classifier; Information Gain; Credit scoring; 

Accuracy; ROC curve 

1 Introduction  
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The survey by Jadhav et.al [1] showed that machine learning techniques have been 

extensively applied in Credit Scoring, Loan Prediction, Money Laundering and other time 

series problems (e.g. prediction of earnings per share [2]) in finance industry. In this 

research, we focus on the Credit Scoring problem. Despite the advances of machine 

learning techniques, financial institutions continually seek improvements in classifier 

performance in an attempt to mitigate the credit risk [3]. 

Many machine learning applications involving large datasets usually exhibit the 

characteristic of high dimensionality; one such example is financial analytics [4].  To deal 

with such high-dimensional data, a solution involving dimensionality reduction is required 

before looking for any insights into the data. Feature selection creates more accurate 

predictive models in these applications while keeping the cost associated in evaluating the 

features to a minimum. Credit scoring aims to reduce the probability of a customer 

defaulting i.e. it predicts the credit risk associated with a customer. This helps decisions-

making, maximising the expected profit from the customers for financial institutions. 

Feature subset selection removes redundant and irrelevant features from the dataset, thus 

improving the classification accuracy and reducing the computational cost [5], [6]. The 

advantage of feature selection is that the information of feature importance in the dataset 

is not lost [7]. 

GA wrapper is the most popular method applied in the area of feature selection, and it has 

shown its efficacy in various areas (medical diagnosis [8], computer vision/image 

processing [9], text mining [10], bioinformatics [11], industrial applications [12].  

Therefore, we explore the approach to solving feature selection in credit scoring problem. 

In this study, we apply Information Gain [13] for initial feature selection,  and then apply 

K-nearest neighbour (KNN), Naïve Bayes (NB) and Support Vector Machines (SVM) [14], 

[15] as the classification algorithms in the Genetic Algorithm Wrapper for credit scoring. 
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The paper is structured as follows: Section 2 introduces the state of the art in classical 

wrapper algorithms such as Genetic Algorithms and Particle Swarm Optimisation, the 

machine learning models used in wrappers for feature selection in solving the credit scoring 

problem and the challenges of feature selection along with the gaps identified. Section 3 

discusses Information Gain, KNN, NB, SVM and the performance measures employed in 

this study. A genetic algorithm wrapper with the above three models is developed in 

Section 4. The experiments and evaluation are presented in Section 5. Finally, Section 6 

concludes with discussions about the findings and future work. 

2 Existing Work 

Feature selection techniques have emerged as crucial in the applications where the input 

space affects the classification algorithm’s performance. The process of feature selection 

searches through the space of all feature subsets while calculating evaluation measure to 

score the feature subsets. Since an exhaustive search is computationally too expensive,  

meta-heuristic search techniques, such as Genetic algorithm (GA) [16] and Particle swarm 

optimisation (PSO) [17] have been favoured for feature selection.  

The wrapper-based feature selection approach [18] wraps the feature selection algorithm 

around a classification/induction algorithm. The performance of this algorithm finally 

selects a subset of features. The wrapper approach especially is useful to solve the problems 

for which a fitness function cannot be easily expressed with an exact mathematical 

equation. This technique has attracted a lot of research attention because of its simplicity 

in implementation since the induction algorithm acts as a black box in the whole process 

where knowledge of this algorithm is not mandatory [18]. The accuracy of this algorithm 

is used as evaluation measure to select the features. Other advantages of wrapper 

techniques are: Since classification algorithm decides the final selected subset, one gets 

more control over the whole feature selection process; wrapper techniques can produce 
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very high accuracy because of this learning capacity rendered by the inner induction 

algorithm.  

A Genetic Algorithm Wrapper (GAW) has been widely applied to feature selection in data 

mining [19]. An advanced data mining technique of SVM classifier is most popularly used 

in such wrapper approach [20], [9], [21], [22].  When using SVM in a GA wrapper, SVM 

parameters optimisation needs consideration. In the literature, a few variants of GA+SVM 

algorithm have been proposed for feature selection in different application areas. For 

example, a GA+SVM technique was studied for the classification of hyper spectral images 

[9]. GA was used as a pre-processing step for the optimisation of SVM by Verbiest et al. 

[21]. Frohlich & Chapelle [22] minimised existing generalization error bounds on SVMs 

instead of performing cross-validation for a given feature subset. Anirudha et al. [23] 

proposed a Genetic Algorithm Wrapper Hybrid Prediction Model for feature selection. In 

this study, the outliers from the dataset were removed using K-means clustering technique, 

and then a Genetic Algorithm Wrapper was used to select the optimal features. These 

selected features were used to build the classifier models of Support Vector Machine, 

Naive Bayes, Decision Tree, and k-nearest neighbour. A hybrid feature selection method 

with GA wrapper using mutual information and using SVM is proposed by Huang et 

al.[24]. Some recent attempts to improve the optimised feature selection process by parallel 

processing are: [8], [25], [26], [27]. 

Aside from SVM, other machine learning models used in a wrapper approach include: C4.5 

Decision trees [28], [29]; the model tree algorithm M5 [30]; Fuzzy Apriori Classifier [31]; 

Neural Network [32]; Bayesian Network classifier [33].  

Another evolutionary computing method investigated for feature selection apart from 

Genetic Algorithm is Particle Swarm Optimisation.  A PSO wrapper for selecting features, 

which are the most informative features for classification, was proposed in [34]. Lin et al. 
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[35] simultaneously determined the parameters and feature subset using PSO with SVM 

and obtained similar result to GA + SVM. 

Credit risk analysis, credit scoring and classification are significant problems in 

computational finance. “A 2016 Credit Access Survey by the U.S. Federal Reserve Bank 

of New York indicates that approximately 40% of U.S. credit applications are rejected. 

Moreover, between 20% and 40% of consumers expect to be rejected depending on the 

type of credit sought, and many do not even apply.  Yet, among these people there may 

well be qualified customers for the right kind of lender” [36]. 

The recent rapid growth in credit industry has made huge amounts of data available. Credit 

scoring datasets often are high dimensional making the classification problem highly 

complex, computationally intensive and less accurate for prediction [37]. Feature selection 

becomes necessary to reduce the burden of computing and to improve the prediction 

accuracy of the classification models for credit scoring [38], [39]. Various supervised 

wrapper methods have been studied for feature selection due to the classification accuracy 

entailed by the underlying algorithm although it comes at a cost of flexibility and 

scalability. 

Somol et al. [40] studied filter as well as wrapper-based feature selection for the problem 

of credit scoring classification. Huang et al.[41] proposed three strategies, which included 

grid search and F-score calculations, for credit score evaluation. In this study, the authors 

proposed a hybrid strategy based on GA and SVM for feature selection and parameters 

optimisation built with relatively few input features. This achieved similar classification 

accuracy when compared against neural networks, genetic programming, and C4.5 

decision tree classifiers. Non-linear approaches such as kernel SVM have seen recent 

applications in credit scoring since credit scoring data is often not linearly separable. In an 

attempt to develop wrapper techniques on bankruptcy and credit scoring classification 
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problems, Liang et al. [42] used GA and PSO wrapper embedded with different machine 

learning models, such as linear SVM, RBF kernel-SVM, NB, KNN, Classification and 

Regression Tree, and Multilayer Perceptron Neural Network (MLP) to select features for 

financial distress prediction. No best combination was found over the four datasets used in 

the study. This study concluded that performing GA+logistic regression can improve 

prediction improvements. Waad et al. [43] applied Logistic Regression, Naïve Bayes, 

MLP, Random Forest trees in wrapper on three credit datasets and showed that feature 

subsets selected by such fusion methods were equally good or better than those selected by 

individual methods.  

Various traditional methods from statistics, non-parametric methods from computer 

science, modern methods from data mining and machine learning, and artificial intelligence 

techniques have been proposed in a bid to move away from manual methods and in search 

of building complex classification models which yield better accuracies and reliability of 

credit scorecards. Some of these applications are listed as following: 

Application of KNN [44]; a wrapper feature selection with several machine learning 

models, such as SVM, Rough Set Theory, Decision Tree and Linear Discriminant Analysis 

(LDA), for credit scoring [45]; an ensemble classifier for feature selection in credit scoring 

[46], [47];  Logistic Regression, Neural Networks, least square SVMs Gradient Boosting,  

Decision Trees, and Random Forests for prediction of loan defaults [48]; a corporate credit 

rating model using multi-class SVMs with an ordinal pairwise partitioning [49]; a weighted 

least squares SVM which emphasised the importance of different classes [50] with 

successful acceptable accuracy and less computation time; hybrid models using Rough 

sets, Naïve Bayes and GA to classify credit risk of customers [51]; combination of Rough 

set and meta heuristic search for feature selection for the credit scoring problem [52]; 

wrapper approach with Naïve Bayes, MLP, RBF neural network, SVM, Random Forest, 
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Linear Discriminant classifier and Nearest Mean classifier for feature selection for credit 

rating prediction [53]; the combination of a clustering algorithm and GA with Decision 

Tree for feature selection for credit scoring of customers [29]; a hybrid approach for credit 

risk assessment using GA and ANN to obtain an optimum set of features to improve the 

classification accuracy and scalability [54]; a GA with weighted bitmask as alternative of 

polynomial fitness functions to estimate parameter range for building credit scoring models 

[54]; parallelisation of Random Forest method and feature selection methods, such as filters 

(t-test, LR, LDA), wrappers (GA, PSO) in credit scoring models [55].  

The computing complexity of a machine learning algorithm is directly affected by problem 

space, more so in the area of credit analysis due to the complex decision process involved. 

Because of rapid advances in computing and information technologies, different types of 

techniques have been studied in combination with each other in many of today’s real 

applications. There is a growing tendency of using hybrid methods for complex problems.  

Typically, credit scoring databases are often large and characterised by redundant and 

irrelevant features [56]. Financial data and credit data in particular usually contain 

irrelevant and redundant features [57]. The redundancy and the deficiency in data can 

reduce the classification accuracy and lead to incorrect decision [58], [39]. The ability of 

interpretation of the predictive power of each feature in the dataset is often a necessity in 

certain applications. In such cases, a feature selection method such as Information Gain 

that returns a score is more useful than methods that return only a ranking or a subset of 

features, where the importance of features is not accounted for [59]. The choice of feature 

selection method largely depends on the problem, the type of data and the end use of the 

model. Which methods are most useful for feature subsetting is an open debate. 

To fill the gap identified above in the field of credit scoring, we will investigate feature 

selection problem for credit scoring by proposing an Information gain directed feature 
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selection method incorporating the GA wrapper with machine learning techniques of SVM, 

KNN and Naïve Bayes. The literature has shown a few hybrid feature selection studies 

undertaken using GA as wrapper along with the machine learning classification algorithms. 

Some of them apply filtering techniques as a preprocessing techniques before the feature 

selection step. But in the area of credit scoring, such applications are very few.  

The novelty of the proposed methodology lies in how the features contributing most 

towards the classification of credit applicants are propagated through the wrapper process. 

This is a novel approach specifically in the area of credit scoring. Firstly, the proposed 

strategy uses information-based ranking of features to reduce the feature set by modifying 

the initial population pool of GA so that best individuals are picked. Secondly, this measure 

is used to guide the evolution of GA by modifying the GA parameters of population pool, 

crossover and mutation. The novelty also lies in the usage of a large credit dataset 

constituting 30000 credit applicants: the Taiwan credit dataset which is not yet being used 

in the hybrid feature selection strategies for credit scoring applications. 

3 Methodology 

To classify the credit applicants, this work first ranks the features in order of importance 

to decision making/classification by measuring the information gain. The results are 

incorporated in the information directed wrapper feature selection method using genetic 

algorithm. Three classic machine learning models are embedded in the wrapper of GA, as 

a black box of fitness evaluation and these are SVM, KNN and NB. 

The SVM hyperparameter selection is done by the method of grid search. The 

hyperparameter selection for K-nearest neighbor method (KNN) is done based on 

Euclidean distances with cross-validation. KNN calculates a decision boundary (i.e. 

boundaries for more than 2 classes) and uses it to classify new points. The K in KNN is a 
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hyperparameter that must be selected to get the best possible fit for the dataset. K controls 

the shape of the decision boundary. The best K is the one corresponding to the lowest error 

rate in cross validation. If test set is being used for hyperparameter setting, it may lead to 

overfitting.  

In the rest of this section, the various techniques used for developing the proposed 

algorithm are discussed briefly. For improving the readability of this article, we describe 

in brief the basic principles of the KNN, Naïve Bayes, SVM technique, especially for 

finance industry who are not working in the machine learning area.  

3.1  Information Gain of features 

There are many ways of scoring the features such as Information entropy, Correlation, Chi 

squared test and Gini index. Entropy is one of several ways to measure diversity. Impurity 

of information can be measured by information entropy to quantify the uncertainty of 

predicting the value of the goal variable.  

Let y be a discrete random variable with two possible outcomes. The binary entropy 

function H, expressed in logarithmic base 2, i.e. Shannon unit is given by Eq. (1): 

�(�) = −�(+)�����(+) − �(−)����(�(−))               ( 1 ) 

where, (+,–) are the classes, �(+) denotes the probability that a sample � ∈ (+) , and 

�(−)  denotes the probability that � ∈ (−). Entropy quantifies the uncertainty of each 

feature in the process of decision making. Eq. (2) calculates the conditional entropy of two 

events X and Y, when X has value x: 

�(�|�) = ∑ ��(�)�(�|� = �)�∈�         

= −∑ ��(�)∑ �(�|�)������(�|�)�∈��∈�   

= −∑ ∑ ���(�, �)������(�|�)�∈��∈�                   ( 2 ) 
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Note: ���
�→�

�  ����(�) = 0 .   

The smaller the degree of impurity, the more skewed the class distribution. Entropy and 

misclassification error are highest when class distribution is uniform. The minimum value 

of entropy is attained when all the samples belong to the same class. 

Information Gain (IG) is widely used on high dimensional data to measure the effectiveness 

of features in classification. It is the expected amount of information, i.e. reduction in 

entropy.  

Namely, the information gain (IG) from a feature x is given by Eq. (3): 

��(�|�) = �(�) − �(�|�)                      ( 3 ) 

Higher information gain means better discriminative power for decision making. 

Information gain is a good measure to determine the relevance of feature for classification.  

The importance of features towards decision making in our model is done by evaluating 

them with the information gain measurement. Not all data attributes are created equally 

and not all of them contribute equally to the decision making. Hence the attributes can be 

sorted in the order of their contribution in decision making by listing the features in 

decreasing order of information gain scores. 

3.2 K-Nearest Neighbour (KNN) Algorithm 

KNN algorithm is a simple clustering algorithm, which produces highly competitive and 

easily interpreted results, is faster and comes with good predictive power. It is one of the 

most effective nonparametric methods, is simple to understand and easy to implement since 

only one parameter - K (the number of nearest neighbors) - needs tuning. The number K of 

nearest neighbors is key to the performance of the clustering process. The input to KNN 



12 

 

are K closest samples from training data and a new testing sample is classified based on 

the minimum Euclidean distance as in Eq. (4). 

�(�, �) = �∑ (�� − ��)��
���                       ( 4 ) 

where, X and Z are n-dimensional vectors in the feature space. 

If a sample is in the K nearest neighbors, then it is assigned class membership of most 

common K neighbours. The main task of KNN is to search the nearest neighbors for each 

sample. The parameter K must be tuned for each dataset for enhancing the classification 

accuracies. To choose the parameter K we use 10-Fold-cross validation to validate KNN 

for various quantities of neighbors near rule-of-thumb values. Cross validation leads to the 

highest classification generalizability. If employing KNN with different values of K on a 

dataset, we obtain different accuracy at each round. The optimum K achieving the best 

accuracy is used in the feature selection. 

3.3 Naïve Bayes 

The Naïve Bayes (NB) classifier uses Bayes' Theorem which counts the frequency of 

‘attribute value - class’ combinations in the historical data to calculate probability of class 

label Ci. 

As stated by Twala [60], the basic principle of NB is the Bayes rule. The probability of 

each class is calculated, given all attributes, and the class with the highest posterior 

probability is the estimated class. Given an instance X for n observations, the probability 

of a class value Ci can be calculated with Eq. (5). 

�(��|�) = ∏ ��������. �(��)�
���                      ( 5 ) 
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Let a training set of samples and corresponding class labels be given by D. Each sample X 

includes n independent attributes (x1, x2, …, xn). If there are m class labels such as C1, C2, 

…, Cm, then classification is to derive the maximal posteriori, P(Ci|X): 

�(��|�) =
�������.  �(��) 

�(�)
                         ( 6 ) 

P(X), which is prior probability, is fixed for all classes in a data set; hence �(��|�) can be 

represented with Eq. (7).  

�(��|�) = �(�|��). �(��)                        ( 7 ) 

Naïve Bayes algorithm assumes the conditional independence of attributes. Hence, the 

class assignments of the test samples are given by Eq. (8) and (9): 

�(�|��) = ∏ �(��|��)�
���                         ( 8 ) 

� =  ������ {�(�│��). �(��)}                          ( 9 ) 

If for a new sample, the posterior probability P(C2|X) is the highest for all the s classes, 

then this sample belongs to class C2 according to the NB classifier. 

3.4 The RBF-SVM classifier 

SVM, a popular binary classifier, is used in the wrapper algorithm as a fitness evaluator 

since it is able to deal with high dimension space [61]. The hyperplane supported by a small 

number of vectors can be adaptable to various applications and yields good classification 

performance [62]. SVMs are robust against local minima, offer good generalization 

performance to new data, and are easily represented by few parameters [63]. But the SVM 

method cannot directly show how important each feature is to decision making [64].  

The credit scoring problem is modelled as mapping of input feature-set into the decision 

variable (taking value as creditworthy or non-creditworthy), represented as y=f(F), where 
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y is the decision variable and F is the feature vector. Identifying creditworthy applicants 

from non-creditworthy ones is not a linearly separable problem. Non-linear machines 

which map the data to higher dimensions can be used to find a SVM hyperplane minimising 

the number of errors for the training set. 

RBF-kernel SVM, equivalent to a specific three-layer feed-forward neural network, is 

powerful for non-linear binary classification problems. This kernel SVM maps the problem 

space to higher dimension, i.e. makes the data linearly separable. Consequently, the linear 

SVM could be applied to solve the non-linear problem, mapped to the newly generated 

space with higher dimension. A RBF-SVM is good for solving very high dimensional 

problems, even if number of features is larger than number of samples [65]. Let �(�) be a 

mapping function which maps feature vector F to the kernel function � ��� , ��� =

 �(��)�  �(��). The kernel SVM is expressed by Eq. (10): 

�(�) = �∑ ����
�
��� ���� , ��� + ��                         ( 10 ) 

where �� ’s are dual variables and ���� , ���  is the kernel function replacing the inner 

product of the corresponding two feature vectors, performing the nonlinear mapping into 

feature space. 

Correspondingly, learning to maximise the Eq. (11): 

∑�� −
�

�
 �∑ ��  ���� ��  ��  ���� , ����  

Subject to � ≥ �� ≥ 0, ∀�  and  ∑�� �� = 0               ( 4 )  

where C -an upper bound on ��- is the penalty parameter and is determined by the user. 

In this study, the kernel of the SVM is set to (Gaussian) Radial-based function (RBF) (Eq. 

12). 
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���, ��� = ���  �
�‖����‖�

��� �                                  ( 52 ) 

The RBF-kernel SVM is given in Eq. (13): 

�(�) = ∑ ����
�
��� ��� �

�‖����‖�

��� � + �                   ( 63 ) 

The radial basis function kernel has an additional kernel parameter γ i.e. kernel bandwidth 

to be optimised, where � =
�

���
. As γ increases, the fit becomes more and more non-linear. 

3.5 Performance Assessment Methods  

The most commonly used measure of classifier performance is accuracy: the percent of 

correct classifications predicted. Comparing performance of different classifiers is easy 

with accuracy as a performance measure. But it is not possible to observe the performance 

for each class, especially for those datasets where the classes are not balanced. 

Accuracy is the number of correct predictions divided by the total number of observations, 

and can be calculated with the confusion matrices by Eq. (14):  

Accuracy = (TP+TN) / (TP+FN +TN +FP)                       ( 14 ) 

where, 

 TP is the True Positives, when an applicant is creditworthy and is correctly classified 

as creditworthy. 

 TN is the True Negatives, when an applicant is non-creditworthy and is correctly 

classified as non-creditworthy. 

 FP is the False Positives, when an applicant is wrongly detected as being creditworthy.  

 FN is the False Negatives, when an applicant is wrongly detected as being non-

creditworthy. 
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For a highly-unbalanced problem, we do not want to overfit to a single class, and the 

receiver operating characteristic (ROC) is a good performance measure. ROC is a graphical 

plot showing the trade-off between the rates of correct predictions of creditworthy 

applicants with the rate of incorrect predictions of creditworthy applicants. The value of 

Area Under the Curve (AUC) of ROC ranges from 0.50 to 1.00, and the values above 0.80 

can be viewed as a good discrimination between the two categories of the target variable.  

3.6 k-fold Cross Validation 

We use k-fold cross-validation technique to validate our models for assessing how the 

results generalize to an independent new dataset and to estimate prediction error.  The 

training data were randomly split into equal-sized k mutually exclusive subsets before 

training the SVM classifier on each subset of data. Each time one of the k subsets is used 

for testing and the remaining k-1 subsets are used for training. Accuracy computation is 

performed k times based on the k tests, an average of the k resultant accuracies gives a 

prediction of the classification accuracy. Cross validation uses all observations in the 

available data for testing and all the test sets are independent of each other, hence the 

reliability of the results is improved. 

This study used k = 10, randomly dividing the data into 10 equal-sized parts, of which, one 

part is used as a test dataset, and nine parts as training sets. The results of the 10 iterations 

are averaged. 

4 Genetic Algorithm Wrapper(GAW) for the Reduction of Feature Space 

The GAW is used to obtain the optimal set from the original attributes, thus to reduce the 

feature space. Meta-heuristic algorithms have played important role in optimisation, as 

exhaustive search is too expensive. This section discusses the Genetic Algorithm wrapper 

technique used in this study. 
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4.1 The Wrapper approach of Feature Selection 

Figure 1 illustrates the wrapper approach, where the feature subset is selected by using a 

classification algorithm, i.e., the classification algorithm acts as a black box without the 

requirement of knowledge of the algorithm, and the results produced by the classifier are 

evaluated with classification accuracy or other performance measures.  

The feature selection process proceeds with the data being partitioned into training sets and 

validation sets in a specific training/test rate (e.g. 90% for training and 10% for test in k-

fold cross-validation), then the classifier is run on the selected features of dataset. The 

optimal feature subset is the one with highest classification accuracy. 

For every feature subset taken into consideration, the wrapper method trains the classifier 

and evaluates the feature subset by estimating the generalisation performance i.e. the 

accuracy of the machine trained with this feature subset on the original data. The search 

space is full feature space with n dimensions, where n is the number of full features. Hence, 

a n bit string can be used to represent the selected status of n features. Namely, each bit 

indicates whether a feature is selected (1) or unselected (0).  

 

Figure 1: The Framework of Wrapper Approach for Feature Selection [18]. 
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4.2 The Improved Genetic Algorithm Wrapper-IGDFS 

Genetic algorithm(GA) is an adaptive mutation technique performing a heuristic search, 

inspired by the evolution process of genetics. A population, comprising of competing 

solutions, is maintained, which undergoes selection, crossover, and mutation to evolve and 

converge to the best solution. Parallel search is performed on the solution space to find an 

optimal solution without getting stuck in a local optimum. GA can produce promising 

solutions for feature selection over a high-dimension space due to its robustness to the 

underlying search space size and multivariate distributions [61]. 

To apply this algorithm to solve the credit scoring, two essential issues need to be solved: 

fitness function and classifier choice. The classifier should be able to handle very high 

dimension feature space given a limited sample space. SVM has the capacity [66] of 

treating a high-dimensional data, avoid overfitting and offering nonlinear modelling. In 

this study, we first apply the information gain to rank the features of dataset, then propagate 

the top n features through the GAW process of feature selection using NB, KNN and SVM 

as underlying classifiers. 

Generally, the requirements for searching an optimal solution in the whole feature space 

include a search engine with an initial state, a state space and a termination condition [18]. 

Given n number of features, the size of search space is 2n-1. As every feature has two 

possible states: “1” or “0”, an n bit string will have 2n possible combinations.  Assume τ 

features, which are not important to decision making in terms of the values of their 

information gains, be removed. The length of a binary string becomes n-τ. Even in the 

reduced search space (2n-τ), a brute-force search for a large space of 2n-τ is still infeasible. 

Of course, such space reduction is worthy for GA Wrapper search.  

The ingredients of a Genetic Algorithm are: 
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(1) Chromosome: GA maintains a diverse population x1...n = <x1,..., xn> of n individuals 

xi, the candidate solutions. The fitness of these individuals is evaluated by calculating an 

objective function F(xi) that is to be optimised for a given problem. These individual 

solutions are represented as ‘chromosomes’, which cover the entire range of possible 

solutions. 

In this study, binary bit string is used to represent a chromosome. The bit strings 

representing the genotype (abstract representation) need to be transformed to phenotype 

(physical make-up), namely, feature index representation. The number n of bits represents 

the number of features. If the i-th bit is 1, the feature xi is selected in the subset and if it is 

0, feature xi is not selected. 

(2) Selection operator: Selection is the process of evaluating the fitness of the individuals 

and selecting them for reproduction. There are several ways to perform selection. Some 

commonly used methods include Elitist Selection, Hierarchical Selection, Rank Selection, 

Roulette-Wheel Selection and Tournament Selection. This work has used Tournament 

selection to select sufficiently good individuals for mating.  

(3) Crossover operator: Crossover operator creates two offspring from the two selected 

parent chromosomes by exchanging part of their genomes. Crossover is the process of 

extracting the best genes from parents and reassembling them into potentially superior 

offspring. The simplest form of crossover is known as Single-point crossover. Other types 

are Two-Point Crossover, Uniform crossover. This work has used single point crossover. 

(4) Mutation operator: Mutation maintains genetic diversity of population from one 

generation of chromosomes to the next and increases the prospect of the algorithm to 

generate more fit individuals. Using a small mutation probability, at each position in the 

string, a character at this position is changed randomly. Mutation of bit strings flips the bits 

at random positions with a small probability. This work has used uniform mutation.  
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(5) Elitism: Elitism guarantees that the best fit members are passed on to the next 

generation. The best individual or a set percentage of fittest members survives to the next 

generation. Small elitism compared to the population size yields a good balance between 

diversity and non-overfitting situation. High elitism makes the fittest individuals dominate 

the population resulting in ineffective search. This work guarantees that 2 elite offspring 

survive to the next generation. 

(6) Diversity: Diversity of the population is an important factor influencing the 

performance of the genetic search. Diversity ensures that the solution space is adequately 

explored, especially in the earlier stages of the optimisation process. Very little diversity 

results into the GA converging prematurely. The initial range of the population and the 

amount of mutation affect the diversity of the population. Here tournament selection and 

uniform mutation are used in the evolutionary process of GA. 

(7) Termination criteria: Three possible termination criteria could be used for the GA: A 

satisfying solution has been obtained, a predefined maximum number of generations has 

been reached, the population has converged to a certain level of genetic variation [67]. The 

algorithm convergence is sensitive to the mutation probability: a very high mutation rate 

prevents the search from converging, whereas a very low rate results in premature 

convergence of the search. The termination criteria for this work is maximum number of 

generations = 20 to 50. 

(8) Blackbox with fitness function: A fitness function evaluates the goodness of each 

individual in the population in each generation against the optimisation criterion. To create 

the next generation, the fittest individuals obtained are allowed to reproduce using the set 

crossover and mutation rate. In this study, SVM, KNN and NB are used as the induction 

algorithms for fitness evaluation. 
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Assume g(x) is the mapping function of machine learning model. Given an x, the state of 

the goal variable can be estimated, i.e. y = g(x). 

Assume A is the accuracy obtained by the classifier. It can be calculated by the function: 

A=φ(Y ̃,Y), where Y is the list of goal states, and Y ̃ is the list of estimated goal states for all 

test points. 

We use the classification accuracy as the fitness value f, then 

f = (g(x)|D,Y)                                               (7)  

where D is the test set. 

The three GA wrapper techniques with the SVM, KNN and NB are denoted as GA-SVM, 

GA-KNN, and GA-NB respectively.  

Algorithm 1 provides the operational steps of the proposed method of Information Gain 

Directed Feature Selection (IGDFS), where Algorithm 2 is one of KNN, NB and SVM 

classifiers. 
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4.3 Experimental setup 

In this work, three publicly available credit datasets are used to build and test the 

performance of the proposed IGDFS algorithm. In the literature, these benchmark datasets 

are frequently employed to compare performance of different classification methods. Table 

1 describes these datasets. To ensure validity of the model to make predictions on new data, 

k-fold cross validation method is implemented.  
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Our implementation of algorithms was carried out on Intel Pentium IV CPU running at 1.6 

GHz and 256 MB RAM, in Matlab 2016 mathematical development environment and the 

LibSvm toolbox developed by Chang & Lin [63].  

For the proposed IGDFS approach, the parameters for the SVM classifier were obtained 

using the Grid Search algorithm. The grid search algorithm is widely used in the literature 

for model selection to obtain the best penalty parameter C and the kernel parameter γ [64]. 

4.4 The Datasets 

This section details the characteristics of the datasets used in this study. 

Table 1: Characteristics of all the datasets 

Dataset N n Nn Np 

German Credit 1000 20 700 300 

Australian 

Credit 

690 14 307 383 

Taiwan Credit 30000 24 23364 6636 

In above table,  

N = number of total samples present in the dataset,  

n = number of features in the dataset,  

Nn = number of good credit samples,  

Np = number of bad credit samples. 

4.4.1 The German Credit Dataset 

The German Credit dataset [70] contains observations for 1000 past credit applicants on 

20 variables. The applicants are rated as ‘good credit’ or ‘bad credit’.  The two target 
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classes are distributed as: 700 samples (70%) for ‘good credit’ class and 300 samples (30%) 

for ‘bad credit’ class.  

4.4.2 The Australian Credit Dataset  

The Australian Credit dataset [71] contains data from credit card applications. The 

distribution of two target classes is fair, with 307 cases (≈ 44.5%) of ‘good credit’ and 

383 cases (≈ 55.5%) of ‘bad credit’.  

4.4.3 The Taiwan Credit Dataset  

The Taiwan Credit dataset [72] contains data about customers’ default payment in Taiwan. 

This is the largest dataset used in this study. The two target classes have 23364 cases 

(77.88%) of ‘good credit’ and 6636 cases (22.12%) of ‘bad credit’.  

4.5  Attribute normalisation 

Often the attributes in the data have varying scales i.e. attributes with larger numeric ranges 

may dominate those with smaller numeric ranges. One way to overcome this is by using 

attribute normalisation. Kernel values are calculated by inner products of feature vectors 

where greater-numeric-range attributes might cause numerical problems and normalisation 

avoids these numerical difficulties [69]. We performed linear normalisation on each 

attribute to the range [0, +1] using following formula: 

�′ =
����� (�)

���(�)���� (�)
                         ( 8 ) 

where x' is the normalised value of feature x, x is the original value of feature x, min(x) and 

max(x) are the minimum and maximum values of feature x. 

The rest of this section details the parameter selection method for SVM and KNN 

techniques. 

4.5.1 SVM parameters selection 
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C is the cost of classification and γ is the kernel parameter for a nonlinear support vector 

machine (SVM) with a Gaussian radial basis function kernel. 

The general procedure in developing an SVM is to optimise both C and γ for a dataset. The 

problem of optimising these parameter values is called model selection, and the selection 

results strongly influence the performance of the classifier. Accuracy is used to evaluate 

the performance of a model on the datasets. To achieve good performance, some 

preliminary experiments were conducted to determine the optimal model parameters using 

exhaustive grid search approach [69] in finding the best C and γ for each dataset. 

Both C and γ are scale parameters, so the grid is on a logarithmic scale. Doubling/halving 

C and γ on adjacent grid points is a tried and tested process, as a complete grid-search is a 

time-consuming process. If the search grid too fine, we may end up over-fitting the model 

selection criterion, so a fairly coarse grid turns out to be good for generalisation as well as 

computational expense. We exponentially increase the values of C and γ to identify best 

parameters [69]. A coarse grid is used first to identify promising region on the grid and 

then a finer grid search is conducted on that region to obtain a better cross-validation rate. 

The grid search is described below: 

Step 1: Set up a grid in decision space of (C, γ) with log2C ∈ {-5,…15} and log2γ ∈ {-15, 

...,3}. 

Step 2: Train SVM on each pair of (C, γ) in the model space, with k-fold cross validation. 

Step 3: Experiment with various pairs of (C, γ) values and choose the one that leads to the 

highest accuracy in cross validation. 

Step 4: These best parameters are used to build a predictive model. 

4.5.2 KNN parameter selection 
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The optimal K (number of neighbours) for KNN is the parameter that corresponds to the 

lowest test error rate. We want to choose the tuning parameters, which best generalize the 

data and which leads to the highest classification generalizability. In a better approach, the 

test error rate is estimated by taking a subset from the training set in the fitting process 

[73], [74]. We used k-fold cross validation as performance testing algorithm along with 

KNN. Various quantities of K were used as near rule-of-thumb values. On each dataset, we 

employed KNN with different values for K and obtained different accuracy for each K. The 

K which leads to achieving the best accuracy is the optimum K. 

4.6 Genetic Algorithm parameters 

The general approach in determining the appropriate parameter set of genetic algorithm for 

a given dataset is to conduct a number of trials of different combinations and choose the 

best combination that produces good results for the particular problem [75]. In this study, 

the parameters of GA are selected, referring to the ones [41], [76]. We tried various values 

of population size (20–100), mutation rate (0.001–0.3), and number of generations (20-

100) to compare and obtain the best parameter combination. The final values of GA 

parameters obtained after these comparisons which are used to train the GA system are 

summarised in Table 2.  

Table 2: The main GA parameters. 

Parameter  Value 

Objective function Fitness value = Average accuracy 

Population Size  50-70 

Number of generations 20-50 

Parent Selection  Tournament selection 
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Tournament Size 2 

Crossover Type  Single point 

Mutation Rate  0.1 

Mutation Type  Uniform mutation 

Stop Condition  Max number of generations 

4.7 Experimental Results and Discussion 

4.7.1 Information Gain based Ranking  

Tables 3-5 show the information gain ranking for the features of all three datasets. The 

ranking directly reflects the contribution of the features towards classification. Considering 

these rankings, we devised the information gain directed feature selection (IGDFS) 

algorithm. From the table below, the feature ‘Credit amount’ is the most informative among 

all features and ‘Number of people being liable to provide maintenance for’ is the least 

informative in the German credit dataset. 

Table 3: The order of features based on Information Gain for the German Credit Dataset 

Rank 

No. 

Feature name Rank 

No. 

Feature name 

1 Credit amount 11 Other instalment plans 

2 Status of existing checking 

account 

12 Personal status and sex 

3 Duration in months 13 Foreign worker  

4 Age in years 14 Other debtors / guarantors 
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5 Credit history  15 Instalment rate in percentage of 

disposable income 

6 Savings account/bonds 16 Number of existing credits at this bank 

7 Purpose  17 Job 

8 Property 18 Telephone 

9 Present employment since 19 Present residence since 

10 Housing  20 Number of people being liable to 

provide maintenance for 

Table 4: The order of features based on Information Gain for the Australian Credit 

Dataset 

Rank No. Feature name  Rank No. Feature name 

1 X2 8 X9 

2 X14 9 X5 

3 X8 10 X6 

4 X3 11 X4 

5 X13 12 X12 

6 X7 13 X11 

7 X10 14 X1 
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Table 4 shows the ranking of features for Australian Credit dataset. This dataset does not 

name the features but identifies them with the labels X1, X2,….X14. As per the information 

gain ranking, feature X2 is the most informative and X1 is the least informative.  

Table 5: The order of features based on Information Gain for the Taiwan Credit Dataset 

Rank No. Feature name  Rank No. Feature name 

1 BILL_AMT_1 13 PAY_0 

2 BILL_AMT_2 14 PAY_2 

3 BILL_AMT_3 15 PAY_3 

4 BILL_AMT_4 16 PAY_4 

5 BILL_AMT_5 17 PAY_5 

6 BILL_AMT_6 18 PAY_6 

7 PAY_AMT_1 19 SEX 

8 PAY_AMT_2 20 EDUCATION 

9 PAY_AMT_3 21 MARRIAGE 

10 PAY_AMT_6 22 LIMIT_BAL 

11 PAY_AMT_4 23 AGE 

12 PAY_AMT_5 

Table 5 shows the ranking of features for Taiwan Credit dataset. As per the information 

gain ranking, the feature BILL_AMT_1(Amount of bill statement in September, 2005 (NT 

dollar)) is the most informative and AGE is the least informative.  
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4.7.2 Parameter selection for SVM by Grid-Search method 

A grid search was employed to search the SVM parameter space using a logarithmic scale. 

A coarse search is first performed with a step ΔC coarse for parameter C in the range of [2−5, 

215] and a step Δγ coarse for γ in the range [2−15, 23], where ΔC coarse = Δγ coarse = 2. Then a finer 

search with step size ΔC fine = Δγ fine = 0.0625 is carried out in the promising region obtained 

on the coarse grid. The prediction accuracy (10-fold) showed the best value at (C, γ) = 

(2.1810, 0.0423) for German credit dataset. Thus, the optimal values of C and γ for this 

dataset are 2.1810 and 0.0423, respectively (Figure 2).  

Figures 2-4 below show the contour plot of grid search results for optimum values of SVM 

parameters C and γ. The two parameters are shown in logarithmic axes x and y in the 

graphs, the lines indicating the area where the deeper grid search was performed. The 

colours of the lines indicate the graphical bounds of the searched space in the graph. The 

parameter values obtained are used for training RBF-SVM. 

 

Figure 2: Grid search trace for optimised parameter values for German credit dataset. 

The model peaks at Accuracy=77.50%; (C=2.1810, γ=0.0423) 
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Figure 3: Grid search trace for optimised parameter values for Australian credit 

dataset. The model peaks at Accuracy=87.39%; (C=0.2872, γ=0.0022) 

 

Figure 4: Grid search trace for optimised parameter values for Taiwan credit dataset. 

The model peaks at Accuracy=78.80%; (C=1, γ=0.0263) 
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Above grid search shows how the SVM classifier is optimised by cross validation using 

accuracy score. There are no rules of thumb for grid search parameter optimisation. The 

parameters are found at the best accuracy score of 77.5%, 87.39% and 78.80% for the 

German credit, Australian credit and Taiwan credit datasets respectively. The parameter 

values obtained are used for the experiments in next sections. 

4.7.3 Accuracies for best solutions 

To strengthen the significance of feature selection, we first ran experiments on baseline 

classifiers with all features before applying GAW and then IGDFS using the three classical 

classifiers (Table 6). 

In GAW, Genetic algorithm acts as a wrapper technique with performance of three classical 

machine learning algorithms used to obtain the best fitness function. In the IGDFS 

algorithm, the top-ranking features obtained from information gain ranking are propagated 

through the wrapper process as shown in Algorithm 1 in previous section. 

The results of 10-fold cross validation on GAW and IGDFS for all the datasets are shown 

in table below. The best average classification results are printed in bold.  

It is seen that the GAW and IGDFS algorithms have performed better than the baseline 

classifier algorithms. Hence, feature selection improves the performance of classification 

compared to baseline methods. Compared with GAW, IGDFS gives improved accuracy in 

most of the classifiers except KNN (German credit data) and NB (Taiwan credit data). 

Table 6: Accuracy Performance of different classifiers over three datasets. (Best 

performance in bold italics) 

Method German Credit 

data 

Australian Credit 

data 

Taiwan Credit 

data 
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SVM Baseline  76.4 85.7 81.9 

 GAW 80.4 89.0173 81.2097 

IGDFS 82.8 90.7514 82.5733 

KNN Baseline 75.2 85.7 80.8 

GAW 75.8 85.6522 80.9833 

IGDFS 70.2 86.75 81.1733 

NB Baseline 73.70 80.43 71.36 

GAW 76.8 86.79131 82.0267 

IGDFS 77.3 87.971 81.98 

4.7.4 ROC curves for the best solutions  

ROC curves allow for a detailed analysis of the differences. Figure 5 shows the ROC curves 

obtained with IGDFS for the three classifier algorithms on the German credit dataset. 
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Figure 5: ROC results of IGDFS on German credit dataset 

This figure shows that the three classifiers in the wrapper of the GA with IGDFS obtained 

almost the same performance for this dataset. The perfect close to the top left corner have 

a better performance level than the ones closer to the baseline. Comparisons of all the 

classifiers shows that the ROC curves are crossing each other. FPR (=1-Specificity) defines 

how many samples are classified as bad even if they were good credit. For smaller false 

positive rates, i.e. for early retrieval area (a region with high specificity values in the ROC 

space- FPR between 0 and 0.1), IGDFS+KNN classifier (red curve) seems to perform 

better. For middle FPR (between 0.1 and 0.75), IGDFS+NB (yellow curve) gives good 

results. As the FPR increases beyond 0.75, IGDFS+SVM (blue curve) performs best. 

Figure 6 shows the performance of all three classifiers on Australian credit dataset. IGDFS 

+ NB, which has the largest area under ROC curve, performs best in classifying the credit 

applicants in Australian Credit dataset. Next best performance is shown by IGDFS+KNN, 

followed by IGDFS+SVM. 
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Figure 6: ROC results of IGDFS on Australian credit dataset 

Figure 7: ROC results of IGDFS on Taiwan credit dataset 
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For the Taiwan credit dataset IGDFS+NB gives best results followed by IGDFS+KNN, 

followed by IGDFS+SVM (Figure 7). 

Observing the performance in Figures 5-7, the classifier and IGDFS combination giving 

best ROC performance for all three datasets is IGDFS+NB. 

4.7.5 Comparison of GAW and IGDFS for all datasets 

Here, the performance of IGDFS is compared with the GAW algorithm based feature 

selection method and the baseline classifiers in terms of prediction accuracy made by three 

different classifiers KNN, and Naïve Bayes and RBF-SVM (Table 6). The findings are: 

 GAW+SVM performed better than the baseline SVM for all the datasets. This implies 

that selected features have positive support to the decision making with the RBF-SVM 

for the datasets. There is an improvement in the performance compared with the work 

done by Liang et al. [42]. But the best accuracy results are obtained by the improved 

IGDFS algorithm, where we identified important features and propagated them 

throughout the whole wrapper process. 

 GAW+KNN performed slightly better than baseline KNN over the German and Taiwan 

credit dataset, but not for Australian credit dataset. Our proposed IGDFS with KNN has 

performed best in Australian and Taiwan credit dataset but not the German credit 

dataset. 

 GAW+NB significantly outperformed the baseline NB in all three datasets. This finding 

was consistent with similar work by Chen et al. [77], who found that NB classifier was 

highly sensitive to feature selection and the work done by Liang et al [42]. The IGDFS 

again has proved to be the best method and it gives the highest prediction accuracy for 

NB in all the datasets. 

For the German credit data with 7 numerical and 13 categorical features: 
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 There is much less variation in the classification accuracy of IGDFS for all three 

classifiers; 

 Wrapper methods (GAW) clearly outperform baseline methods; 

 These GAW methods have shown very high-performance improvement when used with 

SVM and NB as underlying classifier and acceptable classification accuracy 

improvement on the German dataset than with KNN.  

 IGDFS performance is best with SVM and NB. GAW performs best with KNN for this 

dataset. 

For the Australian credit data (6 numerical and 8 categorical features): 

 There is a lot of variation in the classification accuracy of IGDFS for all three classifiers; 

 Wrapper methods (GAW) outperform baseline methods except for the KNN method; 

 IGDFS performs best for all the three classifiers. 

For the Taiwan credit data (16 numeric and 8 categorical features): 

 There is not much variation in the results for all the three techniques; 

 IGDFS performs better than GAW and baseline for all three classifiers except in NB. 

 

5 Conclusion 

Credit scoring is one of the significant problems in computational finance. In this work, we 

developed the IGDFS, based on Information Gain and Wrapper technique, using three 

different classical decision-making models of KNN, NB and SVM to select features for the 

credit scoring problem. The average prediction performance by IGDFS, Genetic Algorithm 

Wrapper and Baseline models are compared. 
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The intuition behind this work is that not all features are equally important and retaining 

the top contributing feature into the final selected subset may improve the results of 

classification, since the features not important to decision making could affect the 

performance of decision making. 

Looking at experimental results for all the datasets investigated, it is observed that the 

classification accuracy achieved with different strategies is highly sensitive to the type of 

data, size of data set and the rate of positive and negative samples in the dataset. 

Among the three machine learning algorithms investigated, accuracies for the SVM with 

baseline, GAW and IGDFS are consistently higher across all the datasets compared with 

those for KNN and NB. This provides an evidence for the claim that SVMs may indeed 

suffer in high dimensional spaces where many features are irrelevant and feature selection 

may result in significant improvement in their performance [78]. 

GAW+KNN and IGDFS+KNN have shown very little improvement in the accuracy of 

classification on the selected feature sets for all the datasets, compared with the baseline 

KNN on the full features; for German credit dataset, the accuracy obtained by IGDFS has 

in fact dropped. This might be because KNN is sensitive to the local structure of the data, 

and the data structure is decided by Euclidean distance.  When we remove some features 

with low information gain in the process of decision making, the reduction of features could 

affect the structure. Namely, the information gain of features could produce conflict with 

the original data structure for KNN. 

Wrapper feature selection is a costly method due to its comprehensive search on the feature 

space. To reduce its computational cost, we used Information Gain to guide the feature 

selection initially. This step removes features with low information gain, so that the 

wrapper method is carried out on a smaller space, and the time complexity is reduced. This 

can be seen by the results on all three credit datasets used in the study. We can conclude 
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that there is a potential for improvement in the models’ performances if the feature 

selection method is chosen carefully. 

In future studies, the results with other combinations of parameters for genetic algorithms 

could be studied. The method of convergence as a stopping criterion for the GA will also 

be investigated. The performance of IGDFS algorithm could be investigated with other 

high dimensional datasets. Because of the nature of the credit scoring problem and its real 

application domain, computing complexity is important concern when generating credit 

scoring models [79]. Reducing the cost of credit analysis and aiding faster credit evaluation 

are among top objectives of credit scoring models. The computational complexity of the 

proposed algorithm, both in training and at runtime needs to be assessed to make it robust. 

Also, the combination of other evolutionary algorithms and other machine learning 

algorithms could be explored in future. Lastly, we aim to develop a soft package based on 

the technique for public use in future. 
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