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Abstract

This paper proposed Mahalanobis distance induced kernels in Support Vector
Machines (SVMs) with applications in credit risk evaluation. We take a par-
ticular interest in stationary ones. Compared to traditional stationary kernels,
Mahalanobis kernels take into account on feature’s correlation and can provide
a more suitable description on the behavior of the data sets. Results on real
world credit data sets show that stationary kernels with Mahalanobis distance
outperform the stationary kernels with various distance measures and they can
also compete with frequently used kernels in SVM. The superior performance
of our proposed kernels over other classical machine learning methods and the
successful application of the kernels in large scale credit risk evaluation prob-
lems may imply that we have proposed a new class of kernels appropriate for
credit risk evaluations.
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1. Introduction

Credit risk assessment is extremely important for financial and banking in-
dustries. In the past decades, a number of credit risk evaluation methods have
been proposed such as discriminant analysis, decision tree, K-nearest neighbor-
hood and linear programming, logistic regression, etc. These methods based on
traditional statistics have good interpretability. Artificial Intelligence (AI) tech-
niques such as Artificial Neural Networks (ANN), Genetic Algorithm (GA) and
Support Vector Machines (SVMs) have also been employed in risk assessment
problems. Though lacking clear interpretability, AI techniques are empirical-
ly shown to be advantageous to traditional statistical models for credit risk
evaluation and therefore have been widely adopted.

SVM, a supervised machine learning technique, was originally introduced
by Vapnik [1]. In machine learning, SVMs [2] are traditionally regarded as one
of the best algorithms in terms of minimizing the structural misclassification
probability. SVM works by embedding the data into a high dimensional feature
space and the kernel in SVM plays a major role in model formulation. Kernel
trick in SVM assures that we do not need to calculate the embedding func-
tion explicitly as long as we can construct a proper kernel matrix. Authors in
[3] have proposed a new form of regularization that is able to utilize the label
information of a data set for learning kernels. Pan et al., [4] proposed a frame-
work which integrates multiple sources of information and enables us to develop
flexible and effective kernel matrices. Authors in [5] suggested a novel super-
vised and nonlinear approach to enhance the classification power of nonnegative
matrix factorization. The Positive Semi-Definite (PSD) property [6] of a kernel
matrix is required to ensure the existence of a Reproducing Kernel Hilbert Space
(RKHS) where a convex optimization formulation can be deduced to yield an
optimal solution. Informally speaking, a kernel consists of embedding general
points into an inner product space. The inner product colloquially measures the
extent of overlaps or similarity between two different data vectors in their fea-
ture space. Therefore, models for credit risk evaluation based on SVM to some
extent relies heavily on the kernel functions in describing the relationship of the
original data. A number of credit risk evaluation models have been proposed
based on SVMs [7, 8, 9, 10]. In [7], a least squares SVM model was proposed to
allocate and charge bank capital. It was compared with ordinary least squares
(OLS) regression, ordinal logistic regression (OLR)and multilayer perceptrons
(MLPs). Results show that LS-SVMs are significantly better when contrasted
with the classical techniques. Huang et al. [8] integrated SVM with neural
networks for dealing with credit rating problems. The model was compared
with linear regression model and logistic regression model. Support vector ma-
chines showed comparable results achieved to that of back propagation neural
networks and are better than logistic regression and linear regression models.
Besides, the results from neural network model are utilized for variable interpre-
tation and helped to determine the relative importance of the input variables.
SVM-based meta model was later proposed in [9] for business risk identification.
They pointed out the drawbacks of neural networks trapping in local minima
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and SVM (RBF kernels) stuck in overfitting, and proposed using original data
sets to generate different training sets, in order to train a number of SVM mod-
els for final metamodel integration. In [10], authors proposed a least squares
fuzzy SVM approach to credit risk evaluation, where fuzzy membership was
introduced for modeling sample labels. Hybrid or ensemble models were also
widely applied in credit risk evaluation problems [11, 12, 13, 14, 15].

Most of previous research works focus on the effect on a proper model frame-
work in improving the prediction accuracy but neglect the distribution relation-
ship between data points. Mahalanobis distance is a new measure in modeling
the relationship between two data points in the data set. It was previously used
in one-class SVM [16, 17], it was also incorporated into fuzzy c-means clustering
for fuzzy SVM description in multi-class classification [18]. The application of
Mahalanobis distance for financial forecast can also be found in [19, 20] where
Mahalanobis distance was mainly used to correct the weakness of Euclidean
distance in calculating feature correlations. In [19], a support vector regres-
sion framework was proposed for financial forecast. [20] proposed a strategy
using Mahalanobis distance, Gram-Schmidt orthogonalization to do financial
crisis predictions. However, the integration of Mahalanobis distance with SVM
kernels in credit risk evaluation has been less extensively addressed.

Our focus in this problem is stationary kernel construction where we assume
the distance between two simultaneously translated vectors will be the same
as the one without translation. This property is important as it can keep the
relative geometric relationship of data points. In this paper, by taking into
consideration on the distribution relationship between data points, we propose
Mahalanobis distance based kernels in conjunction with SVMs for credit risk
evaluation, where we formulate a number of new kernels: MRBF, MPower and
MLog kernels. We show that these kernels are all suitable for SVM framework.
MRBF kernel is a valid mercer kernel, MPower kernel and MLog Kernel like
Power kernel, Log kernel that are conditionally positive definite for degree no
greater than 2. The two kernels have been successfully applied in image recog-
nition but have not been applied in credit risk assessment before. We show
that our constructed kernels are all stationary kernels and they outperform the
stationary kernels with a number of distance measures. Besides, they are more
competitive to frequently used kernels in SVMs. These kernels can provide a
more suitable description on the behavior of the data sets and shown to be
suitable in credit risk evaluation problems. The remainder of the paper is struc-
tured as follows. In Section 2 we introduce some background and then propose
Mahalanobis distance based stationary kernels, with a focus on some indefi-
nite kernels. Section 4 describes the materials and experimental results with
comparative analysis. We finally give conclusions and future work in the last
section.

3



2. Methods

2.1. Preliminaries

Support Vector Machines (SVMs) are very popular machine learning tech-
niques for both classification and regression analysis, which have been applied
in numerous fields such as text categorization, pattern recognition etc. SVM
constructs a hyperplane to maximize the margin between different classes and
the optimization problem can be expressed as follows:







Maximize 2
‖w‖

subject to
yi(w · xi − b) ≥ 1 for any i ∈ {1, 2, . . . , n}

(1)

where {(x1, y1), · · · , (xn, yn)},xi ∈ R
n, yi ∈ {−1, 1} stand for data set of n data

instances with corresponding class annotations.
Applying duality theory, we can obtain a hyperplane by considering opti-

mization problem:
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The convex quadratic problem can ensure a solution for α. If we assume that
S = {i|αi > 0} is the set of support vectors, we can determine new data point
through decision function: y = sign(wTx− b) where

w =

n
∑

i=1

αiyixi, b =
1

|S|
∑

i∈S

(wTxi − yi).

Soft margin [21] can be developed dealing with not fully linear separable data
sets, allowing for mislabeled instances.

In the case of nonlinearly separable data sets, we can nonlinearly map input
vectors into higher dimensional feature space [22]. The kernel matrix is then
constructed through pairwise comparisons. For example,

K(xi,xj) = φ(xi) · φ(xj)
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where xi → φ(xi) is a mapping from original input space into transformed
feature space.

A kernel is said to be stationary [23] if ∀c ∈ Rp, we have

K(xi,xj) = K(xi + c,xj + c).

Stationary kernels have been widely applied in computer science. In the fol-
lowing, we will propose a number of Mahalanobis distance induced stationary
kernels.

2.2. Mahalanobis RBF Kernel

Suppose we are given a number of data instances

{(x1, y1), · · · , (xn, yn)},xi ∈ R
p, yi ∈ {−1, 1}

we propose the construction of Mahalanobis RBF Kernel in the following way:

Kmaha(xi,xj) = e−
||xi−xj ||

2
m

λ

where λ is a parameter and

||xi − xj ||2m = (xi − xj)
T · S−1 · (xi − xj)

refers to the square of Mahalanobis distance between xi and xj , where S is the
covariance matrix of the data set.

In the following, we will give theoretical verification on the validity of the
kernel. This is equivalent to find the feature map: φ : Rp → H , such that

Kmaha(xi,xj) =< φ(xi), φ(xj) >H

where H is some Hilbert space.
Let

Ω =

{

f(x) : Rp → C|
∫

Rp

|f(x)|2e−
||x||2

2 dx < ∞
}

be the space of square integrable complex-valued functions on Rp. Then we
have

< f(x), g(x) >=

∫

Rp

f(x)g(x)e−
||x||2

2 dx.

Denote

φ(x)(t) = e
i(S

− 1
2 x,t)√
λ/2

where S is the covariance matrix between x and y. Then we have

< φ(x), φ(y) >Ω =
1√
2π

∫

Rp

e
i(S

− 1
2 (y−x),t)√

λ/2 e−
||t||2

2 dt

= e−
||S

− 1
2 (y−x)||2

λ
1√
2π

∫

Rp

e
−||t−i
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2
(y−x),t)

2
√

λ/2
||2
dt

= e
−||y−x||2m

λ
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In terms of infinite mapping, we can just assume

x̂ = S− 1
2x and ŷ = S− 1

2y

and the mapping function is then given by

φ(x) = e−
1
λ x̂

2

(

1,

√

2λ

1!
x̂,

√

(2λ)3

3!
x̂3, . . . ,

)

.

Therefore, Mahalanobis kernel satisfies the Mercer Theorem [24] and can be
used as a valid kernel.

2.3. Mahalanobis Log Kernel

Apart from RBF kernel which is a typical stationary kernel, we introduce
Log kernel in this subsection. The construction of Log kernel is shown in the
following:

KLog(xi,xj) = − log(1 + ||xi − xj ||d), (d is a parameter).

We next show that Log kernel is indefinite. Note that the matrix version of Log
kernel with considered data set takes the form:

KLog =











0 k11 . . . k1n
k21 0 . . . k2n
...

...
. . .

...
kn1 kn2 . . . 0











where kij = − log(1 + ||xi − xj ||d), i, j ∈ {1, 2, . . . , n}.
The kernel matrix is symmetric, so it can be translated into a diagonal

form. Note that the diagonal entries of the kernel matrix is uniformly 0. We
can see that the trace of the matrix is 0, meaning that the summation of all
the eigenvalues is 0, indicating there may exist positive and negative eigenvalues
except all the values of the data set is 0. Therefore, we conclude that Log kernel
is indefinite. Mahalanobis Log kernel is constructed as:

KMLog(xi,xj) = − log(1 + ||xi − xj ||dm), (d is a parameter).

It is straightforward to check that Mahalanobis Log kernel is also indefinite.
However, the kernel is conditional positive definite when d ≤ 2 [25] which is
suitable for SVM framework.

Considering the stationary property after Mahalanobis distance is incorpo-
rated, we can see that the new kernel is still stationary. We prove the property
as follows. We have

||xi − xj ||2m = (xi − xj)
T · S−1 · (xi − xj)

where

Sij =
1

n

n
∑

k=1

(xki − x.i)(xkj − x.j).
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Therefore, we have

||xi + c− (xj + c)||2m = (xi − xj)
T · S̃−1 · (xi − xj).

If we can prove S̃ = S, then the stationary property still holds. Note that

S̃ij =
1

n

n
∑

k=1

(xki + cki − (x.i + cki))(xkj + ckj − x.j + ckj)

=
1

n

n
∑

k=1

(xki − x.i)(xkj − x.j).

Therefore, S̃ij = Sij for i, j ∈ {1, 2, . . . , n} This proves the stationary property
of Mahalanobis Log kernel.

2.4. Mahalanobis Power Kernel

The Power kernel is also a stationary kernel [26]. It is also known as the
(unrectified) triangular kernel. The construction of Power kernel is shown in
the following:

KPower(xi,xj) = −||xi − xj ||d, (d is a parameter)

We next show that Power kernel is indefinite. Note that the matrix version
of Power kernel with considered data set is of the similar structure with Log
Kernel where all the diagonal elements are 0. Using the same argument, we
conclude that Power kernel is indefinite. Mahalanobis Log kernel is constructed
as follows:

KMPower(xi,xj) = −||xi − xj ||dm, (d is a parameter).

It is straightforward to see that Mahalanobis Power kernel is also indefinite.
However, the kernel is conditional positive definite when d ≤ 2 [25] which is
suitable for SVM framework. Regarding the stationary property, we can also
prove that Mahalanobis Power kernel is stationary following the same procedures
in the previous subsection.

3. Real Data Examples

3.1. Materials

In this paper, we adopt publicly available credit evaluation data sets from
UCI Machine Learning Repository. One of the data sets is related to Japanese
Credit Approval [27]. We remark that within the data set there is a good mix
of attributes – continuous, nominal with small numbers of values, and nominal
with larger numbers of values. A few missing values are substituted as 0. For
nominal attributes A1, A4-A7, A9-A10, A12-A13, we uniformly replace a with
0, b with 1, and replace z with 25 under the same rule to get numerical attribute
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expressions. In total, there are 690 instances with 15 attributes, of which 383
cases were granted credit and 307 cases were refused. Another data set is about
German Credit Evaluation. The original dataset provided by Prof. Hofmann
contains categorical/symbolic attributes. We used the numerical version of the
data under name ‘german.data-numeric’. The data was edited in Strathclyde
University and several indicator variables were added to make it suitable for
algorithms that need numerical attributes. In total, there are 1000 instances
with 24 attributes, of which 700 cases were evaluated as ‘good clients’ and 300
cases were evaluated as ‘bad clients’.

3.2. Models for Comparison

1. Decision Tree: Decision tree classifier is commonly used in data min-
ing. Decision tree works as a predictive model that maps observations
to their target values. In these tree structures, leaves represent classifica-
tions and branches represent conjunctions of features that lead to those
classifications.

2. K-Nearest Neighborhood: The K-nearest neighbor algorithm is the
simplest method among all machine learning algorithms. An object is
classified by a majority vote of its neighbors, with the object being as-
signed to the class most common amongst its K nearest neighbors (K is
a positive integer, typically small). If K = 1, then the object is simply
assigned to the class of its nearest neighbor.

3. Naive Bayes: Naive Bayes Classifier is based on Bayes’ theorem which
has simplified assumptions on independence of variables, thus ensuring ef-
ficiency in parameter estimation and model evaluation. One of the advan-
tages of Naive Bayes classifier lies in the capability of handling arbitrary
number of variables and it only needs small size of training data. It is
robust to noise by explicit calculation of probabilities.

4. Linear Discriminant Analysis: Linear discriminant analysis classifier
assumes the conditional probability density functions of a sample x to be
normally distributed, where the characteristic functions can be described
as follows(Σ is a full rank matrix):

Φ(x|y = k) = eiµ
′
kt− 1

2 t
′Σt, k = 0, 1.

The class of the sample x is determined according to the log likelihood
ratio values:

Decision(x) = Σ−1(µ1 − µ0) · x− 1

2
(T − µ0Σ

−1µ0 + µ1Σ
−1µ1).

4. Experimental Results

In this section, we first report the performance comparison between Maha-
lanobis distance induced stationary kernels and the original stationary kernels.
We then compare our proposed Mahalanobis Kernels with a number of state-of-
the-art models. In the experimental setup, 10 times 5-fold cross validation are
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X
X
X
X
X
X
X
X
XX

True
Result

P ′ N ′

P True Positive (TP ) False Negative (FN)
N False Positive (FP ) True Negative (TN)

Table 1: Definitions

conducted on the considered data sets. Overall accuracy, Type I accuracy, and
Type II accuracy are used to measure the performance of the models.

In the context of classification, suppose the two true classes are P (Positive)
and N (Negative), while the predicted positive and negative classes are P ′ and
N ′, respectively. This is illustrated by the table below:

The overall accuracy is the percentage of correctly predicted instances and
is denoted as

Overall =
TP + TN

P +N
.

Type I and Type II accuracy, respectively, measure the class-specific accuracies
and they are denoted as follows:

Type I =
TN

TN + FP
and Type II =

TP

TP + FN
.

4.1. Mahalanobis RBF Kernels vs RBF Kernels

Figures 1 to 4 present the performance of Mahalanobis RBF Kernel in con-
junction with SVM when compared to RBF Kernel in credit risk evaluation.
The results on Japan Data are summarized in Figures 1 and 2.
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Figure 1: Overall Accuracy between Mahalanobis RBF Kernel and RBF Kernel
in Japan Data
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Figure 1 shows the overall accuracy of the two considered kernels with the
same parameter λ ∈ {4−7, 4−6, . . . , 48}. Line in blue ‘+’ with ‘◦’ measures the
average overall accuracy for Mahalanobis RBF kernel. Line in red ‘⋆’ with green
‘�’ measures the average overall accuracy for RBF kernel. With the increment
of λ, we can see that the accuracy keeps steady and then increases drastically.
The best performance is achieved in λ = 42 for Mahalanobis RBF kernel and
λ = 47 in RBF Kernel. The superiority of Mahalanobis RBF Kernel over RBF
Kernel on Japan Data is clearly demonstrated. Considering all the possible
λ in the respected kernels, we can see that Mahalanobis RBF kernel is better
than RBF Kernel. Besides, the overall accuracy of Mahalanobis RBF kernel is
around 85% while RBF kernel can only achieve 75% at most when λ > 42. The
value of λ has little effect on the performance of Mahalanobis RBF kernel when
λ > 42 as we can see a relatively stable performance onwards. However, the
effect of λ on RBF kernel is more evident as the performance of RBF kernel is
firstly increasing when λ ≤ 47 but showing a decrement when λ = 48.
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Figure 2: Type I and Type II Accuracy between Mahalanobis RBF Kernel (2a)
and RBF Kernel (2b) in Japan Data

Considering the class-specific accuracy, we can get some information from
Figure 2. Figures 2a and 2b, respectively, report for two kernels on the type I
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and II accuracy for Japan data for different values of λ.
In Figure 2a for Mahalaonbis RBF kernel, the distribution of Type I and

Type II accuracy is quite unbalanced when λ < 1 where Type II accuracy
dominates Type I accuracy. However, when λ ≥ 1, Type II accuracy increases
drastically and two types of accuracy becomes balanced. Similar patterns can
be detected for RBF kernel except that the critical point is λ = 44 rather than
1. This shows the robustness of the Mahalanobis RBF kernel. Comparing the
two kernels, we can conclude that Mahalanobis RBF kernel is dominantly better
than RBF kernel in both Type I and Type II accuracies.
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Figure 3: Overall Accuracy between Mahalanobis RBF Kernel and RBF Kernel
in German Data

The results on German Data are summarized in Figures 3 and 4. With the
increment of λ, we can see that the accuracy keeps steadily at 70% which is ac-
tually the percentage of good credit clients ratio in German data, meaning that
the classifier is trained to overfit the data set. When λ > 1, the overall accuracy
is increasing for Mahalanobis RBF kernel and achieves the best performance
when λ = 43. While for RBF kernel, the overall accuracy is firstly decreasing
and then increase to achieve the best performance when λ = 44. When λ > 44,
however, the performance is decreasing steadily, showing the sensitivity of RBF
kernel on λ. Meanwhile, we can see the superiority of Mahalanobis RBF kernel
over RBF kernel with the respected λ. Regarding the type specific accuracy, we
can see similar patterns with Figure 2 for Japan Data. One more conclusion we
can draw is that RBF kernel is not very stable when λ is in a large range. The
Type I accuracy is increasing first and then decreasing, while Type II accuracy
decreases steadily. The performance of Mahalanobis RBF kernel is more stable
with respect to the values of λ.
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Figure 4: Type I and Type II Accuracy between Mahalanobis RBF Kernel (4a)
and RBF Kernel (4b) in German Data

4.2. Mahalanobis Log Kernel Compared with Log Kernel

In Figures 5 to 6, we compare Mahalanobis Log kernel with Log kernel in
terms of overall accuracy, Type I and Type II accuracy on the considered data
sets. Blue color represents the average overall accuracy, green color represents
the average Type I accuracy and red color represents the average Type II accu-
racy.

In Figure 5 for Japan Data, we can see that Mahalanobis Log Kernel over-
whelmingly outperforms Log Kernel in overall accuracy, Type I and Type II
accuracy: the three considered measures. The overall accuracy for MLog K-
ernel is around 86% while Log kernel only achieves 78% on average. Type I
accuracy for Mlog Kernel is around 89% but Log kernel only gets 71% in aver-
age. The difference on Type II accuracy between MLog kernel and Log kernel is
so large where on average MLog kernel achieves 84.25% and Log Kernel achieves
83.6%.

In Figure 6 for German Data, we can see that Mahalanobis Log Kernel out
performs Log Kernel in terms of overall accuracy and Type I accuracy. The
overall accuracy of MLog kernel is better than Log kernel (76.77% to 84.81%
on average ). Type I accuracy for MLog kernel is 56.94% on average but Log
kernel can only get 48.26%. Here Type I accuracy actually refers to the ability
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Figure 5: Accuracy Distribution on Japan Data with Log Kernel

of correctly classify a bad credit client to the ‘bad’ class, we can see that MLog
kernel is more robust as Log kernel misclassified a number of bad credit clients
which may bring burden to bank corporations. Type II accuracy for MLog
kernel is 85.17% and 86.28% for Log kernel. Though the Type II accuracy for
MLog kernel is slightly inferior to Log kernel, we can see that overall MLog
kernel can provide a more robust and practical evaluation model.
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Figure 6: Accuracy Distribution on German Data with Log Kernel

4.3. Mahalanobis Power Kernels vs Power Kernels

In Figures 7 to 8 we compare Mahalanobis Power kernel with Power kernel in
terms of overall accuracy, Type I and Type II accuracy on the considered data
sets. Blue color represents the average overall accuracy, green color represents
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the average Type I accuracy and red color represents the average Type II ac-
curacy. Left bars represent Power kernel and right bars represent Mahalanobis
Power kernel.
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Figure 7: Accuracy Distribution on Japan Data with Power Kernel
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Figure 8: Accuracy Distribution on German Data with Power Kernel

In Figure 7 for Japan Data, we can see that Mahalanobis Power Kernel out
performs Power Kernel on all the considered measures. Overall accuracy for
MPower kernel is 86.12% on average but it is 81.90% for Power kernel. Type I
and Type II accuracies for MPower kernel are 87.95% and 84.73%, respectively
while 81.55% and 82.34% for Power kernel, respectively. In Figure 8 for German
Data, we can see that Mahalanobis Power Kernel out performs Power Kernel in
terms of providing a more robust classifier. Overall accuracy for MPower Kernel
and Power Kernel is similar to each other with MPower kernel being slightly
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better. Type I accuracy for MPower kernel is 57.48% on average, Power kernel
can achieve 52.56%. Similar to the previous analysis, we can conclude that
MPower kernel is more robust since misclassification of bad credit clients may
do harm to bank corporations. Type II accuracy for MPower kernel is 83.89%
and 85.31% for Power kernel. Though the Type II accuracy for MPower kernel
is slightly inferior to Power kernel, we can see that MPower kernel overall can
provide a more robust and practical evaluation model.

4.4. Model Comparisons: Mahalanobis Distance Induced Stationary Kernels vs

Others

In this section, we compare Mahalanobis distance induced stationary kernels
with SVM to a number of the state-of-the-art credit evaluation models, results
are illustrated in Table 7. On the left hand side of the table, MLog, MPower,
MRBF represent Mahalanobis Distance induced Log kernel, power kernel, and
RBF kernel, respectively. On the right hand-side, NB stands for Naive Bayes,
DT stands for Decision Tree, LDA means Linear Discriminant Analysis classi-
fier, Knn1,Knn5,Knn10 represent K-nearest neighborhood with K = 1, 5, 10,
respectively. In the table, average accuracies in 10 times 5-fold cross validation
on the data sets are recorded. Best performance for each considered measure is
marked in bold face.

We can see that best overall accuracy is achieved by MLog kernel for all
considered data sets. Two other Mahalanobis distance induced kernels also
perform well. In Japan Data, we can see that MPower kernel achieves 86.72%
and MRBF kernel achieves 86.10%. They both rank in the top performing
models. In German Data, we can see that MPower kernel achieves 75.92% and
MRBF kernel achieves 72.38%. Together with MLog kernel, they rank in the
top 3 performing models. These results demonstrate that Mahalanobis Distance
Induced Kernel can compete with other models.

Regarding the Type I accuracy, we can see that LDA shows best performance
compared with all the other models. In Japan data, the Type I accuracy for
LDA is 94.04% on average. In German Data, the Type I accuracy for LDA is
71.12% on average. When we focus on the LDA classifier, we find that LDA is
the best model among the state-of-the-art models. However, Type II accuracy
in LDA classifier is not quite satisfying compared to Mahalanobis kernels.

It is interesting to see that best Type II accuracy is shown in different models
for different data sets. In Japan Data, the best Type II accuracy is shown in
Naive Bayes model, achieving 90.57% in average. However the Type I accuracy
in Naive Bayes model for Japan data is 67.22%, which is among the worst per-
forming list of models. In German Data, the best Type II accuracy is shown in
K-nearest neighborhood model with K = 10, achieving 89.58% on average. But
the Type I accuracy correspondingly is only 25.34% on average. This illustrates
the overfitting problem has occurred in model training, whereby rendering a
relatively poor classifier from the perspective of class specific accuracy.

Naive Bayes model in the state-of-the art models is in the top performing
range in terms of overall accuracy. The overall accuracy in Japan Data is 80.16%
which ranks the third in state-of-the art models. In German Data the overall
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accuracy is 72.33 on average, ranking the first in the state-of-the-art models.
However, they still cannot compete with Mahalanobis kernel models.

Decision Tree model is the top 3 model in state-of-the art models. The overall
accuracy on average in Japan data is 83.22%and in German data 69.61%. We
find that Type I accuracy in DT model is not satisfactory when compared to
the other top ranking models. One possible reason for the poor performance in
DT model is the overfitting problem where the model is more fit for describing
the behavior of good credit clients.

In the K-nearest neighbor model, we can see that the performance varies
when different K is chosen. In Japan Data, with the increment of K, the overall
accuracy is increasing then decreasing. The Type II accuracy is at most 68.04%,
not competitive with other models except decision tree model. In German Data,
a steady increment can be observed in overall accuracy with the increment of
K. We note that Type II accuracy in German data is at most 43.63%, which is
not good satisfactory.

Table 2: A Comparison with State-of-the-art Models

MLog Mpower MRBF NB DT LDA Knn1 Knn5 Knn10

Overall 86.81 86.72 86.10 80.16 83.22 86.10 71.86 75.78 75.32
Japan Type I 90.12 88.62 94.00 67.22 81.34 94.04 68.04 67.23 64.76

Type II 84.25 85.32 79.74 90.57 84.71 79.91 74.95 82.67 83.78
Overall 76.30 75.92 72.38 72.33 69.61 72.06 66.81 68.59 70.23

German Type I 57.39 57.37 70.40 61.63 48.05 71.12 43.63 30.10 25.34
Type II 84.47 83.92 73.22 76.92 79.05 72.46 76.80 85.17 89.58

4.4.1. Performance of Indefinite Mahalanobis Stationary Kernels

In particular, we find that MLog kernel and Mpower kernel tend to perform
stably satisfactory compared to all the other models even when Mahalanobis
RBF kernel is considered. Hence in the following we would like to check the
performance of the two indefinite Mahalanobis stationary kernels with varying
degree.

Table 3 is related to MLog kernel. It can be seen from the tale that overall
the performance is stable in Japan data, maintaining the overall accuracy in
around 86%. The best performance is achieved when d = 2. The Type I
accuracy is generally increasing and Type II accuracy is decreasing with the
degree d decreases. In German data set, the overall accuracy of MLog kernel
is gradually increasing and then decreases slightly, with the best performance
achieved when d = 1

6
. However, the tendency of Type I accuracy and Type

II accuracy is completely different from that in Japan data. Type I accuracy
is generally decreasing and Type II accuracy is increasing with the decrement
of degree d. To seek a balanced performance of MLog kernel, we can see that
d = 1

2
is preferred in Japan Data and d = 1 for German data.

Table 4 is related to MPower kernel. It can be seen from the tale that over-
all the performance is stable ( except for d = 3 ) in Japan data, maintaining
the overall accuracy in around 86%. The best performance is achieved when
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Table 3: Performance of MLog Kernel with different degree

X
X
X
X
X

Acc
Deg

3 2 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Overall 86.25 86.59 86.16 86.29 86.09 85.96 85.99 85.96 86.09 86.03 86.03 85.86
Japan Type I 86.62 88.51 89.25 91.05 91.56 91.76 92.26 92.30 92.65 92.39 92.67 92.48

Type II 85.92 85.14 83.75 82.57 81.76 81.33 80.98 80.94 80.99 80.98 80.69 80.54

Overall 75.66 76.03 76.88 76.43 76.82 76.99 77.30 77.33 77.03 77.24 76.57 76.17
German Type I 54.62 56.39 58.41 56.44 55.14 52.93 51.42 48.54 45.53 43.90 40.44 37.16

Type II 84.73 84.51 84.77 85.04 86.17 87.41 88.40 89.78 90.60 91.64 92.25 93.04

d = 2. Type I accuracy is generally increasing and Type II accuracy is decreas-
ing with the degree d decreases. In German data set, the overall accuracy of
MPower kernel is gradually increasing and then decreases slightly, with the best
performance achieved when d = 1

6
. However, the tendency of Type I accuracy

and Type II accuracy is completely different from that in Japan data. Type
I accuracy is generally decreasing and Type II accuracy is increasing with the
decrement of degree d. Exception happened when d = 3 for the considered 2
data sets. The Overall accuracy when d = 3 is not satisfying. Mpower kernel
with d = 2 shows the best Type I accuracy but the Type II accuracy is not
satisfying. To seek a balanced performance of MPower kernel, we can see that
d = 1

3
is a preferred choice for both Japan and German data.

Table 4: Performance of MPower Kernel with different degree

X
X
X
X
X

Acc
Deg

3 2 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Overall 57.80 86.00 86.26 86.39 86.43 86.28 86.10 85.99 85.96 86.13 86.20 85.91
Japan Type I 57.47 94.10 87.95 89.79 90.81 91.25 91.52 91.63 91.68 91.87 92.25 91.96

Type II 58.05 79.48 85.01 83.76 82.98 82.34 81.79 81.53 81.53 81.59 81.35 81.07

Overall 68.91 71.72 76.51 76.37 76.98 77.00 77.25 77.45 77.42 77.34 77.28 76.85
German Type I 48.83 71.51 58.67 56.32 56.05 54.50 53.37 51.80 49.91 48.30 46.33 44.10

Type II 77.57 71.79 84.16 85.03 86.01 86.76 87.49 88.54 89.27 89.91 90.72 91.04

4.5. Statistical Significance

In order to show the significance for the analysis of the results, we conduct
20 runs of 5-fold cross validations on the given data sets. The performances
of the considered algorithms were compared to our proposed method through
t-test. We made null hypothesis that other algorithms yield larger evaluation
accuracy values compared to our Mahalanobis stationary kernel methods. The
p-values of the statistical tests are reported in Table 5. It is clearly shown
that we should reject the null hypothesis and accept the alternative hypothesis
that our Mahalanobis stationary kernel methods yield larger accuracy values
compared to other classical algorithms.

Table 5: Statistical Test for the Analysis of the Results

h
h
h
h
h
h
hh

Methods

p-values
DT NB LDA Knn1 Knn5 Knn10

MPOWER 9.0151e-13 2.0207e-20 0.0191 7.0697e-22 1.7426e-20 3.2450e-20
Japan MLOG 1.9017e-13 1.1845e-20 1.3714e-04 3.0905e-22 1.6864e-20 7.9165e-21

MRBF 1.3788e-12 4.4483e-20 0.0013 9.0125e-22 6.2057e-20 4.6148e-20

MPOWER 1.2806e-15 9.2100e-17 4.5143e-18 9.2560e-25 1.0890e-18 6.5484e-19
German MLOG 1.4201e-14 3.0688e-16 1.0295e-16 6.5396e-26 7.5786e-18 1.1776e-18

MRBF 6.0878e-07 4.7333e-04 1.9281e-04 3.1433e-17 1.2344e-12 1.3842e-11
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We further checked if the Mahalanobis distance induced kernels perform
better than other distance-measure based kernels. We introduce Euclidean,
Cosine, Correlation and Chebychev distances for comparison of the methods via
10 runs 5-fold cross validations. Averaged AUC values with standard deviations
are reported in Table 6. Results show that Mahalanobis distance provides a
proper description on the relationship of data.

Table 6: Kernels with Mahalanobis Distance vs Various Distances

h
h
h
h
h
h
hh

Methods

Distance
Mahalanobis Cosine Euclidean Correlation Chebychev

POWER 0.8639 ±0.0038 0.7951±0.0072 0.7864±0.0105 0.7972±0.0087 0.6852±0.0076
Japan LOG 0.8643 ±0.0047 0.7807±0.0044 0.7693±0.0098 0.7848±0.0042 0.6959±0.0092

RBF 0.8599 ±0.0029 0.7184±0.0044 0.7372±0.0103 0.7228±0.0021 0.6633±0.0079

POWER 0.7698 ± 0.0049 0.7298 ± 0.0034 0.7496 ± 0.0071 0.7325 ± 0.0046 0.5403 ± 0.0205
German LOG 0.7634± 0.0046 0.6673± 0.0024 0.7455± 0.0082 0.6726± 0.0035 0.5860± 0.0196

RBF 0.7234±0.0061 0.5908±0.0036 0.7168±0.0077 0.5903±0.0032 0.5343±0.0086

4.6. Large-scale Credit Evaluation

To test the algorithm on large-scale problems, we introduced a dataset of
default payments in Taiwan [29] and compared the predictive accuracy of prob-
ability of default among six data mining methods. This research employed a bi-
nary variable, default payment (Yes = 1, No = 0), as the response variable. The
dataset contains 30000 credit card clients, 23 attributes ranging from gender,
education, age and amount of bill statement, etc. We compared our algorithm
with Euclidean distance based algorithms and other classical machine learning
algorithms. The experiments were conducted through 5-fold cross validations
and performances were measured using averaged AUC values. Results in Table
7 show that our algorithm is better than the other methods. In particular, the
Type I and Type II accuracies in our methods are more balanced. In compari-
son, RBF kernel with Euclidean distances and decision tree algorithms tend to
train over-fitted models.

Table 7: Large Scale Credit Evaluation: Taiwan Credit Default

MLog Mpower MRBF Log Power RBF NB DT LDA Knn1 Knn5 Knn10
Overall 69.12 69.76 69.51 62.83 61.77 51.01 62.56 59.67 67.04 57.09 58.86 60.09
Type I 74.24 75.50 76.46 63.40 61.98 98.72 61.42 35.46 72.84 56.88 58.95 64.28
Type II 63.99 64.00 62.55 62.25 61.53 3.29 63.70 83.83 61.22 57.29 58.75 55.73

5. Conclusions

In this paper, we have proposed Mahalanobis distance induced kernels in
conjunction with SVM for credit risk evaluation, with a focus on stationary
kernels. The stationary property when Mahalanobis distance incorporated is
also illustrated. Through comparison with Euclidean distance and various oth-
er distances based stationary kernels, Mahalanobis distance based kernels are
more robust and more fit for describing the behavior of the credit risk data
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sets. In order to illustrate the power of Mahalanobis stationary kernel models,
we introduce a number of state-of-the-art models for comparison. Results show
that Mahalanobis stationary models can compete with state-of-the-art models.
In particular, the indefinite Mahalanobis kernels tend to perform stably satis-
factory. The newly constructed stationary kernels may shed some light on SVM
based models for credit risk evaluations.
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