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Abstract

Current evolutionary many-objective optimization algorithms face two challenges: one is to ensure popu-
lation diversity for searching the entire solution space. The other is to ensure quick convergence to the
optimal solution set. In this paper, we propose a novel two-archive strategy for evolutionary many-objective
optimization algorithm. The uniform archive strategy, based on reference points, is used to keep population
diversity in the evolutionary process, and to ensure that an evolutionary algorithm is able to search the
entire solution space. The single elite archive strategy is used to ensure that individuals with the best single
objective value are able to evolve into the next generation and have more opportunities to generate offspring.
This strategy aims to improve the convergence rate. Then this novel two-archive strategy is applied to im-
proving the Non-dominated Sorting Genetic Algorithm (NSGA-III). Simulation experiments are conducted
on benchmark test sets and experimental results show that our proposed algorithm with the two-archive
strategy has a better performance than other state-of-art algorithms.

Keywords: many-objective optimization, evolutionary algorithms, reference points, two-archive,
decomposition

1. Introduction

A many-objective optimization problem (MaOP) refers to a problem consisting of four or more objec-
tives to be optimized [1]. Because the number of solutions might increase exponentially as the number
of objectives, it becomes difficult to distinguish advantages and disadvantages of solutions only using the
Pareto-dominant selection pressure [2]. Traditional methods of solving multi-objective optimization prob-
lems are not effective in dealing with MaOPs [3].

Different methods proposed to solve MaOPs, such as objective reduction, decomposition, preference
information, modification of Pareto dominance, reference points, and use of indicator functions. Several of
the more popular methods are discussed below.

Methods based on objective reduction. Objective reduction refers to the process of transforming many-
objective optimization problems into multi-objective optimization problems by analyzing the relationships
between objectives or index functions [4]. Through an analysis of the relationships between objectives, the
number of objectives for some MaOPs can be reduced to 2 or 3 [5] and the impact of this reduction can
be remarkable [6, 7]. However, for some MaOPs, it is difficult, or impossible, to reduce the number of ob-
jectives based on an analysis of relationships [8]. The indicator-based approach uses performance indicators
to guide the search process of algorithms [9]. IBEA [10] is the first indicator-based method, but it does
not include an indicator of diversity. The fast hypervolume-based evolutionary algorithm (HypE) [11] is
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a classic indicator-based method which uses a hypervolume (HV) value to balance both convergence and
diversity effectively. The disadvantage of objective reduction methods based on index functions is that the
computation time generally increases exponentially with an increasing number of objectives.

Methods based on objectives decomposition. Aggregation-based optimization algorithms use an aggregate
function to decompose many objectives. Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [12] is a classic decomposition-based optimization algorithm which decomposes objectives by
direction vectors and aggregate functions. It performs evolutionary operations among neighboring individ-
uals. This method can effectively solve discrete optimization problems with a complex Pareto set (PS).
Asafuddoula et al. [13] proposed an improved decomposition-based multiobjective optimization algorithm.
As a variant of MOEA/D, the algorithm selects offspring into the next generation only when an offspring
solution is not dominated by a current solution. Cheng et al. [14] proposed a reference vector-guided evolu-
tionary algorithm named RVEA. As a decomposition-based approach, RVEA divides the objective space into
some subspaces by using a set of reference vectors which can guide search process. And an angle-penalized
distance is used to balance the convergence and diversity of solutions. Cai et al. [15] proposed a method of
adjusting two kinds of weight vectors based on MOEA/D. On one hand, it adjusts the number of weight
vectors so that the weight vectors of the boundary converge more quickly to the complete Pareto front (PF).
On the other hand, it adjusts the positions of invalid weight vectors, which makes the algorithm suitable for
solving MaOPs with irregular PF. Although the decomposition-based multiobjective optimization method
may effectively solve a multiobjective optimization problem, the size of direction vectors used in decompo-
sition will increase quickly as the number of objectives. Moreover, it is necessary to consider setting the
weight vectors uniformly distributed [16].

Modification of Pareto dominance. As the number of objectives increases, the number of non-dominant
solutions will increase dramatically. It is difficult to distinguish the pros and cons of solutions [17, 18]. The
traditional dominance relation needs to be modified for ensuring the selection pressure. Many methods are
also used to select non-dominant solutions.

Variants of the traditional Pareto dominance Kokolo et al. [19] proposed an α-domination s-
trategy to distinguish the advantages and disadvantages of non-dominated solutions. But the selection of
the parameter value is a difficult job. Too large value of α will lead to the deterioration of the diversity of
solutions, and too small value of α is not conducive to the convergence of the algorithm. Laumanns et al.[20]
proposed a classic ϵ dominant strategy and increased the selection pressure by relaxing Pareto dominance.
Yuan et al.[21] proposed a new dominance relation named θ dominance, and developed θ-DEA to tackle
MaOPs effectively.

Using technologies in Pareto dominance Bentley and Wakefield [22] proposed a combined ranking
method to extract a ranking table for each objective value of each solution. But the method is not ideal
when the objective number increases. Yuan et al. [23] proposed an algorithm named EFR which uses an
ensemble fitness ranking method to determine the merits of individuals. On the basis of EFR, EFRRR [24]
uses the idea of ranking restriction. A solution is only allowed to be ranked on part of the objective functions
which are close to their corresponding weight vectors. This method can increase the selection pressure of
the solutions efficiently. Yang et al. [25] developed a grid-based evolutionary algorithm(GrEA) in which a
grid dominance is introduced to strengthen the selection pressure toward the optimal direction. Zitzler et
al. [26] presented a strength Pareto evolutionary algorithm (SPEA) which uses a clustering technique to
estimate the crowding degree of an individual. In 2004, SPEA2 [27] is proposed. The improved algorithm
combines a strength value of each individual with a kth nearest neighbor method. Li et al. [28] uses a
Shift-based Density Estimation (SDE) in SPEA2 to reflect the convergence of individuals in population.
The performance of SPEA2SDE significantly outperforms SPEA2. SPEA, SPEA2 and SPEA2SDE evaluate
an individual’s fitness dependent on the number of external non-dominated points that dominate it. They
can be considered as Pareto dominance-based method to some extent.
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Preference-based methods. The preference-based approaches focus on the search within a user’s preferred
solution space. It can be classified from perspectives of goals, weights, reference vectors, preference relation,
utility functions, out-ranking, and implicit preferences. [29]. From the view of the balance of convergence and
diversity, two-archive strategy can be considered as a preference-based method to some extent. Praditwong
et al. [30] proposed a two-archive algorithm named TAA. In the algorithm, convergence archive (CA) and
diversity archive (DA) are used to consider the diversity and convergence, respectively. Li et al. [31] proposed
an improved version named ITAA which incorporates a ranking mechanism to truncate CA and a shifted
density estimation technique to truncate DA. Compared with TAA, ITAA is suitable for many-objective
problems. Wang et al. [32] gave a different improved algorithm named Two-Arch2. Considering convergence,
diversity, and complexity simultaneously, Two-Arch2 uses two selection principles (indicator-based selection
and Pareto-based selection), and uses a new Lp-norm-based diversity maintenance scheme for MaOPs.
Two-Arch2 can solve MaOPs with satisfactory comprehensive performance.

The goal of evolutionary many-objective optimization algorithms is to quickly find a set of uniformly
distributed solutions as close as possible to the PF [33]. Therefore, there are two goals in the design of
efficient many-objective optimization algorithms [31]. One is to ensure the diversity of a population for
searching the entire solution space. The other is to ensure an algorithm can quickly converge to the optimal
solution set [34].

In order to implement the above two goals, we present a novel two-archive strategy based on a recent
algorithm, NSGA-III [35]. First, a uniform archive strategy based on reference points is proposed to preserve
the diversity of the population. Secondly, a single elite archive is proposed to improve the convergence. Then,
an improved algorithm using the two-archive strategy (called NSGA-III-UE) is proposed. The whole research
idea is shown in Fig. 1. The main contributions of the article include three points.
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Figure 1: The overall research ideas and innovations

1. In order to maintain the diversity of an algorithm, a uniform archive strategy based on reference points
is proposed which ensures the algorithm is able to search the entire solution space during iterative
process.

2. In order to improve the convergence of an algorithm, a single elite archive strategy is proposed to keep
the best individual in each objective to participate in evolution.

3. A two-archive strategy is presented which combines the uniform archive and single elite strategies
together, and an improved algorithm based on NSGA-III is designed.

The remainder of this article is organized as follows. The second section reviews evolutionary many-
objective optimization methods based on reference points, and explains our research motivation. The third
section explains the innovation of our method in detail and analyzes the time complexity of the proposed
algorithm. In the fourth section, experiments are used to illustrate the validity of the proposed strategies.
Finally, the fifth section gives the conclusion and the future research direction.
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2. Related Work

2.1. Evolutionary Many-Objective Optimization Algorithms Based on Reference Points

Reference points-based evolutionary many-objective optimization algorithms use reference points (or
reference directions) to decompose the solution space into multiple subspaces. These algorithms search sub-
spaces in parallel during evolutions. Non-dominated Sorting Genetic Algorithm (NSGA-II [36] and NSGA-
III [35]) are two classic evolutionary multiobjective/many-objective optimization algorithms. NSGA-II uses
a crowding distance-based diversity preserving mechanism to solve multiobjective optimization problems.
However, when the number of objectives is more than three, the performance of NSGA-II degrades rapidly.
Based on reference points, NSGA-III improves the method of maintaining diversity in NSGA-II. NSGA-
III uses a niche individual selection strategy to replace the crowding distance-based diversity preserving
mechanism. NSGA-III achieves better results in solving MaOPs than NSGA-II does. In recent years, re-
searchers have continued to find the method of preserving diversity of populations and improve the speed
of convergence.

In recent years, several algorithms are proposed which are based on NSGA-III. MOEA/DD [37] is a
combination of MOEA/D [12] and NSGA-III [35]. It uses hybrid mechanism of the Pareto dominance-
based fitness evaluation and the framework of MOEA/D . Ibrahim et al. [38] proposed Elite-NSGA-III, in
which solutions closest to reference lines are kept as elites to participate in evolution. Khan et al. [39] used
reference points to maintain diversity. Their algorithm is combined with the idea of objective decomposition
and selects neighbors for evolutionary operations. Yuan et al. [21] used the idea of clustering in many-
objective evolutionary algorithm. Current solutions are assigned to different clusters by uniform reference
points in each generation. The optimal individual in certain cluster is determined by a fitness function which
is similar to the function of penalty-based boundary intersection (PBI). The competition among solutions
only occurs in the same cluster, so as to realize the balance of individual diversity and convergence. Instead
of selecting individuals into the next generation, Bi et al. [40] proposed an eliminated operator that the worst
individuals within the niche area of each reference point will be eliminated until the remaining individuals
reach the size of the population. Eliminate operator makes outstanding individuals involve in evolution, and
improves the convergence rate.

Although the existing methods have some good performance, they do not consider searching the areas
near the reference points to which no individual is attached during an iteration. They also don’t make full
use of ideal point information.

2.2. NSGA-III

Our algorithm is built upon NSGA-III and aims to improve its performance. In this subsection, NSGA-III
is introduced and analyzed in detail.

NSGA-III follows the framework of NSGA-II and a reference-point-based selection strategy is added to
maintain population diversity. Initially, NSGA-III defines a set of reference points within the solution space
and sets an ideal point as zero vector. In each iteration, individuals in a population are divided into several
different non-dominated layers (F1, F2, ...). Staring from the layer F1, NSGA-III adds solutions of each layer
Fi(i = 1, 2, · · · ) into population Pt+1 successively until the size of Pt+1 equals to or is greater than the
population size N for the first time. If the last acceptable layer is the layer Fl and the number of solutions
in layers ∪l−1

i=1Fi to the layer Fl already equals to N , then these N solutions are added to Pt+1, and solutions
at and after the layer Fl+1 are discarded. If there are more than N solutions at this time, some individuals
are selected from the layer Fl according to the niche selection strategy based on reference points so that
the number of individuals in Pt+1 is N . Connecting the ideal point and reference points to form reference
lines, the niche selection strategy needs to calculating the distance between individuals in set St (the set of
individuals currently selected to enter the next generation) and each reference line. An individual will attach
to a certain reference point with the smallest vertical distance from it. With the niche selection strategy
based on the reference points, NSGA-III selects individuals into the next generation, and then, the diversity
of the algorithm is maintained.

The performance of NSGA-III is excellent, but the algorithm still faces two challenges.
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Challenge in diversity. In the process of optimizing a many-objective problem, NSGA-III may encounter a
situation, that is, some reference point has no attached individual. Individuals are concentrated on certain
reference points, while there has no individual in the vicinity of other reference points. Thus the algorithm
cannot search for the areas near these reference points without attached individuals. NSGA-III focuses on
searching for good individuals in some regions, therefore, individuals selected into next generation are from
these regions. The algorithm loses its diversity to a certain degree. In extreme cases, all the individuals in
a population are located in some areas, and other areas will not be searched. Let us take the DTLZ4 [41]
function as an example. Fig. 2-(a) shows the evenly distribution of the optimal solutions of DTLZ4 when
the population size is 100. Fig. 2-(b) shows a distribution of solutions optimized by NSGA-III. It can be
seen that most areas of the solution space are not being searched. NSGA-III discards searching some areas
and the distribution of the solutions is concentrated in a region like a curve. In order to overcome this
challenge, a strategy needs to be considered to preserve the diversity of the population.
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Figure 2: The distribution of the optimal solutions on DTLZ4

Challenge in convergence. The ideal point in NSGA-III is composed of the minimum value of each objective
currently obtained, but it does not correspond to a real point in the solution space, or an actual individual
in a population. However, there exists a point (individual) which corresponds to the minimum value of each
objective. Although this individual does not take a minimum value on other objectives, it still indicates a
potential good search area. Using an individual with a minimum value on a single objective may speedup
the convergence of the algorithm. An individual with a minimum value on one objective belongs to the layer
F1. In theory, all the individuals in this layer should be selected to enter the next generation. However,
in many MaOPs, the number of non-dominated individuals increases sharply as the number of objectives
increases. If the number of individuals in F1 exceeds the population size, then a niche selection strategy is
used to select individuals for next generation. This selection strategy can not guarantee that an individual
with a single objective minimum enters the next generation. Thus it is necessary to retain these individuals
in a special way to guide the algorithm to converge quickly.
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3. A Novel Two-archive Strategy

In this paper, a novel two-archive strategy is proposed to improve the performance of evolutionary many-
objective optimization algorithms based on reference points. The two archives are uniform archive and single
elite archive.

3.1. Uniform Archive Strategy

The uniform archive strategy aims to ensure that an algorithm is able to search the entire solution space,
and in particular, to search an area in which no individual currently exists. This strategy keeps individuals
closest to each reference point into a uniform archive. These individuals will participate in evolutionary
operations with the same probability as other individuals in each generation. From the perspective of
assuring population diversity, this strategy ensures that an algorithm has the ability of searching the entire
solution space.

The process of implementing the strategy is described as follows: First, calculate the distance values
between individuals and each reference point. Then the individual which is the closest to each reference
point is added into the uniform archive. When more than one individual are at an equal distance from a
certain reference point, the individual which is the closest to the ideal point is retained.

Determination of reference points. Das and Dennis’s [42] systematic approach is used to determine the set
of reference points Z on a normalized hyper-plane. It can be formalized as Eq. 1.

Z = {λ1, λ2, . . . , λH},

H = (
m+ p− 1

p
).

(1)

Here, H is the number of reference points. λj is the jth reference point, and satisfies λj
i ∈

{
0
p ,

1
p , . . . ,

p
p

}
and∑m

i=1 λ
j
i = 1, j = 1, 2, . . . , H. m is the number of objectives of a MaOP, and each objective coordinate will

be divided into p part. More details about the determination of reference points can be seen in [35].

Normalization. Since the values of sub-objective functions of a many-objective problem cannot be com-
pared directly, the min−max method is used to normalize the function values of each sub-objective. The
normalization equation is described as follows:

Fi(X) = (f i
1(x), f

i
2(x), ..., f

i
m(x)),

fi(x) =
fi(x)− Zmin

i

Zmax
i − Zmin

i

. (2)

In the above Eq. 2, fi(x) represents the value of the i
th objective, where i = 1, 2, ...,m, and m is the number

of objectives, fi(x) is the value of fi(x) after normalization, Zmin
i is the minimum of the ith objective, and

Zmax
i is the maximum of the ith objective. f i

m(x) is the mth objective value of the ith individual after
normalization. Fi(x) is the fitness value of the ith individual after normalization.

Select individuals in the uniform archive. After normalization, the selection of individuals remaining to the
uniform archive is formalized as Eq. 3:

uk = arg
N
min
j=1

||Fj(X)− Zk||,

U = {u1, u2, ...uk...uh}.
(3)

In Eq. (3), uk represents the elite individual corresponding to the kth reference point, and Fj(x) is the
fitness value of the jth individual after normalization, where j = 1, 2, ..., N , and N is the number of attached
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individuals of the kth reference point. Zk is the kth reference point. U is the set of individuals in the uniform
archive, h is the number of reference points.

Clearly, if there are k reference points in the solution space, there are corresponding k individuals in
the uniform archive. In order to maximize the diversity of a population, if an individual closest to some
reference point has been placed in the uniform archive, another individual not in the uniform archive but
sub-closest to the reference point will be selected to ensure there has no repetitive individual in the archive.

Algorithm of generating the uniform archive. Algorithm 1 describes the procedure of generating the uniform
archive. In Algorithm 1, line 1 is used to calculate the Euclidean distance between each member of P and
each reference point of Z, and save the distance values in matrix B. Then sort B on line and save the indexes
in matrix newB and the corresponding Euclidean distance values in matrix Bdist. A while loop is used to
determine non-repeated individuals of the uniform-archive in line 4-11. The numbers of rows and columns
of newB need to be calculated for the while loop. The results of Algorithm 1 are stored in U and Ud,
respectively. The members of the first column of matrix newB are the indexes of non-repeated individuals
which are the closest to each reference point. They are the individuals of the uniform-archive and stored in
U . The distance values between reference points and the corresponding individuals in the uniform-archive
are stored in Ud.

Algorithm 1 Generate-uniform-archive

Require: P : a set of individuals as population.
Z: a set of reference points on the normalized hyper-plane.

Ensure: U : a set of individuals in the uniform archive.
Ud: a set of Euclidean distance values between each reference point and the corresponding individual

in the uniform archive.
1: B = pdist2(Z,P ) //Calculate the Euclidean distance between each member of P and each reference

point of Z. The distance values are saved in matrix B.
2: [Bdist, newB] = sort(B,2) //Sort B on line and save the index in matrix newB and the corresponding

distance values in matrix Bdist.
3: [Bline,Bnum]=size(newB)

//Before the while loop, calculate the numbers of rows and columns of newB, and store them in Bline
and Bnum, respectively.

4: while size(unique(newB(:, 1)), 1) < Bline do
5: for i =1 to Bnum− 1 do
6: if ismember(newB(i+1,1),newB(1:i,1)) then
7: newB(i+ 1, 1 : Bline− 1) = newB(i+ 1, 2 : Bline)
8: Bdist(i+ 1, 1 : Bline− 1) = Bdist(i+ 1, 2 : Bline)

//If there has a duplicate individual, replace it by the next column one.
9: end if

10: end for
11: end while
12: U = newB(:, 1)
13: Ud = Bdist(:,1)

Algorithm of updating the uniform archive. During the iterative process, individuals in the uniform archive
are updated constantly and participate in the evolution with the same probability as other individuals.
Algorithm 2 shows how to update the uniform archive. In the process of updating the individuals in uniform
archive, Algorithm 1 is used in the newly generated individuals because only the Euclidean distances between
the newly generated individuals and each reference point need to be calculated. The values of the index
and distance are sorted in matrices B and Bdist, respectively. Then the Euclidean distance values of Udt
and Bdist are compared. Consider the nearest individual of each reference point one by one. For the Udt+1

of the ith reference point, if the distance value of the newly generated individual Bdist(i, 1) is less than
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Algorithm 2 Update-U-archive

Require: osP : a set of individuals of offspring population.
Z: a set of reference points on normalized hyper-plane.
Ut: a set of individuals in the uniform archive in the tth iteration.
Udt: a set of Euclidean distance values between each reference point and the corresponding

individual in the uniform archive in the tth iteration.
Ensure: Ut+1; Udt+1.
1: [Bdist, B] = Generate-uniform-archive(osP, Z)
2: for i =1 to size(Z,2) do
3: if Bdist(i, 1) < Udt(i) then
4: Udt+1(i) = Bdist(i, 1)
5: Ut+1(i) = B(i, 1)
6: else
7: Udt+1(i) = Udt(i)
8: Ut+1(i) = Ut(i)
9: end if

10: end for

the value of Udt(i), replace Udt(i) with Bdist(i, 1). Ut+1(i) is also replaced by B(i, 1). The individual
corresponding to the reference point in the original uniform archive will be updated.

3.2. Single Elite Archive Strategy

In NSGA-III, the ideal point is a virtual point, which is used to guide the evolution direction. Each
element value of the ideal point is the smallest single objective value obtained by the current population.
For example, zmin

i is the minimum value of the ith objective function obtained by the current population.
The ideal point Zideal = (zmin

1 , zmin
2 , . . . zmin

m ) does not correspond to a real individual in the population.
Recalling particle swarm optimization (PSO), the global optimal solution gbest and the local optimal solution
pbest are kept to guiding the evolution. Inspired from PSO, the individual with the minimum value of a
single objective is kept in a single elite archive and participate in evolution to generate new individuals.
These single elite individuals in the current generation can help the algorithm converge rapidly.

Select individuals in the single elite archive. The single elite archive strategy is described as follows: let
individualbesti be the ith single elite individual corresponding to argmin zi. Retain such individuals into
the single elite archive to participate in evolution, and update them constantly. The elite individuals can
help the algorithm converge rapidly. The selection of individuals that remain to the single elite archive is
formalized by Eq. (4):

individualbesti = argmin zi,

F (individualbesti ) = (f1(argmin zi), f2(argmin zi), . . . , fm(argmin zi)).
(4)

In Eq. (4), zi is the ith element of the ideal point Zideal, Zideal = (zmin
1 , zmin

2 , . . . zmin
m ). individualbesti is the

ith single elite individual, and F (individualbesti ) represents its fitness value.

Algorithm of generating the single elite archive. Algorithm 3 describes the procedure of generating the single
elite archive. In Algorithm 3, the input population P is composed by individuals whose type are defined as
a structure. The objective function value of each individual is stored in P.objs. The ith objective minimum
value of the current population is saved as a part of ideal point Zideal, Zideal = (zmin

1 , zmin
2 , . . . zmin

m ). Line 1
is used to store the minimum value of each objective function of P in Zideal, and returns the indices of these
corresponding individuals in Zindi. Line 2 is used to store these corresponding individuals in the single elite
archive.
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Algorithm 3 Generate-single-elite-archive

Require: P : a population composed of individuals.
Ensure: SEA: a set of individuals, each individual is a single elite.

Zideal: a vector named ideal point that each element value of Z is the minimum of each objective.
1: [Zideal, Zindi] = min(P.objs, [ ], 1)
2: SEA= P (Zindi)

Discussion about single elite individuals. In fact, single elite individuals are Pareto dominant solutions of
the current population. They belong to the layer F1. According to the selection strategy of NSGA-III, they
will be the first choice for the next generation population. If the number of individuals in F1 is less than
the population size N , these single elite individuals will surely be chosen to enter the next generation. But
in most MaOPs, unfortunately, the number of individuals in the layer F1 is often larger than the size of
population. In this case, a niche technique is applied to selecting N individuals from F1, that is, a single
elite individual may not be selected. Thus, a single elite archive is necessarily to be used to ensure that
these individuals get involved in evolutionary operations.

3.3. Proposed Algorithm: NSGA-III-UE

NSGA-III-UE is designed within the framework of NSGA-III to which the uniform archive and single
elite archive are added. The uniform archive is used to keep individuals closest to each reference point for
maintaining population diversity. The single elite archive is used to keep individuals with the best single
objective values for fastening the algorithm convergence. Algorithm 4 describes NSGA-III-UE.

At the beginning of NSGA-III-UE, line 4 is Algorithm 1 which generates a uniform archive. Line 5 is
Algorithm 3 which generates a single elite archive. They are used to determine initial individuals in the two
archives. During the iteration, line 7 and line 9 allow these individuals in the two archives to participate
in evolution with other individuals. Simulated two-point crossover (SBX) [43, 44] operator and polynomial
variation [45]are used as same as NSGA-III’s operator. Line 10 is the process of updating the uniform
archive using Algorithm 2. Only the distance values from the newly generated individuals to each reference
point need to be calculated. After that, parents and descendants are merged in line 11, and sorted based on
the non-dominated relationship in line 12. Then, the algorithm uses the framework of NSGA-III to select
the individuals of next generation in lines 13-24. Line 25 is the updating process of the single elite archive.
Single elite individuals are selected from individuals of the (t+ 1)th generation.

3.4. Complexity Analysis of NSGA-III-UE

NSGA-III-UE is an improved version of the classical NSGA-III. Like NSGA-III, when NSGA-III-UE
selects individuals into the next generation, these individuals are attached to corresponding reference points.
The complexity of this process is O(MNH). For the process of selecting individuals from the layer Fl by
the niche strategy, its computational complexity is O(H). The computational complexity of determining
the ideal point is O(MN).

Different from NSGA-III, NSGA-III-UE adds two extra archives. However, none of them needs to be
handled in a special way. For the single elite archive, single elite individuals can be directly reserved
when NSAG-III determines the Zmin, therefore, it does not require additional calculation time. For the
uniform archive strategy, individuals closest to reference points are retained no matter whether there has
an individual attached to the reference point or not. Calculating the vertical distances from individuals
to reference points requires O(NH) steps, and determining the closest individual for each reference point
requires O(N logH) steps. Therefore, in the worst case, NSGA-III-UE increases the computational com-
plexity to max{O(NH), O(N logH)}. Due to O(N logH) < O(NH) < O(N2M), the overall computational
complexity of NSGA-III-UE is still as same as that of NSGA-III, that is, max{O(N2 logM−2N), O(N2M)}.

In fact, for most of the MaOPs, the number of individuals in the layer F1 is larger than the size of
population N . NSGA-III needs to take some time to select N individuals from F1 by using the niche
technique, while NSGA-III-UE needs less time. Therefore, for some MaOPs, the operating time of NSGA-
III-UE is less than that of NSGA-III.
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Algorithm 4 NSGA-III-UE

Require: H: the number of reference points.
N : the size of population.

Ensure: Pt+1.
1: t = 0
2: P0= population initialization
3: Z=Generate-Reference-Points(H)
4: [U0, Ud0]= Generate-uniform-archive(P0, Z)
5: [Zideal, SEA0]=Generate-single-elite-archive(P0)
6: while termination criteria is not met do
7: St = SEAt

8: i = 1
9: Qt=Operator(Pt, Ut)

10: [Ut+1, Udt+1]=Update-U-archive(Qt, Z, Ut, Udt)
11: Rt = Pt ∪Qt

12: (F1, F2, . . .)=Non-dominated-sort(Rt)
13: while |St| < N do
14: St = St ∪ Fi

15: i = i+ 1
16: end while
17: Fl = Fi

18: if |St| = N then
19: Pt+1 = St

20: else
21: Pt+1 = ∪l−1

j=1Fj

22: Pn=Niching(N − |St|, Z, Zmin, Fl, Pt+1) //Choose N − |St| individuals from Fl according to the
Niching selection.

23: Pt+1 = Pt+1 ∪ Pn

24: end if
25: [Zideal, SEAt+1]= Generate-single-elite-archive(Pt+1) //Update the single elite archive.
26: t = t+ 1
27: end while
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3.5. Differences from Other Algorithms

NSGA-III-UE shares a few common features with existing methods in references, such as Two-Arch2 [32]
which uses two-archive strategy to balance diversity and convergence and Elite-NSGA-III [38] which uses a
reference point-based strategy to maintain population diversity. However, NSGA-III-UE significantly differs
from the existing methods in two aspects.

Two archives. Some algorithms [30, 32, 46, 47] adopt two-archive strategy which divides the non-dominated
solution set into two archives. Although the term of two-archive in these algorithms is the same as
ours, the context of two-archive is completely different from ours which means a uniform archive and a
single elite archive. In [30, 32, 46, 47], one is a convergence archive (CA) which stores non-dominated
solutions, while the other is a diversity archive (DA) that stores individuals not dominating any solu-
tion. During the evolutions of these algorithms, individuals in two archives act as parents to generate
offspring. The offspring that dominate any solution in either CA or DA are added to CA, while the
offspring that dominate no solution are added to DA.

Uniform strategy: Elist-NSGA-III [38] also adopts a uniform archive strategy which is similar to ours.
Both algorithms use reference points to maintain population diversity. However, the implementations
are different. In Elite-NSGA-III, the individuals attached to a reference point have a chance to be
taken as an elite individual and participate in evolution. If there is no individual attached to a reference
point, the area near that reference point will not be searched. In our algorithm, the uniform archive
strategy retains the individuals closest to each reference point, and does not abandon any search area
even no individual attached to the reference point.

In addition, Elite NSGA-III selects an individual which is the closest to the origin as elite among all
individuals attached to a reference point, whereas our uniform archive selects the individual closest to
the reference point as elite. Our uniform archive strategy ensures the population diversity and has the
ability of searching the entire solution space. Fig.3 illustrates the difference between the elite pool in
Elite-NSGA-III and our proposed uniform archive method.

Figure 3: Difference between Elite-NSGA-III and NSGA-III-UE

In Elite-NSGA-III, no individual covers the direction of vector r4, and the area around r4 is hard
to be searched. In NSGA-III-UE, according to the uniform archive strategy, the individual d in the
tth generation and e′ in the (t + 1)th generation closest to r4 are used as reserved individuals of the
reference point r4. So that each reference point has an adjacent individual to be retained, and the
diversity of the population is maintained.
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4. Experiments

4.1. Experimental Design

Our proposed algorithm, NSGA-III-UE, is compared with several classical and state-of-the-art algo-
rithms. Experimental results are analyzed from seven perspectives for investigating the performance of
NSGA-III-UE.

The first experiment is to evaluate the performance of these algorithms on WFG functions in terms of
IGD, HV and operating time. The second and third experiments are used to show the performance from
the perspective of test functions and objective numbers. Furthermore, the fourth experiment is designed to
illustrate the efficiency of these algorithms on DTLZ functions. Then, boxplots are used to illustrate the
stability of these algorithms. In the sixth experiment, variants of NSGA-III-UE are used to analyze the effect
of the uniform archive and the single elite archive, respectively. Finally, the applicability of NSGA-III-UE
is analyzed in the seventh experiment.

These experiments were run on Windows (Intel (R) Xeon (R) CPU E5-26030@1.80GHz, 8.00GBRAM)
64-bit operating system. Matlab2016 is used for simulation verification.

4.2. Test Functions

Thanks to the scalable number of objectives, Walking-Fish-Group(WFG) [48] and Deb-Thiele-Laumanns-
Zitzler (DTLZ) [41] functions have become two standard test suites for testing evolutionary many-objective
optimization algorithms. For DTLZ functions, only DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTLZ7 are
considered because the Pareto fronts of DTLZ5 and DTLZ6 with more than 3 objectives are unknown;
CDTLZ2 is a convex problem and IDTLZ2 [49] is an inverse of DTLZ2. Table 1 describes characteristics of
these test functions.

Table 1: The characteristics of the test functions

Function characteristics

DTLZ1 Linear, Multi-modal
DTLZ2 Concave
DTLZ3 Concave, Multi-modal
DTLZ4 Concave, Biased
DTLZ7 Mixed, Multi-modal, Scaled, Disconnected
IDTLZ2 Convex
CDTLZ2 Convex
WFG1 Convex,Mixed,Biased,Scaled
WFG2 Convex,Multi-modal,Non-separable,Disconnected,Scaled
WFG3 Degenerate,linear,Non-separable,Scaled
WFG4 Concave,Multi-modal,Scaled
WFG5 Concave,Deceptive,Scaled
WFG6 Concave,Non-separable,Scaled
WFG7 Concave, Biased,Scaled
WFG8 Concave, Biased,Non-separable,Scaled
WFG9 Concave, ,Multi-modal,Biased,Non-separable, Deceptive,Scaled

4.3. Algorithms under Comparison

The proposed algorithm NSGA-III-UE is compared with eleven state-of-the-art algorithms, listed as
below:

1. NSGA-III [35] is a non-dominated sorting genetic algorithm using reference points. It solves many-
objective optimization problems based on classical NSGA-II [36].
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2. Two-Arch2 [32] uses two archives to focus on convergence and diversity separately, and assigns
indicator-based and Pareto-based selection principles to the two archives. It is a low complexity
algorithm.

3. I-DBEA [23] is a variant based on MOEA/D which uses reference direction to guide algorithm search
and uses priority distance comparison mechanism. It can balance the diversity and convergence speed
simultaneously.

4. EFRRR [24] is an aggregation algorithm for MaOPs. EFR uses an integrated ranking method to
determine the order of individuals. Using a restriction order based on EFR, solutions of EFRRR are
only allowed on sort in the corresponding weight vector which close to the part of function.

5. θ-DEA [21] is an algorithm based on a new dominance relationship that combines the fitness evaluation
mechanism of MOEA/D with the diversity of NSGA-III. The ranking pattern can give consideration
to both convergence and uniform distribution.

6. Elite-NSGA-III [38] is an improved NSGA-III which is similar to the algorithm that proposed in this
paper. The details of the difference between Elite-NSGA-III and the proposed algorithm NSGA-III-UE
can be found in Section 3.5.

7. MOEA/DD [37] is a combination of MOEA/D [12] and NSGA-III [35]. It uses hybrid mechanism of the
Pareto dominance-based fitness evaluation and the MOEA/D framework. MOEA/DD can be seen as
an improved version of MOEA/D which is a classical decomposition-based multiobjective optimization
algorithm.

8. dMOPSO [50] combines the idea of Particle Swarm Optimization (PSO) with MOEA/D. dMOPSO
uses global optimal particle to guide the search direction and re-initialized memory to ensure the
diversity of the algorithm.

9. HypE [11] is a classic metric-based MOEAs. For a given MaOPs, maximizing hypervolume metric is
equivalent to finding the Pareto front.

10. SPEA2SDE [28] integrates a Shift-based Density Estimation(SDE) into SPEA2 [27] in the fitness
assignment and archive truncation procedures. SPEA2SDE has very competitive on the problem of
DTLZs [41].

11. RVEA [14] is a reference vector-guided evolutionary algorithm that can be largely categorized into the
decomposition-based approach. In RVEA, reference vectors are used to guide search process, and an
angle-penalized distance is used to balance the convergence and diversity of solutions. RVEA has high
efficiency in dealing with MaOPs where the functions are not well normalized.

The source code of these algorithms, except for Elite-NSGA-III, comes from Plat EMO [51].

4.4. Parameter Settings

Although parameters involved in each algorithm are not exactly the same and the complexities of the
tested functions are different, the identical setting of common parameters is necessary for comparing the
advantages and disadvantages of these algorithms.

The number of objectives in test functions is set to m = {5, 8, 10, 12, 15}. The corresponding number of
decision variables is set to n = {14, 17, 19, 21, 24}, where n = m+ k− 1 and k is set to 10 except IDTLZ1 in
which n = {9, 12, 14, 16, 19} and DTLZ7 in which n = {24, 27, 29, 31, 34}, respectively. The identical setting
of population size is 100, and the maximum times of iteration is 10000. Simulated two-point crossover
(SBX) [43, 44] operator and polynomial variation [45] are used in NSGA-III, Elite-NSGA-III and θ-DEA
which are based on NSGA-III, with the distribution index setting to 20. θ is set to 5 in θ-DEA. MOEA/DD
and I-DBEA use the aggregation function of type PBI, and the neighborhood size T is set to 10. The
parameter k in EFRRR is set to 2, and the threshold Ta and weight w in dMOPSO is set to 2 and 0.4,
respectively. α is set to 2 and fr is set to 0.1 in RVEA. Each algorithm runs independently for 30 times on
each test function.
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4.5. Evaluation Criterion
The performance evaluation of evolutionary many-objective optimization algorithms generally includes

two aspects. One is convergence, which can be measured by calculating the distances between the solutions
found by an algorithm and the true Pareto solutions. The other is diversity, that is, whether the solutions
found by an algorithm are uniformly distributed along the PF. In this article, IGD[7, 52], HV[53, 54],
Spread[55] and Operating time are used to indicate the performance of the algorithms.

Inverted Generational Distance(IGD) is a commonly used comprehensive indicator that can evaluate
convergence and diversity simultaneously. The smaller the IGD value, the better the algorithm. The formula
can be described as Eq.5:

IGD(A,P ∗) =

∑
x∈P∗

min
y∈A

d(x, y)

|P ∗|
. (5)

where A is an approximate solution set of the PF obtained by an algorithm, P ∗ is a set of uniformly
distributed sampling points of the real PF, d(x, y) is the Euclidean distance between the individual x in P ∗

and the individual y in A.
Generalized Spread(IGS) is a diversity indicator. The smaller the spread, the better the distribution

diversity of the algorithm. The related formulas are described as Eq. 6:

IGS =

m∑
i=1

d(ei, A) +
∑
x∈A

|d(x,A)− d|

m∑
i=1

d(ei, A) + |P ∗|d
,

d(x,A) = min
x,y∈A,y ̸=x

||F (x)− F (y)||2,

d =
1

|A|
∑
x∈A

d(x,A).

(6)

where d(x,A) is the Euclidean distance, the value is the Euclidean distance between x and the point closest
to x in A. d is the average value of d(x,A), and e1, e2, ...em are m extreme solutions in P ∗.

Hypervolume(HV ) is a comprehensive performance metric which is usually considered in MaOPs whose
PF have not yet been known. HV calculates the volume of objective space between the obtained solution
set and a reference point. The larger the HV value, the better the algorithm. In this paper, we use 106

sampling points to ensure the accuracy. The formula of HV [56] can be described as Eq. 7:

HV (fref , A) = Λ(∪[f1(y), fref
1 ]× · · · × [fm(y), fref

m ]),

fref
m = max⟨Am ∪ fref

m ⟩.
(7)

where A is an approximate solution set obtained by an algorithm, y is an individual in A, Am refers to
the value of the objective m in current population. fref is a chosen reference point, and fref

m refers to the
maximum value of the objective m in previous generations. Λ(.) is the Lebesuge measure[57].

Operating T ime is used to evaluate the computational complexity of an algorithm. The less the operating
time, the better the algorithm.

4.6. Experimental Results and Analysis
The proposed algorithm, NSGA-III-UE, is compared with several classical and state-of-the-art algorithms

in terms of IGD, HV, Spread, and Operating Time. The performance of each algorithm onWFGs and DTLZs
with different objective numbers are illustrated in the following tables. The following tables show the average
value of each algorithm running 30 times. In Tab. 2 and Tab. 6, the superscript of each datum is the rank
for each algorithm, and the last lines show the number of times that each algorithm obtains the best value.
The table-head numbers correspond to the algorithms: NSGA-III-UE (1), NSGA-III (2), Two-Arch2 (3),
I-DBEA (4), EFRRR (5), θ-DEA (6), Elite-NSGA-III (7), dMOPSO (8), MOEA/DD (9), HypE (10), RVEA
(11), and SPEA2SDE (12), respectively. The optimal value of each line is highlighted by gray shading.
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Table 2: Average IGD values of each algorithm running 30 times on WFGs with different objective numbers

Problem M 1 2 3 4 5 6 7 8 9 10 11 12

WFG1 5 1.89e+09 1.78e+07 1.83e+08 1.74e+06 1.39e+03 1.39e+02 1.65e+04 2.16e+012 2.01e+010 2.13e+011 1.66e+05 1.37e+01

8 2.75e+05 2.71e+04 2.80e+07 2.75e+06 3.16e+010 2.97e+09 2.52e+02 3.26e+012 2.56e+03 2.93e+08 3.20e+011 2.29e+01

10 3.32e+07 3.16e+04 3.22e+05 5.72e+012 3.52e+010 3.42e+09 3.24e+06 3.91e+011 3.08e+03 3.35e+08 2.79e+01 2.85e+02

12 4.04e+010 3.77e+05 3.77e+06 4.09e+011 3.83e+08 3.81e+07 3.70e+04 4.41e+012 3.69e+03 3.87e+09 3.23e+01 3.31e+02

15 4.87e+06 4.81e+03 4.89e+07 1.42e+112 4.87e+05 4.92e+08 4.77e+02 5.61e+010 5.05e+09 4.84e+04 5.77e+011 4.30e+01

WFG2 5 7.69e-11 8.24e-12 8.57e-15 8.59e-16 8.25e-13 8.29e-14 8.66e-17 4.36e+012 4.17e+011 8.90e-18 1.40e+09 2.07e+010

8 2.36e+01 2.84e+04 2.57e+03 6.82e+010 2.56e+02 2.94e+05 3.03e+06 7.98e+011 8.89e+012 4.12e+08 3.25e+07 5.07e+09

10 5.77e+03 5.73e+02 5.06e+01 9.42e+010 6.63e+06 6.51e+05 7.06e+07 1.62e+111 1.63e+112 7.81e+08 5.87e+04 8.71e+09

12 7.60e+06 7.64e+07 7.56e+05 9.85e+09 8.17e+08 7.35e+04 6.59e+03 1.94e+111 2.04e+112 6.39e+02 5.22e+01 1.12e+110

15 8.93e+05 8.98e+06 8.06e+04 1.88e+110 7.68e+02 7.03e+01 7.85e+03 2.72e+111 2.77e+112 9.57e+07 1.00e+18 1.81e+19

WFG3 5 8.14e-18 7.67e-17 5.08e-12 8.21e-19 7.19e-15 6.63e-14 7.64e-16 9.07e-111 9.27e-112 7.41e-21 8.66e-110 5.96e-13

8 1.18e+03 1.24e+05 1.16e+02 8.84e+012 1.56e+07 1.68e+08 1.24e+04 3.00e+010 3.01e+011 1.12e-11 2.99e+09 1.42e+06

10 1.68e+03 1.99e+08 1.54e+02 1.12e+112 1.98e+07 1.90e+05 1.77e+04 5.45e+011 4.07e+010 1.61e-11 3.71e+09 1.96e+06

12 2.01e+04 2.17e+06 1.91e+02 1.34e+112 2.44e+07 1.96e+03 2.09e+05 7.77e+011 7.66e+010 2.05e-11 4.63e+09 2.75e+08

15 5.35e+05 5.50e+06 2.58e+02 1.70e+112 5.98e+08 5.33e+04 5.67e+07 1.21e+111 1.12e+110 2.50e-11 7.90e+09 4.52e+03

WFG4 5 1.35e+02 1.36e+03 1.35e+01 1.40e+07 1.49e+010 1.36e+04 1.37e+05 2.36e+012 1.47e+09 1.51e+011 1.39e+06 1.40e+08

8 3.82e+01 3.92e+05 3.85e+02 1.41e+112 4.38e+07 4.27e+06 3.91e+04 8.50e+011 4.68e+09 7.08e+010 4.43e+08 3.85e+03

10 5.63e+04 5.75e+05 5.29e+02 1.91e+112 5.62e+03 5.82e+07 5.80e+06 1.13e+111 6.26e+09 1.05e+110 6.03e+08 5.22e+01

12 6.94e+01 7.06e+06 7.03e+05 2.31e+112 6.97e+02 7.17e+07 7.00e+04 1.37e+111 7.47e+09 1.26e+110 7.38e+08 6.99e+03

15 1.18e+12 1.21e+14 1.18e+13 3.12e+112 1.55e+17 1.30e+16 1.21e+15 1.70e+19 1.61e+18 2.17e+111 1.93e+110 9.15e+01

WFG5 5 1.33e+03 1.33e+02 1.20e+01 1.37e+06 1.50e+010 1.34e+05 1.33e+04 1.65e+012 1.45e+09 1.51e+011 1.37e+07 1.40e+08

8 3.87e+01 3.95e+04 3.94e+03 1.19e+112 4.65e+09 4.23e+08 3.99e+05 6.34e+011 5.31e+010 4.09e+06 4.16e+07 3.93e+02

10 5.67e+02 5.75e+05 5.70e+03 1.93e+112 5.79e+06 5.80e+07 5.74e+04 9.33e+011 7.77e+010 7.64e+09 6.02e+08 5.17e+01

12 7.11e+02 7.16e+04 7.28e+07 2.39e+112 6.96e+01 7.20e+05 7.16e+03 1.06e+111 9.29e+09 1.03e+110 7.54e+08 7.21e+06

15 1.22e+12 1.23e+14 1.22e+13 3.10e+112 1.48e+18 1.30e+16 1.23e+15 1.50e+110 1.58e+111 1.48e+19 1.47e+17 9.72e+01

WFG6 5 1.36e+01 1.36e+03 1.36e+02 1.39e+07 1.51e+010 1.36e+04 1.36e+05 2.87e+012 1.45e+09 1.53e+011 1.38e+06 1.45e+08

8 4.01e+03 4.14e+06 4.13e+05 1.27e+112 4.49e+09 4.28e+08 4.12e+04 8.98e+011 4.61e+010 3.84e+01 4.21e+07 3.86e+02

10 5.94e+04 6.23e+06 6.03e+05 1.91e+112 5.80e+02 5.93e+03 6.34e+07 1.13e+111 7.02e+09 8.10e+010 6.54e+08 5.16e+01

12 7.27e+03 7.43e+07 7.36e+04 2.33e+112 7.13e+02 7.38e+05 7.40e+06 1.36e+111 7.70e+09 9.34e+010 7.69e+08 6.90e+01

15 1.27e+13 1.28e+14 1.06e+12 3.06e+112 1.62e+110 1.31e+16 1.30e+15 1.73e+111 1.52e+18 1.45e+17 1.53e+19 9.15e+01

WFG7 5 1.37e+03 1.37e+02 1.20e+01 1.40e+07 1.53e+011 1.38e+05 1.37e+04 2.08e+012 1.48e+09 1.50e+010 1.39e+06 1.43e+08

8 3.90e+01 4.00e+03 4.06e+05 1.17e+112 4.45e+08 4.30e+07 4.03e+04 7.04e+011 4.57e+09 4.80e+010 4.26e+06 3.95e+02

10 5.60e+02 5.73e+06 5.81e+07 1.85e+112 5.67e+03 5.81e+08 5.73e+05 9.10e+011 5.93e+09 7.40e+010 5.73e+04 5.10e+01

12 7.08e+02 7.14e+03 7.55e+09 2.27e+112 7.40e+08 7.24e+06 7.18e+04 1.14e+111 7.25e+07 1.08e+110 7.24e+05 6.75e+01

15 1.19e+14 1.20e+15 1.11e+12 3.09e+112 1.68e+110 1.29e+16 1.19e+13 1.59e+18 1.54e+17 1.80e+111 1.65e+19 8.85e+01

WFG8 5 1.37e+04 1.35e+02 1.38e+05 1.38e+06 1.47e+011 1.35e+01 1.36e+03 2.01e+012 1.46e+010 1.44e+09 1.40e+07 1.41e+08

8 3.89e+01 3.95e+02 3.99e+04 1.38e+112 4.38e+09 4.06e+06 4.00e+05 8.49e+011 4.26e+07 5.02e+010 4.35e+08 3.95e+03

10 5.83e+02 6.20e+09 6.06e+06 1.86e+112 6.00e+04 5.70e+01 6.13e+07 1.09e+111 6.05e+05 7.39e+010 6.18e+08 5.91e+03

12 7.49e+02 7.49e+03 8.21e+08 2.33e+112 8.21e+09 7.50e+04 7.56e+07 1.31e+111 7.53e+06 1.11e+110 7.52e+05 6.80e+01

15 1.24e+12 1.27e+14 1.26e+13 3.06e+112 1.57e+18 1.29e+16 1.28e+15 1.65e+19 1.67e+110 1.69e+111 1.56e+17 9.06e+01

WFG9 5 1.28e+03 1.27e+01 1.30e+05 1.32e+06 1.42e+09 1.28e+02 1.28e+04 2.73e+012 1.43e+010 1.44e+011 1.34e+08 1.33e+07

8 3.62e+01 3.66e+02 3.69e+04 1.18e+112 4.11e+08 3.97e+06 3.67e+03 7.85e+011 5.00e+09 5.86e+010 4.09e+07 3.77e+05

10 5.42e+02 5.50e+05 5.61e+07 1.93e+112 5.49e+04 5.49e+03 5.50e+06 1.01e+111 6.79e+010 6.67e+09 5.92e+08 5.15e+01

12 7.09e+04 7.11e+05 7.76e+08 2.39e+112 7.22e+06 6.94e+02 7.07e+03 1.13e+110 8.17e+09 1.18e+111 7.40e+07 6.90e+01

15 1.17e+12 1.17e+14 1.17e+15 3.10e+112 1.47e+18 1.23e+16 1.17e+13 1.50e+19 1.47e+17 1.66e+111 1.61e+110 9.23e+01

count 9 1 4 0 1 3 0 0 0 6 3 18

4.6.1. The Overall Performance on WFG Functions

The first experiment demonstrates the overall performance of twelve algorithms on WFG functions.
Table 2 shows the result of IGD on 45 tests of 9 functions. In table 2, NSGA-III-UE obtains the optimal
value 9 times, accounting for 20.0%. The results demonstrate NSGA-III-UE is better than most of the other
algorithms, except for SPEA2SDE. HypE has the best performance on WFG3 and records 6 times for the
best IGD values. Two-Arch2 produces the best results 4 times, θ-DEA and RVEA 3 times. NSGA-III and
EFRRR win just once. I-DBEA, Elite-NSGA-III, dMOPSO and MOEA/DD do not return any optimal value
on WFGs. As shown in Tab. 2, SPEA2SDE has 18 occurrences of the best values; therefore, more analysis
should be done to explain the performance of NSGA-III-UE. Tab. 3 shows the total ranks and average
ranks of all test functions of each algorithm. Form these values, we can observe the overall performance of
each algorithm. The total rank of NSGA-III-UE is 145, while SPEA2SDE is 171. The overall sorting of
SPEA2SDE is lower than the proposed algorithm which has an overall sorting of 1. In summary, although
NSGA-III-UE does not achieve the most occurrences of optimal value on WFGs, the overall performance on
IGD metric is still better than the other algorithms.

As an overall indicator, HV is used to further illustrate the performance of NSGA-III-UE. Fig. 4 shows
the HV ranks of each algorithm on WFGs. The reference vector of HV is generated by taking the maximum
objective values from the union of approximation sets. We can see that most of the HV ranks of NSGA-III-
UE are better than, or similar to, the other algorithms. That means the performance of NSGA-III-UE on
HV is comparative to, and in some cases, better than, other algorithms. Tab. 4 gives the specific values of
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Table 3: IGD analysis of various algorithms on WFGs

1 2 3 4 5 6 7 8 9 10 11 12

times of the best 9 1 4 0 1 3 0 0 0 6 3 18
the rate of optimal values 20.00% 2.22% 8.89% 0.00% 2.22% 6.67% 0.00% 0.00% 0.00% 13.33% 6.67% 40.00%

total of ranks 145 200 188 476 303 234 208 402 492 367 324 171
average rank 3.2 4.4 4.2 10.6 6.7 5.2 4.6 8.9 10.9 8.2 7.2 3.8

overall sorting 1 4 3 11 7 6 5 10 12 9 8 2

Table 4: HV analysis of various algorithms on WFGs

1 2 3 4 5 6 7 8 9 10 11 12

times of the best 4 0 0 1 7 14 2 0 0 9 0 8
the ratio of optimal values 8.89% 0.00% 0.00% 2.22% 15.56% 31.11% 4.44% 0.00% 0.00% 20.00% 0.00% 17.78%

total of ranks 252 208 375 397 219 117 148 486 328 256 375 162
average rank 5.6 4.62 8.33 8.82 4.87 2.60 3.29 10.80 7.29 5.69 8.33 3.60

overall sorting 6 4 9 11 5 1 2 12 8 7 9 3

HV rankings. The HV values of HypE must be good. Compared to the rest of the algorithms, NSGA-III-UE
is better than seven algorithms and worse than SPEA2SDE, EFRRR and θ-DEA. SPEA uses a clustering
technique to estimate the density of an individual, and a shift-based density estimation (SDE) can reflect
the convergence of the other individuals with regard to the individual. The result of SPEA2SDE is good on
both diversity and convergence but the optimization process takes more time. EFRRR uses an integrated
ranking method and a restriction order to determine the order of individuals. θ-DEA uses an environmental
selection mechanism named θ dominance, and combines the benefits of NSGA-III and MOEA/D. Utilizing
the aggregation function-based fitness in MOEA/D, θ-DEA results in a better compromise between diversity
and convergence in MaOPs. Similar to SPEA2SDE, both θ-DEA and EFRRR have no advantage in terms
of optimization time, and as Tab. 2 shows, they are not good on IGD metric.
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Figure 4: The rank of HV values of each algorithm on each function with different objective numbers

Tab. 5 gives the average operating time values of NSGA-III-UE, Elite-NSGA-III, NSGA-III, EFRRR,
θ-DEA, SPEA2SDE and HypE which have advantage on HV or IGD. The data in parentheses after average
values are standard deviations. Consistent with our analysis above, NSGA-III-UE is much better than
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Table 5: Average operating time values of some algorithms running 30 times on WFGs with different objective numbers

Problem M NSGA-III-UE Elite-NSGA-III NSGA-III EFRRR θ-DEA SPEA2SDE HypE

WFG1 5 1.0350(8.52e-2) 1.2025 (3.88e-2) 1.6386 (1.31e-1) 1.1029 (3.88e-2) 1.0836 (1.13e-1) 24.408(5.56e-1) 50.586(1.17e+2)
8 1.1449 (1.74e-1) 1.7035 (4.41e-1) 1.9423 (2.50e-1) 1.3264 (8.14e-2) 1.4548 (3.53e-1) 27.801 (6.11e-1) 71.918(1.63e+2)
10 1.2704 (2.28e-1) 2.8580 (8.69e-1) 2.7558 (7.24e-1) 1.3819 (1.25e-1) 1.5328 (3.28e-1) 28.888 (5.68e-1) 87.741(2.04e+2)
12 1.3035 (1.74e-1) 1.8287 (4.24e-1) 2.2502 (9.62e-1) 1.2637 (4.94e-2) 1.4722 (3.40e-1) 29.869 (7.90e-1) 103.09(2.46e+2)
15 2.1405 (5.54e-1) 5.6715 (7.06e-1) 4.4708 (3.36e-1) 3.7613 (3.02e-1) 3.8211 (4.73e-1) 30.783 (6.75e-1) 162.73 (4.17e+2)

WFG2 5 1.2200 (1.07e-0) 9.6806e-1 (3.56e-2) 1.5999 (2.09e-1) 1.0936 (3.34e-2) 1.0610 (9.93e-2) 26.001 (4.64e-1) 112.62 (2.64e+2)
8 1.2167 (1.09e-1) 1.9854 (3.79e-1) 2.1588 (2.70e-1) 1.2879 (4.03e-2) 1.5041 (2.02e-1) 29.556 (5.79e-1) 167.7 (3.40e+2)
10 1.5166 (2.28e-1) 2.9580 (2.17e-1) 3.0647 (4.69e-1) 1.8402 (1.34e-1) 2.2011 (3.82e-1) 30.787 (6.56e-1) 157.50e (3.64e+2)
12 1.5939 (1.68e-1) 2.2162 (8.19e-2) 2.8714 (4.00e-1) 1.8147 (1.20e-1) 2.2546 (3.38e-1) 31.696 (7.66e-1) 154.06e (3.47e+2)
15 2.4495 (7.70e-1) 5.6483 (1.80e-1) 4.4563 (3.30e-1) 3.9520 (2.33e-2) 4.0694 (4.04e-1) 32.471 (8.58e-1) 232.25 (5.80e+2)

WFG3 5 1.5841 (1.66e-0) 1.5705 (2.17e-1) 1.9777 (2.62e-1) 1.1040 (3.15e-2) 1.5333 (2.53e-1) 31.619 (8.42e-1) 74.349 (1.45e+2)
8 1.6552 (2.42e-1) 3.3741 (2.35e-1) 3.3919 (1.38e-0) 2.0660 (3.52e-2) 2.8250 (6.47e-1) 32.843 (8.07e-1) 88.626 (1.78e+2)
10 1.7424 (2.45e-1) 3.5850 (2.72e-1) 3.5624 (6.45e-1) 2.2520 (2.51e-2) 2.9402 (5.28e-1) 33.272 (8.14e-1) 95.556 (1.90e+2)
12 1.7573 (1.46e-1) 2.6392 (3.90e-2) 3.0575 (5.05e-1) 1.9315 (4.77e-2) 2.5539 (4.23e-1) 33.717 (8.93e-1) 101.91 (2.04e+2)
15 2.3157 (3.19e-1) 5.4811 (7.51e-2) 4.5271 (2.88e-1) 3.9271 (2.19e-2) 4.1926 (3.21e-1) 34.110 (8.89e-1) 175.15(4.14e+2)

WFG4 5 1.0352 (9.24e-2) 9.9099e-1 (5.96e-2) 1.6354 (2.96e-1) 1.0877 (3.41e-2) 1.1121 (1.46e-1) 29.044 (7.49e-1) 443.5(2.93e+1)
8 1.4613 (1.43e-0) 1.5826 (1.40e-1) 2.0419 (2.34e-1) 1.2204 (2.76e-2) 1.3246 (1.54e-1) 31.144 (8.12e-1) 570.09 (3.39e+1)
10 1.4141 (1.47e-1) 2.1024 (3.30e-1) 2.6329 (4.63e-1) 1.3424 (6.00e-2) 1.5232 (1.62e-1) 31.712 (7.58e-1) 620.98 (3.22e+1)
12 1.5484 (1.50e-1) 1.9193 (1.45e-1) 2.5486 (2.67e-1) 1.3786 (4.09e-2) 1.6358 (2.00e-1) 32.331 (8.65e-1) 674.24 (5.45e+1)
15 2.2643 (3.14e-1) 5.4074 (6.82e-2) 4.5224 (3.13e-1) 3.0513 (4.86e-1) 2.8994 (4.14e-1) 32.850 (8.83e-1) 1410.9(9.75e+1)

WFG5 5 1.0058 (8.26e-2) 9.2283e-1 (2.43e-2) 1.5546 (1.48e-1) 1.0757 (2.65e-2) 1.0946 (1.45e-1) 28.657 (6.25e-1) 65.163(1.47e+2)
8 1.1388 (9.85e-2) 1.4003 (6.80e-2) 1.9199 (2.58e-1) 1.1890 (2.43e-2) 1.2528 (1.49e-1) 31.319 (7.31e-1) 93.750 (2.43e+2)
10 1.2509 (1.27e-1) 1.5899 (1.62e-1) 2.2707 (3.01e-1) 1.2842 (2.75e-2) 1.4285 (2.72e-1) 32.036 (7.72e-1) 96.550 (2.40e+2)
12 1.4965 (2.67e-1) 1.5930 (1.10e-1) 2.2857 (3.39e-1) 1.3031 (5.32e-2) 1.4576 (1.77e-1) 32.647 (7.69e-1) 113.71 (3.03e+2)
15 1.9246 (3.14e-1) 4.4984 (8.45e-1) 4.0050 (5.38e-1) 2.5733 (5.23e-1) 2.4352 (2.88e-1) 33.284 (7.77e-1) 167.96 (4.84e+2)

WFG6 5 1.0021 (1.27e-1) 9.0701e-1 (2.42e-2) 1.5552 (1.43e-1) 1.0759 (3.27e-2) 1.0714 (1.46e-1) 26.051 (5.19e-1) 45.314 (1.03e+2)
8 1.1022 (6.97e-2) 1.3873 (8.94e-2) 2.2748 (1.37e-0) 1.1856 (2.19e-2) 1.2441 (1.34e-1) 28.888 (7.04e-1) 60.972(1.45e+2)
10 1.2480 (1.21e-1) 1.8853 (4.54e-1) 2.3265 (3.40e-1) 1.2805 (3.16e-2) 1.3894 (1.50e-1) 29.420 (6.60e-1) 65.016 (1.50e+2)
12 1.4435 (1.53e-1) 1.5778 (1.63e-1) 2.2858 (2.69e-1) 1.3353 (5.40e-2) 1.4157 (1.27e-1) 29.776 (5.80e-1) 75.830 (1.81e+2)
15 2.0639 (3.26e-1) 5.2170 (6.24e-1) 4.2594 (4.91e-1) 2.4231 (6.16e-1) 2.4365 (2.80e-1) 30.414 (6.92e-1) 136.02 (4.07e+2)

WFG7 5 1.0406 (7.63e-2) 9.5735e-1 (3.22e-2) 1.6111 (1.46e-1) 1.0963 (3.66e-2) 1.1069 (1.09e-1) 30.434 (7.05e-1) 70.475 (1.69e+2)
8 1.1981 (1.00e-1) 1.5005 (1.17e-1) 2.0078 (2.15e-1) 1.2298 (4.04e-2) 1.3598 (1.90e-1) 31.618 (7.22e-1) 81.358 (1.90e+2)
10 1.3697 (1.49e-1) 1.9856 (3.38e-1) 2.6583 (5.33e-1) 1.3850 (3.72e-2) 1.5165 (1.70e-1) 31.713 (7.76e-1) 90.024 (2.11e+2)
12 1.8726 (1.25e-0) 2.0769 (1.35e-1) 2.8359 (3.58e-1) 1.3915 (9.31e-2) 1.6190 (2.61e-1) 31.995 (7.03e-1) 94.807 (2.22e+2)
15 2.4348 (3.18e-1) 5.4583 (9.63e-2) 4.5948 (2.73e-1) 3.3893 (7.03e-1) 3.0894 (4.75e-1) 32.421 (7.30e-1) 171.88 (5.03e+2)

WFG8 5 1.0179 (9.92e-2) 9.3239e-1 (6.22e-2) 1.6048 (2.12e-1) 1.0945 (3.47e-2) 1.0752 (1.36e-1) 25.117 (4.99e-1) 43.010 (9.39e+1)
8 1.2036 (2.00e-1) 1.6679 (4.49e-1) 2.1347 (5.34e-1) 1.3299 (1.77e-1) 1.3069 (1.88e-1) 27.165 (5.23e-1) 57.981 (1.43e+2)
10 1.4148 (2.36e-1) 2.4788 (5.32e-1) 3.0074 (6.89e-1) 1.4852 (2.66e-1) 1.6779 (5.03e-1) 27.958 (5.55e-1) 65.979 (1.62e+2)
12 1.5802 (2.09e-1) 2.0142 (2.63e-1) 2.7024 (5.06e-1) 1.6310 (2.66e-1) 2.1299 (5.79e-1) 28.421 (6.09e-1) 77.617 (1.99e+2)
15 2.3701 (4.69e-1) 5.3885 (2.78e-1) 4.5610 (3.03e-1) 3.9253 (1.20e-1) 3.3503 (6.15e-1) 29.150 (6.25e-1) 141.12(4.23e+2)

WFG9 5 1.0741 (1.46e-1) 9.8078e-1 (2.73e-2) 1.6260 (1.54e-1) 1.1076 (3.19e-2) 1.1353 (1.05e-1) 30.972 (1.05e+1) 599.39 (1.08e+2)
8 1.2657 (1.59e-1) 1.6426 (1.71e-1) 2.1684 (3.27e-1) 1.2877 (3.85e-2) 1.3895 (2.55e-1) 32.683 (7.71e-1) 712.85 (1.02e+2)
10 1.4568 (2.08e-1) 2.0313 (3.14e-1) 2.7478 (4.74e-1) 1.3862 (5.88e-2) 1.5750 (2.87e-1) 33.134 (8.13e-1) 797.74 (9.65e+1)
12 1.6494 (2.47e-1) 2.0247 (1.09e-1) 2.8474 (4.49e-1) 1.4026 (5.92e-2) 1.6248 (3.01e-1) 33.624 (7.43e-1) 910.99 (1.29e+2)
15 2.3916 (3.59e-1) 5.3259 (2.07e-1) 4.6353 (3.81e-1) 3.0002 (6.35e-1) 2.5791 (4.01e-1) 34.071 (9.15e-1) 1599.8 (1.86e+2)

count 28 7 0 10 0 0 0

SPEA2SDE, EFRRR and θ-DEA on the operating time metric. When the number of objectives m is more
than 5, NSGA-III-UE needs less time than NSGA-III and Elite-NSGA-III. The reason is, for most of the
high-dimensional objective problems, NSGA-III-UE does not need to spend time on the niche selection.
More details can be seen in Section 3.4.

Take WFG9 with 8 objectives as an example. Fig. 5 shows the parallel coordinates plots [58] of the
Pareto set obtained by the compared algorithms. The visualization results of the solution sets [59] obtained
by the algorithms can further illustrate the differences of the performance .

Reviewing the results of these algorithms on IGD, HV and Operating time, it can be concluded that
NSGA-III-UE has a considerable advantage over other methods on WFGs.

4.6.2. The Perspective of Test Functions

Fig. 6 analyzes the performance of eight algorithms from the perspective of test functions. Because
I-DBEA, Elite-NSGA-III, dMOPSO and MOEA/DD do not get any optimal value on WFG functions with
m = {5, 8, 10, 12, 15}, these four algorithms are excluded in the comparison. The histogram in Fig. 6 shows
the statistical result of the remaining eight algorithms on the times of obtaining the optimal IGD values.
Among these algorithms, NSGA-III-UE obtains the optimal value with 2 times on WFG2 and WFG4,
corresponding to 33.33%, and one times on WFG5, WFG6, WFG7, WFG8 and WFG9. It is better than
NSGA-III, Two-Arch2, EFRRR, HypE, and RVEA which only obtain once or none. NSGA-III-UE is worse
than SPEA2SDE and RVEA on WFG1. On WFG3, HypE is the best algorithm which gets all the five times
of the optimal value. Reviewing the above results, we can draw a conclusion that NSGA-III-UE is better
than most of the algorithms on most WFG functions except WFG1 and WFG3. In Subsection 4.6.7, an
analysis is provided to explain why NSGA-III-UE performs poorly on functions like WFG1 and WFG3.
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Figure 5: The parallel coordinates plots of the Pareto set obtained by each algorithm on WFG9 with 8 objectives

4.6.3. The Perspective of Objective Numbers

In this subsection, we analyze the performance of NSGA-III-UE from the view of objective num-
bers. Fig. 7 compares the ratios of optimal IGD values for all the algorithms on WFGs when m =
{3, 5, 8, 10, 12, 15}. As previously mentioned, I-DBEA, dMOPSO and MOEA/DD do not return any good
values on WFGs and therefore are again excluded in this comparison. From Fig. 7, it can be seen that
NSGA-III-UE has a good performance when the objective number is 8, and the ratio of obtained optimal
IGD value is 66.67%. Furthermore, Fig. 8 shows the IGD ranks of all the algorithms with different objective
number in more detail. The numbers of the abscissa axis are the objective numbers, and the positions
between each two numbers of abscissa represent the functions of WFGs. From this figure, we can observe
that the ranks of our proposed algorithm are better than most of the other algorithms. Only when the
objective number is 3, which is a multi-objective problem, does NSGA-III-UE fail to get the optimal value.
In summary, our proposed algorithm demonstrates a significant advantage on WFGs with different objective
numbers in terms of IGD, especially when the number of objectives is 8.

4.6.4. The Overall Performance on DTLZ Functions

Tab. 6 shows experimental results of eleven algorithms except SPEA2SDE which is powerful on DTLZ
functions [28]. In 40 groups test of 8 functions, NSGA-III-UE gets the best average IGD value for 5 times. It
is better than NSGA-III, I-DBEA, EFRRR, θ-DEA , Elite-NSGA-III, dMOPSO and RVEA, but worse than
Two-Arch2, MOEA/DD and HypE. MOEA/DD has the best performance with 11 times of the best IGD
value, especially on DTLZ1 and DTLZ3. HypE wins for 8 times. However, both of them do not perform
well on other functions. Two-arch2 has 6 times of the best IGD value. Therefore, more analyses should be
done to illustrate the performance of NSGA-III-UE.

Tab. 7 shows that the overall IGD rankings of NSGA-III-UE is 3,while Two-Arch2, MOEA/DD and
HypE are 5, 8 and 6, respectively; worse than the proposed algorithm. The average ranks of θ-DEA and
Elite-NSGA-III are better than NSGA-III-UE, however, the times for obtaining the best IGD values is 2.
This is lower than our algorithm which obtains 5.

Taking the analysis further, the average operating time values of each algorithm on DTLZs are shown in
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Figure 6: The times of the best IGD value of each algorithm on each function

Tab. 8. The optimization times for RVEA are consistently the smallest; however, RVEA has not achieved
the optimal value on IGD. Excluding RVEA, NSGA-III-UE has the shortest optimization time in most of the
tests. The operating time of NSGA-III-UE is significantly better than Two-Arch2, I-DBEA, MOEA/DD,
HpyE and SPEA2SDE. Tab. 8 shows the advantage of our proposed algorithm in terms of time efficiency.

Considering the results of these algorithms on IGD and operating time, the overall performance of
NSGA-III-UE is better than the other algorithms.

4.6.5. The Perspective of Stability

Boxplots Fig. 9 is used to illustrate the stability of our algorithm. The performance of NSGA-III-UE is
analyzed on WFG9 with different objective numbers: m = {5, 8, 10, 12, 15, 20}. The compared algorithms
run 30 times on each objective number. The IGD values are plotted on boxplots. The abscissa values
correspond to these algorithms: NSGA-III-UE(1), NSGA-III(2), Two-Arch2(3), I-DBEA(4), EFRRR(5),
θ-DEA(6), Elite-NSGA-III(7), dMOPSO(8), MOEA/DD(9), HypE(10), RVEA(11) and SPEA2SDE(12),
respectively.

It can be seen from Fig. 9 that for WFG9, the overall IGD value distribution of NSGA-III-UE is more
evenly than other algorithms. Especially, when m = {5, 8, 10}, the IGD values obtained by NSGA-III-UE
have no outliers. When the number of objectives is 8, the datum is distributed evenly and the value is the
minimum. The boxplots indicate that the performance of NSGA-III-UE is stability.
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Table 6: Average IGD values of algorithms running 30 times on DTLZs with different objective numbers

Problem M 1 2 3 4 5 6 7 8 9 10 11

DTLZ1 5 6.75e-16 6.57e-15 8.99e-18 9.03e-19 2.21e+010 4.03e-12 6.80e-17 4.97e+011 3.07e-11 5.30e-13 6.51e-14

8 1.92e+09 1.42e+07 1.25e+05 1.64e+08 4.07e-12 7.31e-14 1.27e+06 4.32e+011 2.87e-11 6.50e-13 2.22e+010

10 1.89e+09 1.28e+07 1.11e+06 3.36e+010 3.73e-12 5.49e-13 1.31e+08 7.43e+011 3.02e-11 6.41e-15 5.97e-14

12 1.81e+09 1.48e+07 2.91e+010 1.50e+08 4.46e-12 6.78e-14 1.19e+06 9.59e+011 3.15e-11 7.26e-15 4.81e-13

15 1.53e+06 1.59e+07 2.33e+08 1.07e+110 1.17e+04 8.64e-12 1.38e+05 1.27e+111 4.73e-11 1.13e+03 9.39e+09

DTLZ2 5 2.36e-15 2.34e-12 2.14e-11 2.40e-17 2.39e-16 2.34e-13 2.35e-14 3.47e-110 2.43e-19 3.65e-111 2.42e-18

8 4.82e-14 4.87e-15 4.43e-11 9.26e-111 4.80e-13 4.78e-12 4.96e-16 6.94e-110 5.04e-17 6.04e-19 5.22e-18

10 5.58e-14 5.99e-16 6.04e-17 1.26e+011 5.18e-11 5.22e-13 5.83e-15 8.56e-110 6.05e-18 8.23e-19 5.20e-12

12 6.21e-14 6.47e-16 7.25e-18 1.28e+011 5.55e-11 5.66e-12 6.36e-15 9.55e-110 6.87e-17 8.37e-19 5.71e-13

15 7.86e-12 8.05e-13 8.68e-16 1.32e+010 8.54e-15 7.76e-11 8.12e-14 1.18e+09 1.23e+411 9.21e-17 9.55e-18

DTLZ3 5 3.24e+19 2.22e+18 1.19e+12 2.01e+17 4.61e+110 1.44e+13 1.98e+15 1.51e+211 1.51e+14 1.16e+11 1.98e+16

8 6.83e+110 4.50e+17 5.91e+18 1.97e+12 3.30e+15 2.07e+13 4.47e+16 1.72e+211 1.05e+11 2.08e+14 6.09e+19

10 7.58e+19 7.03e+18 1.14e+210 1.75e+13 2.17e+16 1.96e+15 5.19e+17 1.36e+211 6.87e+01 1.83e+14 1.30e+12

12 7.47e+19 6.41e+18 1.23e+210 2.52e+15 2.90e+16 2.22e+14 5.80e+17 1.95e+211 6.99e+01 2.19e+13 1.60e+12

15 4.87e+18 2.79e+15 1.34e+210 3.67e+17 2.19e+13 2.51e+14 2.87e+16 1.70e+211 1.07e+11 2.00e+12 7.45e+19

DTLZ4 5 2.68e-14 3.18e-17 2.26e-11 5.28e-18 2.46e-12 2.67e-13 2.84e-16 5.40e-19 6.11e-110 6.21e-111 2.76e-15

8 4.92e-13 5.46e-16 4.53e-11 7.13e-19 4.86e-12 5.06e-14 5.33e-15 7.00e-18 9.15e-111 8.09e-110 5.82e-17

10 5.81e-13 6.29e-17 5.82e-14 8.87e-110 5.21e-11 5.25e-12 6.12e-16 7.33e-18 1.03e+011 8.56e-19 5.84e-15

12 6.47e-16 6.76e-17 6.28e-14 8.08e-19 5.70e-11 5.74e-12 6.32e-15 7.62e-18 1.02e+011 8.93e-110 6.01e-13

15 8.03e-14 8.08e-16 7.57e-11 1.41e+011 7.72e-12 7.75e-13 8.03e-15 9.00e-17 1.20e+010 9.70e-18 9.92e-19

DTLZ7 5 5.56e-13 5.64e-15 6.44e-16 1.07e+08 5.59e-14 5.44e-12 5.18e-11 7.54e-17 1.58e+010 2.22e+011 1.11e+09

8 3.41e+08 1.91e+04 3.22e+07 4.72e+09 1.80e+03 1.69e+02 1.95e+06 1.93e+05 1.65e+01 5.02e+010 7.50e+011

10 6.49e+010 4.67e+07 5.42e+08 8.92e+011 3.17e+03 2.64e+01 4.03e+06 3.01e+02 3.51e+05 6.45e+09 3.22e+04

12 1.01e+19 7.51e+07 1.31e+110 1.33e+111 6.84e+06 5.84e+04 6.71e+05 3.23e+01 4.45e+02 8.10e+08 5.73e+03

15 1.82e+18 9.28e+05 2.77e+19 5.84e+111 2.96e+110 1.03e+16 8.84e+03 9.06e+04 5.06e+01 1.29e+17 6.49e+02

IDTLZ1 5 5.93e-11 8.61e-17 1.94e+09 1.46e+08 2.16e+010 6.42e-14 7.86e-16 6.52e+111 5.97e-12 6.28e-13 7.23e-15

8 7.05e-14 7.84e-16 5.84e+09 2.64e+07 4.75e+08 5.69e-12 5.18e-11 9.35e+111 7.36e-15 6.56e-13 9.61e+010

10 1.18e+05 7.09e-12 7.13e+010 3.72e+08 2.26e+07 9.22e-13 1.03e+04 1.05e+211 1.69e+06 4.93e-11 6.18e+09

12 2.19e+06 6.87e-11 3.37e+07 4.72e+08 6.28e+09 7.48e-12 1.16e+04 1.11e+211 1.54e+05 9.60e-13 7.38e+010

15 3.11e+06 2.41e+04 6.48e+09 4.69e+08 4.39e+07 1.77e+02 2.01e+03 1.27e+211 2.76e+05 1.51e+01 1.03e+210

IDTLZ2 5 2.79e-13 2.84e-15 2.16e-12 3.09e-17 3.46e-19 4.29e-111 2.81e-14 3.62e-110 2.96e-16 2.00e-11 3.37e-18

8 5.25e-13 5.61e-14 4.24e-12 6.56e-16 6.93e-19 6.81e-18 5.65e-15 7.79e-111 7.13e-110 3.69e-11 6.67e-17

10 6.70e-13 7.00e-14 5.29e-12 7.95e-17 8.81e-110 7.92e-16 7.15e-15 9.24e-111 8.61e-19 4.67e-11 8.03e-18

12 7.81e-13 8.26e-15 6.15e-12 8.66e-17 9.63e-110 8.60e-16 8.20e-14 9.89e-111 9.62e-19 5.47e-11 8.93e-18

15 9.52e-13 9.57e-14 7.11e-12 1.01e+07 1.13e+09 9.94e-16 9.64e-15 1.15e+010 1.12e+08 6.60e-11 1.53e+011

CDTLZ2 5 9.61e-21 9.65e-22 9.87e-23 1.02e-15 1.04e-16 1.15e-18 9.93e-24 1.56e-110 1.36e-19 1.81e-111 1.09e-17

8 1.56e-11 1.62e-13 1.61e-12 8.96e-111 2.32e-110 1.70e-15 1.70e-16 2.10e-19 1.99e-18 1.66e-14 1.72e-17

10 1.51e-11 1.78e-16 1.57e-12 9.64e-111 1.91e-17 1.76e-15 1.71e-14 2.25e-110 2.19e-19 2.19e-18 1.69e-13

12 1.42e-11 1.55e-14 1.69e-16 9.03e-111 1.66e-15 1.77e-17 1.43e-12 2.22e-19 2.21e-18 2.52e-110 1.45e-13

15 2.37e-15 2.22e-12 1.88e-11 9.99e-111 2.50e-18 3.88e-110 2.24e-13 2.50e-17 2.41e-16 2.35e-14 3.83e-19

count 5 1 6 0 4 2 2 1 11 8 0

Table 7: IGD analysis of various algorithms on DTLZs

1 2 3 4 5 6 7 8 9 10 11

times of the best 5 1 6 0 4 2 2 1 11 8 0
the rate of optimal values 12.50% 2.50% 15.00% 0.00% 10.00% 5.00% 5.00% 2.50% 27.50% 20.00% 0.00%

total of ranks 207 211 219 338 224 159 195 371 232 224 260
average rank 5.18 5.28 5.48 8.45 5.60 3.98 4.88 9.28 5.80 5.60 6.50

overall sorting 3 4 5 10 6 1 2 11 8 6 9
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Figure 7: The ratios of optimal IGD values of each algorithm on WFGs with different objective numbers

4.6.6. Verify the Efficiency of the Two-archive Strategy

The variants of NSGA-III-UE are used as compared algorithms to analyze the influence of the uniform
archive, the single elite archive and the two-archive strategy, respectively . Based on the frame of NSGA-III,
NSGA-III-U is an algorithm which only uses the uniform archive, and NSGA-III-E is an algorithm which
only uses the single elite archive. Since the PF of each function with 3 objectives can be visualized and
observed intuitively, let us take DTLZ4 with 3 objective numbers as an example to illustrate the effect of
the uniform archive on diversity and the single elite archive on convergence. The multi-objective traveling
salesman problem(MOTSP) with un-regular PF is also used to illustrate the effectiveness of the two-archive
strategy.

Fig.10 is used to illustrate the effect of the uniform archive. The evolution process of the PF obtained by
NSGA-III-UE is shown in Fig.10. The sub-figures in Fig.10 are the PFs of the corresponding generations.
From the sub-figures, it can be seen that in the initial stage of optimization, solutions are concentrated in
a region of the entire space. With the increase of iterations, the search area is gradually expanded to the
entire search space under the effect of the uniform archive. Fig.11(a) shows the values of IGD metric to
exhibit the overall performance of each algorithm in its evolutionary process. The algorithm NSGA-III-E
converges more quickly than NSGA-III, but it is apt to fall into premature convergence. The uniform archive
in NSGA-III-U can maintain diversity and prevent algorithm from premature convergence to some extent.
Fig.11(b) shows the values of spread indicator. It can be seen that the population diversity of the algorithm
using the two-archive strategy is better than the other algorithms. From the above figures, the efficiency
of the proposed two-archive strategy is demonstrated. We can learn that the proposed two-archive strategy
can help the algorithm converging quickly and having better diversity.

The multi-objective traveling salesman problem(MOTSP) is used as a test problem with an un-regular
PF to evaluate the effectiveness of the uniform archive and the single elite archive further. Table 9 gives the
average values of NSGA-III, NSGA-III-U, NSGA-III-E and NSGA-III-UE in terms of Spread, HV and IGD.
The data in parentheses after average values are standard deviations. Table 9 also shows the population
diversity of the algorithm using the two-archive strategy is the best, and the overall performance of NSGA-
III-UE is better than NSGA-III, NSGA-III-U and NSGA-III-E.

4.6.7. Discussion of NSGA-III-UE

Although NSGA-III-UE has a good performance on most of the test functions, it still does not work well
on some functions. Now we discuss why NSGA-III-UE is not good at these functions.

Table 2 has shown that NSGA-III-UE does not achieve the best IGD values on WFG1 and WFG3, but
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Figure 8: The ranks of IGD values of each algorithm on WFGs with different objective numbers

Table 8: Average operating time values of algorithms running 30 times on DTLZs with different objective numbers

Problem M 1 2 3 4 5 6 7 8 9 10 11 12

DTLZ1 5 0.7731 1.2662 8.2154 8.2000 1.1019 0.7855 0.8950 2.7382 15.4620 70.5580 0.4829 10.0280
8 0.9123 1.7895 10.9330 7.2400 1.3229 1.1299 1.6651 2.6875 14.3290 106.2300 0.4617 11.9340
10 1.0633 2.0447 12.3330 6.9952 1.7147 1.6413 2.4705 2.8301 14.4290 139.4700 0.5103 13.1140
12 1.1594 1.9842 13.2560 13.2690 1.7203 1.5357 2.0668 2.6121 16.2980 139.4100 0.4763 13.7380
15 1.5608 3.9826 14.6310 13.1690 3.4271 3.7390 5.7295 3.2514 12.8550 111.4800 0.7053 15.2140

DTLZ2 5 0.9836 1.4726 12.9150 10.3140 1.1029 0.9565 0.8341 2.5327 14.7210 588.6800 0.4871 14.8260
8 1.0428 2.0366 15.6990 9.1811 1.1215 1.2061 1.5191 2.7211 14.0220 847.6500 0.4823 16.4320
10 1.1319 2.4222 17.3040 18.3120 1.3241 1.3736 2.1515 2.7277 13.9140 953.9000 0.5478 17.1240
12 1.3346 2.5420 18.4210 16.5430 1.2988 1.4094 1.9538 2.5329 15.0620 1001.9000 0.5070 17.5690
15 1.9229 4.1972 19.9420 15.2840 2.6921 2.6220 5.5189 3.2096 12.7720 1911.6000 0.7678 18.1580

DTLZ3 5 0.7729 1.3056 7.9449 12.1200 1.1087 0.7826 0.9225 2.6847 17.0360 19.6620 0.5051 8.3836
8 0.8960 1.5533 11.3790 7.4470 1.2138 1.0036 1.8724 2.8167 15.4880 57.6020 0.5029 11.8660
10 1.0670 2.2697 13.1650 15.7970 1.7349 1.2513 2.8703 2.7684 15.3570 69.6880 0.5458 12.8850
12 1.1948 2.0847 15.1200 14.6370 1.6922 1.4070 2.2337 2.6715 16.8240 85.7350 0.5109 14.3630
15 1.6408 4.0086 16.4910 13.9990 3.4734 3.7570 5.3828 3.2875 12.9160 104.9200 0.7485 15.8530

DTLZ4 5 0.8375 1.6851 13.6050 55.9350 1.1265 1.1016 1.0553 2.6495 14.6380 64.2510 0.4975 14.5270
8 1.0250 2.1402 16.4960 18.9540 1.2673 1.5128 2.0524 2.8555 14.0610 170.8800 0.4936 16.5520
10 0.9764 2.2631 17.5850 21.5670 1.7216 1.0445 1.6217 2.8680 13.8640 210.9100 0.5681 17.5730
12 1.1560 2.0315 18.9240 20.4050 1.2754 1.2894 1.8157 2.7914 15.3700 237.4100 0.5431 17.7870
15 1.5800 4.0320 20.0020 17.2040 2.5842 2.6477 5.4288 3.2294 13.0580 268.9600 0.7580 18.5410

DTLZ7 5 1.1157 2.0371 11.0750 8.8137 1.5821 1.1645 2.2682 2.5083 14.7020 35.7550 0.4225 14.3050
8 1.1895 2.3298 16.0120 9.5644 1.5269 1.5889 2.7731 2.7432 14.6859 133.2400 0.4307 16.8460
10 1.2399 2.4573 17.2940 19.9660 2.0106 1.8391 2.7100 2.8564 15.0530 192.9100 0.5656 17.5810
12 1.2356 2.1384 20.3100 19.3640 1.8539 1.6822 2.0515 2.5812 18.4450 230.8700 0.4582 18.0260
15 1.6733 4.0110 20.9530 17.3340 3.4757 3.6327 5.1920 3.1272 14.4700 263.4000 0.7368 18.2310

IDTLZ1 5 0.9967 1.7894 6.0122 7.6748 2.0151 1.4944 2.6657 2.6653 15.8440 24.4010 0.3864 7.7407
8 1.0793 2.1578 6.7936 8.2595 1.7358 1.8066 3.4487 2.7144 16.0870 47.3860 0.4970 8.6558
10 1.1178 2.3238 6.8870 15.8630 2.2566 1.9825 3.6278 2.8390 15.9840 49.1610 0.5287 9.2196
12 1.1036 2.0303 7.4876 13.3990 1.9399 1.6777 2.8869 2.6573 17.9690 65.9880 0.5152 9.7994
15 1.5683 3.9946 7.4300 14.9860 3.4211 3.7397 6.8642 3.3134 14.7960 78.5650 0.8053 9.7519

IDTLZ2 5 1.0300 1.8755 11.4370 19.2960 1.3978 1.8277 1.7752 2.4839 18.0250 917.3900 0.4327 15.3160
8 1.2848 2.6885 13.1250 18.6740 1.6016 2.0612 2.9627 2.8011 16.8300 861.8200 0.5113 16.7670
10 1.4793 3.0534 14.1820 20.2500 2.2520 2.5577 3.2854 2.7099 17.7850 934.1100 0.5600 17.1940
12 1.4779 2.6601 14.8290 19.4040 1.9771 2.1362 2.1268 2.5529 19.6500 1039.6000 0.5232 17.5530
15 1.9155 4.2760 15.7360 17.1170 3.4607 3.7705 5.8756 3.2408 16.1960 2205.5000 0.7923 18.0300

CDTLZ2 5 0.9549 1.5975 12.8990 13.3060 1.2010 0.9714 0.8547 2.6308 18.2980 651.7300 0.5429 15.1000
8 1.0179 1.8698 15.0470 10.8640 1.3557 1.2526 1.2595 2.6694 16.0230 5975.0000 0.5284 16.9860
10 1.2929 2.5059 16.6870 17.3930 1.4760 1.8476 2.0719 2.7028 15.9420 1052.1000 0.5820 17.7810
12 1.4611 2.4484 18.5480 17.1690 1.4992 1.7442 1.8158 2.5588 17.8390 1690.1000 0.5958 17.7920
15 1.8140 4.1129 20.2690 14.2700 2.1009 2.8508 5.3936 3.2931 15.4160 1897.6000 0.8566 18.1180
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Figure 9: Boxplots of IGD values of algorithms running 30 times on IDTZL2 with m = {5, 8, 10, 12, 15, 20}

performs well on other functions. Let us consider the characteristics of these functions and the performance of
NSGA-III-UE together. As previously mentioned, the PF of each function with 3 objectives can be observed
intuitively, and therefore are again used as an example. Fig. 12 displays the true PF of WFG functions when
the number of objectives is 3. Fig. 13 shows the approximating Pareto Front [60] of each function with 3
objectives optimized by NSGA-III-UE. Let us observe the characteristics of functions through Fig. 12. For
WFG1,WFG2 and WFG3, the real PFs are more concentrated than the others, especially for WFG3, which
is concentrated in a very small rectangular area. Using the two-archive strategy, NSGA-III-UE aims to
search the entire solution space evenly. It may not have an advantage for solving a problem which solution
set is concentrated.

Considering above tables and figures together, we can conclude that NSGA-III-UE brings more consid-
erable benefits for solving a problem whose Pareto solution set is distributed wildly in the solution space,
not concentrated in a small area. However, the real Pareto solution sets of most real-world optimization
problems are unknown. Therefore, it is necessary to search for optimal solutions in entire solution space.

5. Conclusions

After analyzing challenges of NSGA-III for solving MaOPs, a novel two-archive strategy is presented in
this paper. The uniform archive strategy addresses the issue of NSGA-III unable to search the area in which
no dominant solution is near a reference point. This strategy aims to maintain population diversity and

23



(b)  the 300   generation

0.2

0.6

10.01

f 3

1

f
2

f
1

1.50.03

1.4

20.05

(d)  the 1000   generation

0.2

0.2 0.2

0.6

f 3

f
2

f
1

0.6 0.6

1

1 1

(a) the 100   generation

1.2

0.5

0.2

1

f 3

1.6

f
2

f
1

0.6

1.5

21

(c) the 500   generation

0.02

0.06

0.9950.05

f 3

0.1

f
1

f
2

1

0.14

0.1
1.0050.15

(h) the 10000   generation

0.2

0.2 0.2

0.6

f 3

f
1

f
2

0.6 0.6

1

1 1

(g) the 5000   generation

0.2

0.2 0.2

0.6

f 3
f
1

f
2

0.6 0.6

1

1 1

(f) the 3000   generation

0.2

0.20.2

0.6

f 3

f
1

f
2

0.60.6

1

11

(e) the 2000   generation

0.5

0.20.2

1

f 3

f
1

f
2

0.6

1.5

0.6 1
1.4

th

th th thth

ththth

Figure 10: The evolution processes of NSGA-III-UE on DTLZ4 with 3 objectives

ensures that the algorithm is able to search the entire solution space. Inspired from PSO, the single elite
archive strategy is proposed to guide search direction. It solves the problem that NSGA-III cannot ensure
single elite individuals entering the next generation when the number of non-dominated solutions is larger
than the population size. The single elite archive preserves individuals with the best single objective value
of the current generation and allows them to participate in evolution. This improves the convergence of
the algorithm. Based on the two-archive strategy, an improved NSGA-III algorithm, called NSGA-III-UE,
is designed for solving MaOPs. NSGA-III-UE is compared with other eleven state-of-the-art algorithms in
terms of IGD, HV, Spread and Operating time. Experimental results show that the proposed NSGA-III-UE
performs well on most of the test problems.

However, the effect of the uniform archive depends on the reference points. In this paper, our reference
points are generated from Das and Denis’s approach which the generated points may not uniformly distribute
corresponding to the PF. In the future, we will consider other approach to generate better reference points.

Table 9: Spread, HV and IGD values of variants algorithms on MOTSP

spread

M NSGA-III NSGA-III-U NSGA-III-E NSGA-III-UE

5 7.2581e-1 (2.76e-2) 7.1433e-1 (2.17e-2) 7.1403e-1 (2.66e-2) 7.1276e-1 (2.19e-2)
8 7.5001e-1 (1.36e-2) 7.5186e-1 (1.97e-2) 7.5165e-1 (1.91e-2) 7.4777e-1 (1.97e-2)
10 7.8412e-1 (1.65e-2) 7.8325e-1 (1.41e-2) 7.8607e-1 (1.23e-2) 7.8076e-1 (1.72e-2)
12 7.5578e-1 (1.49e-2) 7.4363e-1 (1.39e-2) 7.4619e-1 (1.23e-2) 7.4257e-1 (1.71e-2)
15 9.5909e-1 (1.06e-2) 9.5581e-1 (8.54e-3) 9.5064e-1 (6.49e-3) 9.5025e-1 (1.09e-2)
20 9.5398e-1 (6.72e-3) 9.5461e-1 (8.96e-3) 9.4820e-1 (9.42e-3) 9.4526e-1 (8.60e-3)

HV

5 7.6394e+6 (5.07e+5) 7.6112e+6 (4.42e+5) 7.4928e+6 (4.06e+5) 7.6605e+6 (3.81e+5)
8 5.8154e+10 (5.90e+9) 6.2936e+10 (6.27e+9) 5.6974e+10 (6.01e+9) 5.8814e+10 (5.69e+9)
10 2.0532e+13 (1.69e+12) 2.1048e+13 (1.92e+12) 2.0971e+13 (2.65e+12) 2.2023e+13 (2.27e+12)
12 9.3812e+15 (1.03e+15) 9.4097e+15 (1.41e+15) 9.1856e+15 (8.75e+14) 8.9927e+15 (1.31e+15)
15 5.0115e+19 (9.16e+18) 5.3000e+19 (9.22e+18) 5.0767e+19 (7.79e+18) 5.7274e+19 (8.66e+18)
20 1.3819e+26 (1.94e+25) 1.3531e+26 (1.78e+25) 1.3166e+26 (1.92e+25) 1.4858e+26 (3.27e+25)

IGD

5 3.7281e+1 (7.56e-1) 3.6820e+1 (9.61e-1) 3.6986e+1 (8.24e-1) 3.7083e+1 (7.14e-1)
8 4.3564e+1 (8.76e-1) 4.4318e+1 (8.08e-1) 4.3551e+1 (8.27e-1) 4.3541e+1 (9.80e-1)
10 4.7394e+1 (6.82e-1) 4.7525e+1 (9.39e-1) 4.7198e+1 (1.04e+0) 4.7637e+1 (7.22e-1)
12 5.1692e+1 (9.44e-1) 5.1742e+1 (8.38e-1) 5.1479e+1 (7.55e-1) 5.1462e+1 (7.94e-1)
15 5.7167e+1 (1.23e+0) 5.7396e+1 (1.42e+0) 5.6877e+1 (9.06e-1) 5.7805e+1 (8.39e-1)
20 6.5582e+1 (1.10e+0) 6.5664e+1 (1.06e+0) 6.5579e+1 (8.33e-1) 6.5562e+1 (1.03e+0)
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Figure 11: Comparison of IGD and Spread values of each algorithm on DTLZ4

Moreover, the application of the two-archive strategy will also be considered in the other algorithms for
MaOPs.

6. Acknowledgment

We would like to acknowledge the support from the National Natural Science Foundation of China
(61472095). Research Foundation of Education Department of Heilongjiang (1352MSYYB016,1352MSYYB005)
and Research Foundation of Mudanjiang Normal University (GP2018003).

References

[1] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective evolutionary algorithms based on decomposition,
IEEE Transactions on Evolutionary Computation 21 (3) (2017) 440–462.

[2] T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization,
in: International Conference on Evolutionary Multi-Criterion Optimization, 2006, pp. 742–756.

[3] R. K. Ursem, P. D. Justesen, Multi-objective distinct candidates optimization: Locating a few highly different solutions
in a circuit component sizing problem, Applied Soft Computing Journal 12 (1) (2012) 255–265.

[4] Y. Yuan, Y. S. Ong, A. Gupta, H. Xu, Objective reduction in many-objective optimization: Evolutionary multiobjective
approaches and comprehensive analysis, IEEE Transactions on Evolutionary Computation 22 (2) (2018) 189–210.

[5] H. Wang, X. Yao, Objective reduction based on nonlinear correlation information entropy, Soft Computing 20 (6) (2016)
2393–2407.

[6] K. Narukawa, Y. Tanigaki, H. Ishibuchi, Evolutionary many-objective optimization using preference on hyperplane, in:
International Conference on Genetic and Evolutionary Computation, 2014, pp. 91–92.

[7] Y. Sun, G. G. Yen, Z. Yi, Igd indicator-based evolutionary algorithm for many-objective optimization problems, IEEE
Transactions on Evolutionary Computation 99 (1) (2018) 1–54.

[8] R. C. Purshouse, P. J. Fleming, On the evolutionary optimization of many conflicting objectives, IEEE Transactions on
Evolutionary Computation 11 (6) (2007) 770–784.

[9] F. Li, R. Cheng, J. Liu, Y. Jin, A two-stage r2 indicator based evolutionary algorithm for many-objective optimization,
Applied Soft Computing 67 (C) (2018) 245–260.

[10] E. Zitzler, S. Kunzli, Indicator-based selection in multiobjective search, in: International Conference on Parallel Problem
Solving from Nature, 2004, pp. 832–842.

[11] J. Bader, E. Zitzler, Hype: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary Compu-
tation 19 (1) (2014) 45–76.

[12] Q. Zhang, H. Li, Moea/d: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on
Evolutionary Computation 11 (6) (2007) 712–731.

[13] M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE
Transactions on Evolutionary Computation 19 (3) (2015) 445–460.

[14] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimiza-
tion, IEEE Trans. Evolutionary Computation 20 (5) (2016) 773–791.

[15] X. Cai, Z. Yang, Z. Fan, Q. Zhang, Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective
and many-objective optimization, IEEE Transactions on Cybernetics 47 (9) (2017) 2824–2837.

25



0
00

3

WFG3

f 3

f
2

f
1

1 0.5

5

2 1

0
0 0

3f 3

WFG2

f
1

f
2

2 1

5

4 2

1

3

0.51

f 3
WFG1

f
2

f
1

12

5

1.53

 WFG6

1

3

1 0.5

f 3

f
1

f
2

12

5

3 1.5

1

3

1 0.5

f 3

WFG5

f
2

f
1

12

5

3 1.5

WFG4

1

3

1 0.5

f 3

f
2

f
1

2 1

5

3 1.5
WFG9

1
3

1 0.5

f 3
f
2

f
1

12

5

3 1.5

WFG8

1
3

1 0.5

f 3

f
2

f
1

12

5

1.53

WFG7

1
3

1 0.5

f 3

f
2

f
1

2 1

5

3 1.5

Figure 12: The real Pareto fronts of WFGs
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