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Abstract 13 

With atmospheric environmental pollution becoming increasingly serious, 14 

developing an early warning system for air quality forecasting is vital to monitoring 15 

and controlling air quality. However, considering the large fluctuations in the 16 

concentration of pollutants, most previous studies have focused on enhancing accuracy, 17 

while few have addressed the stability and uncertainty analysis, which may lead to 18 

insufficient results. Therefore, a novel early warning system based on fuzzy time series 19 

was successfully developed that includes three modules: deterministic prediction 20 

module, uncertainty analysis module, and assessment module. In this system, a hybrid 21 

model combining the fuzzy time series forecasting technique and data reprocessing 22 

approaches was constructed to forecast the major air pollutants. Moreover, an 23 

uncertainty analysis was generated to further analyze and explore the uncertainties 24 

involved in future air quality forecasting. Finally, an assessment module proved the 25 

effectiveness of the developed model. The experimental results reveal that the proposed 26 

model outperforms the comparison models and baselines, and both the accuracy and 27 

the stability of the developed system are remarkable. Therefore, fuzzy logic is a better 28 

option in air quality forecasting and the developed system will be a useful tool for 29 

analyzing and monitoring air pollution. 30 

 31 
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1. Introduction 34 

With increasing urbanization, industrial development, vehicle use and industrial 35 

emissions, more fossil fuels are being burned, resulting in increasing emissions of sulfur 36 

dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), ozone and particulate 37 

matter (PM), and the side effects of economic development are being exacerbated. Air 38 

pollution is a serious detriment to the health of humans and other animals, and it is 39 

increasingly destructive to vegetation and monuments [1]. Air pollution is a significant 40 

environmental issue in many parts of the world [2], and numerous Chinese cities have 41 

suffered from serious air pollution in recent years [3-4]; among them, the Beijing-42 
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Tianjin-Hebei (Jing-Jin-Ji) region, which is an important part of China's economy with 43 

an annually average PM2.5 concentration of 106 μg/m3, was one of the most polluted 44 

regions in China [5]. In recent years, increasing research on air quality in the Jing-Jin-45 

Ji regions has been undertaken [6-8]; therefore, the problem of air pollution cannot be 46 

ignored.  47 

The atmosphere is one of the most basic elements supporting human survival; a 48 

good atmosphere is necessary for human health [9]. Moreover, the pollutants that occur 49 

from emissions, and are universal around the world, include dust, CO, SO2, NO2, 50 

hydrocarbons, oxides and arsenic, lead, cadmium and other Heavy metals. Even more 51 

concerning is that the pollutants can bring about numerous diseases, including lung 52 

cancer, respiratory disease, cardiovascular disease and so on; furthermore, some studies 53 

have found evidence of a relationship between exposure to air pollutants and the 54 

occurrence of numerous diseases [10-12]. Therefore, the problem of air pollution has 55 

attracted a wide range of attention from people and the government. China has never 56 

relaxed air pollution controls and has released a number of air pollution control policies 57 

to improve air quality [13]. Therefore, accurate forecasting of primary pollutant 58 

concentrations not only has practical significance but also has important policy 59 

implications for the future air quality improvement. 60 

Although the air pollution projections are grim, this does not mean this situation 61 

is not preventable. Fortunately, many researchers have proposed many approaches to 62 

analyze, estimate and forecast the pollutant concentration data to assist decision makers 63 

in monitoring air pollutant data, which can be classified into two groups: deterministic 64 

prediction and uncertainty prediction. Deterministic prediction focuses on point 65 

forecast in the future state while the goal of a uncertainty prediction is to provide that 66 

the future state of pollutant concentration will fall in an interval defined by a confidence 67 

level [14]. In monitoring air pollution data, deterministic prediction provided the 68 

definite pollutant concentration series in the future state, which is conducive to the 69 

relevant environmental protection agencies to do a good job in air warning and 70 

formulating an air pollution control plan in a timely manner [1, 15]. Nevertheless the 71 

uncertainty prediction mainly focuses on probabilistic interval prediction and thus 72 

contains more information compared to deterministic prediction. As for uncertainty 73 

prediction, many scholars usually apply proper models for conducting deterministic 74 

forecasts and integrate the algorithm for improving the distribution fitting so that  75 

different levels of intervals are estimated with the identified distributions and 76 

deterministic forecasts. Uncertainty prediction is thereby supposed a powerful tool to 77 

find out the degree and direction of the air pollution development [16-18]. It is quite 78 

clear that uncertainty prediction, which is based on deterministic prediction, is essential 79 

to forecasting pollutant concentrations. The better the forecasting performance 80 

uncertainty prediction, the higher the accuracy of deterministic prediction [17]. 81 

Therefore, a crucial step is to select an appropriate deterministic model. With respect to 82 

deterministic models, many researchers have applied time series methods to 83 

successfully forecast pollutant concentrations, and these approaches fundamentally 84 

include statistical models, chemical transport models (CTMs), artificial intelligence 85 

models [19] and fuzzy time series forecasting methods.  86 
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Statistical approaches are famous for linear series forecasting. Among them, 87 

autoregressive (AR), ARIMA, multiple linear regression (MLR) and support vector 88 

regression (SVR) have been widely used in the prediction of pollutants. Zafra et al. 89 

applied the ARIMA model to analyze the PM10 concentration data and obtained good 90 

performance [20]. Wang et al. proposed a hybrid model based on the ARIMA model to 91 

forecast PM2.5 concentrations with high accuracy [21]. However, statistical models are 92 

not suitable for long-term prediction and have their own limitations, as they cannot 93 

capture the non-linear patterns of the series [22]. 94 

CTMs, one of the most commonly used models for predicting pollutants, 95 

combined with statistical approaches can be applied to successfully forecast the PM 96 

concentrations [23]. However, at the same time, the shortcomings of the CTM model 97 

are also emerging in the application process. Stern et al. noted that there may be rather 98 

strong biases in the forecasting concentrations based on CTMs due to limited 99 

knowledge about pollutant sources and the incomplete representation of 100 

physicochemical processes [24].  101 

In contrast, ANN models are adopted to forecast air pollutants. They can overcome 102 

the limitations of conventional models which can only deal with the linear problem 103 

based on hypothesis. Bai et al proposed that BPNN with wavelet transform model can 104 

significantly improve forecasting accuracy of daily air pollutants concentration [25]. Li 105 

et al put forward a novel long short-term memory neural network extended model that 106 

inherently considers spatiotemporal correlations for air pollutant concentration 107 

prediction and presents superior performance [26]. ANN models are also successfully 108 

applied in other fields such as: wind speed forecasting [27], electrical power system 109 

forecasting [28], oil price forecasting [29] and so on. Based on the above analysis, the 110 

ANN models, with the advantage of high forecasting accuracy in nonlinear series 111 

forecasting, require fewer assumptions and requirements for data series. However, 112 

many drawbacks may also occur with ANN models. For instance, owing to potential 113 

convergence to a local minimum and over-fitting, they may have insufficient accuracy 114 

[30].  115 

Nevertheless, while the time series forecasting techniques mentioned above are 116 

widely used in the prediction of air pollutant concentrations, they also have unavoidable 117 

limitations, such as the following: a lack of knowledge of the data resources, uncertainty, 118 

vagueness, huge volatility in the data and so on. Fortunately, the fuzzy time series (FTS) 119 

forecasting technique first developed by Zadeh [31] can be successfully applied to 120 

forecasting when handling data series with imprecise and unidentifiable trends [32]. 121 

Jana et al found that it will get satisfying results when dealing with random variables 122 

with a certain probability distribution in a fuzzy environment [33]. Furthermore, several 123 

FTS forecasting approaches developed based on ANNs perform better than traditional 124 

FTS forecasting approaches such as the ensembles of prediction Models [34-35]. For 125 

high order fuzzy time series forecasting, the model based on fuzzy logic relations shows 126 

satisfactory forecasting results [36-37]. Moreover, an adaptive fuzzy inference system 127 

(ANFIS) has also been employed for forecasting fields [38-39]. In recent years, fuzzy 128 

logic showed significant advantages in air pollution prediction. D. Domańska proposed 129 
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a novel approach based fuzzy logic relations with high accuracy in pollutant 130 

concentration forecasting [40]. Nevin et al developed a fuzzy time series model based 131 

on robust clustering which can successfully deal with outliers and abnormal 132 

observations embed in air pollution [41]. On the other hand, by summarizing the 133 

literature, fuzzy time series forecasting mainly had the following three major drawbacks: 134 

(i) a lack of reliable interval lengths [42]; (ii) an excess of linguistic values [43]; and 135 

(iii) intervals that were set too short, which can result in some null sets [44]. Therefore, 136 

to optimize prediction methods for fuzzy time series, some authors applied an 137 

optimization algorithm to combine with FTS forecasting methods, which can overcome 138 

the shortcomings mentioned above to a certain degree, such as genetic algorithms [45], 139 

fuzzy C-means clustering [46], particle swarm optimization [47] and entropy-based 140 

discretization (EBD) [48].  141 

The hybrid model is a widely used model and has the characteristics of high 142 

prediction accuracy and stability compared with the single model [49-51]. Hybrid 143 

models integrate superiority and overcome the drawbacks of single models by 144 

integrating two or more single models. In this way, considering that the pollutant 145 

concentration data is highly unstable and stochastic, data preprocessing is a crucial step 146 

to improving the forecasting accuracy in hybrid models. In recent years, a great many 147 

preprocessing methods have been used to address time series. Babu et al. proposed a 148 

fault classification algorithm based on empirical mode decomposition (EMD) [52]. In 149 

addition, Zhang et al. developed a new multidimensional k-nearest neighbor model 150 

based on the ensemble empirical mode decomposition (EEMD) method [53]. 151 

Furthermore, complementary ensemble empirical mode decomposition (CEEMD), 152 

improved the EMD and EEMD, which not only avoided the phenomenon of mode-153 

mixing in the process of decomposition but was also capable of effectively removing 154 

the residual noise. Niu et al. found that CEEMD served as a decomposition method with 155 

good performance in data preprocessing [54]. 156 

Based on the above analysis, some drawbacks of the models discussed in previous 157 

studies can be summarized as follows: (1) single models have many shortcomings; for 158 

instance, statistical models forecast the linear series well but cannot address nonlinear 159 

series satisfactorily; ANN models can forecast highly nonlinear time series accurately, 160 

whereas it is easy to fall into over-fitting and a local minimum. Another major drawback 161 

is that a single model never cares about the significance of data preprocessing, thus it 162 

cannot satisfy the demand for time series forecasting. (2) time series forecasting 163 

technologies based on fuzzy logic in previous researches still need to be improved in 164 

partitioning discrete discourse adaptively. (3) considering the large fluctuations in the 165 

concentration of pollutants, most previous studies have focused on enhancing accuracy, 166 

while few have addressed the stability analysis, and this may lead to weak applicability. 167 

(4) researches always focus on the point forecast that ignored the uncertainty analysis 168 

about air pollutions which cannot provide sufficient and scientific early warning 169 

information.   170 

Therefore, this paper developed a novel early warning system with both accuracy 171 

and stability. To better forecast the pollutant concentrations and evaluate the 172 

corresponding uncertainty of the forecasts, two strategies were used to conduct the 173 
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experiments: deterministic prediction and uncertainty analysis, which proved to be 174 

helpful in monitoring air quality and providing optimal advice to decision-makers. With 175 

regard to deterministic prediction, a hybrid model was proposed which combines the 176 

CEEMD and EBD algorithms to forecast three major air pollutant concentrations; 177 

furthermore, the results revealed the effectiveness of the model. For uncertainty 178 

analysis, the forecast interval was provided under several confidence levels, which 179 

should be effective for deterministic prediction. Furthermore, to verify the effectiveness 180 

of the proposed model, the assessment module was employed.  181 

Therefore, the unique features of the early warning system and the main 182 

contributions of this study can be summarized as follows: 183 

1）A novel early warning system, with both accuracy and stability, consisting of 184 

a deterministic prediction module, uncertainty analysis module and assessment module, 185 

was proposed. 186 

2) A hybrid forecasting model based on fuzzy framework is developed for 187 

forecasting major pollutants. It solves the problem of poor accuracy and low stability 188 

in air pollutants forecasting. EBD algorithm is employed to partition the discrete 189 

discourse adaptively. 190 

3) In the uncertainty analysis module,  interval forecasting, which is capable to 191 

further mine and analyze the characteristics of air pollutants, is effectively implemented.  192 

4) The proposed early warning system can also effectively assist decision makers 193 

in formulating preventive measures and provide useful guidance for people's daily lives. 194 

    The remainder of this article is organized as follows: Section 2 outlines the 195 

background and introduces the new proposed model in detail. Section 3 presents the 196 

experiments, and Section 4 analyzes the results of the experiments. The discussion is 197 

provided in Section 5, and Section 6 gives the conclusions.                                      198 

2. Methodology 199 

This section demonstrates two strategies for deterministic prediction and 200 

uncertainty analysis. The related approaches include FTS forecasting, EBD and 201 

CEEMD; these are described in brief. 202 

2.1 Deterministic Prediction Module 203 

This section introduced a novel hybrid model based on FTS with CEEMD 204 

decomposing technology. The basic theory components in hybrid models are described 205 

below.  206 

2.1.1 Definition of Fuzzy Time Series  207 

The fuzzy set theory was first proposed by Zadeh [55], and the FTS forecasting 208 

theory, which was developed by Song & Chissom [56], has a wide range of application 209 

in forecasting. The observed value of the fuzzy time series is the language value, 210 

whereas the traditional time series observation value involves real numbers, which is 211 

the most important difference between them. The general definitions of FTS are 212 

described briefly as follows [41]: 213 

Definition 1. Define  1 2, , , nU u u u  as the universe of discourse. A fuzzy set 214 

iA  in U can be defined by its membership function: 215 
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      (1) 216 

where : [0,1]
iAf U   represents the membership function of the fuzzy set iA  and 217 

 
iA jf u  represents the member degree of ju to iA . 218 

Definition 2. Assume the time series   | 0,1,Y t t   is the universe which is a 219 

subset of R , let   1,2,f t ii    be a fuzzy set in the universe   | 0,1,Y t t   , and 220 

 F t  is the set of   1,2,f t ii    , then  F t   is defined as a fuzzy time series on221 

  | 0,1,Y t t   . 222 

Definition 3. If  F t  is a fuzzy time series, then, a fuzzy relationship exists 223 

 ,R t p t , such that  224 

      ,F t F t p R t p t     (2) 225 

where “  ”is a max-min composition operator, and both  F t and  F t p are fuzzy 226 

sets, then  F t  is derived from  F t p , denoted by the fuzzy logical relation (FLR) 227 

   " "F t p F t  . 228 

Definition 4. If  F t is a fuzzy time series, for 0,1, 2,t   . If  F t is caused 229 

by      1 , 2 , ,F t F t F t p    , then the p-order FLR can be represented by 230 

       , 1 , , 1F t p F t p F t F t      .  The relationship between  F t   and 231 

 F t p  is denoted as k jA A , where Ak and Aj are called the left-hand side and the 232 

right hand side of the FLR, respectively. FLRs with the same left-hand side can be 233 

categorized into an ordered fuzzy logical group (FLG) [57]. 234 

Due to the advantages of fuzzy logic, it is widely applied in time series forecasting. 235 

To improve the stock index forecasts, Rubio et al proposed a new weighted fuzzy-trend 236 

time series method that proved more superior than other models [58]. Further, 237 

Stefanakos et al first applied fuzzy time series forecasting in wave field predictions 238 

which supposed to be a satisfying application for nonstationary series [59]. For wind 239 

speed series forecasting, fuzzy logic also has excellent performance [32]. Fuzzy time 240 

series forecasting also performs well in air quality forecasting, and this paper is a 241 
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successful application. 242 

2.1.2 Entropy-based Discretization Algorithm 243 

The EBD was developed by Shannon [60] in order to identify a set of breakpoints 244 

that can divide the original dataset into several small intervals. EBD performs better 245 

than conventional entropy-based method in label ranking problems [61] and it is also 246 

suitable for data streaming classification [62]. Therefore, it is considered as a very 247 

promising method in data identification and classification. According to Xe and Li [44, 248 

48], the EBD algorithm can be defined by the following concepts: 249 

Assuming X U and X  is the number of samples in X; j  1,2, ,j k   is the 250 

decision attribute of X, then the information entropy of X can be defined as follows: 251 

   log21

k
H X p pj jj

  


  (3) 252 

 
k j

p j X
   (4) 253 

The smaller the value of  H X , the lower the disorder of the sequence in X. The 254 

minimum description length principle [63] is a well-known approach applied to 255 

discretize continuous attributes in classification tasks, which measures the information 256 

obtained by a given breakpoint by comparing the values of entropy before and after the 257 

partition. A breakpoint 
c
ib divides X into two subsets,  X c

il b  denotes the numbers of 258 

samples whose decision attribute value on c is smaller than 
c
ib  ; similarly,  X c

ir b   259 

denotes what decision attribute value on c is bigger than
c
ib . 260 

    
1

k
X c c

i j i
j

l b l b


   (5) 261 

    
1

k
X c c

i j i
j

r b r b


   (6) 262 

lX  and rX  are two subsets of X, and their information entropy can be computed as 263 

follows: 264 

  265 

    
 2

1

log ,
X ck
j i

l j j j X c
j i

l b
H X p p p

l b

     (7) 266 

    
 2

1

log ,
X ck
j i

r j j j X c
j i

r b
H X q q q

r b

     (8) 267 
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Furthermore, the information entropy of c
ib  to X is  268 

      l rX c
i l r

X X
H b H X H X

U U
    (9) 269 

This assumes that P and B are the set of selected breakpoints and candidate 270 

breakpoints, respectively, and  1 2, , , mL X X X    refers to an equivalent class set 271 

divided by P. Each time the candidate breakpoint is added to the selected set P, the 272 

information entropy can be calculated as follows: 273 

        1 2, mXX XH b L H b H b H b      (10) 274 

The initial value of H is set to  H U  according to Eq.3, then the pseudo-code 275 

of the EBD algorithm is outlined as follow: 276 

Algorithm 1: EBD  
 
 

Input:       1 , 2 , ,L l l l n  -a sequence of pollutant 

concentrations 
 

Output：       1 , 2 , ,P p p p m -a set consists of breakpoints 

 Parameters: 
 P—Selected breakpoint set 
 B—Candidate breakpoint set 
 H—Information entropy 
 —Threshold of Information entropy 

1 /*Set the parameters of EBD.*/ 
2 /* Set the initial value of H.*/ 
3 /*Caculate the entropy of every point in B.*/  
4 FOR EACH i: 1 i n DO 
5  Caculate the H(bi, L) 
6 END FOR 
7 /*Find the minmimum of H.*/ 
8 WHILE (H>min(bi, L)) 
9  Add bmin to P; Caculate the H(bmin, L) 
10  H=H(bmin, L); B=B-{bmin}; L={L1,L2}; 
11  /*Update the entropy H.*/ 
12  FOR EACH i=1:length(P) 
13   IF (min{H(bi, L1)}<min{H(bi,L2)}) THEN 
14    L=L2; H=H(L2); 
15   ELSE 
16    L=L1; H=H(L1); 
17   END IF 
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18  END FOR 
19  /*Determine whether the entropy satisfies the threshold.*/ 
20  IF (H<) THEN 
21   Output P. 
22  END IF 
23 END WHILE 
24 RETURN P 

 277 

2.1.3 Complementary Ensemble Empirical Mode Decomposition (CEEMD) 278 

CEEMD performs well in decomposing unstable and nonlinear series compared 279 

with the traditional decomposition method. In fact, the traditional decomposition 280 

method concentrates on decomposing the time series using specific characteristics. In 281 

general, wavelet decomposition requires that the series be unstable, with linear 282 

characteristics, and Fourier decomposition defines the data as smooth and periodic [54]. 283 

In light of the above characteristics, complementary ensemble empirical mode 284 

decomposition is applied to preprocess the original pollution concentration series. 285 

CEEMD, as a member of the empirical mode decomposition family, overcomes 286 

the shortcomings of EMD. The EMD method can decompose the original time series 287 

into a small and finite number of oscillating functions through the screening process. 288 

However, it easily falls into a mode-mixing phenomenon. Accordingly, Wu and Huang 289 

[64] proposed a new decomposition method that adds white noise into EMD, which can 290 

avoid the mode-mixing phenomenon and improve stability. However, some 291 

shortcomings still exist, including residual noise, time-consuming processing needs and 292 

other shortcomings. Therefore, Yeh [65] introduced CEEMD to improve the EMD and 293 

EEMD; CEEMD not only avoids the phenomenon of mode-mixing in the process of 294 

decomposition but is also capable of effectively removing residual noise, which more 295 

effectively improves the decomposition effect. 296 

2.1.4 The Proposed Hybrid Model 297 

Compared with previous models, the proposed model inherits the merits of the 298 

single model and improves the performance in forecasting the pollutant concentration. 299 

The following steps demonstrate the framework of the proposed model in detail, and 300 

they are also shown in Fig. 1.  301 

Step 1 Data processing. 302 

Due to the pollutant concentration data with great randomness and instability 303 

characteristics may lead to poor forecasting accuracy, CEEMD was applied to 304 

decompose the original pollution concentration series into several IMFs and to 305 

reconstruct the new series with the highest-frequency IMFs eliminated. In fact, CEEMD 306 

is a successful application that can eliminate the negative influence of noise and 307 

improve prediction accuracy. 308 

Step 2 Define the universe of discourse, U. 309 

Compute the maximum value maxD and the minimum value minD of the pollution 310 

concentration data. Then, define the discrete discourse U as  min 1 max 2,D D D D   , 311 
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where 1D   and 2D   are the appropriate positive real numbers. Finally, the discrete 312 

discourse is divided into several small intervals adaptively based on the EBD algorithm 313 

which can find out the best breakpoint of discourse by searching for the minimum value 314 

of information entropy in the iterative process so that the linguistic values close to a 315 

steady state belong to the fuzzy set.  316 

Step 3 Define fuzzy sets. 317 

Based on the sub intervals defined in step 2, fuzzy sets  1 2, , , nA A A A   can 318 

be defined as follows： 319 

 1 2

1 2

i i in
i

n

a a a
A

u u u
      (11) 320 

where ija  denotes the membership degree of the interval j  1 j n   to the fuzzy set 321 

i,  0,1ija  ,  1,2, ,iu i n   is the element of fuzzy set iA . The value of ija  can 322 

be defined as follows: 323 

 

1,

0.5, 1

0,
ij

i j

a i j

others


  



  (12) 324 

Step 4 Fuzzify the observed rules. 325 

Herein, each observation will be fuzzified into a corresponding fuzzy set. The 326 

fuzzy set iA   that has the highest membership value of the defined sub-interval is 327 

determined where the membership degree is calculated as follows： 328 

  
  

11, 1

1,

max 0,1 / 2 ,
i

t

A t t n

t i i

IF i AND y m

y IF i n AND y m

y m l others



  
  
   

  (13) 329 

where  , 1,2, ,im i n    and  , 1,2, ,il i n    are the mid-value and the length of 330 

the ith interval, respectively. 331 

Step 5 Establish FLRs and FLRGs. 332 

Based on the Definition 4, FLRs are formed with the fuzzified observations of the 333 

pollution concentration, then the FLGs are established based on all FLRs.  334 

Step 6 Build trend-weighted matrix. 335 

The trend-weighted matrix, wherein each row denotes the occurrence frequency 336 

of the FLRs, is then generated for all FLRs. The trend-weighted is computed as follows: 337 

   ' ' ' 1 2
1 2

1 1 1

, , , , , , n
i n n n n

j j jj j j

ww w
w t w w w

w w w
  

 
      
   

    (14) 338 
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where iw  is the weight for fuzzy set iA , 1 i n   and 1 j n  . 339 

Step 7 Calculate the forecasted outputs. 340 

In this step, the forecasted values are computed by multiplying the defuzzified 341 

matrix and weighting matrix as follows: 342 

      1 1df iF t M t w t      (15) 343 

where  1dfM t  denotes the defuzzified matrix. The centroid defuzzification method 344 

is then used to derive the weighting matrix  1iw t  . 345 

 346 

Fig.1. The general flowchart conducted in this paper 347 

2.2 Uncertainty Analysis Module 348 

To further forecast the pollution concentration and the uncertainty of the forecast, 349 

in this subsection, interval forecasting based on the deterministic prediction is applied 350 

to forecast the uncertainty of pollution concentrations. Interval forecasting is based on 351 

deterministic predictions and is often used to estimate the uncertainty trends of future 352 
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values [17-18, 66]. Each significance level will correspond to a forecasting interval, 353 

and the length of interval is not only related to the confidence level but also to the degree 354 

of volatility in the data. Therefore, the shorter the interval, the lower the uncertainty of 355 

the data, and the better the forecasting effect. At a confidence level , the relationship 356 

between the confidence limit ( minI   and maxI   ) of the forecasting interval and the 357 

observed value tY  can be expressed as follows: 358 

  min min 1 2tP I Y I       (16) 359 

or 360 

      min max | 1 2t t tP I Y I E Y y P E Y y 
 

        (17) 361 

2.3  Assessment Module 362 

Although eight performance evaluation metrics are introduced above, in order to 363 

better prove the effectiveness of the model, this section introduces two kinds of testing 364 

methods: a Wilcoxon rank-sum test and a robustness test to further demonstrate the 365 

effect of the model from two aspects. 366 

2.3.1 Wilcoxon Rank-sum Test  367 

To verify the forecasting effectiveness of the two models and determine which is 368 

more effective, a Wilcoxon rank-sum test was applied in this study. Assuming X and Y 369 

are absolutely continuous random variables with distribution functions F and G, 370 

respectively, then, let  1, ,m mX X X   and  1, ,n nY Y Y   be independent random 371 

samples from F and G, respectively. Assuming that the null hypothesis that X and Y are 372 

equal in distribution, the alternative hypothesis is that Y is stochastically strictly greater 373 

than X: 374 

 0 1: . : stH Y d X vs H Y X   (18) 375 

The statistic (written in the Mann-Whitney form) is expressed as follows: 376 

  377 

   # , : ; 1, ,XY i j i jW X Y X Y i n      (19) 378 

For a given level , the Wilcoxon rank-sum test is  379 

   1

1

1,

0,
XY

XY
XY

if W w
W

if W w










  

  (20) 380 

where qw  is the q-quantile of the null distribution of XYW . The null distribution XYW  381 

depends only on the sample sizes m and n. The approximated values of XYW  can be 382 

obtained through well-known normal approximation as follows: 383 
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  (21) 384 

2.3.2  The Robustness Test    385 

The aim of the robustness test of the proposed model is to determine if it still 386 

performs well when the dataset has great fluctuation. A common method of robustness 387 

testing is to randomly increase or decrease the historical dataset by a few percentage 388 

points (to simulate the stochastic fluctuations of the data), then, to examine the 389 

forecasting accuracy of the model. If there is only small fluctuation of the forecasting 390 

accuracy, this indicates that the model is robust; however, the robustness of the 391 

proposed model can be denied. 392 

3. Experimental Set Up 393 

To better address air pollution problems and to understand the characteristics of 394 

pollutant concentrations, this section consists of three experiments. The experiments 395 

performed in our study were implemented on Matlab2016a, running on a Windows 8.1 396 

Professional operating system. The specific hardware parameters were as follows: Intel 397 

(R) Core i5-4590 3.30 GHz CPU and 8 GB RAM. 398 

3.1 Data Description 399 

To verify the air quality and the effectiveness of the proposed hybrid model, two 400 

datasets from two cities (Beijing and Shijiazhuang) in the Jing-Jin-Ji region were 401 

evaluated in this study, as shown in Fig. 2. Jing-Jin-Ji is the economic center of China 402 

and has a problem of urban air pollution; the region consists of 13 cities: Beijing, Tianjin, 403 

Baoding, Tangshan, Langfang, Chengde, Zhangjiakou, Qinhuangdao, Hengshui, 404 

Cangzhou, Xingtai, Handan and Shijiazhuang [66]. There are many reasons for the air 405 

pollution caused by Beijing and Tianjin, including economic development but also 406 

geographical location. The reasons that we selected these two cities mainly include the 407 

following: (1) the air pollution problems in these two cities are notable, and they are 408 

very representative in and important for the treatment of air pollution. (2) At present, 409 

there have been many studies about air pollution in this area, and the two cities were 410 

selected to carry out comparative research. 411 

The main air pollutants include PM2.5, PM10, SO2, CO, NO2, O3 and so on; based 412 

on existing research, this study selected three pollutants (PM2.5, PM10 and SO2) that 413 

influence the air quality more significantly [17]. Furthermore, the sample data are 414 

hourly for the PM2.5, PM10 and SO2 pollutant concentrations from November 1, 2016 415 

to July 31, 2017, and can be used to evaluate the performance of the proposed hybrid 416 

models. In this study, the sample datasets were divided into two parts: a training set and 417 

a testing set. There are 1000 observations in a testing set, and the remaining 418 

observations from the datasets were used as a training set.  419 
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   420 
Fig.2. Specific locations of the two study cities as well as the climatic conditions.  421 

3.2 The Performance Metric 422 

In recent literature, there have been many metrics employed to evaluate forecasting 423 

models, but there is no clear rule about which specific metrics are standard. Multiple 424 

performance metrics can properly evaluate the performance of the model. Therefore, 425 

this study employed eight metrics to evaluate the forecasting accuracy in deterministic 426 

prediction; two metrics were introduced in this study to verify the performance of 427 

interval forecasting in the uncertainty analysis; the definitions and the expressions are 428 

detailed described in Table 1.    429 

Table 1  430 

The definitions and expressions of the metrics 431 

Metric Definition Equation 

MAPE The average of N absolute percentage error 
1

1
100%

N i i
i

i

A F
MAPE

N A
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MAE The mean absolute error of N forecasting results 
1

1 N

i ii
MAE A F

N 
    

RMSE The square root of the average of the error squares  
2

1

1 N

i ii
RM SE A F

N 
     

MdAPE The median of N absolute percentage error 1 0 0 %i i

i

A F
M d A P E m ed ia n

A

 
   

 

  

DA The direction accuracy of forecasting results 
   1 1

1

1, 01
,

0,

l i i i i
i ii

if A A F A
DA w w

l otherwise
 



    


   

FB The fractional bias of N forecasting results    2 /FB A F A F     

IA The index of agreement of forecasting results    2 2

1 1
1 /

N N

i i i ii i
IA F A F A A A

 
        

R2 Pearson's correlation coefficient      
2

2 22 2

/

/ /

FA F A N
R

F F N A A N




 

  
   

  

IFCP Interval forecasting coverage probability 
 

1

1, ,1
,

0,

N i i i
i ii

if y L U
IFCP c c

N otherwise

   


   

IFAW Interval forecasting average width  
1

1 N

i ii
IFAW U L

N 
    

In the Table 1, iA  and iF  represent the forecast value and the actual value of 432 

the pollutants concentrations respectively.   433 

3.3 Aims of the Experiments  434 

To verify the superiority of the proposed model and the performance of the model 435 

to analyze and monitor the air quality, three experiments were constructed. The 436 

experiments were carried out based on two datasets, as mentioned above. The details of 437 

the experiments are described as follows:  438 

(1) Experiment I aims to forecast the target point data of the pollutant 439 

concentrations and two cities were selected to verify the performance of the proposed 440 

hybrid model. This study applied the FTS forecasting method and CEEMD to establish 441 

the hybrid model; moreover, the research on FTS forecasting mainly focuses on two 442 

aspects: division of the discrete domain and the method of weight distribution [46-47, 443 

67]. The EBD algorithm was applied to define the numbers and the width of the interval; 444 

specifically, the pollutant concentration was divided into seven attribute classes 445 

according to the Air Quality Index (AQI) to divide the air pollution level method. The 446 

AQI corresponding to the air pollution level is shown in Table 2. 447 

Table 2  448 

Different classification standard 449 

AQI Level Descriptions Color SO2 PM2.5 PM10 
0-50 I Good Green 50 35 50 

51-100 II Moderate Yellow 50-150 35-75 50-150 
101-150 III Lightly Polluted Orange 150-250 75-115 150-250 
151-200 IV Moderately Polluted Red 250-475 115-150 250-350 
201-300 V Heavily Polluted Purple 475-800 150-250 350-420 

>300 VI Severely Polluted Maroon 800 250 420 
 450 
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(2) Experiment II aims to forecast the uncertainty of the pollutant concentrations 451 

based on interval forecasting. Interval forecasting can predict the range of pollutant 452 

concentration fluctuations under a confidence level  ; as a result, it is of great help in 453 

the establishment of air early warning systems and the treatment of air pollution. 454 

    (3) Experiment III showed an additional experiment of comparing results with 455 

baselines based on two relative researches [2, 68]. Comparing with the benchmark 456 

models, the purpose of the experiment is to demonstrate the superiority of the proposed 457 

model and to prove that fuzzy logic is a better option for predicting air pollutants. 458 

(4) Experiment IV established two kinds of testing methods to evaluate the 459 

proposed hybrid model. This study not only applies the performance metrics to verify 460 

the forecasting effectiveness of the model; in order to fully verify the validity of the 461 

model, the Wilcoxon rank-sum test and the robustness test were also employed to the 462 

text. Through the Wilcoxon rank-sum test, whether the forecasting effectiveness 463 

between the benchmark models and the proposed model had significant differences 464 

could be verified, which proves the validity of the model. In addition, the robustness 465 

test could verify whether the model is suitable for time series forecasting and to 466 

determine what data is unstable and stochastic. 467 

4  Experiments and Analysis 468 

In this section, three experiments are conducted based on the experimental aims 469 

mentioned above to predict and analyze the major air pollutants and to evaluate the 470 

system. The performance of the experiments was evaluated by three major pollutant 471 

concentrations in China, and the results and detailed analysis are illustrated below. 472 

4.1 Experiment I: Forecasting models comparison  473 

To verify the superiority of the proposed model in forecasting capability, some 474 

other popular forecasting models, ENN, BPNN and ARIMA, were constructed as 475 

benchmarks. To discuss the contribution of the CEEMD and EBD algorithm, EW*, 476 

CEW* and EBD* were constructed to compare with the proposed model. To evaluate 477 

the performance of the model, the metrics mentioned above were all calculated and are 478 

presented in Table 3 and Table 4. Moreover, Fig. 3 depicts the forecasting results of the 479 

two datasets and the model performance metrics value of the statistical model (ARIMA), 480 

ANN model (BPNN) and the proposed model. The detailed analysis of the forecasting 481 

results is as follows: 482 
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 483 
Fig.3. Comparison of the forecasting results obtained by experiment I 484 

4.1.1 Case in Beijing 485 

Beijing is the capital of China, whose air quality plays an important role in 486 

establishing an air quality early warning system. Thus, it is essential to analyze the 487 

primary pollutant concentrations in Beijing. In order to fully verify the validity of the 488 

proposed model, several benchmarks are employed to be compared and the validity of 489 

each part of the proposed model is also analyzed. Through the experimental results, the 490 

conclusions can be obtained as follows. 491 

(1) The comparison results of proposed model and single models 492 

As the forecasting performance is shown in Table 3, the forecasting accuracy of 493 

the proposed model is more precise than that of the other three models. More precisely, 494 

for PM2.5 forecasting, the MAPE of ENN, BPNN and ARIMA are 93.4518%, 9.2301% 495 

and 5.7883%, respectively, whereas the MAPE of the proposed hybrid model is 496 

5.6596%. For the PM10 forecasting, the proposed hybrid model has the smallest values 497 

of MAPE, and obtained a decrease of 78.8291%, 5.7909% and 4.1703% in the MAPE, 498 

whereas for SO2 forecasting, the proposed model obtained a reduction of 85.2686%, 499 

15.7666% and 7.4473% in the MAPE compared with ENN, BPNN and AERIMA. 500 

Furthermore, for the other metrics, the proposed model is almost more superior than 501 

that of the other compared models, which means that a single model cannot obtain 502 

satisfactory results. 503 

In comparison with the two AI models in experiment I, the BPNN performs better 504 

than ENN with all metrics and provides great reduction. The results mean that ENN 505 

cannot satisfy the requirements for air quality forecasting. Furthermore, compared with 506 
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AI models (i.e., ENN, BPNN), the statistical model (i.e., ARIMA) has higher accuracy, 507 

but not all indicators are better than the AI models. Fig. 3 shows the metrics of the 508 

benchmarks models (BPNN and ARIMA); it can be concluded that the ARIMA and 509 

BPNN both have good forecasting results, but the proposed model is far better than that 510 

two single models. 511 

In summary, the statistical model has better forecasting accuracy than the AI model, 512 

but not all performance metrics are superior to the AI model in the first case. However, 513 

the proposed hybrid model based on fuzzy logic is superior to both statistical model and 514 

AI model in forecasting performance. And from the experimental results, it is proved 515 

that fuzzy logic is a better option in air pollution forecasting. 516 

Table 3  517 

Results of the proposed model and the other single models 518 

Pollutions Model MAPE MAE RMSE MdAPE DA FB IA R2 

Beijing 

PM2.5 

ENN 93.4518 26.7606 30.9735 0.5604 0.5135 -0.3222 0.5297 0.4979 

BPNN 9.2301 3.9791 6.6215 0.0617 0.6256 -0.0032 0.9854 -0.0297 

ARIMA 5.7883 2.4315 3.8616 0.0394 0.8178 -0.0003 0.9949 0.0571 

Proposed 5.6596 2.6760 3.6299 0.0479 0.8028 -0.0115 0.9955 -0.0008 

PM10 

ENN 83.3110 41.4097 48.4174 0.5725 0.4535 -0.3662 0.5034 0.1405 

BPNN 10.2728 7.7155 18.9002 0.0676 0.5195 -0.0106 0.9328 -0.0129 

ARIMA 8.6522 6.4973 15.4009 0.0589 0.6276 -0.0054 0.9545 0.0638 

Proposed 4.4819 3.1849 4.2876 0.0376 0.7948 -0.0123 0.9966 -0.0030 

SO2 

ENN 92.4942 6.8868 7.1088 3.8088 0.1351 -1.0314 0.3093 -6.8499 

BPNN 22.9922 0.7577 2.2232 0.1599 0.1562 -0.1063 0.7895 -0.3766 

ARIMA 14.6729 0.4956 1.2898 0.0956 0.2372 -0.0240 0.9192 0.1254 

Proposed 7.2256 0.1658 0.2477 0.0437 0.7958 -0.0145 0.9972 -0.0586 

Shijiazhuang 

PM2.5 

ENN 44.7254 0.0210 0.0236 0.3462 0.3554 -0.2954 0.5940 -0.5818 

BPNN 7.4357 0.0040 0.0042 0.0665 0.3554 -0.0649 0.9853 -0.0572 

ARIMA 11.1925 0.0063 0.0085 0.0085 0.6306 0.0000 0.9994 -0.0011 

Proposed 5.8237 3.0605 3.9050 0.0451 0.6284 -0.0112 0.9910 -0.0237 

PM10 

ENN 32.0291 0.0259 0.0324 0.1837 0.3914 -0.1833 0.6442 0.4064 

BPNN 4.6425 0.0247 0.0297 0.0194 0.5345 -0.0200 0.9979 0.0320 

ARIMA 9.6000 0.0010 0.0014 0.0070 0.7267 -0.0006 0.9995 0.0033 

Proposed 3.8466 4.3846 5.5049 0.0341 0.6551 -0.0015 0.9951 0.0084 

SO2 

ENN 91.3123 0.0243 0.0259 1.5679 0.3764 -0.7321 0.4074 -2.4857 

BPNN 12.4302 0.0023 0.0037 0.0915 0.4695 -0.0257 0.9776 0.0282 

ARIMA 10.4516 0.0020 0.0031 0.0725 0.5155 -0.0081 0.9826 0.1407 

Proposed 5.8026 1.0090 1.3633 0.0393 0.8232 -0.0211 0.9974 -0.0026 

Note: The bold numbers in the table represent the results of the proposed model 519 

(2) Compare CEEMD with other processing approaches 520 

CEEMD, as one of the models with great decomposing capability, was applied to 521 

processing the original series of pollutants concentration. In this study, we set the 522 

ensemble member to 500 and the standard deviation of the added white noise in each 523 

ensemble member was set to 0.2. However, the large number of ensemble members will 524 

introduce model complexity and is time consuming. On the other hand, if the number 525 

of ensemble member sets is small, it is hard to obtain a satisfying performance of 526 

decomposition. To discuss the role that CEEMD played in the proposed hybrid model, 527 
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an extended comparison is illustrated below. From Table 4, in the selected forecasting 528 

of PM2.5 for instance, the hybrid model with CEEMD achieved the smallest MAPE, at 529 

5.6956%. It also reveals that CEW* had a decrease of 18.3029% in MAPE compared 530 

with EW*, and the proposed model had a reduction of 2.5494% in MAPE compared 531 

with the EBD*. Furthermore, the performance of the other seven metrics (i.e., MAPE, 532 

MAE, RMSE, MdAPE, DA, FB, IA, R2) all had a different degree of improvement. 533 

Therefore, it can be concluded that the CEEMD can efficiently eliminate the noise and 534 

unstable elements of original series, and it could be a promising model to capture the 535 

primary components hidden in the original pollutant concentration time series. 536 

Table 4  537 

Results of the proposed model and the other hybrid models 538 

Pollutions Model MAPE MAE RMSE MdAPE DA FB IA R2 

Beijing 

PM2.5 

EW* 64.5626 20.4301 23.3211 0.3632 0.5015 -0.1497 0.7465 0.2721

CEW* 46.2097 17.4469 20.5871 0.3678 0.5415 -0.0127 0.8445 0.0010

EBD* 8.2090 3.8403 5.2425 0.0644 0.7377 -0.0164 0.9905 0.0482

Proposed 5.6596 2.6760 3.6299 0.0479 0.8028 -0.0115 0.9955 -0.0008 

PM10 

EW* 51.6665 28.3187 32.7669 0.3323 0.4615 -0.1172 0.6979 0.4485

CEW* 37.7629 26.4086 31.8998 0.3379 0.5375 0.0810 0.7861 0.0608

EBD* 6.5188 4.0095 5.3030 0.0403 0.7207 -0.0169 0.9948 0.0508

Proposed 4.4819 3.1849 4.2876 0.0376 0.7948 -0.0123 0.9966 -0.0030 

SO2 

EW* 98.0464 9.3571 9.5824 5.2317 0.1301 -1.1897 0.2479 -13.7973

CEW* 57.6256 5.6929 5.8965 2.9917 0.5005 -0.9251 0.3475 -4.7346

EBD* 15.7718 0.3733 0.3968 0.2255 0.2633 -0.1063 0.9932 0.0243

Proposed 7.2256 0.1658 0.2477 0.0437 0.7958 -0.0145 0.9972 -0.0586 

Shijiazhuang 

PM2.5 

EW* 30.3276 14.5505 17.9309 0.1797 0.3604 -0.0782 0.2988 0.9202

CEW* 25.5265 14.3711 17.6581 0.1854 0.5015 -0.0596 0.2493 0.9546

EBD* 7.5598 4.0231 4.9252 0.0670 0.3969 -0.0117 0.9856 -0.0222

Proposed 5.8237 3.0605 3.9050 0.0451 0.6284 -0.0112 0.9910 -0.0237 

PM10 

EW* 30.9088 26.8718 33.6136 0.1812 0.4104 -0.0622 0.2554 0.9504

CEW* 20.6018 26.7779 33.4330 0.1848 0.4985 -0.0542 0.2317 0.9626

EBD* 4.9296 5.5139 6.8431 0.0413 0.5077 -0.0017 0.9925 -0.0285

Proposed 3.8466 4.3846 5.5049 0.0341 0.6551 -0.0015 0.9951 0.0084 

SO2 

EW* 94.5054 16.4491 18.4185 1.0025 0.4024 -0.5474 0.5650 -0.7500

CEW* 43.1343 9.4800 11.9580 0.4645 0.5435 0.1397 0.8439 -1.3799

EBD* 6.3430 0.8002 1.0054 0.0398 0.7325 -0.0284 0.9986 0.0046

Proposed 5.8026 1.0090 1.3633 0.0393 0.8232 -0.0211 0.9974 -0.0026 

Note: EW, CEW and* represent EWP, CEEMD-EWP, FTS forecasting, respectively. For example, CEW* is 539 

CEEMD-EWP-FTS.  540 

(3) Compare EBD algorithm with other partition approaches 541 

Consider the suitable number of human short-term memory effects: the discourse 542 

universe is usually segregated into seven linguistic values [69], but in fact, seven 543 

linguistic values cannot completely divide the attributes of the data when the amount 544 

of data is large. Therefore, the EBD algorithm has been applied to segregate the 545 

discourse universe, and it terminates the iteration based on the threshold of entropy, 546 

such that the number of linguistic values varies from the iteration times, which are not 547 

specified. There are some commonly used approaches for dividing the universe: equal-548 
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width pre-partitioning (EWP) and equal-depth (frequency) pre-partitioning (EDP). The 549 

EWP method is used to separate all of the linguistics with the same width, whereas the 550 

EDP method is used to separate all of the linguistics with the same frequencies [70]. 551 

Because the fluctuation range of the pollutant concentration data is relatively large, the 552 

forecasting error will increase based on the EDP. Therefore, the approach based on EWP 553 

serves as a benchmark model in this paper. 554 

For fuzzy time series forecasting, the model based on CEEMD can heavily 555 

improve the accuracy, as mentioned above, and the EBD also provides significant 556 

improvement in forecasting accuracy. By observing Table 4, the following conclusions 557 

can be drawn. For PM2.5 forecasting, the EBD* model decreases by 56.353% in MAPE 558 

compared with EW*, and the proposed model has a reduction of 40.5501% in MAPE 559 

compared with CEW*. Furthermore, the models with the EBD algorithm all provide 560 

huge improvements in the performance of the remaining seven metrics compared with 561 

the models with the EWP method. In addition, for PM10 and SO2 forecasting, the models 562 

using the EBD method are all superior to the models with the EWP method; moreover, 563 

the proposed model almost performs best in all metrics. It reveals that the EBD plays 564 

an important role in FTS forecasting; furthermore, the proposed model is efficient in 565 

forecasting the pollutant concentration series. 566 

Remark: From the above experimental results, compared with MAPE, MAE, 567 

RMSE, MdAPE, DA, FB, IA, R2 and forecasting effectiveness, the proposed model 568 

almost performs best. Furthermore, the CEEMD and EBD approaches contribute much 569 

to the hybrid model, with significant improvements in accuracy. Compared with single 570 

models and other benchmark models, the proposed hybrid model performs the best in 571 

all cases. Thus, the experimental results indicate that the proposed hybrid model is a 572 

promising model for forecasting the primary air pollutant concentrations. 573 

4.1.2 Case in Shijiazhuang 574 

The proposed model and all benchmark models were applied to forecast the 575 

concentration of the pollutants in Shijiazhuang. The detailed analyses are described 576 

below.  577 

(1) By comparing them with the single model, the forecasting accuracy of the 578 

ARIMA model and the BPNN model are similar, whereas the ENN model performs 579 

worse. The reason for the fluctuation in the forecasting accuracy may be due to the large 580 

volatility and the poor stability of the pollutant concentration data. However, under the 581 

same conditions, the proposed model performs better than any other model and has the 582 

best MAPE value of 5.8237%, 3.8466% and 5.8026% respectively in forecasting the 583 

three pollutant concentrations. 584 

(2) From Table 4, using set PM2.5 forecasting as an example, the models with the 585 

CEEMD method exhibit a reduction of 4.4735% and 1.7361%, respectively. It can be 586 

concluded that the CEEMD is a successful application for decomposing the original 587 

pollutant concentration series and makes a great contribution to increasing accuracy. 588 

(3) In selecting PM2.5 forecasting as an example, the EBD*model decreased by 589 

22.7678% in MAPE compared with EW*, and the proposed model had a reduction of 590 

19.7028% in MAPE compared with CEW*. Furthermore, the models with the EBD 591 

algorithm all exhibited significant improvement in the performance of the remaining 592 
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seven metrics compared with the models with the EWP method. 593 

Remark: From the analysis of the experimental results mentioned above, the 594 

following conclusions could be made: (1) The proposed model based on fuzzy time 595 

series performs better than statistical models and AI models with better accuracy, it 596 

reveals that the fuzzy logic has a successful application in air pollution forecasting. (2) 597 

Compared with single models, the proposed model outperforms benchmarks in 598 

forecasting the concentration of pollutants, and it can also be applied to different 599 

environments with high accuracy. (3) All considered models based on the CEEMD 600 

method were superior to the models without a decomposition method, which 601 

demonstrates that the CEEMD can efficiently enhance the model performance. (4) The 602 

EBD algorithm outperforms the EWP method by properly pre-partitioning the discourse 603 

universe, and the experimental results demonstrate the effectiveness of adaptively 604 

partitioning the universe in forecasting fuzzy time series. 605 

4.2 Experiment II: Uncertainty Analysis 606 

The randomness and intermittence of pollutant concentration is the biggest 607 

challenge in the air quality monitor system. Accurate forecasting of pollutant 608 

concentration is a powerful tool to deal with such problem. Conventional pollutant 609 

concentration forecasting model usually produces a value at a time point in the future. 610 

However, any forecasting approach has its inherent and irreducible uncertainty. 611 

Compared with deterministic prediction model, interval forecasting integrated 612 

uncertainty analysis is a promising approach to providing a forecasting range, 613 

confidence level, and other uncertain information of future values, which can be a smart 614 

tool to assist decision-makers in analyzing and monitoring air quality. For the purpose 615 

of quickly and properly calculating the interval range, Gaussian distributions are 616 

employed here to estimate the bilateral limits of the interval. However, under different 617 

interval confidence levels, the length and range of the interval is different. To capture 618 

the information hidden in the interval forecasting, under different confidence levels, 619 

seven estimated intervals are listed in Table 5. 620 

 The average length of the interval is usually used to evaluate the interval 621 

prediction effect. It is well known that the shorter the average length of the prediction 622 

interval, the better the effect of the interval prediction. However, it is not reliable to 623 

only consider this rule to measure the effect of interval forecasting. If the observed data 624 

does not fall within the forecasting interval, the forecasting interval is meaningless. 625 

Thus, the forecasting interval should cover most of the observed data. Based on the 626 

analysis, this study uses double metrics to evaluate the effect of interval forecasting. 627 

IFCP represents the proportion of observed data falling within the forecasting interval, 628 

which is expected to be close to 1, as it must be in the range [0, 1]. Whereas the IFAW 629 

denotes the average length of the interval, which expected to be small. 630 

By analyzing the results shown in Table 5, the following conclusions can be drawn: 631 

(1) different confidence levels bring about different IFCP and IFAW. For example, in 632 

PM2.5 forecasting in Beijing, when 0.2    and 0.3   , the values of IFCP and 633 

IFAW are 80.6%, 6.03 μg/m3 and 73.4% and 4.9μg/m3, respectively. The same situation 634 

in Shijiazhuang also arose in PM10 forecasting,, when 0.3  and 0.4  , the values 635 

of IFCP and IFAW were 78.6%, 9.87 μg/m3 and 74.3% and 7.97 μg/m3, respectively. (2) 636 
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When the confidence level increased, the IFCP gradually increased, whereas the IFAW 637 

gradually decreased. For PM2.5 forecasting in Beijing, when   expanded from 0.01 638 

to 0.5, IFCP decreased by 32.9%, while IFAW exhibited a reduction of 8.86 μg/m3. 639 

Similar things also occur in other pollutant concentration forecasting. 640 

Remark: From the experimental results, it can be concluded that interval forecasts 641 

should meet the following conditions: under a proper   (choose the appropriate level 642 

of confidence based on the actual situation), the value of IFCP should be as large as 643 

possible; meanwhile, the value of IFAW should be as small as possible. Furthermore, 644 

the more important thing is that the prediction accuracy of the experiment must be high. 645 

In summary, this study selects a confidence level of 0.1, and the results of the interval 646 

forecasts are displayed in Table 5 in black bold.  647 

Table 5  648 

The interval forecasting results under different significant levels. 649 

City Level PM2.5  PM10  SO2  

Beijing   IFCP IFAW IFCP IFAW IFCP IFAW 
 0.01 93.80 12.01 95.80 15.32 99.00 1.92 
 0.05 92.00 9.23 90.50 11.78 97.90 1.47 
 0.10 88.50 7.72 85.50 9.85 96.60 1.23 
 0.20 80.60 6.03 77.90 7.69 95.60 0.96 
 0.30 73.40 4.90 72.10 6.25 93.70 0.78 
 0.40 65.90 3.95 66.70 5.05 88.60 0.63 
 0.50 60.90 3.15 61.00 4.03 83.70 0.50 

Shijiazhuang   IFCP IFAW IFCP IFAW IFCP IFAW 
 0.01 98.10 17.77 98.00 24.20 95.90 5.59 
 0.05 92.10 13.66 94.40 18.60 91.00 4.30 
 0.10 90.20 11.43 91.60 15.56 84.90 3.60 
 0.20 86.50 8.92 84.20 12.15 76.50 2.81 
 0.30 81.10 7.25 78.60 9.87 71.50 2.28 
 0.40 74.80 5.85 74.30 7.97 65.20 1.84 
 0.50 69.80 4.67 69.80 6.36 58.50 1.47 

 650 

4.3 Experiment III: Compare Results with Baselines 651 

In order to clearly indicate the superiority of the proposed model and prove that 652 

fuzzy logic is a better option in air quality forecasting, this paper carried on an 653 

additional experiment based on two related researches [2, 68]. From the experimental 654 

results of the paper mentioned above, the neural networks structure with the best results 655 

is selected to carry on the experiment. Therefore, the benchmark models, FF and LR 656 

with the adaptive learning function of gradient descent weight and bias, ANFIS with 657 

the membership of Gaussian function and the training of the neural network based on 658 

hybrid algorithm are conducted in our paper in order to indicate the superiority of the 659 

proposed method. The number of hidden nodes has great effect on the forecasting 660 

accuracy of the neural network. Therefore, this paper selects different hidden layer 661 

nodes to construct the neural network and apply it to the prediction. The data sets from 662 

two sites are also selected to conduct the experiment, Table 6 shows the average results 663 

of two dataset. 664 

As shown in Table 6, the best number of hidden layer nodes is different in different 665 



Page 23 of 44 
 

dataset. Therefore, there is no definite theory to determine the optimal network structure. 666 

However, the proposed model performs better than FF, LR and ANFIS with the best 667 

MAPE of 5.7417%, 4.1643% and 6.5141% respectively. It also reveals that proposed 668 

model has a decrease of 3.8699% and 7.8481% in average MAPE compared with FF 669 

and LR in PM2.5 forecasting, while it has a reduction of 7.6326% compared with ANFIS. 670 

Furthermore, the performance of the performance in other four metrics (i.e., MAE, 671 

RMSE, MdAPE, DA, FB, IA, R2) almost performs better than other models.  672 

Remark: Experimental results reveal that the proposed model based on fuzzy time 673 

series has the superiority to other benchmarks in air pollution forecasting and fuzzy 674 

logic is a better option in air quality forecasting.  675 

4.4 Experiment IV: Comprehensive Test 676 

To further evaluate the efficiency of the model, this section considers two kinds of 677 

tests to examine the forecasting performance. The Wilcoxon rank-sum test aims to 678 

determine whether the two models have significant differences, and the robustness test 679 

aims to examine whether the accuracy of the model fluctuates when the data set 680 

fluctuates. Moreover, the experimental results and the analysis of the results are detailed 681 

as follows. 682 

4.4.1 The Wilcoxon Rank-sum Test of the Proposed Model 683 

In this experiment, ENN, BPNN, ARIMA, EW*, CEW* and EBD* were 684 

employed as validation models, and the proposed hybrid model served as the tested 685 

model. To compare the significant differences of forecasting the effectiveness between 686 

the tested models with any of the validation models, the error series of the models were 687 

conducted to generate Wilcoxon rank-sum statistics. Since the experimental test sample 688 

is selected from the testing set; therefore, the sample size is large enough to generate 689 

Wilcoxon rank-sum statistics under a large sample size. The experimental results reveal 690 

the test results and the P value when rejecting the original hypothesis under a 691 

confidence level  . In addition, in the test results, 0 represents the accepted original 692 

hypothesis, which means that there is no significant difference between the two test 693 

samples; whereas 1 represents a rejection of the original hypothesis, which implies that 694 

there are significant differences between the two test samples. The P value when 695 

rejecting the original hypothesis under a confidence level of 5% of the experimental 696 

results is shown in Table 7. 697 

Table 7  698 

The results of the Wilcoxon rank-sum. 699 

Beijing ENN BPNN ARIMA EW* CEW* EBD* 

PM2.5 1.0710‐45  3.2010‐3 3.4710‐9 9.6910‐33 8.0110‐197  1.3810‐2

PM10 8.4610‐158  4.6410‐2 2.4010‐2 3.4210‐20 1.6510‐2  3.0610‐2

SO2 7.1810‐316  7.2110‐97 9.0310‐7 3.8110‐365 1.8710‐265  1.3710‐192

Shijiazhuang ENN BPNN ARIMA EW* CEW* EBD*
PM2.5 2.6910‐10  1.9310‐10 1.9110‐10 3.1810‐13 3.2310‐7  4.3410‐2

PM10 1.6510‐2  2.1310‐2 2.1510‐2 1.5510‐9 7.9810‐7  5.8610‐2

SO2 2.9210‐40  2.0010‐46 1.6010‐46 5.7010‐241 2.3310‐88  2.0310‐6

When the P value is close to zero, the original hypothesis can be rejected. Thus, 700 

the smaller the P value, the more significant the difference between the two samples. 701 

For the test results for Beijing, all of the P values are approximately zero, especially 702 
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with ENN, and the P values are 1.0710-45, 8.4610-158, 7.1810-316 respectively, in 703 

PM2.5, PM10 and SO2 forecasting; it can concluded that the difference in the forecasting 704 

effectiveness between the model ENN and the proposed model is enormous. Similarly, 705 

the P value of the BPNN, ARIMA, EW*, CEW* and EBD* are 3.2010-3, 3.4710-9, 706 

9.6910-33, 8.0110-197 and 1.3810-2, respectively, in PM2.5 forecasting. The same 707 

situation also appeared in the prediction of Shijiazhuang. As the forecasting accuracy 708 

of the proposed model is superior to the validation models, and there is significant 709 

difference between the proposed model and the validation models, this verified the 710 

effectiveness of the proposed model compared with the validation models. 711 
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Table 6 712 

The experimental results of the additional experiment. 713 

Metrics Feed Forward Backpropagation (FF) Layer Recurrent(LR) ANFIS Proposed 
Hidden Nodes 4 5 6 7 Average 4 5 6 7 Average

PM2.5 MAPE 9.7568 10.8101 8.6662 9.2132 9.6116 7.5480 27.2750 7.8500 11.6860 13.5898 13.3743 5.7417
MAE 5.8768 6.4319 4.9121 5.7849 5.7514 4.1007 13.0311 4.3593 7.1578 7.1622 5.3962 2.8683
RMSE 8.3108 8.8174 6.7051 9.5666 8.3499 5.5949 15.6985 5.9345 10.3430 9.3927 13.8074 3.7675
MdAPE 0.0796 0.0992 0.0681 0.0662 0.0782 0.0705 0.2197 0.0695 0.0953 0.1138 0.0764 0.0465
DA 0.6441 0.5763 0.7119 0.7288 0.6653 0.7119 0.3390 0.7288 0.6949 0.6186 0.6352 0.7156
FB 0.0730 0.0411 0.0513 0.0668 0.0580 0.0426 0.0047 0.0465 0.1003 0.0485 -0.0188 -0.0114
IA 0.9599 0.9590 0.9748 0.9446 0.9596 0.9844 0.9313 0.9821 0.9388 0.9591 0.8546 0.9933
R2 0.3324 0.1600 0.2984 0.3756 0.2916 0.1029 -1.5718 0.1371 0.2709 -0.2652 -0.7927 -0.0123

PM10 MAPE 10.1240 11.3161 9.1620 9.4004 10.0006 7.8468 11.6904 8.8077 9.9549 9.5750 13.1349 4.1643
MAE 8.4359 10.4937 7.8507 7.9494 8.6824 6.4750 9.2697 7.4254 8.7069 7.9693 9.3899 3.7848
RMSE 11.7710 15.6796 11.0894 11.0544 12.3986 10.0361 13.1831 10.6692 12.8006 11.6723 14.4563 4.8963
MdAPE 0.0836 0.0875 0.0737 0.0709 0.0789 0.0640 0.0899 0.0748 0.0778 0.0766 0.0759 0.0359
DA 0.5085 0.5593 0.5593 0.4915 0.5297 0.6102 0.3898 0.4407 0.6441 0.5212 0.6160 0.7250
FB -0.0094 0.1058 0.0539 0.0414 0.0479 0.0055 0.0187 0.0426 0.0505 0.0293 0.0957 -0.0069
IA 0.9445 0.8646 0.9410 0.9455 0.9239 0.9567 0.9274 0.9496 0.9228 0.9391 0.8345 0.9959
R2 -0.1070 0.3880 0.2323 0.1126 0.1565 0.0598 -0.0199 0.1009 0.1763 0.0793 -0.3349 0.0027

SO2 MAPE 7.8468 11.6904 8.8077 9.9549 9.5750 13.4083 12.5445 12.2840 11.1668 12.3509 12.9439 6.5141
MAE 6.4750 9.2697 7.4254 8.7069 7.9693 0.3368 0.3346 0.3098 0.2954 0.3192 0.1560 0.5874
RMSE 10.0361 13.1831 10.6692 12.8006 11.6723 0.4262 0.4702 0.4882 0.4352 0.4550 0.2460 0.8055
MdAPE 0.0640 0.0899 0.0748 0.0778 0.0766 0.0894 0.0808 0.0589 0.0619 0.0727 0.0912 0.0415
DA 0.6102 0.3898 0.4407 0.6441 0.5212 0.2034 0.2034 0.0847 0.2034 0.1737 0.1873 0.8095
FB 0.0055 0.0187 0.0426 0.0505 0.0293 0.0150 0.0105 0.0486 0.0305 0.0261 -0.0483 -0.0178
IA 0.9567 0.9274 0.9496 0.9228 0.9391 0.7426 0.7721 0.7930 0.7802 0.7720 0.7481 0.9973
R2 0.0598 -0.0199 0.1009 0.1763 0.0793 0.6255 0.1217 -0.1137 0.3550 0.2471 -0.2661 -0.0306

 714 

 715 
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4.4.2 A Robustness Test of the Proposed Model 716 

The purpose of the robustness test was to examine whether the forecasting 717 

accuracy of the model greatly changes when the historical datasets are nonstationary 718 

and not accurate. In this experiment, the data for the training sets randomly increased 719 

by 5%, which is considered to be from stochastic disturbances; then, a change of each 720 

performance metrics was observed; the comparison results are tabularized in Table 8.  721 

Table 8  722 

The results of the robustness test 723 

 MAPE MAE RMSE MdAPE
 Random Proposed Random Proposed Random Proposed Random Proposed 

Beijing 

PM2.5 5.2211 5.6596 2.4468 2.6760 3.4834 3.6299 0.0396 0.0479 
PM10 3.8308 4.4819 2.7501 3.1849 3.6045 4.2876 0.0338 0.0376 
SO2 7.3658 7.2256 0.2345 0.1658 0.2613 0.2477 0.0514 0.0437 
Mean 5.4726 5.7890 1.8105 2.0089 2.4497 2.7217 0.0416 0.0431 
Std 1.4541 1.1239 1.1212 1.3197 1.5482 1.7699 0.0073 0.0042 
Shijiazhuang 
PM2.5 5.7695 5.8237 3.1255 3.0605 3.9645 3.9050 0.0468 0.0451 
PM10 3.8338 3.8466 4.2153 4.3846 5.4636 5.5049 0.0325 0.0341 
SO2 5.6358 5.8026 0.9362 1.0090 1.2303 1.3633 0.0392 0.0393 
Mean 5.0797 5.1576 2.7590 2.8180 3.5528 3.5911 0.0395 0.0395 
Std 0.8827 0.9271 1.3636 1.3887 1.7526 1.7053 0.0059 0.0045 
 DA FB IA R2 
 Random Proposed Random Proposed Random Proposed Random Proposed 

Beijing 
PM2.5 0.8268 0.8028 -0.0151 -0.0115 0.9959 0.9955 0.0097 -0.0008 
PM10 0.8198 0.7948 -0.0106 -0.0123 0.9976 0.9966 0.0066 -0.0030 
SO2 0.7857 0.7958 -0.0241 -0.0145 0.9756 0.9972 -0.1369 -0.0586 
Mean 0.8108 0.7978 -0.0166 -0.0128 0.9897 0.9964 -0.0402 -0.0208 
Std 0.0180 0.0036 0.0056 0.0012 0.0100 0.0007 0.0684 0.0268 

Shijiazhuang 

PM2.5 0.6346 0.6284 -0.0115 -0.0112 0.9955 0.9910 -0.0248 -0.0237 
PM10 0.6550 0.6551 -0.0019 -0.0015 0.9976 0.9951 0.0076 0.0084 
SO2 0.8232 0.8232 -0.0211 -0.0211 0.9974 0.9974 -0.0024 -0.0026 
Mean 0.7043 0.7022 -0.0115 -0.0113 0.9968 0.9945 -0.0065 -0.0060 
Std 0.0845 0.0862 0.0079 0.0080 0.0009 0.0026 0.0135 0.0133 

For the proposed model, the average MAPE is 5.7890% and 5.1576% respectively 724 

in two observation cities. With regard to the modified model, the values of MAPE 725 

decrease to 5.4726% and 5.0797% respectively, indicating that the stochastic 726 

disturbances do not affect the forecasting performance. Besides, for the proposed model, 727 

the average RMSE is 2.7217 with the standard deviation 1.7699 ranges of forecasting 728 

errors. For the perspective of modified model, the average RMSE decreases a little and 729 

the standard deviation decreases to 1.5482, revealing that the random disturbances are 730 

not significant. Moreover, it can be seen that the forecasting performance of the 731 

proposed model does not change significantly by observing the standard deviation 732 

fluctuations of other metrics. In the dataset for Shijiazhuang forecasting, the situation 733 

remained the same. When smaller instability occurred into model as compared to 734 

original model, it is very weak to deny the robustness of the proposed model [32]. 735 

Therefore, sufficient evidences have proved the robustness of the proposed model. 736 

 737 
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5 Discussion 738 

One of the ultimate goals of every early warning system for air quality is to 739 

appraise the forecasting performance and stability as accurately as possible. Pollutant 740 

concentrations become more attractive to operators of economic systems and 741 

environmental monitoring systems, because model accuracy is improved, and better 742 

predictive techniques applications are introduced. In previous work, experiments 743 

proved that an early warning system for air quality can improve the accuracy of 744 

pollutant forecasting; at the same time, selecting the specific aspects of the system will 745 

be discussed in this section. First, correctly selecting the parameters is conducive to 746 

better performance in the CEEMD model and of the system, thus, the question of 747 

choosing parameters for the CEEMD model is discussed in this work. Furthermore, the 748 

selection of a partitioning method that is suitable and has an impact on FLR 749 

establishment and FTS forecasting performance is discussed in this section. Moreover, 750 

a high-precision and robust system is crucial for decision-making and analysis; 751 

therefore, the effectiveness and stability of an air quality early warning system will be 752 

further discussed and validated. 753 

5.1 Discussion of the Parameter Ensemble Number in CEEMD 754 

In the proposed early warning system, the first step is to use the CEEMD model 755 

to decompose the original series of three major pollutant concentrations into several 756 

independent IMFs. In this research, the standard deviation of the added white noise in 757 

each ensemble number was 0.2, and the ensemble number was set to 500. However, the 758 

variation in the parameters may affect the decomposition result of the model. Therefore, 759 

five values for the ensemble numbers were chosen in this section to determine the 760 

optimal parameters from the average error and calculation time of the experimental 761 

results. Table 9 shows the detailed results for three major pollutants, with different 762 

parameters applied in the CEEMD model. 763 

    Table 9  764 

The results of the system with different parameters in CEEMD 765 

EN Metric PM2.5 PM10 SO2 Average 

200 
FE 0.6681 0.6223 0.1134 0.4679 

Time 63.8535 72.2888 68.8987 68.3470 

300 
FE 0.5946 1.0040 0.0983 0.5656 

Time 96.4800 103.1036 100.7629 100.1155 

400 
FE 0.3171 0.9887 0.1575 0.4878 

Time 124.3598 138.2738 136.2668 132.9668 

500 
FE 0.5756 0.4812 0.0463 0.3677 

Time 155.5923 171.8197 175.7477 167.7199 

600 
FE 0.5802 0.8686 0.0679 0.5056 

Time 184.5525 205.5541 191.6648 193.9238 
         Note: EN represents ensemble numbers and FE represents the forecasting error in table. 766 

For the forecasting error, the smallest average forecasting error was 0.3677, when 767 

ensemble number was set to 500; furthermore, the forecasting error was minimal in the 768 

three pollutant forecasting attempts. As for computation time, it ranges from 68.3470 s 769 

to 193.9238 s, as the complexity of the model and the computation time increased with 770 

the addition of ensemble numbers.  771 

Remark: From the analysis above, we can draw the conclusion that too many 772 

IMFs may lead to model complexity and computational cost. Furthermore, modeling 773 

too many IMFs cannot always generate satisfying final results because of the estimation 774 

error of each IMF, which can accumulate in the ensemble forecasting step. To avoid 775 

these problems, this research set the optimal ensemble number to 500 so that the 776 
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forecasting error is the smallest and the computational time is relatively short.  777 

5.2 Discussion of the Partition Intervals Method 778 

Partitioning discrete discourse is a significant step in FTS forecasting. Too many 779 

intervals will result in complex FLR and make it difficult to construct a weight matrix, 780 

whereas too few intervals will lead to poor forecasting accuracy. In addition, the 781 

accuracy of fuzzy time series model forecasting is invariably affected by interval length 782 

and it is difficult to formulate proper intervals. Determining the distance partitioning 783 

with the equal width can easily result in either excessive linguistic values or excessively 784 

short intervals which can lead to the generation of null sets among the FLRs [70]. 785 

Therefore, partitioning discrete discourse correctly plays a crucial role in improving 786 

forecasting accuracy. The EWP method uses semantic conventions to divide the 787 

universe of discourse into seven equal-width intervals. Due to the disadvantages of not 788 

being able to reasonably change the number and the length of the intervals, this easily 789 

lead to poor forecasting accuracy. In contrast, the EBD algorithm determines the length 790 

and number of intervals adaptively based on the principle of the smallest information 791 

entropy. The searching breakpoint process is applied recursively in each partition, and 792 

the process terminates when there is no need to search for the breakpoint so that the 793 

linguistic values close to a steady state belong to the fuzzy set. This work applied the 794 

EBD method to partition the discrete discourse in FTS forecasting compared with the 795 

EWP method. Table 10 presents two types of partitioning: EWP and EBD, and the 796 

forecasting accuracy. 797 

         Table 10 798 

         The forecasting results with different partition method 799 

Pollutant Model MAPE MAE RMSE MdAPE 

PM2.5 
EWP 35.8681 15.9090 19.1226 0.2766 
EBD 5.7417 2.8683 3.7675 0.0465 

PM10 
EWP 29.1824 26.5933 32.6664 0.2614 
EBD 4.1643 3.7848 4.8963 0.0359 

SO2 
EWP 50.3800 7.5865 8.9273 1.7281 
EBD 6.5141 0.5874 0.8055 0.0415 

From Table 9, the EBD algorithm had the best MAPE of 5.7417%, 4.1643% and 800 

6.5141%, respectively, for PM2.5, PM10 and SO2 forecasting, and the accuracy was 801 

significantly improved compared with EWP. Furthermore, the EBD algorithm almost 802 

outperformed EWP in other metrics. Therefore, the EBD algorithm had successful 803 

application in partitioning the universe of discourse and in FTS forecasting. 804 

Remark: For the forecasting of FTS with large data fluctuation, the application of 805 

the EBD algorithm to partitioning the universe of discourse can adaptively determine 806 

the number and length of the intervals, which is propitious for improving the forecasting 807 

accuracy. 808 

5.3 The Forecasting Effectiveness and Stability of the System 809 

Forecasting accuracy and good stability are two important factors for evaluating 810 

air quality early warning systems. An excellent early warning system for air quality 811 

with high forecasting precision and stability can provide strong informational support 812 

for the improvement of air quality and the treatment of air pollution. Forecasting 813 

stability often reflects the fluctuation of model forecasting accuracy. Variance, as an 814 

important measure of data fluctuation, can be used to demonstrate the forecasting 815 

stability of the model. Furthermore, forecasting error is a key indicator used to evaluate 816 

forecasting performance. Therefore, the variance in the forecasting error could be used 817 

to verify the forecasting stability of the model. This section focuses on forecasting 818 

accuracy and stability to verify the superiority of the proposed model compared with 819 
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other benchmark models, and the forecasting results can be seen in Table 11.    820 

Table 11 821 

The results about the forecasting accuracy and variance of the forecasting error 822 

Pollutant Metric ENN BPNN ARIMA EW* CEW* EBD* Proposed 

PM2.5 
MAPE 69.0886 8.3329 8.4904 47.4451 35.8681 7.8844 5.7417 
VAR 31.0237 19.3626 14.9268 479.6940 423.8471 26.8369 12.8580 

PM10 
MAPE 57.6701 7.4577 9.1261 41.2877 29.1824 5.7242 4.1643 
VAR 1161.4078 356.9013 237.2520 983.3519 982.8329 26.4425 17.4904 

SO2 
MAPE 91.9033 17.7112 12.5623 96.2759 50.3800 11.0574 6.5141 
VAR 4.3676 4.8201 0.5186 4.8979 4.8203 0.1305 0.0593 

Based on the analysis of the previous experimental results, the accuracy of the 823 

proposed model was proven; to further verify the effectiveness of the system, all of the 824 

comparison models were combined in a unified analysis. This can be seen in Table 11, 825 

wherein the proposed model outperforms the other six comparison models with MAPE 826 

values of 5.7417%, 4.1643% and 6.5141%, respectively. For the forecasting stability, 827 

the variance values of the proposed model are smaller than those of the compared 828 

benchmark models, indicating that the proposed model is more stable than the other 829 

benchmark models.  830 

5.4 The Real Application of the Proposed Early Warning System 831 

The proposed early warning system possesses many practical applications, such as 832 

mining the characteristics of air pollutants, warning and guiding the public before the 833 

occurrence of hazardous air pollutants, etc.  Additionally, it consists of two kinds 834 

prediction method: deterministic prediction and uncertainty prediction. And they both 835 

have their own practical applications. 836 

1) The deterministic prediction provides accurate and reliable warning information by 837 

mining and forecasting air pollutants. The proposed hybrid model can be applied to 838 

forecast the future value of pollutant concentration, which can not only help 839 

environmental policy makers take effective protection measures before the 840 

occurrence of hazardous air pollutants but also provide useful guidance for people's 841 

daily lives combined with AQI index [71]. 842 

2) In the developed early warning system, an uncertainty analysis module is set up, 843 

which has capability to provide more effective and credible information than point 844 

forecasting through scientifically forecast the future range of pollutant 845 

concentration. The interval forecasting provides predictive ranges and confidence 846 

levels so that the speed and degree of diffusion of pollutants can be analyzed. When 847 

the concentration of pollutants exceeds the standard, the early warning system will 848 

make an alarm and the air quality supervision department can promptly make 849 

relevant prevention and control measures. At the same time, it also provides 850 

intuitive guidance for residents [72]. 851 

6 Conclusion and Future Work 852 

Air pollution, which is a great threat to the economy, environment and human 853 

health, has become a major global problem. In recent years, many cities have not been 854 

able to get rid of the threat of air pollution, especially cities that have experienced rapid 855 

industrial development, such as Beijing, Shijiazhuang, Tianjin and so on. Consequently, 856 

it is worthwhile to scientifically forecast air pollutant concentrations to provide the 857 

public with sufficient information and time to respond to incoming air pollution.  858 

This paper developed an effective and reliable hybrid air quality forecasting and 859 

early warning system to project the concentrations of three major pollutants.  This 860 

proposed early warning system consists of three modules: a deterministic prediction 861 

module, an uncertainty analysis module and an assessment module. Specifically, the 862 
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experimental results of the deterministic module reveal that the proposed model, which 863 

served to perform target points forecasting, can remarkably enhance accuracy compared 864 

with benchmarks. Afterwards, in an analysis module, the experimental results 865 

illustrated the uncertainty information involved in future forecasts under different 866 

confidence levels. Finally, the assessment module provided comprehensive evaluation 867 

of the system and proved the effectiveness and robustness of the proposed hybrid model. 868 

In summary, the experimental results demonstrate that the proposed early warning 869 

system obtained the best performance, with high forecasting accuracy, robustness and 870 

stability, which suggests that it will be a useful tool for analyzing and monitoring air 871 

pollution. Its excellent performance reveals that it can also be applied to other fields, 872 

such as power-load forecasting, stock-price forecasting, wind-speed forecasting and 873 

traffic-flow forecasting. 874 

Inspired by related literature, the pollutant data may have chaotic characteristic 875 

that leads to unsatisfactory performance [40]. Furthermore, if the fuzzy logic 876 

relationship can achieve adaptive clustering, membership functions will be easily 877 

formed to improve the prediction accuracy [73]. Therefore, solving the problem of 878 

forecasting time series with chaotic characteristics as well as the application of fuzzy 879 

logic adaptive clustering are researches focus for the future. 880 
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Appendix A. 888 

A.1. 889 

List of abbreviations 
PM particulate matter FTS fuzzy time series 
AQI air quality index FLR fuzzy logical relation  
Jing-Jin-Ji Beijing-Tianjin-Hebei  region FLRG fuzzy logical relation group  
AR autoregressive  model EBD entropy-based discretization 
ARMA autoregressive moving average model EWP equal-width pre-partitioning 
ARIMA autoregressive integrated moving average model EDP equal-depth partitioning 
MLR multiple linear regression  ANFIS adaptive fuzzy inference system 
SVR support vector regression MAPE mean absolute percentage error 
CTMs chemical transport models MAE mean absolute error 
ANNs artificial neural networks RMSE root mean square error 
ENN elman neural network MdAPE median absolute percentage error 
BPNN back propagation neural network DA direction accuracy 
RBFNN radial basis function neural network FB fractional bias 
EMD empirical mode decomposition  IA index of agreement 
EEMD ensemble empirical mode decomposition r Pearson's correlation coefficient 
CEEMD complementary ensemble empirical mode decomposition IFCP interval forecasting coverage probability 
IMFs intrinsic mode functions IFAW interval forecasting average width 

890 
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A.2. 891 

FLR of PM2.5 from the first site (Beijing) 892 

 893 
PM2.5 

Day 1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 

0:00 A9 A15 A9 A10 A14 A16 A15 A15 A16 A21 
1:00 A9 A15 A9 A10 A14 A15 A12 A14 A16 A23 

2:00 A10 A14 A10 A14 A15 A14 A9 A15 A16 A24 

3:00 A10 A10 A9 A15 A15 A13 A9 A14 A18 A24 

4:00 A10 A10 A9 A15 A15 A12 A9 A14 A20 A24 

5:00 A10 A10 A9 A15 A15 A13 A9 A14 A21 A24 

6:00 A10 A10 A9 A15 A15 A14 A9 A15 A21 A26 

7:00 A10 A14 A9 A15 A14 A14 A10 A15 A21 A26 

8:00 A12 A15 A9 A15 A14 A15 A10 A16 A20 A29 

9:00 A10 A15 A9 A15 A15 A15 A13 A18 A20 A29 

10:00 A9 A14 A9 A14 A15 A16 A13 A20 A20 A28 

11:00 A9 A10 A9 A12 A15 A16 A14 A21 A21 A26 

12:00 A8 A8 A9 A10 A15 A18 A14 A21 A21 A26 

13:00 A8 A9 A9 A10 A15 A18 A14 A21 A21 A24 

14:00 A8 A9 A10 A10 A15 A18 A14 A21 A21 A24 

15:00 A8 A9 A10 A10 A15 A16 A14 A21 A21 A21 

16:00 A9 A9 A10 A12 A15 A16 A15 A21 A21 A21 

17:00 A10 A10 A12 A14 A16 A18 A15 A21 A21 A21 

18:00 A12 A9 A14 A15 A16 A16 A15 A21 A21 A21 

19:00 A10 A9 A14 A15 A16 A18 A15 A21 A24 A21 

20:00 A10 A9 A15 A15 A16 A16 A15 A21 A24 A21 

21:00 A10 A9 A15 A15 A16 A16 A15 A21 A24 A21 

22:00 A13 A9 A15 A14 A16 A15 A15 A21 A21 A24 

23:00 A15 A9 A13 A14 A16 A15 A15 A21 A21 A24 

A.3. 894 

FLR of PM10 from the first site (Beijing) 895 

 896 
PM10 

Day 1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 

0:00 A10 A16 A14 A12 A16 A12 A11 A14 A19 A22 
1:00 A10 A16 A14 A14 A17 A12 A10 A12 A17 A22 

2:00 A11 A14 A15 A16 A17 A12 A9 A12 A16 A22 

3:00 A12 A14 A15 A17 A17 A12 A6 A12 A17 A22 

4:00 A12 A16 A14 A19 A17 A10 A6 A12 A19 A22 

5:00 A12 A16 A14 A19 A16 A10 A9 A16 A20 A23 

6:00 A12 A19 A14 A19 A15 A10 A12 A17 A22 A24 

7:00 A14 A23 A15 A17 A14 A12 A14 A19 A22 A27 

8:00 A13 A31 A14 A16 A14 A14 A15 A19 A20 A31 

9:00 A12 A32 A15 A15 A15 A16 A16 A20 A19 A31 

10:00 A10 A24 A15 A16 A14 A16 A16 A20 A20 A27 

11:00 A10 A18 A14 A16 A14 A15 A16 A19 A20 A24 

12:00 A11 A12 A14 A15 A13 A14 A17 A19 A20 A22 

13:00 A12 A12 A14 A14 A13 A14 A17 A20 A20 A20 

14:00 A12 A12 A15 A14 A14 A14 A17 A20 A20 A19 

15:00 A12 A15 A16 A14 A12 A14 A17 A20 A19 A19 

16:00 A12 A16 A17 A14 A12 A13 A17 A20 A19 A20 

17:00 A14 A16 A18 A16 A14 A14 A18 A19 A20 A20 

18:00 A14 A15 A17 A16 A16 A15 A18 A19 A22 A20 

19:00 A14 A14 A17 A16 A16 A15 A17 A20 A22 A19 
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20:00 A14 A14 A17 A16 A17 A15 A16 A22 A22 A19 

21:00 A12 A14 A16 A16 A16 A14 A16 A24 A22 A20 

22:00 A14 A14 A14 A16 A14 A14 A16 A24 A22 A22 

23:00 A15 A14 A12 A16 A12 A12 A16 A22 A22 A22 

A.4. 897 

FLR of SO2 from the first site (Beijing) 898 

 899 
SO2 

Day 1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 

0:00 A3 A12 A15 A12 A18 A8 A3 A4 A10 A18 
1:00 A5 A11 A15 A13 A18 A6 A3 A4 A9 A18 

2:00 A8 A9 A13 A15 A18 A6 A2 A3 A9 A18 

3:00 A8 A8 A12 A15 A18 A6 A2 A2 A11 A18 

4:00 A8 A8 A10 A15 A17 A6 A2 A3 A12 A17 

5:00 A8 A9 A9 A13 A17 A5 A2 A3 A13 A15 

6:00 A7 A11 A8 A12 A17 A3 A2 A4 A12 A15 

7:00 A8 A12 A8 A9 A17 A3 A2 A6 A12 A15 

8:00 A8 A12 A8 A8 A17 A3 A2 A9 A9 A15 

9:00 A6 A13 A9 A8 A17 A4 A2 A10 A9 A15 

10:00 A6 A13 A11 A9 A15 A5 A3 A12 A9 A13 

11:00 A5 A15 A11 A10 A15 A4 A4 A12 A10 A12 

12:00 A5 A17 A11 A12 A13 A5 A5 A12 A11 A11 

13:00 A5 A19 A10 A12 A12 A6 A4 A12 A12 A12 

14:00 A3 A20 A9 A12 A12 A5 A4 A12 A12 A15 

15:00 A3 A20 A9 A13 A12 A4 A5 A12 A12 A17 

16:00 A2 A20 A9 A18 A12 A4 A4 A10 A12 A18 

17:00 A2 A19 A9 A20 A12 A4 A4 A9 A12 A18 

18:00 A4 A18 A11 A22 A11 A4 A5 A11 A13 A18 

19:00 A5 A18 A12 A22 A10 A5 A6 A12 A15 A18 

20:00 A6 A17 A13 A22 A10 A6 A6 A13 A17 A18 

21:00 A8 A15 A15 A21 A9 A6 A5 A13 A17 A18 

22:00 A8 A13 A13 A20 A9 A5 A4 A12 A18 A20 

23:00 A9 A15 A12 A19 A9 A4 A4 A12 A18 A20 

A.5. 900 

FLGs of PM2.5 from the first site (Beijing) 901 

 902 
PM2.5 

A1  A1 A10  A15 A18  A16 A24  A26 A31  A33 
A1  A3 A10  A16 A18  A18 A24  A28 A31  A35 

A1  A5 A11  A10 A18  A19 A25  A21 A32  A30 

A1  A20 A12  A5 A18  A20 A25  A22 A32  A31 

A2  A1 A12  A9 A18  A21 A25  A24 A32  A32 

A2  A3 A12  A10 A18  A30 A25  A25 A32  A33 

A3  A1 A12  A12 A19  A12 A25  A26 A32  A35 

A3  A3 A12  A13 A19  A15 A26  A15 A32  A37 

A3  A4 A12  A14 A19  A16 A26  A20 A33  A26 

A3  A5 A12  A15 A19  A19 A26  A21 A33  A29 

A4  A3 A13  A9 A19  A20 A26  A23 A33  A30 

A4  A4 A13  A10 A19  A21 A26  A24 A33  A31 

A4  A5 A13  A11 A20  A1 A26  A25 A33  A32 

A5  A2 A13  A12 A20  A9 A26  A26 A33  A33 

A5  A3 A13  A13 A20  A10 A26  A27 A33  A34 

A5  A4 A13  A14 A20  A14 A26  A28 A33  A35 
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A5  A5 A13  A15 A20  A15 A26  A29 A33  A36 

A5  A6 A13  A16 A20  A16 A26  A30 A34  A31 

A5  A7 A13  A20 A20  A18 A26  A33 A34  A33 

A5  A8 A14  A8 A20  A19 A27  A24 A34  A34 

A5  A9 A14  A9 A20  A20 A27  A26 A34  A35 

A5  A10 A14  A10 A20  A21 A27  A28 A34  A36 

A6  A8 A14  A12 A20  A24 A27  A29 A35  A24 

A7  A3 A14  A13 A20  A32 A27  A33 A35  A29 

A7  A4 A14  A14 A21  A8 A28  A24 A35  A30 

A7  A5 A14  A15 A21  A9 A28  A26 A35  A31 

A7  A8 A14  A16 A21  A10 A28  A28 A35  A33 

A7  A9 A14  A18 A21  A13 A28  A29 A35  A34 

A8  A1 A15  A5 A21  A15 A28  A30 A35  A35 

A8  A5 A15  A7 A21  A16 A29  A24 A35  A36 

A8  A7 A15  A8 A21  A18 A29  A26 A36  A26 

A8  A8 A15  A9 A21  A19 A29  A27 A36  A29 

A8  A9 A15  A10 A21  A20 A29  A28 A36  A30 

A8  A10 A15  A11 A21  A21 A29  A29 A36  A31 

A8  A13 A15  A12 A21  A22 A29  A30 A36  A33 

A8  A14 A15  A13 A21  A23 A29  A31 A36  A34 

A9  A1 A15  A14 A21  A24 A29  A33 A36  A35 

A9  A3 A15  A15 A21  A25 A29  A34 A36  A36 

A9  A5 A15  A16 A21  A26 A29  A35 A36  A37 

A9  A6 A15  A17 A21  A27 A30  A21 A36  A38 

A9  A7 A15  A18 A22  A21 A30  A24 A37  A30 

A9  A8 A15  A20 A23  A15 A30  A26 A37  A31 

A9  A9 A15  A21 A23  A20 A30  A28 A37  A33 

A9  A10 A16  A9 A23  A21 A30  A29 A37  A35 

A9  A12 A16  A10 A23  A22 A30  A30 A37  A36 

A9  A13 A16  A12 A23  A23 A30  A31 A37  A37 

A9  A14 A16  A13 A23  A24 A30  A32 A37  A38 

A9  A15 A16  A14 A23  A26 A30  A33 A37  A39 

A9  A16 A16  A15 A24  A9 A30  A34 A38  A36 

A9  A18 A16  A16 A24  A10 A30  A35 A38  A37 

A10  A1 A16  A18 A24  A15 A30  A36 A38  A38 

A10  A5 A16  A19 A24  A18 A30  A38 A38  A39 

A10  A7 A16  A20 A24  A19 A31  A20 A38  A40 

A10  A8 A16  A21 A24  A20 A31  A26 A39  A37 

A10  A9 A16  A24 A24  A21 A31  A28 A39  A38 

A10  A10 A17  A21 A24  A22 A31  A29 A39  A39 

A10  A12 A18  A13 A24  A23 A31  A30 A39  A40 

A10  A13 A18  A14 A24  A24 A31  A31 A40  A39 

A10  A14 A18  A15 A24  A25 A31  A32 A40  A40 

A.6. 903 

FLGs of PM10 from the first site (Beijing) 904 

 905 
PM10 

A1  A1 A11  A9 A16  A19 A23  A21 A29  A27 
A1  A12 A11  A10 A17  A12 A23  A22 A29  A31 

A2  A2 A11  A11 A17  A14 A23  A23 A30  A27 

A2  A3 A11  A12 A17  A15 A23  A24 A30  A28 

A2  A4 A11  A13 A17  A16 A23  A25 A30  A31 
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A2  A5 A11  A14 A17  A17 A23  A27 A31  A19 

A2  A14 A11  A15 A17  A18 A23  A31 A31  A24 

A3  A1 A11  A16 A17  A19 A24  A13 A31  A25 

A3  A2 A12  A6 A17  A20 A24  A15 A31  A26 

A3  A3 A12  A9 A17  A23 A24  A16 A31  A27 

A3  A4 A12  A10 A17  A27 A24  A18 A31  A28 

A4  A2 A12  A11 A18  A12 A24  A19 A31  A29 

A4  A3 A12  A12 A18  A14 A24  A20 A31  A30 

A4  A4 A12  A14 A18  A15 A24  A22 A31  A31 

A4  A5 A12  A15 A18  A16 A24  A23 A31  A32 

A4  A6 A12  A16 A18  A17 A24  A24 A31  A33 

A5  A4 A12  A17 A18  A18 A24  A25 A31  A35 

A5  A5 A12  A34 A18  A19 A24  A26 A32  A24 

A5  A6 A13  A2 A18  A20 A24  A27 A32  A27 

A5  A7 A13  A10 A18  A22 A24  A31 A32  A31 

A6  A2 A13  A12 A19  A12 A24  A33 A32  A32 

A6  A3 A13  A13 A19  A14 A25  A19 A32  A33 

A6  A4 A13  A14 A19  A15 A25  A22 A32  A35 

A6  A5 A13  A15 A19  A16 A25  A23 A33  A24 

A6  A6 A14  A6 A19  A17 A25  A24 A33  A27 

A6  A7 A14  A7 A19  A18 A25  A25 A33  A28 

A6  A8 A14  A10 A19  A19 A25  A26 A33  A31 

A6  A9 A14  A11 A19  A20 A25  A27 A33  A32 

A6  A10 A14  A12 A19  A22 A26  A20 A33  A33 

A6  A11 A14  A13 A19  A23 A26  A23 A33  A34 

A6  A12 A14  A14 A19  A24 A26  A24 A33  A35 

A7  A6 A14  A15 A19  A26 A26  A25 A34  A31 

A7  A7 A14  A16 A20  A17 A26  A26 A34  A33 

A7  A9 A14  A17 A20  A18 A26  A27 A34  A34 

A7  A10 A14  A18 A20  A19 A26  A28 A34  A38 

A7  A11 A14  A19 A20  A20 A26  A35 A35  A24 

A8  A6 A14  A20 A20  A22 A27  A22 A35  A27 

A8  A9 A14  A24 A20  A23 A27  A23 A35  A31 

A9  A6 A15  A2 A20  A24 A27  A24 A35  A32 

A9  A7 A15  A11 A20  A27 A27  A25 A35  A33 

A9  A8 A15  A12 A21  A18 A27  A26 A35  A34 

A9  A9 A15  A14 A21  A20 A27  A27 A35  A35 

A9  A10 A15  A15 A22  A17 A27  A28 A35  A36 

A9  A11 A15  A16 A22  A18 A27  A29 A36  A35 

A9  A12 A15  A17 A22  A19 A27  A30 A36  A36 

A10  A3 A16  A6 A22  A20 A27  A31 A36  A37 

A10  A6 A16  A10 A22  A21 A27  A32 A36  A38 

A10  A7 A16  A11 A22  A22 A27  A35 A37  A36 

A10  A9 A16  A12 A22  A23 A28  A24 A37  A37 

A10  A10 A16  A13 A22  A24 A28  A27 A38  A36 

A10  A11 A16  A14 A22  A26 A28  A28 A38  A38 

A10  A12 A16  A15 A22  A27 A28  A30    

A10  A14 A16  A16 A22  A28 A28  A31    

A11  A6 A16  A17 A23  A19 A28  A33    

A11  A7 A16  A18 A23  A20 A28  A35    

 906 

A.7. 907 

FLGs of SO2 from the first site (Beijing) 908 

 909 
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SO2 

A1  A1 A6  A8 A10  A8 A13  A20 A18  A21 
A1  A2 A6  A9 A10  A9 A14  A12 A19  A12 

A1  A3 A6  A10 A10  A10 A14  A13 A19  A15 

A2  A1 A6  A12 A10  A11 A14  A14 A19  A17 

A2  A2 A6  A13 A10  A12 A14  A15 A19  A18 

A2  A3 A7  A3 A10  A13 A14  A17 A19  A19 

A2  A4 A7  A5 A11  A2 A15  A9 A19  A20 

A2  A5 A7  A6 A11  A6 A15  A10 A19  A21 

A2  A6 A7  A8 A11  A8 A15  A12 A20  A12 

A3  A1 A7  A9 A11  A9 A15  A13 A20  A13 

A3  A2 A7  A10 A11  A10 A15  A14 A20  A15 

A3  A3 A7  A11 A11  A11 A15  A15 A20  A17 

A3  A4 A8  A2 A11  A12 A15  A16 A20  A18 

A3  A5 A8  A3 A11  A13 A15  A17 A20  A19 

A3  A6 A8  A4 A11  A15 A15  A18 A20  A20 

A3  A8 A8  A5 A12  A1 A15  A19 A20  A21 

A3  A12 A8  A6 A12  A3 A15  A20 A20  A22 

A4  A2 A8  A7 A12  A4 A16  A15 A20  A23 

A4  A3 A8  A8 A12  A6 A16  A16 A21  A13 

A4  A4 A8  A9 A12  A7 A16  A17 A21  A17 

A4  A5 A8  A10 A12  A8 A16  A18 A21  A19 

A4  A6 A8  A11 A12  A9 A17  A8 A21  A20 

A4  A7 A8  A12 A12  A10 A17  A9 A21  A21 

A4  A8 A8  A13 A12  A11 A17  A11 A21  A22 

A4  A9 A8  A15 A12  A12 A17  A12 A21  A23 

A4  A12 A9  A2 A12  A13 A17  A13 A22  A19 

A5  A2 A9  A3 A12  A14 A17  A14 A22  A20 

A5  A3 A9  A4 A12  A15 A17  A15 A22  A21 

A5  A4 A9  A5 A12  A17 A17  A16 A22  A22 

A5  A5 A9  A6 A13  A1 A17  A17 A22  A23 

A5  A6 A9  A7 A13  A5 A17  A18 A23  A20 

A5  A7 A9  A8 A13  A6 A17  A19 A23  A21 

A5  A8 A9  A9 A13  A11 A17  A20 A23  A22 

A5  A9 A9  A10 A13  A12 A17  A21 A23  A23 

A5  A12 A9  A11 A13  A13 A18  A13 A23  A24 

A6  A3 A9  A12 A13  A14 A18  A15 A24  A23 

A6  A4 A9  A13 A13  A15 A18  A17 A24  A24 

A6  A5 A10  A5 A13  A16 A18  A18    

A6  A6 A10  A6 A13  A17 A18  A19    

A6  A7 A10  A7 A13  A18 A18  A20    

A.8. 910 

Forecasted output of the first site (Beijing) 911 

 912 
Time PM2.5 PM10 SO2 PM2.5 PM10 SO2 
 2017.07.22 2017.07.27 
0:00 A7 13.41 A12 60.11 A2 1.93 A9 21.61 A9 38.31 A2 1.93 

1:00 A8 16.93 A10 45.93 A2 1.93 A9 21.61 A10 45.93 A2 1.93 

2:00 A8 16.93 A10 45.93 A2 1.93 A9 21.61 A10 45.93 A3 2.55 

3:00 A5 11.00 A7 33.98 A2 1.93 A10 26.81 A10 45.93 A3 2.55 

4:00 A5 11.00 A6 28.19 A2 1.93 A10 26.81 A10 45.93 A3 2.55 

5:00 A8 16.93 A4 18.70 A2 1.93 A12 29.95 A10 45.93 A3 2.55 

6:00 A8 16.93 A6 28.19 A2 1.93 A13 31.49 A11 51.93 A2 1.93 

7:00 A9 21.61 A6 28.19 A2 1.93 A14 34.93 A11 51.93 A2 1.93 
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8:00 A9 21.61 A6 28.19 A2 1.93 A14 34.93 A11 51.93 A2 1.93 

9:00 A9 21.61 A6 28.19 A2 1.93 A14 34.93 A11 51.93 A2 1.93 

10:00 A9 21.61 A6 28.19 A2 1.93 A14 34.93 A11 51.93 A2 1.93 

11:00 A9 21.61 A6 28.19 A3 2.55 A15 39.82 A12 60.11 A2 1.93 

12:00 A9 21.61 A6 28.19 A3 2.55 A15 39.82 A12 60.11 A2 1.93 

13:00 A9 21.61 A6 28.19 A3 2.55 A15 39.82 A12 60.11 A3 2.55 

14:00 A9 21.61 A6 28.19 A2 1.93 A15 39.82 A14 68.78 A3 2.55 

15:00 A9 21.61 A6 28.19 A2 1.93 A15 39.82 A15 74.30 A4 3.05 

16:00 A8 16.93 A6 28.19 A2 1.93 A15 39.82 A15 74.30 A4 3.05 

17:00 A8 16.93 A6 28.19 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

18:00 A8 16.93 A9 38.31 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

19:00 A9 21.61 A9 38.31 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

20:00 A10 26.81 A11 51.93 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

21:00 A10 26.81 A12 60.11 A2 1.93 A18 53.83 A16 84.69 A4 3.05 

22:00 A10 26.81 A12 60.11 A2 1.93 A18 53.83 A17 97.27 A4 3.05 

23:00 A10 26.81 A10 45.93 A2 1.93 A18 53.83 A16 84.69 A4 3.05 

 2017.07.23 2017.07.28 

0:00 A9 21.61 A9 38.31 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

1:00 A9 21.61 A9 38.31 A2 1.93 A16 47.45 A16 84.69 A4 3.05 

2:00 A9 21.61 A9 38.31 A2 1.93 A15 39.82 A16 84.69 A3 2.55 

3:00 A9 21.61 A9 38.31 A2 1.93 A15 39.82 A16 84.69 A3 2.55 

4:00 A9 21.61 A9 38.31 A2 1.93 A15 39.82 A16 84.69 A2 1.93 

5:00 A10 26.81 A10 45.93 A2 1.93 A15 39.82 A15 74.30 A2 1.93 

6:00 A10 26.81 A10 45.93 A2 1.93 A14 34.93 A12 60.11 A2 1.93 

7:00 A10 26.81 A10 45.93 A2 1.93 A10 26.81 A10 45.93 A2 1.93 

8:00 A10 26.81 A10 45.93 A2 1.93 A10 26.81 A10 45.93 A2 1.93 

9:00 A10 26.81 A10 45.93 A2 1.93 A9 21.61 A11 51.93 A2 1.93 

10:00 A10 26.81 A10 45.93 A2 1.93 A9 21.61 A12 60.11 A2 1.93 

11:00 A14 34.93 A11 51.93 A3 2.55 A10 26.81 A14 68.78 A2 1.93 

12:00 A15 39.82 A12 60.11 A3 2.55 A10 26.81 A14 68.78 A3 2.55 

13:00 A15 39.82 A14 68.78 A4 3.05 A10 26.81 A12 60.11 A4 3.05 

14:00 A16 47.45 A14 68.78 A4 3.05 A9 21.61 A10 45.93 A3 2.55 

15:00 A16 47.45 A14 68.78 A3 2.55 A9 21.61 A7 33.98 A3 2.55 

16:00 A18 53.83 A14 68.78 A2 1.93 A8 16.93 A6 28.19 A2 1.93 

17:00 A18 53.83 A12 60.11 A2 1.93 A8 16.93 A6 28.19 A2 1.93 

18:00 A20 56.30 A12 60.11 A2 1.93 A8 16.93 A9 38.31 A2 1.93 

19:00 A18 53.83 A12 60.11 A2 1.93 A9 21.61 A10 45.93 A2 1.93 

20:00 A16 47.45 A12 60.11 A2 1.93 A9 21.61 A12 60.11 A2 1.93 

21:00 A15 39.82 A12 60.11 A2 1.93 A10 26.81 A14 68.78 A2 1.93 

22:00 A15 39.82 A12 60.11 A2 1.93 A10 26.81 A15 74.30 A2 1.93 

23:00 A15 39.82 A12 60.11 A2 1.93 A14 34.93 A16 84.69 A3 2.55 

 2017.07.24 2017.07.29 

0:00 A18 53.83 A14 68.78 A2 1.93 A15 39.82 A16 84.69 A3 2.55 

1:00 A21 65.35 A16 84.69 A2 1.93 A14 34.93 A14 68.78 A3 2.55 

2:00 A21 65.35 A17 97.27 A2 1.93 A14 34.93 A12 60.11 A2 1.93 

3:00 A21 65.35 A17 97.27 A2 1.93 A12 29.95 A12 60.11 A2 1.93 

4:00 A21 65.35 A17 97.27 A3 2.55 A10 26.81 A12 60.11 A2 1.93 

5:00 A23 75.12 A17 97.27 A3 2.55 A10 26.81 A12 60.11 A2 1.93 

6:00 A21 65.35 A16 84.69 A3 2.55 A10 26.81 A12 60.11 A2 1.93 

7:00 A21 65.35 A16 84.69 A2 1.93 A10 26.81 A12 60.11 A2 1.93 

8:00 A21 65.35 A15 74.30 A2 1.93 A10 26.81 A12 60.11 A2 1.93 

9:00 A20 56.30 A14 68.78 A2 1.93 A10 26.81 A14 68.78 A2 1.93 

10:00 A16 47.45 A12 60.11 A2 1.93 A14 34.93 A15 74.30 A2 1.93 

11:00 A15 39.82 A12 60.11 A2 1.93 A15 39.82 A16 84.69 A2 1.93 
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12:00 A15 39.82 A12 60.11 A2 1.93 A16 47.45 A16 84.69 A3 2.55 

13:00 A15 39.82 A14 68.78 A2 1.93 A18 53.83 A16 84.69 A4 3.05 

14:00 A16 47.45 A14 68.78 A2 1.93 A18 53.83 A15 74.30 A4 3.05 

15:00 A16 47.45 A14 68.78 A2 1.93 A15 39.82 A13 55.56 A3 2.55 

16:00 A15 39.82 A12 60.11 A2 1.93 A15 39.82 A12 60.11 A3 2.55 

17:00 A14 34.93 A10 45.93 A2 1.93 A13 31.49 A10 45.93 A2 1.93 

18:00 A10 26.81 A10 45.93 A2 1.93 A10 26.81 A10 45.93 A2 1.93 

19:00 A10 26.81 A9 38.31 A2 1.93 A10 26.81 A10 45.93 A2 1.93 

20:00 A9 21.61 A10 45.93 A2 1.93 A9 21.61 A10 45.93 A2 1.93 

21:00 A9 21.61 A9 38.31 A2 1.93 A9 21.61 A10 45.93 A2 1.93 

22:00 A9 21.61 A9 38.31 A2 1.93 A9 21.61 A11 51.93 A2 1.93 

23:00 A9 21.61 A9 38.31 A2 1.93 A10 26.81 A11 51.93 A3 2.55 

 2017.07.25 2017.07.30 

0:00 A9 21.61 A11 51.93 A2 1.93 A10 26.81 A11 51.93 A3 2.55 

1:00 A9 21.61 A12 60.11 A2 1.93 A10 26.81 A12 60.11 A4 3.05 

2:00 A9 21.61 A11 51.93 A2 1.93 A13 31.49 A12 60.11 A5 3.43 

3:00 A9 21.61 A10 45.93 A2 1.93 A14 34.93 A12 60.11 A5 3.43 

4:00 A9 21.61 A10 45.93 A2 1.93 A14 34.93 A12 60.11 A5 3.43 

5:00 A9 21.61 A10 45.93 A2 1.93 A15 39.82 A12 60.11 A4 3.05 

6:00 A9 21.61 A10 45.93 A2 1.93 A15 39.82 A14 68.78 A3 2.55 

7:00 A9 21.61 A9 38.31 A2 1.93 A15 39.82 A14 68.78 A3 2.55 

8:00 A8 16.93 A9 38.31 A2 1.93 A15 39.82 A16 84.69 A3 2.55 

9:00 A9 21.61 A10 45.93 A2 1.93 A16 47.45 A16 84.69 A3 2.55 

10:00 A9 21.61 A10 45.93 A2 1.93 A18 53.83 A16 84.69 A4 3.05 

11:00 A9 21.61 A11 51.93 A3 2.55 A18 53.83 A15 74.30 A4 3.05 

12:00 A9 21.61 A12 60.11 A7 4.01 A16 47.45 A12 60.11 A4 3.05 

13:00 A10 26.81 A12 60.11 A10 5.76 A15 39.82 A12 60.11 A4 3.05 

14:00 A15 39.82 A15 74.30 A12 7.49 A14 34.93 A12 60.11 A4 3.05 

15:00 A21 65.35 A16 84.69 A12 7.49 A15 39.82 A12 60.11 A4 3.05 

16:00 A21 65.35 A16 84.69 A10 5.76 A15 39.82 A12 60.11 A4 3.05 

17:00 A20 56.30 A15 74.30 A6 3.88 A14 34.93 A12 60.11 A4 3.05 

18:00 A16 47.45 A14 68.78 A5 3.43 A14 34.93 A12 60.11 A4 3.05 

19:00 A15 39.82 A12 60.11 A5 3.43 A12 29.95 A14 68.78 A5 3.43 

20:00 A15 39.82 A12 60.11 A8 4.39 A12 29.95 A14 68.78 A3 2.55 

21:00 A15 39.82 A11 51.93 A8 4.39 A14 34.93 A15 74.30 A3 2.55 

22:00 A14 34.93 A11 51.93 A7 4.01 A15 39.82 A16 84.69 A2 1.93 

23:00 A14 34.93 A10 45.93 A6 3.88 A15 39.82 A16 84.69 A2 1.93 

 2017.07.26 2017.07.31 

0:00 A14 34.93 A10 45.93 A5 3.43 A15 39.82 A16 84.69 A2 1.93 

1:00 A14 34.93 A12 60.11 A5 3.43 A16 47.45 A16 84.69 A2 1.93 

2:00 A14 34.93 A12 60.11 A4 3.05 A20 56.30 A16 84.69 A2 1.93 

3:00 A15 39.82 A12 60.11 A4 3.05 A21 65.35 A17 97.27 A2 1.93 

4:00 A15 39.82 A12 60.11 A5 3.43 A21 65.35 A17 97.27 A2 1.93 

5:00 A14 34.93 A12 60.11 A6 3.88 A21 65.35 A16 84.69 A2 1.93 

6:00 A14 34.93 A12 60.11 A5 3.43 A21 65.35 A17 97.27 A2 1.93 

7:00 A10 26.81 A11 51.93 A5 3.43 A24 80.72 A19 120.07 A3 2.55 

8:00 A9 21.61 A10 45.93 A3 2.55 A26 98.02 A19 120.07 A3 2.55 

9:00 A9 21.61 A10 45.93 A3 2.55 A26 98.02 A19 120.07 A4 3.05 

10:00 A9 21.61 A9 38.31 A2 1.93 A26 98.02 A19 120.07 A4 3.05 

11:00 A9 21.61 A9 38.31 A2 1.93 A26 98.02 A19 120.07 A3 2.55 

12:00 A9 21.61 A9 38.31 A2 1.93 A26 98.02 A19 120.07 A3 2.55 

13:00 A9 21.61 A9 38.31 A2 1.93 A25 88.70 A18 105.27 A4 3.05 

14:00 A10 26.81 A6 28.19 A2 1.93 A24 80.72 A17 97.27 A4 3.05 

15:00 A9 21.61 A6 28.19 A2 1.93 A24 80.72 A17 97.27 A3 2.55 
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16:00 A9 21.61 A6 28.19 A2 1.93 A24 80.72 A17 97.27 A3 2.55 

17:00 A8 16.93 A6 28.19 A2 1.93 A24 80.72 A18 105.27 A2 1.93 

18:00 A7 13.41 A5 22.45 A2 1.93 A24 80.72 A18 105.27 A2 1.93 

19:00 A5 11.00 A4 18.70 A2 1.93 A24 80.72 A19 120.07 A2 1.93 

20:00 A7 13.41 A4 18.70 A2 1.93 A24 80.72 A19 120.07 A2 1.93 

21:00 A8 16.93 A6 28.19 A2 1.93 A24 80.72 A19 120.07 A2 1.93 

22:00 A8 16.93 A6 28.19 A2 1.93 A24 80.72 A19 120.07 A3 2.55 

23:00 A9 21.61 A7 33.98 A2 1.93 A24 80.72 A19 120.07 A3 2.55 

 913 

 914 

  915 
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