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Online Distributed Fuzzy Modeling of Nonlinear PDE Systems:
Computation based on Adaptive Algorithms
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Dragiĉevićb

aDepartment of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd., Shiraz, Iran.
bEnergy Technology Department, Aalborg University, 9220 Aalborg East, Denmark.

Abstract

With the emergence of novel model-based controllers for partial differential equation (PDE)
systems, identifying the mathematical model of PDE systems has become a promising and com-
plicated research topic. This paper suggests a new method to identify an adaptive Takagi-Sugeno
(TS) fuzzy PDE model for nonlinear multi-input multi-output (MIMO) first-order PDE systems.
The proposed approach is performed online based on the measured input and output data of the
nonlinear PDE systems. Furthermore, the identification process will be obtained for the cases
that the noise is either white or colored. For the case of white noise, a nonlinear recursive least
square (NRLS) approach is applied to identify the nonlinear system. On the other hand, when
the colored noise is exerted to the nonlinear PDE system, the fuzzy PDE model of the nonlinear
PDE system and also nonlinear colored noise are identified based on the nonlinear extended ma-
trix methods (NEMM). Moreover, the problem of identification for both colored and white noise
cases is investigated when premise variables of membership functions are known or unknown.
Finally, in order to illustrate the effectiveness and merits of the proposed methods, the identifi-
cation method is applied to a practical nonisothermal Plug-Flow reactor (PFR) and a hyperbolic
PDE system with Ltka-Volterra type applications. As it is expected, the evolutions of the error
between the state variables for the obtained TS fuzzy PDE model and the output data converge to
the zero in the steady-state conditions. Thus one concludes, the proposed identification algorithm
can accurately adjust both consequents and antecedents parameters of TS fuzzy PDE model.

Keywords: Nonlinear system identification, Nonlinear first-order partial differential equation
(PDE) system, Takagi Sugeno (TS) fuzzy model, Nonlinear least square (NLS), Parameter
estimation
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Acronyms
ANN Artificial neural network
EKF Extended Kalman filter
ELS Extended least square
EMM Extended matrix method
ERLS Extended recursive least square
GKCA Gustafsone Kelssel clustering algorithm
LS Least square
LSE Least square estimation
MIMO Multiple input multiple output
NEMM Nonlinear extended matrix method
NLS Nonlinear least square
NRLS Nonlinear recursive least square
PDE Partial differential equation
PFR Plug-flow reactor
RLS Recursive least square
TS Takagi Sugeno

Nomenclature
x Position
t Time
y j(x, t) j-th system input
y(x, t) System input
zi(x, t) i-th system output
z(x, t) System output
F l

ji Fuzzy sets
µl

ji Grade of membership functions
wl

i(y(x, t)) Degree of activation of each rule
hl

i(y(x, t)) Weighting functions
σl

ji Adaptive parameters in antecedent parts of fuzzy rules
e(x, t) Measurement white noise
u(x, t) Adaptive parameters
Re Covariance matrix
û(x, t) Estimation of adaptive parameters
P Covariance of the estimation
K Kalman gain
ν(x, t) Measurement colored noise
al

ji Set of adaptive parameters
bl

ji Set of adaptive parameters
cl

ji Set of adaptive parameters
dl

ji Set of adaptive parameters
Γ(u, x, t) Nonlinear function
g(u, x, t) Nonlinear function
ϕ(u, x, t) Jacobian matrix
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1. Introduction5

A significant number of physical phenomena in the real-world such as industrial process and
biological systems inherently depend on spatially position as well as time (i.e. their behaviors
are distributed in space) (1) (2). Whereas their dynamics depend on more than one independent
variable thus they are well-known as a partial differential equation (PDE) systems (3) (4). Based
on spatially distributed points, PDE systems are classified into three categories: (1) hyperbolic10

(5) (2) parabolic (4) (3) elliptic (6). Consequently, due to infinite dimensional and spatially
distributed behaviors of PDE systems, more effort is needed to design the controller, analyze the
stability and also identify the PDE systems. Moreover, it is generally more difficult to directly
apply the existing lumped parameter systems techniques to the distributed ones (7).

Recently, a significant number of research has been devoted to the problem of stability and15

stabilization of nonlinear PDE systems based on TS fuzzy PDE model (5) (8) (9). TS fuzzy PDE
modeling of parabolic PDE systems is presented in (10) (11) (12) (13) and the hyperbolic ones
is investigated in (14) (7) (2). In the literature of PDE systems, it is assumed that the nonlinear
system equations exist and subsequently, the exact TS fuzzy model has been obtained based on
sector nonlinearity approach (7) (15).20

According to the control and system engineering points of view, the fundamental part of a
study is achieving an accurate model for the existing linear or nonlinear physical system (16).
Since enough information for obtaining a suitable mathematical model does not exist, the exact
mathematical dynamic representation of real-world systems is seldom available (17). On the
other hand, in real applications, we encounter with colored noise instead of white noise. Sub-25

sequently, the effect of the colored noise is as critical as the un-modeled dynamic in the system
identification and modeling (18). Hence, an important problem is to model and identify the linear
or nonlinear system based on input-output data. The identified model must describe the physical
behavior of the original plant with an adequate level of accuracy (19) (20).

Most of the real-world systems are inherently nonlinear (21) (22). Takagi-Sugeno (TS) fuzzy30

models provide a powerful and systematic framework to analyze the stability and synthesize the
controller for nonlinear systems (23) (19). Moreover, it can describe the complicated smooth
nonlinear systems in the convex structure (24) (25) (26). Thus, lots of attention has been focused
on the TS fuzzy systems during the last two decades (27) (28) (23). A TS fuzzy model represents
the nonlinear system via some local linear subsystems that will be introduced in fuzzy IF-THEN35

rules structure. Then, by fuzzy blending of the local linear subsystems, the overall fuzzy model
will be obtained. Such models have the capability to approximate a wide range of nonlinear
systems (29). There exist two approaches to obtain a TS fuzzy model. The first and more
attractive one is based upon the identification using validation input-output data when the system
is unknown and the second one is derived from the given nonlinear system equations (29). This40

paper focuses on the first approach which involves a technique to find optimal values of (1)
premise and (2) consequent parameters sets (30). The premise parameters set constructs the
characteristics of fuzzy membership functions and the consequent one contains the coefficients
of the local linear subsystems (19). It is generally difficult to quantify these parameters based on
an expert man’s validation knowledge. Hence, the parameters will be usually approximated based45

on the least squares estimate (LSE) (31), recursive least square (RLS), Kalman filter, extended
Kalman filter (EKF) (25) and data-driven approach (32).

Numerous researches have argued about the identification of linear and nonlinear ODE sys-
tems. Ref. (18) has suggested a method to estimate the states and parameters of the linear
dynamic system which is affected by the colored noise. Furthermore, it considers the minimum50
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discrepancy measure criterion to model the colored noise. However, the problem of identify-
ing nonlinear system has not been addressed in Ref. (18). In addition, if the sampling times
get lower or sampling frequencies get higher, then due to the computational time, the approach
(18) cannot be applicable. Thus, constructing a fast computational algorithm is necessary. In
(33), the extended recursive least square (ERLS) algorithm has been presented to estimate the55

parameters of discrete-time nonlinear stochastic systems. Based on the ERLS algorithm in (33),
the consistency of the parameters has been guaranteed without any restrictive conditions such
as (1) the persistent excitation condition (2) the noise condition and (3) the variance functions
condition. However, the identification algorithm (33) is only valid for a class of nonlinear sys-
tems called polynomial systems. Due to the linearization processes, the presented algorithms60

(18) and (33) identify the nonlinear system in a small vicinity of operating point or equilibrium
point. Whereas TS fuzzy models create a powerful algorithm to represent the nonlinear systems,
respectable amount of studies have been focused on TS fuzzy modeling of nonlinear ODE sys-
tems based on input-output data (19). Recently, several approaches are presented to identify the
TS fuzzy model of a nonlinear system such as: genetic algorithm (34), artificial neural networks65

(ANN) (32), gravitational search-based hyper-plane clustering algorithm (26), self-organizing
migration algorithm (35) (36), least square (LS) algorithm (30) and EKF (25). The propose of
Ref. (34) is to present a new encoding scheme for identifying the TS fuzzy model by the non-
dominated strong genetic algorithm. In addition, identification of multiple input multiple output
(MIMO) systems based on MIMO TS fuzzy model is presented in (35) (37). In (38), the Kalman70

filter is utilized to design a state estimator for each local model of the fuzzy system. Then,
the states of the overall time-varying discrete-time system are estimated by aggregating the lo-
cal models. A small number of researches have been focused on the problem of identifying TS
fuzzy model-based on the Kalman filters. Ref. (39) uses the Kalman filter and Gustafsone Kessel
clustering algorithm (GKCA) to update the information of the consequent and antecedent parts,75

respectively. In other words, the parameters and structure of the fuzzy model are identified in
two separate steps. Thus, the accuracy of the obtained TS fuzzy model is reduced significantly.
Refs. (40) (38) use EKF to adjust the parameters of the TS fuzzy model. In Refs. (40) (38),
the structure of the membership functions is assumed to be triangular. However, because of the
complexity of the learning algorithm, the efficiency and the applicability of the approaches (40)80

(38) for other types of membership functions are reduced. Ref. (25) also identifies the TS fuzzy
model by utilizing the EKF algorithm. The method presented in Ref. (25) is simpler than the ones
(40) (38). In addition, in the situation that the membership functions are overlapped by pairs, the
approach (25) is not applicable. Ref. (41) employs the EKF to approximate the parameters of
the antecedent and consequent parts of TS Type-2 fuzzy systems. In addition, the high-speed85

convergence and desirable accuracy of the learning algorithm in comparison with the PSO algo-
rithm are improved significantly (41). However, according to the best knowledge of the authors,
the references (25) and (41) have some main drawbacks. First, the problem of identifying the
system in the presence of colored-noise has not been addressed in the literature of identifying TS
fuzzy model-based on KF. Second, as we mentioned previously, large numbers of phenomena90

are described by PDE systems. The presented approaches are not capable to identify TS fuzzy
model of such systems. Thus, it is essential to construct a symmetric approach to identify the
TS fuzzy model of PDE systems. To the best knowledge of the authors, the identification of TS
PDE fuzzy model of nonlinear PDE systems based on input-output data has not been addressed
yet, which is the main contribution of this paper.95

This paper presents a novel approach for online adaptive TS fuzzy PDE modeling of non-
linear MIMO first-order PDE systems. The proposed identification algorithm investigates the
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cases that the system is affected by the white noise or the colored one. The important feature of
the proposed approach is adjusting the antecedent and consequence parts of the TS fuzzy PDE
model of nonlinear PDE system without limiting the size of the input-output data. To cope with100

these difficulties, the authors create a suitable structure to identify the nonlinear PDE system with
NRLS and NEMM approaches. Generally, the main contributions of the proposed approach can
be classified as follows:

• Identifying the nonlinear PDE systems based on input-output data

• For the cases that the colored noise affectes the nonlinear PDE system, not only the TS105

PDE fuzzy model of the nonlinear PDE system is identified but also the TS fuzzy model of
the colored noise is identified.

• The TS fuzzy PDE model is defined in a suitable structure such that deploying the NRLS
and NEMM approaches will be possible.

To illustrate the efficiency of these key ideas, a practical PFR system and a hyperbolic PDE110

system with Lotka-Volterra type are considered. The identification is obtained for two cases: the
premise variables in membership functions are known or unknown. The results will be indicated
that the nonlinear first-order PDE system can be suitably approximated by the obtained TS fuzzy
PDE first-order model. Moreover, in the case that the measurement colored noise is presented,
the measurement colored noise dynamic will be correctly approximated by the TS fuzzy PDE115

model.
The remainder of the paper is organized as follows. In Section 2, the problem formulation

regarding MIMO TS fuzzy PDE models is reviewed. Section 3 focusses on two methods. The
first one investigates the nonlinear least square (NLS) method and the second one studies the ex-
tended matrix method (EMM). In Section 4, TS fuzzy PDE modeling of nonlinear PDE systems120

in the presence of white and colored measurement noise are discussed. Then in Section 5, the
simulation results are presented to identify the nonisothermal PFR based on the identification
methods. Finally, the conclusions will close the paper in Section 6.

2. Problem formulation

TS fuzzy models are known as universal approximators. Thus, any smooth nonlinear system125

can be approximated via a TS fuzzy model with any desired degree of accuracy (30) (29). The TS
fuzzy model has been widely used to analyze and synthesize the nonlinear ODE or PDE systems.
Furthermore, it is suitable for designing fuzzy ODE or PDE controllers (42) (43) (44). Therefore,
fuzzy modeling and identification of nonlinear PDE processes are very essential. In this Section,
a TS fuzzy MIMO first-order PDE model is presented which will be identified in Section 4.130

The nonlinear first-order PDE system can be represented with the following discrete-time linear
MIMO first-order PDE rules.

Rule l for output i
IF y1(x, t) is F l

1i and · · · and yn(x, t) is F l
ni,

THEN zl
i(x, t) =

n∑

j=1

al
ji
δy j(x, t)
δx

+ bl
jiy j(x, t) + cl

jixy j(x, t) + dl
jix

2y j(x, t) + · · · (1)

where l ∈ {1, · · · ,Ri}, j ∈ {1, · · · , n} and i ∈ {1, · · · , q} indices indicate the l-th plant rule, j-th
system input (y j(x, t)) and i-th system output (zi(x, t)), respectively. F l

ji are fuzzy sets. al
ji, bl

ji,135
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cl
ji, dl

ji and · · · are the set of adaptive parameters in the consequent parts of the fuzzy rules, which
will be identified. x and t denote the current sampling position and time, respectively.

The fuzzy representation (1) is constructed in a multiple-input and multiple-output structure.
Each output of the (1) is modeled with different numbers of fuzzy rules. This representation not
only reduces the number of fuzzy rules but also facilitates the modelling procedure by decreasing140

the number of model parameters. Furthermore, xs, s ∈ {1, 2, · · · } are achieved by Taylor-series
expansion of the nonlinear spatially distributed elements in i-th output of the system. Subse-
quently, if s increases then the identified first-order PDE model is more reliable.

By aggregating the set of rules (1) and applying singleton fuzzifier, product inference engine
and center average defuzzifier, the overall TS fuzzy MIMO first-order PDE model for output
zi(x, t) is expressed as follows

zi(x, t) =
Ri∑

l=1
hl

i(y(x, t))
{∑n

j=1 al
ji
∂y j(x,t)
∂x + bl

jiy j(x, t)

+cl
jixy j(x, t) + dl

jix
2y j(x, t) + · · ·

} (2)

where y(x, t) = [y1(x, t) y2(x, t) · · · yn(x, t)]T , and

wl
i(y(x, t)) =

n∏
j=1
µl

ji(y j(x, t), σl
ji)

hl
i(y(x, t)) = wl

i(y(x,t))
Ri∑
s=1

ws
i (y(x,t))

(3)

where µl
ji(y j(x, t), σl

ji) are the grade of membership functions. wl
i(y(x, t)) are the degree of acti-

vation of each rule, and hl
i(y(x, t)) are the weighting functions. Furthermore, σl

ji are the adaptive145

parameters in antecedent parts of fuzzy rules which will be determined with estimation algo-
rithms to obtain a more efficient TS fuzzy first-order PDE model.

3. Nonlinear least square and extended matrix method

Rudolf E. Kalman developed the Kalman filter that is defined as a linear combination of
measurements (45). It is well-known as an optimal linear filter and also, it is the best recursive150

state estimator for linear systems in the presence of zero-mean white noise in measurements and
model (45). In general, the real systems are inherently nonlinear and complex. For the nonlinear
systems, several kind of nonlinear Kalman filters are formulated to aproximate the solutions,
such as: linearized Kalman filter, EKF (46), uncented Kalman filter and particle filter (45). Here,
we consider the EKF which is defined by linearizing the nonlinear system around each working155

point, and then applying the Kalman filter on the linearized model. The NRLS algorithm for
nonlinear PDE systems will be presented in this Section.

3.1. Nonlinear least square approach
Consider the following nonlinear PDE system

u(x, t + 1) = u(x, t)
z(x, t + 1) = g(u, x, t) + e(x, t) (4)

where e(x, t) indicates the measurement noise. We assume that the measurement noise is white,
with a mean of zero and a covariance of Re = E(e(x, t)eT (x, t)). The vector u(x, t) consists of
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adaptive parameters which will be approximated in each iteration for each spatially distributed
point. g(u, x, t) is the spatial and time-varying nonlinear function of vector u(x, t). z(x, t) indicates
the output of the system. This algorithm must be started with initial conditions. We initialize it
via

û(x, 0) = E
(
u(x, 0)

)
(5)

P(x, 0) = E
((

û(x, 0) − u(x, 0)
)(

û(x, 0) − u(x, 0)
)T ) (6)

and in the next step Jacobian matrix is computed as follows

ϕ(x, t + 1) =
∂g(u, x, t)
∂u

∣∣∣∣∣
u=û(x,t)

(7)

where û(x, t) is the current estimation of u(x, t). Now, the Kalman filter is utilized to estimate
the adaptive parameters of the linearized PDE system (4). The Kalman filter is divided into two
phases: time update (a priori estimation) and measurement update (a posteriori estimation). The
time update algorithm (a priori estimation) for system (4) is

û(x, t + 1|t) = û(x, t|t) (8)

P(x, t + 1|t) = P(x, t|t) (9)

and the measurement update (a posteriori estimation) is

K(x, t + 1) = P(x, t + 1|t)ϕ(x, t + 1)
(
ϕT (x, t + 1)P(x, t + 1|t)ϕ(x, t + 1) + Re

)−1 (10)

û(x, t + 1|t + 1) = û(x, t + 1|t) + K(x, t + 1)
(
z(x, t) − ẑ(x, t)

)
(11)

P(x, t + 1|t + 1) =
(
I − K(x, t + 1)ϕ(x, t + 1)

)
P(x, t + 1|t) (12)

where t + 1|t and t + 1|t + 1 denote a priori and a posteriori estimations, respectively. û indicates
the estimation of u, and P is the covariance of the estimation and K is the Kalman gain. Finally,
the estimated outputs ẑ(x, t + 1) are achieved by

ẑ(x, t + 1) = g
(
û(x, t + 1|t + 1), x, t

)
(13)

The online process presented in (8) to (13) is updating the estimation during time for each spa-
tially distributed point. Then, both estimation error and covariance matrix will be minimized in160

each time iteration.

Remark 1. The following algorithm is presented to adaptively adjust the parameters of the TS
fuzzy PDE model based on the NRLS approach:

1. Initializing the algorithm by utilizing equations (5) and (6)
2. Calculate the Jacobian matrix by considering equation (7)165

3. Deploying equations (8) and (9) for priori estimation of the parameters (TIME UPDATE)
4. Calculating the Kalman gain by utilizing equation (10)
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5. Deploying equations (11) and (12) for posterior estimation of the parameters (MEASURE-
MENT UPDATE)

6. Utilizing the parameter data obtained from step 5 to evaluate the output by equation (13)170

7. If ∥z(x, t) − ẑ(x, t)∥ ≤ ϵ and the identified parameters converge to the constant values
(u(x, t)→ constant), then STOP. Else Go to step 2.

Remark 2. In the proposed approach, it is assumed that the open-loop system is stable. The
identification algorithm is addressed for the open-loop configuration, which is only excited by
the white noise or the colored one. Additionally, step seven of the Remark 1 indicates if the175

true output signals are fitted to the model output signals and the parameters of the fuzzy PDE
model converge to the constant values, then the identified PDE fuzzy model is acceptable and
the algorithm can be stopped. After identifying the parameters, the obtained fuzzy model of PDE
system describes the behavior of the overall system.

Remark 3. State estimators are divided into two categories. The first category is static state es-180

timators (i.e. their dynamic characteristics are unchangeable) and the other one is dynamic ones
(i.e. they have changeable dynamic characteristics). The EKF belongs to the second category.
This algorithm will be converted to the NRLS one for static systems.

3.2. Nonlinear extended matrix method
Consider the following nonlinear PDE system

z(x, t + 1) = g(u1, x, t) + v(x, t) (14)

The unmeasurable input v(x, t) indicates that the measurement noise, which is assumed to be
colored in this subsection (i.e. v(x1, t1) depends on v(x2, t2) for each x1 , x2 or t1 , t2). u1(x, t)
denotes the adaptive parameters of system (14). Moreover, we consider the following nonlinear
PDE model for the colored noise:

v(x, t) = Γ(u2, x, t) + e(x, t) (15)

where e(x, t) is a white noise. u2(x, t) is the adaptive parameters of the error system (15).
Γ(u2, x, t) is a spatial and time-varying nonlinear function of vector u2(x, t), which we want to
identify its fuzzy model besides the fuzzy model of g(u1, x, t). The algorithm presented in (8) -
(12) will be recursively done for the system via colored noise by considering

u(x, t) =
[
u1(x, t)
u2(x, t)

]
, ϕ(x, t) =

[
ϕ1(x, t)
ϕ2(x, t)

]
(16)

where
ϕ1(x, t) =

∂g(u1, x, t)
∂u1

∣∣∣∣∣
u1=û1(x,t)

, ϕ2(x, t) =
∂Γ(u2, x, t)
∂u2

∣∣∣∣∣
u2=û2(x,t)

Thus, we initialize the above algorithm with (5) and (6). Then, based on matrices (16), we
recursively apply the eqs. (8) - (12). Furthermore, the estimation of the output ẑ(x, t) and colored
noise ν̂(x, t), which presented in equation (14) and (15), respectively, are defined as

v̂(x, t) = z(x, t) − ϕT
1 u1(x, t)

ẑ(x, t) = ϕT (x, t)u(x, t)
ê(x, t) = z(x, t) − ẑ(x, t)

(17)

where v̂(x, t) and ê(x, t) are used to determine ϕ(x, t) in (16). Finally, by applying the above185

algorithm, the set of adaptive parameters û(x, t) will be identified and the fuzzy model of the
plant and the error system will be achieved.
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4. Application of the proposed methods to fuzzy PDE modeling of nonlinear PDE systems

Resently, one of the most interesting and efficient applications of LS and EKF is TS fuzzy
modeling of nonlinear ODE systems. The LS algorithm presents an offline approximation (30),190

while the EKF algorithm presents an online one (25). This paper obtains an online fuzzy model
for nonlinear first-order PDE systems, which the identified parameters are modified during the
adaptive process. The mentioned identification is achieved based on NLS in a pesudo-optimal
way (i.e. optimal for linear systems).

4.1. Application of the NLS algorithm to fuzzy PDE modeling of nonlinear PDE systems195

For achieving the goal, first we raise the problem of parameter identification of fuzzy model
(2) by a NLS algorithm. Thus, we must build a nonlinear system like the one presented in (4) by
the existing nonlinear fuzzy model (2) and then applying NLS. We consider

gi(u, x, t) =
Ri∑

l=1
hl

i(y(x, t))
{∑n

j=1 al
ji
∂y j(x,t)
∂x + bl

jiy j(x, t) + cl
jixy j(x, t)

+dl
jix

2y j(x, t) + · · ·
}
=

Ri∑
l=1

hl
i(y(x, t))N l

i (x, t)
(18)

where the parameters σl
ji, al

ji, bl
ji, cl

ji, dl
ji, and etc. are the parameter of the fuzzy model which

we want to estimate. Consider two cases: 1) the membership functions are known, 2) the mem-
bership functions are unknown, which will be investigated in the following subsections.

4.1.1. Case I: The membership functions are known
In this case, we assume that the membership functions are known. The vector of parameters

for each output is obtained as follows

ui(x, t) =
[
a1

1i · · · aRi
ni b1

1i · · · c1
1i · · · dRi

ni · · ·
]T (19)

and the Jacobian matrix is computed as follows

ϕi(x, t + 1) =
[
ϕa1

1i
· · · ϕaRi

ni
ϕb1

1i
· · · ϕc1

1i
· · · ϕdRi

ni
· · · ]T (20)

where
ϕa1

1i
=
∂gi(u,x,t)
∂a1

1i
= h1

i (y(x, t)) ∂y1(x,t)
∂x ,

ϕaRi
ni
=
∂gi(u,x,t)
∂aRi

ni

= hRi
i (y(x, t)) ∂yn(x,t)

∂x ,

ϕb1
1i
=
∂gi(u,x,t)
∂b1

1i
= h1

i (y(x, t))y1(x, t),

ϕc1
1i
=
∂gi(u,x,t)
∂c1

1i
= h1

i (y(x, t))xy1(x, t),

ϕdRi
ni
=
∂gi(u,x,t)
∂dRi

ni

= hRi
i (y(x, t))x2yn(x, t).

200

Remark 4. In case 1, the term gi(u, x, t) yields from the linear combination of parameters which
will be identified i.e. gi(u, x, t) is linear in u. In this case, the NLS algorithm will be reduced
to the LS one. Furthermore, as mentioned above, since the system is linear in each output, the
solution is optimal.

9



4.1.2. Case II: The membership functions are unknown205

In this case, the vector of parameters are

ui(x, t) =
[
σ1

1i · · · σRi
ni a1

1i · · · b1
1i · · · c1

1i · · · dRi
ni · · ·

]T (21)

and the Jacobian matrix is computed as follows

ϕi(x, t + 1) =
[
ϕσ1

1i
· · · ϕ

σ
Ri
ni
ϕa1

1i
· · · ϕb1

1i
· · · ϕc1

1i
· · · ϕdRi

ni
· · · ]T (22)

where
ϕσ1

1i
=
∂gi(u,x,t)
∂σ1

1i

∣∣∣∣∣
ui=ûi(x,t)

=
∂h1

i (y(x,t))
∂σ1

1i
N1

i (x, t)
∣∣∣∣∣
ui=ûi(x,t)

,

ϕ
σ

Ri
ni
=
∂gi(u,x,t)
∂σ

Ri
ni

∣∣∣∣∣
ui=ûi(x,t)

=
∂hRi

i (y(x,t))

∂σ
Ri
ni

NRi
i (x, t)

∣∣∣∣∣
ui=ûi(x,t)

,

ϕa1
1i
=
∂gi(u,x,t)
∂a1

1i

∣∣∣∣∣
ui=ûi(x,t)

= h1
i (y(x, t)) ∂y1(x,t)

∂x

∣∣∣∣∣
ui=ûi(x,t)

,

ϕb1
1i
=
∂gi(u,x,t)
∂b1

1i

∣∣∣∣∣
ui=ûi(x,t)

= h1
i (y(x, t))y1(x, t)

∣∣∣∣∣
ui=ûi(x,t)

,

ϕc1
1i
=
∂gi(u,x,t)
∂c1

1i

∣∣∣∣∣
ui=ûi(x,t)

= h1
i (y(x, t))xy1(x, t)

∣∣∣∣∣
ui=ûi(x,t)

,

ϕdRi
ni
=
∂gi(u,x,t)
∂dRi

ni

∣∣∣∣∣
ui=ûi(x,t)

= hRi
i (y(x, t))x2yn(x, t)

∣∣∣∣∣
ui=ûi(x,t)

.

Furthermore, the derivatives of membership functions from a set of parameters σL
JI (where I, J

and L indicate the particular paramaters of the set σ) are caculated as follows

∂hl
i(y(x, t))

∂σL
JI

=
∂hL

I (y(x, t))

∂σL
JI

=

∂
(
wL

I (y(x, t))/
Ri∑

s=1
ws

i (y(x, t))
)

∂σL
JI

=

∂wL
I (y(x,t))
∂σL

JI

Ri∑
s=1

ws
i (y(x, t)) −

∂
Ri∑
s=1

ws
i (y(x,t))

∂σL
JI

wL
I (y(x, t))

( Ri∑
s=1

ws
i (y(x, t))

)2

=

∂wL
I (y(x,t))
∂σL

JI

(( Ri∑
s=1

ws
i (y(x, t))

) − wL
I (y(x, t))

)

( Ri∑
s=1

ws
i (y(x, t))

)2

=

∂
n∏

j=1
µL

jI (y j(x,t),σL
jI )

∂σL
JI

(( Ri∑
s=1

ws
i (y(x, t))

) − wL
I (y(x, t))

)

( Ri∑
s=1

ws
i (y(x, t))

)2

(23)

Note that, it is necessary to determine the derivative of ∂µL
JI/∂σ

L
JI , which is related to the

type of the MFs µL
JI . It can be calculated if the type of the MF and its expression is pre-defined.

Moreover, it is not essential that the MFs µL
JI are differentiable. The piecewise differentiable ones

are acceptable. It is well-known that the derivative of piecewise MFs cause jump discontinuity.
10



Since the singular points are null thus the sufficient condition to calculate the above derivative is210

that they are piecewise differentiable. From the numerical implementation point of view, we can
consider it as a derivative of the right hand point (or left hand point or average of the left and
right hand points) nearby the discontinous point.

4.2. Application of the NEMM to fuzzy PDE modeling of nonlinear PDE systems
In addition to the NRLS estimation algorithm, several modified recursive schemes are pre-215

sented to identify the output of the nonlinear system and its error dynamic in the presence of
colored noise (18). Some popular kind of these schemes are: extended least square algorithm,
instrumental variable and EMM algorithms (47).

Assume that the colored noise affects the nonlinear PDE model. The proposition of this Sec-
tion is to estimate the adaptive parameters in fuzzy PDE model for approximating the nonlinear220

first-order PDE systems in the presence of colored noise. This fuzzy model consists of two parts:
the first one is to estimate the parameter of the fuzzy model (2) and the second one is to estimate
the fuzzy error model of colored noise. The nonlinear first-order PDE model via the colored
measurement noise will be approximated by the following fuzzy rules:

Rule l for output i: IF y1(x, t) is F l
1i and · · · and yn(x, t) is F l

ni, THEN

zl
i(x, t + 1) = N l

i (u1, x, t) + vi(x, t)

vl
i(x, t + 1) = λl

i(u2, x, t) + ei(x, t)
(24)

where

N l
i (u1, x, t) =

n∑

j=1

al
ji
∂y j(x, t)
∂x

+ bl
jiy j(x, t) + cl

jixy j(x, t) + dl
jix

2y j(x, t) + · · ·

λl
i(u2, x, t) =kl

1i + ml
1ie(x, t) + nl

1ixe(x, t) + ol
1ix

2e(x, t) + · · · + kl
2i

+ ml
2ie(x, t) + nl

2ixv(x, t) + ol
2ix

2v(x, t) + · · ·
and kl

1i, kl
2i, ml

1i, ml
2i, nl

1i, nl
2i, ol

1i, ol
2i and etc. are the adaptive parameters which will be identified

during the estimation algorithm. The overall fuzzy model can be calculated as follows:

zi(x, t + 1) = gi(u1, x, t) + vi(x, t) =
Ri∑

l=1

hl
i(y(x, t))N l

i (x, t) + vi(x, t) (25)

vi(x, t + 1) = Γi(u2, x, t) + ei(x, t) =
Ri∑

l=1

hl
i(y(x, t))Λl

i(x, t) + ei(x, t) (26)

Note that as shown in (24), for each rule we assume that the colored noise share the same fuzzy225

set with the PDE fuzzy model in the premise parts. Thus, the membership functions of output
zi(x, t + 1) are the same as the colored noise membership functions vi(x, t + 1). This scenario can
be also investigated from two points of views (case I. known and case II. unknown membership
functions). For each case, the adaptive parameters ui

1(x, t) and ui
2(x, t) are considered as follows:

4.2.1. Known membership functions230

ui
1(x, t) =

[
a1

1i · · · b1
1i · · · c1

1i · · · dRi
ni · · ·

]T

ui
2(x, t) =

[
kl

1i, m1
1i, · · ·mRi

1i , n
1
1i, · · · nRi

1i , o
1
1i, · · · oRi

1i , · · · , kl
2i,

m1
2i, · · ·mRi

2i , n
1
2i, · · · nRi

2i , o
1
2i, · · · oRi

2i , · · ·
]

(27)

11



4.2.2. Unknown membership functions

ui
1(x, t) =

[
σ1

1i · · · σRi
ni a1

1i · · · b1
1i · · · c1

1i · · · dRi
ni · · ·

]T

ui
2(x, t) =

[
kl

1i, m1
1i, · · ·mRi

1i , n
1
1i, · · · nRi

1i , o
1
1i, · · · oRi

1i , · · · , kl
2i,

m1
2i, · · · mRi

2i , n
1
2i, · · · nRi

2i , o
1
2i, · · · oRi

2i , · · ·
]

(28)

Finally, by utilizing the same procedure as investigated in subsection 3.2, the adaptive pa-
rameters of the fuzzy model will be achieved and the TS fuzzy model of nonlinear first-order
PDE system will be obtained. Moreover, the nonlinear dynamic of colored measurement noise
will be identified by TS PDE fuzzy model based on the proposed algorithm.235

Remark 5. In this subsection (subsection 4.2), we approximate the fuzzy model of the colored
noise. Thus according to (26), the behavior of the colored noise is assumed to be nonlinear. The
proposed approach can be reduced to a more simplest case in which the dynamic of the colored
noise has linear behavior. Under the mentioned conditions, the equation (26) will be described
by a linear system. Subsequently, it will be identified based on NEMM by modifying matrix240

ui
2(x, t) in (27) or (28).

Remark 6. Recall that, the proposed fuzzy representation of nonlinear first-order PDE system
is completely general. It can describe hyperbolic, parabolic and elliptic categories of first order
PDE systems. Furthermore, there was no restriction on the convection matrix. As a result, the
general first-order PDE model will be considered with the proposed kind of fuzzy representation245

in (18) and (25). On the other hand, some of the approaches presented to analyze the stability and
performance of nonlinear PDE systems are based on these restrictions on fuzzy model (7). Hence,
if we want to apply these restrictions, it is enough to choose the convection coefficients in (18)
and (25) as al

ji = a ji. Consequently, based on the method which we select for identification, by
applying some modifications, the parameter of the considered fuzzy model will be approximated.250

Remark 7. The main advantages and disadvantages of the proposed approach are investigated
in this remark.

• The main advantages of the proposed approach can be classified as follows: (1). A novel
framework is proposed to identify the TS fuzzy PDE model-based on input-output data.
(2). In the presence of destructive effects such as colored-noise, the TS fuzzy PDE model255

can be identified. (3). The proposed identification procedure is simple, which is suitable
for the complicated nature of the nonlinear first order hyperbolic PDE systems. (4). For
the first time, the NRLS, and NEMM are extended for identifying PDE systems.

• Apart from advantages of the proposed approach, when the effect of diffusion matrix is
negligible, then the PDE system is described by a first order hyperbolic PDE system. The260

proposed identification procedure is valid for the first order PDE systems. Identifying
the higher order PDE systems needs more efforts which was not investigated through this
manuscript.

Remark 8. By deploying spatially distributed sensing elements, the proposed approach can
be easily implemented in the real-world applications by the micro-electro-mechanical systems265

(MEMS) technology. Due to the recent improvements in the MEMS, the problem of applying
large array of micro-sensors is applicable. Furthermore, the proposed identification approach
prepare the atmosphere for further improvements.

12



Figure 1: Nonisothermal plug-flow reactor.

5. Examples

In this section, the proposed online distributed fuzzy modeling approach is applied on two270

examples: PFR (7) and a nonlinear hyperbolic PDE system with Lotka-Volterra type (2).

5.1. Plug-Flow Reactor

In this section, the proposed approach to identify the nonlinear first-order PDE systems is
applied on nonisothermal PFR (48). In ideal PFR, no back mixing will be occured when the
reactants pass through the vessel (49). Also, all of the reaction mixture elements have a spatial
reaction time which is precisely the same as the reactor residence time. The following chemical
reaction is occurred in this reactor

A −→ b̃B

where b̃ is the stoichiometric coefficient. Thus, as shown in Figure 1, among the spatially dis-
tributed points x, the composition of the reaction mixture will be changed. This reaction is a
kind of endothermic one and the jacket is used to heat the reactor, hence the system is open-loop275

stable and dissipative.
The dynamic model of the reactor will be obtained from the energy and mass balance by

considering the negligible diffusion and constant heat capacity and density (49):

∂T
∂t
= −v

∂T
∂x
− k0∆H
ρpCp

CA · e −E
RT +

4h
ρpCpd

(TJ − T )

∂CA

∂t
= −v

∂CA

∂x
− k0CA · e −E

RT

∂CB

∂t
= −v

∂CB

∂x
+ bk0CA · e −E

RT

(29)

subject to the following initial and boundary conditions

T (0, t) = Tin, CA(0, t) = CAin , CB(0, t) = 0
T (x, 0) = T0(x), CA(x, 0) = CA0 (x), CB(x, 0) = 0

13



Table 1: Model parameters and their definitions for simulation.
Parameters Defnition of each parameter Numerical values
v Velocity of the fluid phase 0.025 m/s
L Length of the reactor 1 m
E Activation energy 11250 cal/mol
k0 Pre-exponential factor 106 s−1

CAin Concentration of the inlet stream 0.02 mol/L
R Ideal gas 1.986 cal/(mol.K)
Tin Temperature of the inlet stream 340K
δ

(
(−∆H)CAin

)
/
(
ρpCpTin

)
0.25

b 4h/ρpCpd 0.2 s−1

µ E/RTin 16.6607
β2 k0e−µ 0.0581
β1 δβ2 0.0145

where CA and CB are the reactant concentration and product one, respectively. T and TJ indicate
the reactor temperature and the jacket temperature, respectively. FB is the partial flow of product
B. Furthermore, ∆H denotes the enthalpy of the reaction. h indicates the wall heat transfer
coefficient. d illustrates the reactor diameter. ρp shows the density, and Cp is specific heat280

capacity. Besides the other parameters, their definitions and their numerical values are given in
Table 1.

From (29) we conclude that, if CA and T are known, then CB will be computed. Hence,
only the two first equations are considered. The dimension-less model will be obtained from the
following change of variables

χ1 ≜ T − Tin

Tin
, χ2 ≜ CA,in −CA

CA,in
, ϕ j ≜

T j − Tin

Tin

The equilibriume porfile of the dimension-less model is computed as follows

χ1e(x) = 0, χ2e(x) = 1 − exp(−β2L
v

x), ϕ je = −−β1

b
exp(−β2L

v
x)

Consider the follwing state transformation and input vector

y(x, t) =
[
χ1(x, t) − χ1e(x)
χ2(x, t) − χ2e(x)

]
, u(x, t) = ϕ j(x, t) − ϕ je(x)

Now, the unforced system in the presence of noise can be rewritten as

∂y1(x, t)
∂t

= −v/L
∂y1(x, t)
∂x

+ β1 f0(y(x, t), x) − by1 + e1(x, t)

∂y2(x, t)
∂t

= −v/L
∂y2(x, t)
∂x

+ β2 f0(y(x, t), x) + e2(x, t)
(30)

where ei(x, t), i ∈ {1, 2} denote the white noises and

f0(y(x, t), x) =
(
1 − χ2e(x)

)[
exp
( µy1(x, t)
1 + y1(x, t)

)
− 1
]
− y2(x, t)

[
exp
( µy1(x, t)
1 + y1(x, t)

)]

14
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Figure 2: (a) First (b) second, output of the system with validation data as input. (c) First (d) second, output of the
estimated fuzzy model.

The behavior of the open-loop nonlinear PDE system (30) is shown in Figures 2 (a) and
(b). This practical application is considered to demonstrate the fuzzy modeling performance of a
first-order PDE system via input-output data. This example is investigated for both cases which285

are introduced in Section 4. Fuzzy modeling of PFR in the presence of white and colored noises
are presented in Sections 5.1.1 and 5.1.2, respectively.

5.1.1. Fuzzy modeling of plug-flow reactor in the presence of white noise
Case I: The membership functions are known
In this case, triangular membership functions as shown in Figure 3, are considered and the290

parameters in the consequence of membership functions are computed according to the NLS
algorithm.

The behaviours of the state variables of the overall fuzzy first-order PDE model are displayed
in Figures 2 (c) and (d). In Figure 2, the x-axis, y-axis, and z-axis indicate the position through
the length of the reactor, the time variable, and the amplitude of the evolutions of the state vari-295

ables, respectively. Comparing Figure 2 (a) with (c), and Figure 2 (b) with (d). For the case the
membership functions are known, It can be observed that the NLS algorithm can accurately iden-
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Figure 3: Antecedents in case I. (a) F1
i, j and F2

i, j (i, j ∈ {1, 2}) denoted by dots and dashed lines, respectively. (b) F3
i, j and

F4
i, j indicated by dots and dashed lines, respectively.
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Figure 4: Final modeling error z(x, t) − ẑ(x, t), (a) first output (b) second output.

tify the TS fuzzy model of nonlinear hyperbolic PDE system. Furthermore, the error dynamic
between the computed fuzzy model and the exact nonlinear model is illustrated in Figures 4 (a)
and (b). The results indicate that the proposed method presented in subsection 4.1.1 can suitably300

estimate the states of the nonlinear PFR system. Precisely, based on the proposed NRLS identi-
fication method for PDE systems, by utilizing the current and the past measurement data in each
sampling period, the system parameters are identified. To do this, in each iteration, the nonlinear
system is linearized around the estimated parameters (See equation (7)). Then, the Kalman gain
K(x, t + 1), which is the set of modifications coefficient, is calculated such that the performance305

index is minimized (See equation (10)). Next, by utilizing the Kalman gain, and calculating the
error between the measured z(x, t) and the estimated ẑ(x, t) outputs, the parameters of the system
û(x, t+1) are estimated and the covariance matrix P(x, t+1) is calculated (See equations 11, and
12). Finally, the system output ẑ(x, t+1) is predicted by deploying the estimated parameters (See
equation 13). Due to the minimization of the performance index, the error between the system310

output and identified output converges to zero over time. This issue can be seen in Figure 4.
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Figure 5: Estimated fuzzy model, (a) first output (b) second output.

Case II: The membership functions are unknown
In this case, the membership functions are assumed to be Gaussian

µl
i j(Gaussian) = e

− (y−αl
i j )2

(ηli j )2

Hence, σl
i j = [αl

i j, η
l
i j]

T . The derivative of the particular membership function µL
IJ(Gaussian) is

achieved as follows:

∂µL
IJ(Gaussian)

∂αL
IJ

=
2(y − αL

IJ)

(ηL
IJ)2

µL
IJ(Gaussian)

∣∣∣∣∣
uI=ûI (x,t)

,

∂µL
IJ(Gaussian)

∂ηL
IJ

=
2(y − αL

IJ)2

(ηL
IJ)3

µL
IJ(Gaussian)

∣∣∣∣∣
uI=ûI (x,t)

The assumed membership functions have nonlinear behaviours. Thus, by applying the NLS algo-
rithm presented in subsection 4.1.2, the fuzzy rules and membership functions will be achieved.
In each iteration, the Kalman gains are obtained such that the error between the real output and315

estimated output is minimized. Thus, with an acceptable speed, the estimated outputs converge
to the output variables over the time. The evolutions of states of the identified overall fuzzy
model are illustrated in Figures 5 (a) and (b). Furthermore, the evolutions of the error signals
between the nonlinear system (30) and the overall fuzzy identified model are shown in Figures 6
(a) and (b). As shown in Figure 6, the error signal is converged to zero over the time. From the320

steady-state behaviour of error signals, we can conclude that the system is suitably approximated.

5.1.2. Fuzzy modeling of plug-flow reactor in the presence of colored noise
In this section, the simulation results will be extended for the case that the colored noise

affects the nonlinear first-order PDE system. Thus, the approach proposed in Section 4.2 has
been tested to verify the effectiveness of the proposed approach in the absence of colored noise.
It is assumed that the PFR system is affected by the following colored noise:

∂y1(x, t)
∂t

= −v/L
∂y1(x, t)
∂x

+ β1 f0(y(x, t), x) − by1 + v1(x, t)

∂y2(x, t)
∂t

= −v/L
∂y2(x, t)
∂x

+ β2 f0(y(x, t), x) + v2(x, t)
(31)
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Figure 6: Final modeling error z(x, t) − ẑ(x, t), (a) first output (b) second output.

where v1 and v2 are colored noises with the following nonlinear models

v1(x, t) = v2
1(x, t) + 0.9x2sin

(
v1(x, t)

)
+ e3

1(x, t) + x2e2
1(x, t) + e1(x, t) + 0.001

v2(x, t) = v2
2(x, t) + 0.9x2v2(x, t) + e3

2(x, t) + x2e2
2(x, t) + e2(x, t) + 0.001 (32)

and also, e1(x, t) and e2(x, t) are white noise signals. The behaviour of the colored noise signals
(32) are displayed in Figures 8 (a) and (b), respectively.

If we apply the NRLS approach presented in subsection 4.1.1 directly to this example, then325

the error signal between the exact nonlinear system and the fuzzy model will converge to infinity,
which clearly indicates the unreliable results. By considering the NEMM identification method
which is proposed in subsection 4.2.1 for PFR system in the presence of measurement colored
noise, we can identify the fuzzy model for both the PFR system and also the dynamic of measure-
ment colored noise one (32). Hence, similar triangular membership functions are introduced (the330

same as Figure 3) and the parameters of the fuzzy model are approximated via NEMM. Then,
evaluations of online estimated overall fuzzy model for the first and second outputs are shown in
Figures 7 (a) and (b), respectively. To illustrate the efficiency of the proposed approach, the error
signals between the identified overall fuzzy model based on the NEMM algorithm presented in
subsection 4.2.1 and the nonlinear system (31) are simulated in Figures 7 (c) and (d), respectively.335

Moreover, Figures 8 (c) and (d) illustrate the estimation of the colored noise. Thus, the simula-
tion results in Figure 8 indicate that the proposed NEMM algorithm can correctly approximate
the behaviour of colored noise (32) besides nonlinear first-order PDE system (31).

5.2. A hyperbolic PDE system with Lotka-Volterra type
Consider a nonlinear distributed system with Lotka-Volterra type, which are usually used

in modeling of biological distributed systems and networks, competing species interaction and
predatorprey (2). The ditributed dynamical model of the system is represented as follows:

∂ŷ1(x,t)
∂t = −ν1(x) ∂ŷ1(x,t)

∂x + β1(x)ŷ1 + r1(x)ŷ1ŷ2 + b(x)u + v1(x, t)
∂ŷ2(x,t)
∂t = −ν2(x) ∂ŷ2(x,t)

∂x + β2(x)ŷ2 + r2(x)ŷ1ŷ2 + v2(x, t)
(33)

where the state variables ŷ1(x, t) and ŷ2(x, t) indicate the predator and the prey, respectively.
u(x, t) is the distributed controller. v1(x, t) and v2(x, t) are colored noise. r1(x), r2(x), ν1(x), ν2(x),
β1(x) and β2(x) are system parameters. Deploying the following change of variables

y(x, t) =
[
y1(x, t)
y2(x, t)

]
=

[
ŷ1(x, t) − ŷ1d

ŷ2(x, t) − ŷ2d

]T
(34)
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Figure 7: Estimated fuzzy model of the nonlinear system, (a) first output (b) second output and final modeling error
z(x, t) − ẑ(x, t), (c) first output (d) second output.
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Figure 8: The colored noise signals (32) for (a) first output v1 (b) second output v2, and its estimation for (c) first output
v̂1 (d) second output v̂2.
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Figure 9: The error between the obtained fuzzy model and the nonlinear PDE system, (a) first output (b) second output.

one can conclude

∂y1(x,t)
∂t = −ν1(x) ∂y1(x,t)

∂x + β1(x)y1 + r1(x) f0(x, t) + b(x)u + v1(x, t)
∂y2(x,t)
∂t = −ν2(x) ∂y2(x,t)

∂x + β2(x)y2 + r2(x) f0(x, t) + v2(x, t)
(35)

where
f0(x, t) = y1(x, t)y2(x, t) + ŷ1dy2(x, t) + ŷ2dy1(x, t)

where the desired values of ŷ1(x, t) and ŷ2(x, t) are denoted by ŷ1d and ŷ2d, respectively. The
numerical values of the system parameters are as follows:

β2(x) = 0.5 cos(2x), r1(x) = 1, r2(x) = −1,
ν1(x) = 0.1, ν2(x) = 0.2, β1(x) = 0.8 sin(2x),
b(x) = 1, ŷ1d = 2, ŷ2d = 1.1

with the following initial and boundary conditions

y1(0, t) = 0 y2(0, t) = 0
y1(x, 0) = 0.1 sin(2πx) y2(x, 0) = 0.2 sin(πx) (36)

Additionally, the dynamical model of the colored noise is assumed to be similar to the (32). Since340

the open-loop system is stable, the identification problem of open-loop system is investigated.
Whereas the colored noise affects the hyperbolic PDE system, the NEMM is used to identify the
PDE system as well as the colored noise. The error signal between the obtained TS fuzzy model
and the real nonlinear PDE system is illustrated in Fig. 9.

6. Conclusions345

From this paper, one can conclude that a general structure for identifying the TS fuzzy PDE
model of nonlinear MIMO first-order PDE systems in the presence of white and colored noises
was proposed. Against the existing approaches on TS fuzzy PDE modeling of nonlinear PDE
systems, the identification method in this paper was based on input-output data. For PDE systems
with white noise, we can conclude that the NRLS method was able to identify the fuzzy PDE350

model. When the colored noise affects the PDE system, the NEMM method was proposed to
identify the fuzzy model of the MIMO nonlinear PDE system with the measurement colored
noise. In the case that the colored noise affected the nonlinear PDE system, not only the TS fuzzy
PDE model of nonlinear PDE system, but also the nonlinear distributed model of colored noise
was identified. Furthermore, the identification of known and unknown membership functions355
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was investigated. Additionally, in the cases that the membership functions were unknown, it
was illustrated that the proposed approach has the ability to identify the TS fuzzy PDE model
of nonlinear PDE system. The proposed approach was successfully tested on the nonisothermal
PFR and the applicability of the proposed approach was clearly indicated.

For the future works, the authors suggest to extend the proposed identification method for the360

high order class of PDE systems. Additionally, the authors suggest to introduce a new identifi-
cation algorithm such that the optimal solution will be achieved.
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