
Optimizing Long Short-Term Memory Recurrent Neural Networks Using
Ant Colony Optimization to Predict Turbine Engine Vibration

AbdElRahman ElSaida,∗, Fatima El Jamiya, James Higginsb, Brandon Wildb, Travis Desella

University of North Dakota, Grand Forks, North Dakota 58202

aDepartment of Computer Science
bDepartment of Aviation

Abstract

This article expands on research that has been done to develop a recurrent neural network (RNN) capable
of predicting aircraft engine vibrations using long short-term memory (LSTM) neurons. LSTM RNNs can
provide a more generalizable and robust method for prediction over analytical calculations of engine vibration,
as analytical calculations must be solved iteratively based on specific empirical engine parameters, making
this approach ungeneralizable across multiple engines. In initial work, multiple LSTM RNN architectures
were proposed, evaluated and compared. This research improves the performance of the most effective
LSTM network design proposed in the previous work by using a promising neuroevolution method based
on ant colony optimization (ACO) to develop and enhance the LSTM cell structure of the network. A
parallelized version of the ACO neuroevolution algorithm has been developed and the evolved LSTM RNNs
were compared to the previously used fixed topology. The evolved networks were trained on a large database of
flight data records obtained from an airline containing flights that suffered from excessive vibration. Results
were obtained using MPI (Message Passing Interface) on a high performance computing (HPC) cluster,
evolving 1000 different LSTM cell structures using 168 cores over 4 days. The new evolved LSTM cells
showed an improvement of 1.35%, reducing prediction error from 5.51% to 4.17% when predicting excessive
engine vibrations 10 seconds in the future, while at the same time dramatically reducing the number of
weights from 21,170 to 11,810.

Keywords: Ant Colony Optimization, ACO, Long Short Term Memory Recurrent Neural Network, LSTM,
Recurrent Neural Network, RNN, Time Series Prediction, Aviation, Aerospace Engineering,
Turbomachinery, Turbine engine vibration, Flight Parameters Prediction
2010 MSC: 00-01, 99-00

1. Introduction

Aircraft engine vibration is of critical interest to the aviation industry, and accurate predictions of excessive
engine vibration have the potential to save time, effort, money as well as human lives in the aviation industry.
An aircraft engine, as turbo-machinery, should normally vibrate as it has many dynamic parts. However,
it is not supposed to exceed resonance limits as to not destroy the engines [1]. As an example, A. V.
Srinivasan [1] describes vibrations generated from engine blades’ fluttering. Engine blades are the rotating
engine components that have the largest dimensions among the other engine components. When rotating
at high speeds, they will withstand high centrifugal forces that would logically give the highest contribution
to engine vibrations. Engine vibrations are not that simple to calculate or predict analytically because of
the fact that various parameters contribute to their occurrence. This fact is always a problem for aviation
performance monitors, especially as engines vary in design, size, operation conditions, service life span, the

∗Corresponding author
Email addresses: abdelrahman.elsaid@ndus.edu (AbdElRahman ElSaid), fatima.eljamiy@und.edu (Fatima El Jamiy),

jhiggins@aero.und.edu (James Higgins), bwild@aero.und.edu (Brandon Wild), tdesell@cs.und.edu (Travis Desell)
URL: http://people.cs.und.edu/~tdesell (Travis Desell)

ar
X

iv
:1

71
0.

03
75

3v
1

 [
cs

.N
E

]
 1

0
O

ct
 2

01
7

aircraft they are mounted on, and many other parameters. Most of these parameters contributions can be
translated in some key parameters measured and recorded on the flight data recorder. Nonetheless, vibrations
are likely to be a result of a mixture of these contributions, making it very hard to predict the real cause
behind the excess in vibrations.

As such, engine vibration is a complex problem depending on an unknown number of parameters inter-
acting over an unknown extended period of time, which poses a challenge in analyzing its causes and triggers.
Holistic computation methods represent a promising solution for this problem by letting the computers find
relations and anomalies that might lead to the problem through a learning process using time series data from
flight data recorders (FDR). Traditional neural networks, however, lack the required capabilities to capture
those relations and anomalies as they work on current time series without taking the effect of the previous
time instances’ parameters on the current or future time instants. Due to this, recurrent neural networks
have been developed which utilize memory neurons that retain information from previous passes for use with
the current experienced data, giving a chance for the neural network to know which parameter really have
higher contributions to the investigated problem.

However, these complicated neural network designs in turn posses their own challenges. Regardless of the
difficulty of implementing it to a specific problem, the learning process is the main concern when dealing with
such neural networks with a large number of interactive connections. When supervised learning is considered
and the back-propagation is implemented to update the weights of the connections of the neural network,
vanishing and exploding gradients are very serious obstacles for the successfully training recurrent neural
networks. As noted by Hochrieter and Schmidhuber [2], ”Learning to store information over extended period
of time intervals via recurrent backpropagation takes a very long time, mostly due to insufficient, decaying
error back flow.”

While this drawback hindered the application of such sophisticated neural network designs, RNNs which
utilize LSTM memory cells offer a solution for this problem as the memory cells provide forget and remember
gates which prevent or lessen vanishing or exploding gradients. LSTM RNNs have been used successfully in
many studies on involving time series data [3, 4, 5, 6, 7] and were chosen by this study to examine them as
a solution to predicting aircraft engine vibration.

For many years, neural networks have strongly proven their prediction potential and applied in different
many areas [8, 9, 10]. Various strategies and techniques exist to automatically generate the structure of neural
networks and the most common used ones are based on evolutionary algorithms. These neuroevolution
strategies examine the use of learning and evolution as concepts to improve the performance of neural
networks. In traditional neuroevolution [11], an evolutionary algorithm is used to train a neural networks’
connection weights with a fixed structure, but significant benefit has been demonstrated in using these
techniques to both optimize and evolve connections and topologies [12, 13, 14], as weights are not the only
key parameter for best performance of neural networks [15]. These strategies are of particular interest as
determining the optimal structure for a neural network is still an open question. This particular work focuses
on evolving the structure of LSTM neurons with an ant colony optimization [16] based algorithm.

1.1. Previous work

This study’s ultimate goal is to explore the utilization of LSTM RNNs to predict future engine vibration
in order to be used in a warning system to give indications for the problem before it occurs in order to
avoid or mitigate it. An initial work examined building viable Recurrent Neural Networks (RNN) using
Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations [17]. To achieve this, three
different LSTM RNNs architectures were examined to find which would provide better results. The three
architectures varied in both complexity and depth of layers. The different networks were trained on time series
flight data records obtained from a regional airline containing flights that suffered from excessive vibration.
The structure of the LSTM RNNs used in this study is shown in Figure 6. After selecting an initial set of 15
relevant parameters, these LSTM RNNs were able to predict vibration values for 1, 5, 10, and 20 seconds in
the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively.

1.2. Ant Colony Optimization

Ant colony optimization (ACO) is a metaheuristic used to find approximate solutions to many combina-
torial problems. It belongs to a family of bio inspired metaheuristics. ACO is a distributed approach using

2

agents called artificial ants. These artificial ants resemble biological ants, in that each ant is independent
and communicates with other members of the colony through a chemical called pheromone. Ants randomly
explore areas, however they tend to follow paths with pheromones, and upon finding food they mark their
return path with more pheromone. Pheromones decay over time, and paths with the most pheromone rep-
resent the most promising paths to food. The first algorithm of this type (the “Ant System” [18]) was
designed for the traveling salesman problem, but failed to produce competitive results. However, subse-
quent research has shown this algorithm to be effective on this problem [19, 20, 21] and interest for the
metaphor has launched many algorithms inspired by it in various fields, including continuous optimization
problems [22, 23, 24, 25, 26, 27], and even training neural networks [28, 29, 30, 31].

1.3. Study’s Contribution

This work improves the performance of the LSTM network architectures proposed in the previous work
by optimizing LSTM cell structure. Since the contributions of the input parameters are not of the same
magnitude to the problem (vibration), the weights of the neural network are adjusted through backpropa-
gation. However, a fully connected neural network can pose additional training complexity and unwanted
noise through some of the connections coming out of some of the inputs. Therefore, there is a need for a
way to examine these connections and try to eliminate those which contribute to the prediction error. ACO
has been chosen mainly because it has proven its effectiveness in evolving RNNs [16] for time series data
prediction. The results have demonstrated that the evolved LSTM architecture increased the best previous
results’ performance by 1.35% in predicting vibration 10 seconds in the future, while at the same time only
requiring nearly half of the connections (the number of weights was reduced from 21,170 to 11,810). The
prediction accuracy was improved from 94.49% to 95.83% based on mean absolute error calculations.

2. Related Work

2.1. Turbine Engine Vibration

According to A. V. Srinivasan [1]: “The most common types of vibration problems that concern the
designer of jet engines include (a) resonant vibration occurring at an integral order, i.e. multiple of rotation
speed, and (b) flutter, an aeroelastic instability occurring generally as a nonintegral order vibration, having
the potential to escalate, unless checked by any means available to the operator, into larger and larger stresses
resulting in serious damage to the machine. The associated failures of engine blades are referred to as high
cycle fatigue failures”. The means available to the operator in practical aviation operations are mainly the
implementation of manufacturers’ maintenance program which relies on reliability observations.

Any aircraft maintenance program has four objectives: i) guaranteeing the inherit safety and reliability
levels of the systems and subsystems, ii) restore those levels to their original levels if deviations occur, iii)
gather information about design enhancement for systems and subsystems that showed deficiency in there
expected reliability, and iv) accomplish these targets at the the most overall cost efficiency possible. To achieve
these goals a maintenance program consists of checks performed over specific intervals to perform on-condition
checks which might be visual inspections, test runs, or non-destructive tests performed on the systems’ or
subsystems components. In addition to that, and as mentioned earlier, preventive maintenance is also part
of the maintenance program where parts are replaced or overhauled based on reliability observations [32].

There are also other methods to mitigate the risk coming from excessive engine vibration using statistical
and holistic computation methods. This is accomplished by monitoring the engine performance through its
flight data history, which is logged as time series data, in order to forecast the excessive vibration occurrence.
However, since these methods are not exact, reasonable safety factors should be considered. As discussed in
the following sections, machine learning and artificial intelligence becomes the heart of such methods.

2.2. Time Series Data Prediction

From a statistical point of view, the main goal of prediction is to provide vital information for decision
makers, economists, planners optimizers, industrialists and critical systems operators. There are two sides
for prediction: the qualitative side and the quantitative side. The qualitative side utilizes methods known
as the judgmental or subjective prediction methods which covers methods relaying on intuition, judgement
or opinions of some kind of a referee as consumers, experts and/or supporting information. Qualitative

3

methods are considered in cases when past data is not available. On the other hand, quantitative methods
include univariate and multivariate methods. For many study cases related to different scientific and real life
problems, the time series data are available on several dependent variables, and in such cases multivariate
prediction methods are used [33].

The models in the time series predictions realm mainly falls in two categories: a) statistical prediction
models which include, e.g., the autoregressive (AR) model, the moving average (MA) model, and hybrid
models that derive from them such as autoregressive moving average (ARMA), autoregressive integrated
moving average (ARIMA), seasonal ARMIA (SARIMA) [34], vector autoregressive (VAR) models and b)
artificial neural networks (ANN) prediction models. While successful studies have managed to achieve good
results by using such methods and even reported results that out perform neural networks [35], the main
draw back of the statistical methods is that they generally can not be applied to non-linear systems [34].
On the other hand, ANNs have shown good performance with such systems. There are also a third category
which are the hybrid models. These models (hybrid) offer the benefits of both statistical and ANN models.
Consequently, as the studied system involving prediction of aircraft engine vibration is complicated in its
nature and is expected to be extremely non-linear, statistical and hybrid models are considered beyond the
scope of the study.

2.3. Time Series Prediction in Aviation

Some effort has been done using neural networks to classify engine abnormalities without doing analytical
computation, e.g., Alexandre Nairac et al. [36] have performed research to detect abnormalities in engine
vibrations based on recorded data. To achieve that, the work used two modules. One of the modules uses the
overall shape of the vibration curve to detect unusual vibration signatures. The second one reports sudden
unexpected transitions in the signature curves. Their approach to detect defects is not to introduce examples
of faulty engines to the neural network, rather, only examples of healthy engines are introduced to the neural
networks in the training phase. This approach was taken to overcome the lack of existence of adequate faulty
engine data, which was not enough for training. In this context, the paper introduces the term ‘normality’
to describe the behavior of normal engines and ‘abnormality’ to describe the behavior of faulty engines.
Using statistical models, the faulty engines detection would be described as ‘novelty’ detection based on the
deviation from the data distribution. The best results this work achieved was the prediction of faulty engines
with 84% successful classifications.

David A. Clifton et al. [37] presented work for predicting abnormalities in engine vibration based on
statistical analysis of vibration signatures. The paper presents two modes of prediction. One is ground-based
(off-line), where prediction is done by run-by-run analysis to predict abnormalities based on previous engine
runs. The success in this approach was predicting abnormalities two flights ahead. The other mode is a
flight based-mode (online) in which detection is done either by sending reduced data to the ground-base or
processing it onboard the aircraft. The paper mentions that they could successfully predict vibration events
2.5 hours in the future. However, this prediction is done after half an hour of flight data collection, which
might be a critical time as well, as excess vibration may occur during this data collection time. The paper
did not mention how much data was required to have a sound prediction.

2.3.1. RNN for Predicting Flight Parameters

Having an advantage over standard FFNNs1, RNNs can deal with sequential input data, using their inter-
nal memory to process sequences of inputs and use previously stored information to aid in future predictions.
This is done by feedback connections or by looping between neurons, which allows them to be of predicting
more complex data [38].

This presented work is in part inspired by previous work on predicting flight parameters [39, 16]. Which
first utilized evolutionary algorithms such as particle swarm optimization [40, 41] and differential evolu-
tion [42] to optimize the weights of the network [39], and then an ant colony optimization based algorithm
to evolve different recurrent neural network structures [16]. The neural networks evolved with ant colony op-
timization predicted airspeed, altitude and, pitch with a 63%, 97% and 120% improvement respectively over

1Feed Forward Neural Networks

4

the previously best published results. The research used recurrent neural networks and applied an ant-colony
optimization (ACO) algorithm [43, 44, 45], an optimization technique used in the beginning on discrete
problems, mainly on the Traveling Salesman Problem [46]. Later it was used in continuous optimization
problems [22, 23, 24, 25, 26, 27], including training neural networks [28, 29, 30, 31].

2.3.2. LSTM RNN

LSTM RNNs were first introduced by S. Hochrieter & J. Schmidhuber [4]. While the work by T.
Desell et al. utilized non-gradient based evolutionary algorithms to optimize RNN weights, LSTM neurons
provide a solution for the exploding/vanishing gradients problem by utilizing various gates, which allow
backpropagation to be used in large RNNs (S. Hochrieter in 1991). This work has paved the way for many
interesting projects.

Later, J. Schmidhuber et al. [47] emphasized the forget gate in the LSTM RNNs. The paper mentions
that “We identify a weakness of LSTM networks processing continual input streams that are not a priori
segmented into subsequences with explicitly marked ends at which the network’s internal state could be reset.
Without resets, the state may grow indefinitely and eventually cause the network to break down. Our remedy
is a novel, adaptive forget gate that enables an LSTM cell to learn to reset itself at appropriate times, thus
releasing internal resources. We review illustrative benchmark problems on which standard LSTM outperforms
other RNN algorithms. All algorithms (including LSTM) fail to solve continual versions of these problems.
LSTM with forget gates, however, easily solves them, and in an elegant way.” However, Felix A. Gers et
al. [48] suggest that “LSTM RNNs does not carry over to certain simpler time series prediction tasks solvable
by time window approaches”. The paper suggests to use LSTM when “simpler traditional approaches fails”.

LSTM RNNs have been used with strong performance in image recognition [49], audio visual emotion
recognition [50], music composition [51] and other areas. Regarding time series prediction, for example,
LSTM RNNs have been used for stock market forecasting [3] and forex market forecasting [7]. Also forecasting
wind speeds [4, 5] for wind energy mills, and even predicting diagnoses for patients based on health records [6].

2.4. Evolutionary Optimization Methods

Several methods for evolving topologies along with weights have been searched and deployed. In [52, 52],
NeuroEvolution of Augmenting Topologies (NEAT) has been developed. It is a genetic algorithm that
evolves increasingly complex neural network topologies, while at the same time evolving the connection
weights. Genes are tracked using historical markings with innovation numbers to perform crossover among
different structures and enable efficient recombination. Innovation is protected through speciation and the
population initially starts small without hidden layers and gradually grows through generations [53, 54, 55].
Experimentations have demonstrated that NEAT presents an efficient way for evolving neural networks for
weights and topologies in parallel or separately. Its power resides in its ability to combine all the four main
aspects discussed above and expand to complex solutions along the generation process. However NEAT still
has some limitations when it comes evolving neural networks with weights or LSTM cells for time series
prediction tasks as it has been claimed in [16].

3. Methodology

This work utilizes the ACO method developed by Desell et al. to evolve the structure of LSTM cells, in
part due to strong previous results and because it allows any method to be used to determine the optimal
weights of connections. This is particularly important as it allows backpropagation to be used on a large
scale LSTM RNN, which is significantly more efficient than the non-gradient based evolutionary algorithms
used in previous work.

3.1. Experimental Data

The flight data used consists of 76 different parameters recorded on the aircraft Flight Data Recorder
(FDR), inclusive of the engine vibration parameters. During the data processing phase of the project, two
efforts were done to identify the parameters that most contributed to the engine vibration.

5

Figure 1: A one layer feed forward neural network.

3.1.1. Data Correlation Parameter Selection

Primarily, cross-correlation analysis [56] was exercised to find the potential parameters that highly con-
tribute to vibration. Every parameter from each flight was cross-correlated to vibration then plotted to pick
the highest correlated parameters. Cross correlation was calculated using the following Equation:

Cross Correlation =

∞∑
a=−∞

x[a] · vib[a] (1)

Where the highest correlation was determined by calculating the area under the plotted curve for the
normalized data. The top correlated parameters to vibration were:

1. Right InBoard Spoiler
2. Right OutBoard Spoiler
3. Left InBoard Spoiler
4. Left OutBoard Spoiler
5. Static Air Temperature
6. Pitch 2
7. Pitch
8. Slat Configuration
9. Main Landing Gear Lock Down Sensors

10. Flap Configuration

A one layer feed forward neural network was built as shown in Figure 1 to predict vibration given other
parameters within the same second. However, the results were poor, with significant noise in the predictions.
This imposed a question about the quality of the chosen parameters using this method and due to this,
another method of parameter-selection was sought. A potential cause for such misleading cross-correlation
chosen parameters was that some flight configuration parameters like spoilers/slats/flaps positions, pitch
angle and main-landing-gear position do not change but few times during the flight, which can translate into
high correlation with the vibration.

3.1.2. Aerodynamics/Turbo-machinery Parameter Selection

A second subset of the FDR parameters were then chosen based on the likelihood of their contribution
to the vibration based on aerodynamics/turbo-machinery expert knowledge. Again, a one layer feed forward
neural network with a structure similar to the one shown in Figure 1, except the number of input and hidden
nodes was equal to the number of chosen parameters, was applied and these results were encouraging enough
to use these parameters for predicting vibration in future.

Some parameters, such as Inlet Guide Vans Configuration, Fuel Flow, Spoilers Configuration (this was
preliminarily considered because of the special position of the engine mount), High Pressure Valve Configu-
ration and Static Air Temperature were excluded because it was found that they generated more noise than
positively contributing to the vibration prediction.

6

Output

Previous

Input

Cell Output

P
re

vi
ou

s

In
pu

t

C
el

l O
ut

pu
t

P
revious

Input

C
ell O

utput

P
revious

Input

C
ell O

utput

Dot Product

Sum

Sigmoid

Cell Gate
Input Gate
Forget Gate
Output Gate
Cell-Memory

W_g

U_g

W
_f

U
_f

W
_i

U
_i

W
_o

U
_o

Figure 2: A generic overview of the design of a LSTM RNN.

The final chosen parameters were:

1. Altitude [ALT]

2. Angle of Attack [AOA]

3. Bleed Pressure [BPRS]

4. Turbine Inlet Temperature [TIT]

5. Mach Number [M]

6. Primary Rotor/Shaft Rotation Speed [N1]

7. Secondary Rotor/Shaft Rotation Speed [N2]

8. Engine Oil pressure [EOP]

9. Engine Oil Quantity [EOQ]

10. Engine Oil Temperature [EOT]

11. Aircraft Roll [Roll]

12. Total Air Temperature [TAT]

13. Wind Direction [WDir]

14. Wind Speed [WSpd]

15. Engine Vibration [Vib]

3.2. Recurrent Neural Network Design

Three LSTM RNN architectures were designed to predict engine vibration 5 seconds, 10 seconds, and 20
seconds in the future. Each of the 15 selected FDR parameters is represented by a node in the inputs of the
neural network and an additional node is used for a bias. Each neural network in the three designs consists
of LSTM cells that receive both an initial input of flight data at some time in the past or the output from a
cell in the lower layer, and the output of the previous cell in the same layer, as inputs (see Figure 2). Each
cell has three gates to control the flow of information through the cell and accordingly, the output of the cell.
Each cell also has a cell-memory which is the core of the LSTM RNN design. The cell-memory allows the
flow of information from the previous states into the current predictions.

The gates that control the flow are shown in Figure 3. They are: i) the input gate, which controls
how much information will flow from the inputs of the cell, ii) the forget gate, which controls how much
information will flow from the cell-memory, and iii) the output gate, which controls how much information
will flow out of the cell. This design allows the network to learn not only about the target values, but also
about how to tune its controls to reach the target values.

All the utilized architectures follow the common LSTM RNN designs shown in Figure 2 and 3. However,
there are two variations of this common design used in the utilized architectures, shown in Figures 4 and 5,

7

Figure 3: LSTM cell design

with the difference being the number of inputs from the previous cell. Cells that take an initial number of
inputs and output the same number of outputs are denoted by ‘M1’ cells. As input nodes are needed to be
reduced through the neural network, the design of the cells are different. Cells which perform a reduction on
the inputs are denoted by ‘M2’ cells.

3.2.1. LSTM RNN Forward Propagation Equations

The equations used in the forward propagation through the neural network are:

it = Sigmoid(wi • xt + ui • at−1 + baisi) (2)

ft = Sigmoid(wf • xt + uf • at−1 + baisf) (3)

ot = Sigmoid(wo • xt + uo • at−1 + baiso) (4)

gt = Sigmoid(wg • xt + ug • at−1 + baisg) (5)

ct = ft • ct−1 + it • gt (6)

at = ot • Sigmoid(ct) (7)

where (see Figure 3):
it: input-gate output
ft: forget-gate output
ot: output-gate output
gt: input’s sigmoid
ct: cell-memory output

8

FLOW

Previous

Input

Cell Output

Pr
ev

iou
s

Inp
ut

Ce
ll O

utp
ut

Previous

Input

Cell Output

Previous

Input

Cell Output

Cell
Output

Input
Input Gate
Forget Gate
Output Gate
Cell-MemoryM1

Figure 4: Level 1 LSTM cell design

FLOW

Cell
Output

Previous
Cell Output

Input

Pre
viou

s
Cel

l Ou
tpu

t

Inp
ut

Previous
Cell Output

Input

Previous
Cell Output

Input

M2

Input
Input Gate
Forget Gate
Output Gate
Cell-Memory

Figure 5: Level 2 LSTM cell design

9

x1
x2

x3
x10

a0
a1

a2
a9

a10

a1
a2

a3
a10

b0
b1

b2
b9

b10

M1

M1

M1

M1

M2

M2

M2

M2

b1
b2

b3
b10

Previous

Input

Cell Output

Previous

Input

Cell O
utput

Previous

Input

Cell O
utput

Previous

Input

Cell O
utput

Cell
Output

Previous
Cell Output

Input

Previous
Cell O

utput

Input

Previous
Cell O

utput

Input

Previous
Cell O

utput

Input

Cell
Output

Input
Input Gate
Forget Gate
Output Gate
Cell-Memory

M1

M2

Figure 6: Neural network structure

10

wi: weights associated with input and input-gate
ui: weights associated with previous output and input-gate
wf : weights associated with input and forget-gate
uf : weights associated with previous output and forget-gate
wo: weights associated with input and output-gate
uo: weights associated with previous output and the output-gate
wg: weights associated with the cell input
ug: weights associated with previous output and the cell input

and the formula of the sigmoid function is:

Sigmoid(α) =
1

1 + e−α
(8)

3.3. LSTM RNN Architectures

The three architectures are as follows, with the dimensions of the weights of these architectures shown in
Table 1 and the total number of weights shown in Table 2.

Architecture I
As shown in Figure 7a, the first level of the architecture takes inputs from ten time series (the current time

instant and the past nine). It then feeds the second level of the neural network with the output of the first
level. The output of the first level of the neural network is considered the first hidden layer. The second level
of the neural network then reduces the number of nodes fed to it from 16 nodes (15 input nodes + bias) per
cell to only one node per cell. The output of the second level of the neural network is considered the second
hidden layer. Finally, the output of the second level of the neural network would be only 10 nodes, a node
from each cell. These nodes are fed to a final neuron in the third level to compute the output of the whole
network.

The dimensions of the weights matrices and vectors of this architecture are shown in Table 1. The total
number of weights are is shown in Table 2. Figures 8 and 9 provide an overview of architecture I, as it has a
large number of connections (21,170). Figure 8 shows the overall design of how the LSTM cells are connected,
and then Figure 9 displays all the connections within a single time step of the full LSTM RNN. As a whole,
there are 10 different instances of Figure 8, each connected as specified in Figure 9.

Architecture II
As shown in Figure 7b, this architecture is almost the same as the previous one except that it does not

have the third level. Instead, the output of the second level is averaged to compute the output of the whole
network.

The dimensions of the weights matrices and vectors of this architecture are shown in Table 1. The total
number of weights are shown in Table 2.

Architecture III
Figure 7c presents a deeper neural network architecture. In this design, the neural network takes inputs

from twenty time series (the current time instant and the past nineteen) as the first level. It feeds the second
level of the neural network with the output from the first level. The second level does the same procedure
as first level giving a chance for more abstract decision making. The output of the second level of the neural
network is considered the first hidden layer and the output of the second level is considered the second hidden
layer. The third level of the neural network then reduces the number of nodes fed to it from 16 nodes (15
input nodes + bias) per cell to only one node per cell. The output of the third level of the neural network
is considered the third hidden layer. Finally, the output of the third level of the neural network is twenty
nodes, a node from each cell. These nodes are fed to a final neuron in the fourth level to compute the output
of the whole network.

The Dimensions of the weights matrices and vectors of this architecture are shown in Table 1. The total
number of weights are shown in Table 2.

11

(a) Architecture I

(b) Architecture II

(c) Architecture III

Figure 7: Used LSTM RNNs Architectures
12

x1
x2

x3
x4

x5
x6

x7
x8

x9
x10

a0
a1

a2
a3

a4
a5

a6
a7

a8
a9

a10

a1
a2

a3
a4

a5
a6

a7
a8

a9
a10

b0
b1

b2
b3

b4
b5

b6
b7

b8
b9

b10

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M2

M2

M2

M2

M2

M2

M2

M2

M2

b1
b2

b3
b4

b5
b6

b7
b8

b9
b10

M2

x1 a0 a1 b0

M1 M2

b1

Figure 8: One time step of Architecture I

Table 1: Architectures Weights-Matrices Dimensions

Architecture I

wi ui wf uf wo uo wg ug
Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Level 3 16×1

Architecture II

wi ui wf uf wo uo wg ug
Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Architecture III

wi ui wf uf wo uo wg ug
Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 3 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Level 4 16×1

13

Al
t_t

0

lay
er1

Ma
inh

id
lay

er1
_In

pu
t_h

id
lay

er1
Fo

rge
thi

d
lay

er1
Ou

tpu
thi

d

fee
dF

W0

A0

B0

F_
Ga

te0
C0

FW
_N

xt1
1

I/P
0_

t0

AO
A_

t0
fee

dF
W1

A1

B1

F_
Ga

te1
C1

I/P
1_

t0

Bld
Pr_

t0
fee

dF
W2

A2

B2

F_
Ga

te2
C2

I/P
2_

t0

TIT
_t0

fee
dF

W3

A3

B3

F_
Ga

te3
C3

I/P
3_

t0

M_
t0

fee
dF

W4

A4

B4

F_
Ga

te4
C4

I/P
4_

t0

N1
_t0

fee
dF

W5

A5

B5

F_
Ga

te5
C5

I/P
5_

t0

N2
_t0

fee
dF

W6

A6

B6

F_
Ga

te6
C6

I/P
6_

t0

EO
P_

t0
fee

dF
W7

A7

B7

F_
Ga

te7
C7

I/P
7_

t0

EO
Q_

t0
fee

dF
W8

A8

B8

F_
Ga

te8
C8

I/P
8_

t0

EO
T_

t0
fee

dF
W9

A9

B9

F_
Ga

te9
C9

I/P
9_

t0

Ro
ll_

t0
fee

dF
W1

0

A1
0

B1
0

F_
Ga

te1
0

C1
0

I/P
10

_t0

TA
T_

t0
fee

dF
W1

1

A1
1

B1
1

F_
Ga

te1
1

C1
1

I/P
11

_t0

WD
ir_

t0
fee

dF
W1

2

A1
2

B1
2

F_
Ga

te1
2

C1
2

I/P
12

_t0

WS
pd

_t0
fee

dF
W1

3

A1
3

B1
3

F_
Ga

te1
3

C1
3

I/P
13

_t0

Vib
_t0

fee
dF

W1
4

A1
4

B1
4

F_
Ga

te1
4

C1
4

I/P
14

_t0

b_
t0

fee
dF

W1
5

A1
5

B1
5

F_
Ga

te1
5

C1
5

I/P
15

_t0

Ma
in_

Ga
te

Inp
ut_

Ga
te

Fo
rge

t_G
ate

Ou
tpu

t_G
ate

nx
t

M_
IpH

id
I_I

pH
id

F_
IpH

id
O_

IpH
id

LS
TM

 La
yer

 1

fee
dF

W

M_
FW

Hi
d

I_F
WH

id
F_

FW
Hi

d
O_

FW
Hi

d

M_
Ga

te A

I_G
ate

F_
Ga

te

F_
Ga

te

O_
Ga

te

C

B

FW
_N

xt2
1

Ip0

OU
TP

UT
TO

 N
EX

T E
PO

CH

LS
TM

 La
yer

 2

LS
TM

 La
yer

 3

LS
TM

 O
utp

ut

Figure 9: One time step of the Architecure I Full Structure

14

Table 2: Architectures Weights Matrices’ Total Elements

Architecture I Architecture II Architecture III

21,170 21,160 83,290

3.4. Forward Propagation

The following is a general description for the forward propagation path. This example uses Architecture
I as an example but similar steps are taken in the other architectures with minor changes apparent in their
diagrams. With Figure 7a presenting an overview of the structure of the whole network and considering
Figure 4 as an overview of the structure of the cells in Level 1 (M1) and Figure 5 as an overview of the
structure of the cells in Level 2 (M2) – the input at each iteration consists of 10 seconds of time series data
of the 15 input parameters and 1 bias (Input in Figure 4) in one vector (xt in Figure 7a) and the output of
the previous cell (Previous Cell Output in Figure 4) in another vector (at−1 in Figure 7a). Each second of
time series input is fed to the corresponding cell (i.e., the first seconds’ 15 parameters and 1 bias are fed to
first cell, the second seconds’ 15 parameters and 1 bias are fed to second cell, ...) into the cell gate (shown in
black color), input gate (shown in green color), forget gate (shown in blue color) and the output gate (shown
in red color). If the gates (input gate, forget gate and, output gate) are seen as valves that control how much
of the data flow through it, the outputs of these gates (it, ft and, ot) are considered as how much these valves
are opened or closed.

First, at the cell gate, xt is dot multiplied by its weights matrix wg and at−1 is dot multiplied by its weights
matrix ug. The output vectors are summed and an activation function is applied to it as in Equation 5. The
output is called gt.

Second, at the input gate, xt is dot multiplied by its weights matrix wi and at−1 is dot multiplied by
its weights matrix ui. The output vectors are summed and an activation function is applied to it as in
Equation 2. The output is called it.

Third, at the forget gate, xt is dot multiplied by its weights matrix wf and at−1 is dot multiplied by
its weights matrix uf . The output vectors are summed and an activation function is applied to it as in
Equation 3. It controls how much of the cell memory Figure 7a (saved from previous time-step) should pass.
The output is called ft.

Fourth, at the output gate, xt is dot multiplied by its weights matrix wo and at−1 is dot multiplied by
its weights matrix uo. The output vectors are summed and an activation function is applied to it as in
Equation 4. The output is called ot.

Fifth, the contribution of the cell input Input gt and cell memory ct−1 is decided in Equation 6 by dot
multiplying them by ft and it respectively. The output of this step is the new cell memory ct.

Sixth, cell output is also regulated by the output gate (valve). This is done by applying the sigmoid
function to the cell memory ct and dot multiplying it by ot as shown in Equation 7. The output of this step
is the final output of the cell at the current time-step at. at is fed to the next cell in the same level and also
fed to the cell in the above level as an Input at.

The same procedure is applied at Level 2 but with different weight vectors and different dimensions.
Weights at Level 2 have smaller dimensions to reduce their input detentions from vectors with 16 dimensions
to vectors with one dimension. The output from Level 2 is a one dimensional vector from each cell of the 10
cells in Level 2. These vectors are fed as one 10 dimensional vector to a simple neuron collection shown in
Figure 7a at Level 3 to be dot multiplied by a weight vector to reduce the vector to a single scalar value: the
final output of the network at the time-step.

4. Evolving LSTM RNN Cells using Ant Colony Optimization

Although the results from architecture I are promising, there is still room for further optimization in
that the network may have excessive connections which confound accurate predictions and that the structure
could be further optimized. A particular concern was that some connections could cause noise in the obtained
results and ultimately would drift the results from their most optimum values, as this had been shown in
the initial one layer feed forward neural networks with certain input parameters. The goal of using the ant

15

Ants Initial
Position

Input Layer Hidden Layer

Output

Figure 10: Schematic of Neural Network Structure after AOC

colony optimization strategy is to evolve the structure of the LSTM cells, encouraging more diverse networks
and selecting the topologies that give the best performance.

The ACO algorithm operates on the fully connected inputs to the M1 and M2 cells, as shown in Figures 4
and 5. Each M1 cell has eight 16x16 input gates, four of which take the input from the previous cell in the
same layer, and four of which take the input from the time series or the cell in the lower layer. Each M2 cell
has eight 8x1 input gates, four of which receive input from the previous cell in the same layer and four from
the cell in the lower layer.

The algorithm begins with a fully connected gate that will be used by the ants each time to generate new
paths for new network designs. Paths are selected by the ants based on pheromones – each connection in the
network has a pheromone value that determine its probability to be chosen as a path. Given a number of
ants, each one will select one path from the fully connected network. All the paths selected from all the ants
are then collected, duplicated paths are removed and a design network is generated based on the new cell
topology. Figure 10 shows an example on an M1 cell, assuming four ants choosing their paths on an input
gate to an M1 cell, which generates a subgraph from the potentially fully connected input gate. The same
ACO generated topology is used for each of these 8 input gates. Figure 17a provides an example of the best
found ACO optimized M1 cell.

In detail, the paths generated by ACO are used in the connections between the “Input” and the hidden
layer neurons that follow it, and the “Previous Cell Output” and the hidden layer neurons that follow it. The
connections between the “Input” and the hidden layer neurons that follow it are shown in the first level cells’
(Figure 4 “M1”) in BLACK color, GREEN color, BLUE color, and RED color at the gates of the cell. Once
a hidden node in first level cell is reached by an ant, the connection between this node and the output node
shown in second level cells’ Figure 5 “M2” in BLACK color, GREEN color, BLUE color, and RED color,
will automatically be part of the evolved mesh because the ant will not have any other option to reach the
output node except through that single connection.

The same generated mesh is used at all the gates: Main Gate, Input Gate, Forget Gate, and Out-
put Gate at the “M1”cells and “M2” cells at all the time-steps in the LSTM RNN Architecture I as
shown in Figure 7a. In other words, regardless the LSTM RNN time-step, whenever there is a transi-
tion without data reduction: the first set of connections in the generated mesh is used, and whenever there
is a transition with data reduction: the second set of connections in the generated mesh is used.

4.1. Distributed ACO Optimization

Evolving large LSTM RNNs is a computationally expensive process. Even training a single LSTM RNN
is extremely time consuming (approximately 8.5-9 hours to train one architecture), and applying the ACO

16

algorithm requires running the training process on each evolved topology. This significantly raises the compu-
tational requirements in time and resources necessary to process and evolve better LSTM networks. For that
reason, the ant colony algorithm was parallelized using the message passing interface (MPI) for Python [57]
to allow for it to be run utilizing high performance computing resources.

The distributed algorithm utilizes an asynchronous master worker approach, which has been shown to
provide performance and scalability over iterative approaches in evolutionary algorithms [58, 59]. This
approach provides an additional benefit in that it is automatically load balanced – workers request and
receive new LSTM RNNs when they have completed training previous ones, without blocking on results from
other workers. The master process can generate a new LSTM RNN to be trained from whatever is currently
present in its population.

The algorithm is defined in Algorithm 1. In detail, the algorithm beings with the master process generating
an initial set of network designs randomly (given a user defined number of ants), and sending these to the
worker processes. When the worker receives a network design, it creates an LSTM RNN architecture by
creating the LSTM cells with the according input gates and cell memory. The generated structure is then
trained on different flight data records using the backpropagation algorithm and the resulting fitness (test
error) is evaluated and sent back along with the LSTM cell paths to the master process.

The master process then compares the fitness of the evaluated network to the other results in the popula-
tion, inserts it into the population, and will reward the paths of the best performing networks by increasing
the pheromones by 15% of their original value if it was found that the result was better than the best in the
population. However, the pheromones values are not allowed to exceed a fixed threshold of 20. The networks
that did not out perform the best in the population are not penalized by reducing the pheromones along
their paths.

5. Implementation

5.1. Programming Language

Python’s Theano Library [60] was used to implement the neural networks. It was chosen due to four
major advantages: i) it will compile the most, if not all, of functions coded using it to C and CUDA providing
fast performance, ii) it will perform the weights updates for backpropagation with minimal overhead, iii)
Theano can compute the gradients of the error (cost function output) with respect to the weights, saving
significant effort and time needed to manually derive the gradients, coding and debugging them (which is
particularly challenging in regards to LSTM neurons), and finally, iv) it can utilize GPUs for further increased
performance.

5.2. Data Processing

The flight data parameters used were normalized between 0 and 1. The sigmoid function was used as an
activation function over all the gates and inputs/outputs. The ArcTan activation function was tested on the
data, however it gave distorted results and sigmoid function provided significantly better performance.

5.3. Machine Specifications

The algorithm was implemented in Python using MPI for Python [57] and was run on the University of
North Dakota’s high performance computing cluster. The cluster is running the Red Hat Enterprise Linux
(RHEL) 7.2 operating system with 31 nodes, each with 8 cores for 248 in total, 64GBs RAM per node for
a total 1948 GB, and it is using InfiniBand 10 gigabit (GB) for interconnect. The same number of epochs
(575) were used before to train the LSTM Network as in previous work for comparison purposes.

5.4. Using GPUs for LSTM RNN Training

The neural networks’ weight matrices for a LSTM cell are repeated at a given time-step at a given layer.
Thus, the computational cost increases if the output if these gates is computed separately, one gate at a
time, as the data input/output consumes CPU cycles. This case is also obvious if a GPU is utilized for high
performance computing as the cost of sending data forward and backward between the CPU (host) and GPU
(device). For that, the input of a cell at a given layer is dot multiplied by a matrix that holds all of the gates

17

Algorithm 1 Ant Colony Algorithm
1: global variables
2: . A user specified number of ants.
3: N ANTS
4: . A user specified maximum number of pheromones.
5: N PHEROMONES
6: . The number of input parameters (15) + 1 for bias.
7: N INPUTS← 16
8: end global variables
9: function generate paths

10: paths = new Paths
11: . path arrays all initialized to 0. 1 indicates a connection.
12: paths.input = array[16]
13: paths.m1 = array[16][16]
14: paths.m2 = array[16]
15: for ant← 1 . . . n ants do
16: . select input path probabilistically according to pheromones
17: pheromone sum← sum(pheromones.input)
18: r ← uniform random(0, pheromone sum− 1)
19: input path← 0
20: while r > 0 do:
21: if r < pheromones.input[input path] then
22: paths.input paths[input path]← 1
23: break
24: else
25: r ← r − pheromones.input[input path]
26: input path← input path + 1

27: . select hidden path probabilistically according to pheromones
28: pheromone sum← sum(pheromones.m1[input path])
29: r ← uniform random(0, pheromone sum− 1)
30: hidden path← 0
31: while r > 0 do
32: if r < pheromones.m1[input path][hidden path] then
33: paths.m1 paths[input path][hidden path]← 1
34: paths.m2 paths[hidden path]← 1
35: break
36: else
37: r ← r − pheromones.m1[input path][hidden path]
38: hidden path← hidden path + 1

return paths

39: function update pheromones(pheromones, paths)
40: for i← 1 . . . paths.input.length do
41: if paths.input[i] = 1 then
42: pheromones.input[i]←

min(pheromones.input[i] ∗ 1.15,MAX PHEROMONE)

43: for i← 1 . . . paths.m1.length do
44: for j ← 1 . . . paths.m1[i].length do
45: if paths.m1[i][j] = 1 then
46: pheromones.m1[i][j]←

min(pheromones.m1[i][j] ∗ 1.15,MAX PHEROMONE)

m
47: procedure Master
48: . pheromones all initialized to 1
49: pheromones = new Pheromones
50: pheromones.input← array[16]
51: pheromones.m1← array[16][16]
52: pheromones.m2← array[16]
53: population = List()

18

54: repeat
55: worker,message← get next message()
56: if message is request paths then return generate paths()
57: else if message is report fitness then
58: fitness, paths← message.get arguments()
59: rank ← population.inorder insert({fitness, paths})
60: if rank = 0 then
61: update pheromones(pheromones, paths)

62: until finished
63: procedure Worker
64: repeat
65: paths← master.request paths()
66: fitness← LSTM RNN(paths).backpropagate()
67: master.report fitness(fitness, paths)
68: until finished

weights concatenated one after the other. Then, the outputs; g Equation 5, i Equation 2, f Equation 3 and,
o Equation 4, can be extracted from the dot product output matrix. Equation 9 is an example of combining
(concatenating) the weights matrices for the LSTM cells’ gates of level one in Architecture I. By this, all
weights are transferred between the CPU and the GPU as one data structure, which would theoretically
boost the performance.

These measures were followed when using the Theano library for GPU computing to manage the GPU
threads, blocks and grids as well as the data transfer between the CPU and GPU. However, the performance
was slower when compared to the pure CPU version. For Architecture I as an example, one iteration through
the network during the learning process, it took the GPU version more than twenty minutes while it took
slightly more than two minutes for the pure CPU version.

A further effort was made to overcome the data transfer penalty between the CPU and the GPU. The
whole input data set was sent to the GPU as one data structure to avoid the data transfer through the
iterations at every time series in the data and to perform those iterations on the GPU. Unfortunately, this
also did not help with the performance. Ultimately, a conclusion was reached that the subject matrices are
not large enough to overcome the data transfer overhead. Further study is required to determine if it is
possible to achieve good performance for these types of LSTM RNNs on GPUs.

wg1,1 wg1,2 wg1,3 . . . wg1,16
...

...
...

. . .
...

wg16,1 wg16,2 wg16,3 . . . wg16,16
wi1,1 wi1,2 wi1,3 . . . wi1,16

...
...

...
. . .

...
wi16,1 wi16,2 wi16,3 . . . wi16,16
wf1,1 wf1,2 wf1,3 . . . wf1,16

...
...

...
. . .

...
wf16,1 wf16,2 wf16,3 . . . wf16,16
wo1,1 wo1,2 wg1,3 . . . wo1,16

...
...

...
. . .

...
wo16,1 wo16,2 wo16,3 . . . wo16,16



⊙

x11
x12
x13

...
x16

 =



outg1
...

outg16
outi1

...
outi16
outf1

...
outf16
outo1

...
outo16



(9)

6. Results

6.1. Previous Training Results

Training process results from the original three architectures are shown in Table 3. These results are
directly proportional to the testing results as will be shown in the results section. The errors shown are mean
squared error.

19

Table 3: Previous Training Results
Prediction Error

1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.000154 0.000398 0.000972 0.001843
Architecture II 0.001239 0.001516 0.001962 0.002870
Architecture III 0.000133 0.000409 0.000979 0.001717

(a) Cost Plots @ 1 SEC (b) Cost Plots @ 5 SEC

(c) Cost Plots @ 10 SEC (d) Cost Plots @ 20 SEC

Figure 11: Mean squared error during the training process for the three architectures predicting vibration in 1, 5, 10, and 20
future sec.

6.2. Cost Function

Mean squared error was used to train the neural networks as it provides a smoother optimization surface
for backpropagation than mean average error. The cost function output for predicting 1 sec, 5 sec, 10 sec
and, 20 sec is shown in Figures 11a, 11b, 11c and, 11d respectively. Results are shown in logarithmic scale.

6.3. Previous Architecture Results

Mean Squared Error (MSE) (shown in Equation 10) was used as an error measure to train the three
architectures, which resulted in values shown in Table 4. Mean Absolute Error (MAE) (shown in Equation 11)
was used as a final measure of accuracy for the three architectures, with results shown in Table 5. As the
parameters were normalized between 0 and 1, the MAE is also the percentage error.

Error =
0.5 ×

∑
(Actual V ib− Predicted V ib)2

Testing Seconds
(10)

Error =

∑
[ABS(Actual V ib− Predicted V ib)]

Testing Seconds
(11)

20

Table 4: Previous Testing Process Mean Squared Error
Prediction Error

1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.000792 0.001165 0.002926 0.010427
Architecture II 0.010311 0.009708 0.009056 0.012560
Architecture III 0.000838 0.002386 0.004780 0.041417

Table 5: Previous Testing Process Mean Absolute Error
Prediction Error

1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.028407 0.033048 0.055124 0.101991
Architecture II 0.098357 0.097588 0.096054 0.112320
Architecture III 0.027621 0.048056 0.070360 0.202609

Figures 12, and Figures 13b, 13d, 13f present the predictions for all the test flights condensed on the
same plot. The time shown on the x-axis is the total time for all the test flights. Each flight ends when the
vibration reaches the max critical value (normalized to 1) and then the next flight in the test set begins.
Figures 14 provides an uncompressed example of Architecture I and Architecture III predicting vibration 5,
10 and, 20 seconds in the future over a single flight from the testing data.

6.3.1. Results of Architecture I

The results of this architecture, shown in Table 4, came out to be the best results regarding the overall
accuracy of the vibration prediction. There is more misalignment between the actual and calculated vibration
values as predictions are made further in the future, as shown in Figures 12a, 12c, 12e, however this is to be
expected as it is more challenging to predict further in the future. Also, it can be seen that the prediction of
higher peaks is more accurate than the prediction of lower peaks, as if the neural network is tending to learn
more about the max critical vibration value, which is favorable for this project.

To test this architecture further, the architecture was trained and tested on the same data set but for
predicting vibration just one second in future. As expected, the results showed improvement in mean absolute
error over all the test flights by about 0.5% compared to the results of the same architecture predicting five
seconds in the future. A plot of the test data prediction for this experiment is shown in Figure 13a. Also,
for comparison, a plot for the same flights plotted in Figure 14 is shown in Figure 13g.

6.3.2. Results of Architecture II

The results of this architecture in Table 4 came out to be the least successful in vibration prediction.
While it managed to predict much of the vibration, its performance was weak at the peaks (either low or
high) compared to the other architectures, as shown in Figures 12d, 12d, 12d. However, it is also worth
mentioning that somehow the lower peaks were better at some positions on the curve of this architecture,
compared to the other architectures. A potential reason for the poor performance of this architecture is due
to using the average of values from the LSTM second layer output, the other two architectures can weight
the values from the LSTM second layer output for more accuracy.

6.3.3. Results of Architecture III

This LSTM RNN was one layer deeper and also had 20 seconds memory from the past which was not
available for the other two LSTM RNNs used. Although it was the most computationally expensive and had
the most chance for deeper learning, the results of this architecture were not as good as expected, as shown
in Figure 13. Figures 14b, 14d, 14f provide an uncompressed example of Architecture III predicting vibration
5, 10 and, 20 seconds in the future over a single flight from the testing data. The results of this architecture
in Table 4 show that the prediction accuracy for this architecture was less than the more simple Architecture
I. While this came counter to the benefits of deeper learning, it does opens door for investigating about how
to further tune more complicated LSTM RNNs.

The overall error in Table 4 for the prediction at 20 future seconds was relatively high. Looking at
Figure 13f between time 10,000-15,0000, 20,000-25,000 and 35,000-40,000, it can be seen that the calculated

21

(a) Architecture I Results Plot @ 05 SEC (b) Architecture II Results Plot @ 05 SEC

(c) Architecture I Results Plot @ 10 SEC (d) Architecture II Results Plot @ 10 SEC

(e) Architecture I Results Plot @ 20 SEC (f) Architecture II Results Plot @ 20 SEC

Figure 12: Plotted results for Architectures I and II for 5, 10 and 20 seconds in the future.

22

(a) Architecture I Results Plot @ 1 SEC (all test flight) (b) Architecture III Results Plot @ 05 SEC (all test flight)

(c) Architecture II Results Plot @ 1 SEC (all test flight) (d) Architecture III Results Plot @ 10 SEC (all test flight)

(e) Architecture III Results Plot @ 1 SEC (all test flight) (f) Architecture III Results Plot @ 20 SEC (all test flight)

0 200 400 600 800 1000 1200 1400
time

0.5

0.0

0.5

1.0

Vi
b

(n
or

m
al

iz
ed

)

Calculated Vib
Actual Vib

(g) Architecture I @ 1 SEC (one flight) (h) Architecture III @ 1 SEC (one flight)

Figure 13: Plotted results (cont.).

23

curve got very much higher than the actual vibration curve. This strange behavior is unique as it can be
seen that the calculated vibration would rarely exceed the actual vibration for all the curves plotted for all
the architectures at all scenarios, and it would be for relatively small value if occurred.

This network could potentially gain further improvement if trained for more epochs over the other simpler
architectures since it was deeper. This was tried, giving the neural network about double the number of
training epochs. However, a significant improvement in the prediction was not achieved. Nonetheless, it is
of note that the plots of the cost function of this architecture were not smooth while trained to predict for
20 seconds in the future. This could potentially be a result of under-training or other issues in the training
process.

Initially, the training epochs were fixed at 575 for all the architecture as a standard for performance
comparison. Further, the performance of this architecture (the mean absolute error) was slightly better than
the other architectures when predicting for 1 second in the future. This result supports the believe that this
architecture can perform better if given the chance to train for more epochs.

6.4. ACO Results

As Architecture I gave the most promising results, it was chosen as the initial candidate for the ACO.
The ACO code was run for 1000 iterations with a chosen number of 200 ants. Each run took approximately 4
days. The neural networks were run trained against flights that suffered from the excessive vibration. They
were then evaluated against different set of test flights, which also suffered from the same problem. There
were 28 flights in the training set, with a total of 41,431 seconds of data. There were 29 flights in the testing
set, with a total of 38,126 seconds of data. The networks were allowed to train for 575 epochs to learn and for
the cost function output curve to flatten. The minimum value for the pheromones were 1 and the maximum
was 20. The pheromones increased only when the network was found to give better fitness than the best
fitness in the ACO generated population. The population size was equal to number number of iterations in
the ACO process, i.e., the population size was also 1000.

The best version of Architecture I evolved with ACO showed an improvement of 1.35% for predictions
10 seconds in the future, reducing prediction error from 5.51% to 4.17% compared to the architecture’s
performance before the ACO. Results of the ACO are shown in Figure 15b for Architecture I for a single
test flight and they are compared to the performance of the same architecture also for a single test flight.
Figures 15c, 15a show the results for the all the test flight for the architecture, before and after the ACO.
The plot of the cost function of the training process of the best evolved network is shown in Figure 16.

Returning to an initial question of how the number of the connections in the network affects the sound-
ness of the results, Table 6 shows the top thirty evolved networks with respect to the fitnesses they provide.
The table also shows the total number of connections in both mesh 1 (first set of connections in the gen-
erated mesh) and mesh 2 (second set of connections in the generated mesh), and the total number weights
(connections) in the networks. Comparing these values to the total number of weights in a fully connected
Architecture I type network, as shown in Table 2, it is found that total number of weights were reduced by
42% to 45% in the top 30 networks.

The ACO generated mesh (as defined in Algorithm 1) used to generate this topology is shown in the
matrices in Equations 12 and 13. It is worth stressing that this topology is not the complete LSTM RNN
used in the utilized Architecture I, but rather applies to the individual gates in each cell. Equation 12 is used
for any fully connected process and Equation 13 is used for any data-reduction process (This is discussed in
details in Section 4).

The topology of the design of the networks’ cells are shown in Figures 17 and 18. Figures 17a, 17b,
and 17c show the ACO optimized mesh 1, which were used within the “M1” LSTM cells (see Figure 4) in
the top three evolved LSTM RNNs. Equation 12 represents mesh 1 of the best evolved neural network which
was used to generate Figure 17a.

The evolved networks retained all the elements of mesh 2 , represented by Equation 13, for use in the
“M2” LSTM cells (see Figure 5). Figure 18 is used to show this part of the evolved mesh. For clarity,
Figure 17b shows the differences between the M1 cells before and after ACO optimization. Figure 17a is
simply a LSTM cell “M1” that have its gates’ meshes (shown in Figure 17b, Up) substituted with the ACO
meshes (shown in Figure 17b, Down). “M2” did not change from its original topology as shown in Figure 5
since all the elements in mesh 2 after the optimization remained ones (Equation 13).

24

(a) ART I predicting vibration 5 seconds in the future
for one flight.

(b) ART III predicting vibration 5 seconds in the future
for one flight.

(c) ART I predicting vibration 10 seconds in the future
for one flight.

(d) ART III predicting vibration 10 seconds in the future
for one flight.

(e) ART I predicting vibration 20 seconds in the future
for one flight.

(f) ART III predicting vibration 20 seconds in the future
for one flight.

Figure 14: Architectures I and III predicting vibration for one flight.

25

Table 6: ACO Top Thirty Evolved Networks

No. Fitness Number Number Total Number No. Fitness Number Number Total Number
of M1 of M2 of of M1 of M2 of

Connections Connections Connections Connections Connections Connections

1 0.041723 139 16 11,810 16 0.044603 134 16 11,410
2 0.041927 136 16 11,570 17 0.044680 132 16 12,050
3 0.042549 144 16 12,210 18 0.044719 140 16 11,890
4 0.043000 137 16 11,650 19 0.044838 141 16 11,970
5 0.043134 137 16 11,650 20 0.044922 141 16 11,970
6 0.043399 138 16 11,730 21 0.044949 143 16 12,130
7 0.043434 137 16 11,650 22 0.044982 139 16 11,810
8 0.043456 143 16 12,130 23 0.045013 133 16 11,330
9 0.043806 139 16 11,810 24 0.045117 137 16 11,650
10 0.043986 144 16 12,210 25 0.045240 136 16 11,570
11 0.044109 141 16 11,970 26 0.045302 147 16 12,450
12 0.044261 137 16 11,650 27 0.045306 144 16 12,210
13 0.044362 143 16 12,130 28 0.045363 147 16 12,450
14 0.044483 142 16 12,050 29 0.045367 133 16 11,330
15 0.044493 136 16 11,570 30 0.045397 146 16 12,370

The colored nodes in Figure 17a are the input nodes (first line of nodes) at the Main, Input, Forget,
and Output gates at the “M1” cells (Figure 4). The diamond nodes in Figure 17a are the hidden layer
nodes (second line of nodes) at the Main, Input, Forget, and Output gates at the “M1” cells (Figure 4).
The diamond nodes are also the input nodes at the Main, Input, Forget, and Output gates at the“M2” cells
(Figure 5). The last single node in Figure 18 is the output of the gates in the “M2” cells.

mesh 1 =

i1
i2
i3
i4
i5
i6
i7
i8
i9

i10
i11
i12
i13
i14
i15

bias

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16
0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0
0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0
0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1
1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1
1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1
0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0
0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1
1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1
0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1
1 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0
1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1
0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0
1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0
0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

mesh 2 =

∣∣h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∣∣ (13)

7. Discussion and Future Work

The results have shown that the ACO approach for optimizing the gates within LSTM cells can dramat-
ically reduce the number of connections required, while at the same time improve the predictive ability of
the recurrent neural network. However, as much of the matrix in Equation 12 is sparse, none of the rows of
this matrix had all their elements equal to zero, meaning that none of the inputs ended up being dropped
out (which was a potential means for improving predictions, as discussed in Subsection 3.1.2). This is a
indication that all the chosen parameters actually had a positive contributing influence on the vibration. On
the other hand, it suggests that having additional connections can increase the difficulty of appropriately
training the LSTM RNN, resulting in less predictive ability (as in the case of the original unoptimized LSTM
RNN architectures).

This approach can open the door to further identify the highest contributors to the vibration problem by
examining the number of the connections between the input neurons and the hidden layers, along with the
magnitude of those weights. Furthermore, the combined effect of multiple parameters can also be investigated
by looking at the input neurons connected to a certain hidden layer’s neuron. This would give an idea about
the effect those input neurons, which represents the input parameters, have on the vibration as a final output,
which could aid in discovering actual cause of the vibration events.

This also opens up the potential for significant future work. While the optimized LSTM RNNs did not
drop out any input connections, by increasing the number of flight parameters used as input (even using
all available parameters), the algorithm has the potential to determine which parameters contribute most to

26

(a) Unoptimized: all test flights (b) Unoptimized: one test flights

(c) Optimized: all test flights (d) Optimized: one test flights

Figure 15: Plotted results for predicting ten seconds in the future.

Figure 16: Cost function plot for ACO optimized ART I predicting vibration in 10 future sec

27

F
L
O

W

Input
Input Gate
Forget Gate
Output Gate
Cell-Memory

M
1

Input
Previous Cell Output

(a) ACO Architecture I First Best Fitness Network:
LSRM M1 cell.

ALT

AOA

BPrs

TIT

M

N1

N2

EOP

EOQ

ROL

TAT

WDir

WSpd

Vip

bias

EOT

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16

ALT

AOA

BPrs

TIT

M

N1

N2

EOP

EOQ

ROL

TAT

WDir

WSpd

Vip

bias

EOT

(b) Meshes before (up) and after (down) optimiza-
tion.

28

Alt

H1
H3

H4
H6

H9
H1

0
H1

1
H1

2
H1

4
H0

AO
A

H5
H1

3
H1

5

Ble
ed

Pre
s

H8
H2

TIT
M

H7

N1
N2

EO
P

EO
Q

EO
T

Ro
ll

TA
T

Wi
nd

Dir
Wi

nd
Sp

eed
Vib

b

(a) ACO Architecture I First Best
Fitness Mesh: 155 connections.

Alt

H1
H2

H3
H4

H5
H9

H1
2

H1
3

H1
4

H0

AO
A

H6
H1

0
H1

1

Ble
ed

Pre
s

H1
5

TIT

H8

M
N1

H7

N2
EO

P
EO

Q
EO

T
Ro

ll
TA

T
Wi

nd
Dir

Wi
nd

Sp
eed

Vib
b

(b) ACO Architecture I Second
Best Fitness Mesh: 152 connec-
tions.

Alt

H0
H2

H3
H7

H8
H9

H1
0

H1
3

H1
5

AO
A

H4
H1

1
H1

4
H1

Ble
ed

Pre
s

H5

TIT

H6
H1

2

M
N1

N2
EO

P
EO

Q
EO

T
Ro

ll
TA

T
Wi

nd
Dir

Wi
nd

Sp
eed

Vib
b

(c) ACO Architecture I Third Best
Fitness Mesh: 160 connections.

Figure 17: ACO Architecture I Best Fitness Topologies’ Meshes (Equation 12) for at “M1” (Figure 4) LSTM cells: 1000
Iterations, and 200 Ants.

29

OUT

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15

Figure 18: ACO Architecture I Best Fitness Topology’s mesh (Equation 13) at “M2” (Figure 5) LSTM cells: 1000 Iterations,
and 200 Ants.

the predictive ability, instead of relying on a priori expert knowledge to select parameters. Further, in this
work one mesh of connections was generated and then used in all the LSTM cell gates at all time-steps. The
future work will consider the meshes in the four gates of the LSTM cells at the various LSTM time-steps as
variable and will apply the ACO on each of them simultaneously in every ACO iteration.

Future work will also consider optimizing the LSTM RNN structure. The connections of the structure
shown in Figures 9 and 7 will be subject to ACO process along with the optimization of the connections
within the LSTM cells. This has the potential to make a large step forward in the evolution of the LSTM
RNNs as it will allow for connections between non-adjacent cells, and potentailly even dropping out certain
unused cells and potentailly even full layers from the LSTM RNN.

Lastly, work investigating the tuning of the ACO hyperparameters can be done to improve how quickly the
algorithm converges to optimal LSTM RNN structures. For example, modifying the number of ants, reducing
pheromones on paths from LSTM RNNs with lower fitness, and periodically refreshing the pheromones levels
by decreasing all of its levels by certain amount.

Acknowledgments

We very much appreciate the help, patience and support of Mr. Aaron Bergstrom of the University of North Dakota’s
Computational Research Center (CRC). This work used the high performance computing clusters at the CRC, where Mr.
Bergstrom (the North Dakota University System HPC Specialist, UND Big Data Project Coordinator, and UND Campus
Champion) offered his time and effort to much facilitate it. It was a pleasure working with him.

References

References

[1] A. V. Srinivasan, The American Society of Mechanical Engineers 1997,

[2] Hochreiter, S.; Schmidhuber, J. Neural computation 1997, 9, 1735–1780.

[3] Di Persio, L.; Honchar, O.

[4] S. Hochrieter & J. Schmidhuber, Neural Computation 9(8):1735-1780 1997,

[5] Felder, M.; Kaifel, A.; Graves, A. Wind power prediction using mixture density recurrent neural networks. Poster Presen-
tation gehalten auf der European Wind Energy Conference. 2010.

[6] Choi, E.; Bahadori, M. T.; Sun, J. arXiv preprint arXiv:1511.05942 2015,

[7] Maknickienė, N.; Maknickas, A. Application of neural network for forecasting of exchange rates and forex trading. The 7th
international scientific conference” Business and Management. 2012; pp 10–11.

[8] Yao, X. Proceedings of the IEEE 1999, 87, 1423–1447.

[9] Siebel, N. T.; Botel, J.; Sommer, G. Efficient neural network pruning during neuro-evolution. Neural Networks, 2009.
IJCNN 2009. International Joint Conference on. 2009; pp 2920–2927.

[10] Schmidhuber, J. Neural networks 2015, 61, 85–117.

[11] Zhang, B.-T.; Muhlenbein, H. Complex systems 1993, 7, 199–220.

[12] Kohl, N. F. 2009,

30

[13] Whiteson, S. Improving reinforcement learning function approximators via neuroevolution. Proceedings of the fourth in-
ternational joint conference on Autonomous agents and multiagent systems. 2005; pp 1386–1386.

[14] Floreano, D.; Dürr, P.; Mattiussi, C. Evolutionary Intelligence 2008, 1, 47–62.

[15] Turner, A. J.; Miller, J. F. Research and Development in Intelligent Systems XXX ; Springer, 2013; pp 213–226.

[16] Desell, T.; Clachar, S.; Higgins, J.; Wild, B. Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization.
European Conference on Evolutionary Computation in Combinatorial Optimization. 2015; pp 86–98.

[17] ElSaid, A.; Wild, B.; Higgins, J.; Desell, T. Using LSTM recurrent neural networks to predict excess vibration events in
aircraft engines. e-Science (e-Science), 2016 IEEE 12th International Conference on. 2016; pp 260–269.

[18] Dorigo, M.; Maniezzo, V.; Colorni, A. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 1996,
26, 29–41.

[19] Dorigo, M.; Gambardella, L. M. IEEE Transactions on evolutionary computation 1997, 1, 53–66.

[20] Bianchi, L.; Gambardella, L. M.; Dorigo, M. An ant colony optimization approach to the probabilistic traveling salesman
problem. International Conference on Parallel Problem Solving from Nature. 2002; pp 883–892.

[21] Manfrin, M.; Birattari, M.; Stützle, T.; Dorigo, M. Parallel ant colony optimization for the traveling salesman problem.
International Workshop on Ant Colony Optimization and Swarm Intelligence. 2006; pp 224–234.

[22] K. Socha, Future Generation Computer Systems 2004, 25–36.

[23] K. Sochaand & M. Dorigo, Journal of Petroleum Science and Engineering, 77(3):375385 2011,

[24] Socha, K. Ant colony optimisation for continuous and mixed-variable domains; VDM Publishing Saarbrücken, 2009.

[25] Bilchev, G.; Parmee, I. Evolutionary Computing 1995, 25–39.

[26] N. Monmarch and G. Venturini and M. Slimane, Future Generation Computer Systems 2000, 16, 937–946.

[27] Dréo, J.; Siarry, P. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima
continuous functions. International Workshop on Ant Algorithms. 2002; pp 216–221.

[28] R. Ashena and J. Moghadasi, European journal of operational research, 185(3):11551173 2008,

[29] Blum, C.; Socha, K. Training feed-forward neural networks with ant colony optimization: An application to pattern
classification. Fifth International Conference on Hybrid Intelligent Systems (HIS’05). 2005; pp 6–pp.

[30] J.-B. Li and Y.-K. Chung, In Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005
IEEE/PES, pages 15. IEEE 2005,

[31] M. Unal, M. Onat, and A. Bal, In Signal Processing and Communications Applications Conference (SIU), 2010 IEEE
18th, pages 471474. IEEE 2010,

[32] Moubray, J. Reliability-centered maintenance; Industrial Press Inc., 1997.

[33] Chatfield, C. The analysis of time series: an introduction; CRC press, 2016.

[34] Boukary, N. A. A COMPARISON OF TIME SERIES FORECASTING LEARNING ALGORITHMS ON THE TASK OF
PREDICTING EVENT TIMING. Ph.D. thesis, Royal Military College of Canada, 2016.

[35] Goel, H.; Melnyk, I.; Oza, N.; Matthews, B.; Banerjee, A.

[36] Nairac, A.; Townsend, N.; Carr, R.; King, S.; Cowley, P.; Tarassenko, L. Integrated Computer-Aided Engineering 1999, 6,
53–66.

[37] Clifton, D. A.; Bannister, P. R.; Tarassenko, L. A framework for novelty detection in jet engine vibration data. Key
engineering materials. 2007; pp 305–310.

[38] Gers, F. A.; Schraudolph, N. N.; Schmidhuber, J. Journal of machine learning research 2002, 3, 115–143.

[39] Desell, T.; Clachar, S.; Higgins, J.; Wild, B. In Parallel Problem Solving from Nature - PPSN XIII ; Bartz-Beielstein, T.,
Branke, J., Filipič, B., Smith, J., Eds.; Lecture Notes in Computer Science; Springer International Publishing, 2014; Vol.
8672; pp 771–781.

[40] Kennedy, J. Encyclopedia of machine learning; Springer, 2011; pp 760–766.

[41] Poli, R.; Kennedy, J.; Blackwell, T. Swarm intelligence 2007, 1, 33–57.

31

[42] Storn, R.; Price, K. Journal of global optimization 1997, 11, 341–359.

[43] Blum, C.; Li, X. Swarm Intelligence; Springer, 2008; pp 43–85.

[44] Dorigo, M.; Birattari, M.; Stutzle, T. IEEE computational intelligence magazine 2006, 1, 28–39.

[45] Dorigo, M.; Stützle, T. Handbook of metaheuristics; Springer, 2010; pp 227–263.

[46] M. Dorigo and L. M. Gambardella, BioSystems, 43(2):7381 1997,

[47] Felix A. Gers, Jrgen Schmidhuber, and Fred Cummins, Neural Computation, Vol. 12, No. 10 , Pages 2451-2471 2000,

[48] Gers, F. A.; Eck, D.; Schmidhuber, J. Neural Nets WIRN Vietri-01 ; Springer, 2002; pp 193–200.

[49] Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term
recurrent convolutional networks for visual recognition and description. Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015; pp 2625–2634.

[50] Chao, L.; Tao, J.; Yang, M.; Li, Y.; Wen, Z. arXiv preprint arXiv:1603.08321 2016,

[51] Eck, D.; Schmidhuber, J. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale 2002, 103 .

[52] Stanley, K. O.; Miikkulainen, R. Evolutionary computation 2002, 10, 99–127.

[53] Annunziato, M.; Lucchetti, M.; Pizzuti, S. Proc. EUNITE02, Albufeira, Portugal 2002,

[54] Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P. Journal of Machine Learning Research 2009, 10, 1–40.

[55] Kandel, E. R.; Schwartz, J. H.; Jessell, T. M.; Siegelbaum, S. A.; Hudspeth, A. J. Principles of neural science; McGraw-hill
New York, 2000; Vol. 4.

[56] Lewis, J. P. Fast normalized cross-correlation. Vision interface. 1995; pp 120–123.

[57] Dalćın, L.; Paz, R.; Storti, M.; DEĺıa, J. Journal of Parallel and Distributed Computing 2008, 68, 655–662.

[58] Szymanski, B.; Desell, T.; Varela, C. The Effect of Heterogeneity on Asynchronous Panmictic Genetic Search. Proc. of the
Seventh International Conference on Parallel Processing and Applied Mathematics (PPAM’2007). Gdansk, Poland, 2007.

[59] Desell, T.; Anderson, D.; Magdon-Ismail, M.; Heidi Newberg, B. S.; Varela, C. An Analysis of Massively Distributed
Evolutionary Algorithms. The 2010 IEEE congress on evolutionary computation (IEEE CEC 2010). Barcelona, Spain,
2010.

[60] Theano Development Team, arXiv e-prints 2016, abs/1605.02688 .

32

	1 Introduction
	1.1 Previous work
	1.2 Ant Colony Optimization
	1.3 Study's Contribution

	2 Related Work
	2.1 Turbine Engine Vibration
	2.2 Time Series Data Prediction
	2.3 Time Series Prediction in Aviation
	2.3.1 RNN for Predicting Flight Parameters
	2.3.2 LSTM RNN

	2.4 Evolutionary Optimization Methods

	3 Methodology
	3.1 Experimental Data
	3.1.1 Data Correlation Parameter Selection
	3.1.2 Aerodynamics/Turbo-machinery Parameter Selection

	3.2 Recurrent Neural Network Design
	3.2.1 LSTM RNN Forward Propagation Equations

	3.3 LSTM RNN Architectures
	3.4 Forward Propagation

	4 Evolving LSTM RNN Cells using Ant Colony Optimization
	4.1 Distributed ACO Optimization

	5 Implementation
	5.1 Programming Language
	5.2 Data Processing
	5.3 Machine Specifications
	5.4 Using GPUs for LSTM RNN Training

	6 Results
	6.1 Previous Training Results
	6.2 Cost Function
	6.3 Previous Architecture Results
	6.3.1 Results of Architecture I
	6.3.2 Results of Architecture II
	6.3.3 Results of Architecture III

	6.4 ACO Results

	7 Discussion and Future Work

