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Abstract

The Variable Message Sign Problem (VMSP) aims to optimise the delivery,
collection and maintenance of Variable Message Signs. Firstly, the problem
was formulated as a rigorous mathematical model. It was then reformu-
lated using a permutation representation removing the need for some hard
constraints and the formation of illegal sub-tours within the solution. The
reformulated model was shown to be solvable using different artificial in-
telligence search techniques. The problem of parameter selection was then
solved using self-adaption, which produced superior solutions with > 99.9%
confidence by avoiding numerous local optima on the fitness landscape.
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1. Introduction

The Variable Message Sign Problem (VMSP) is a variant of the Vehicle
Routing Problem (VRP) where Variable Message Signs (VMS) are hired out
to customers for a given time window. VMS are solar and battery powered
roadside signs; the message displayed on VMS is configured remotely. A
typical scenario of their use would be by the roadside instructing diversions.
The service provided includes the delivery and collection of VMS to and from
locations as well as maintenance while at a customer location. Therefore,
transportation of goods within a time window is a key aspect of the service



provided. Cost involving transportation has a direct and significant impact
on profit margins. The objective of the VMSP is to keep the costs to a
minimum while meeting customer obligations. This is mainly achieved by
optimising vehicle routes and scheduling of crew and resources.

The rest of this paper proceeds as follows. Section 2 examines various
vehicle routing problems and solutions. Section 3 develops a rigorous mathe-
matical model for the VMSP. Section 4 demonstrates how this mathematical
model was converted into a permutation representation. Section 5 compares
the use of Local Search and Global Search with this new representation.
Section 6 looks at how self-adaption was added to the new representation.
Section 7 describes how the performance of the self-adaption was evaluated.
Section 8 examines the results, section 9 draws conclusions and looks at
future research.

2. Background

The problem of delivering, collecting and maintaining Variable Message
Signs (VMS) is similar to many Vehicle Routing Problems [1]. Like the Vehi-
cle Routing Problem (VRP), the Variable Message Sign Problem (VMSP) is
a route optimisation problem faced by organisations where a fleet of vehicles
is required to serve a set of customers by delivering goods and services. The
objective is to find a route or set of routes which minimises the total traveling
distance and/or time while satisfying all applicable constraints. It was re-
ported that the use of a combinatorial optimisation such as VRP would often
result in savings ranging from 5%-20% in transportation costs [2]. As the
number of locations to be visited increases, the number of feasible solutions
increases exponentially [3]. VRP is a NP-Hard type problem [4] therefore
an algorithm does not exist that can find the optimal solution in polynomial
time in every instance [5].

The delivery, collection and maintenance of Variable Message Signs (VMS)
has similarities to the following variants of the VRP.

• Capacitated Vehicle Routing Problem (CVRP)

• Vehicle Routing Problem with Time Windows (VRPTW)

• Vehicle Routing Problem with Pickup and Delivery (VRPPD)

• Vehicle Routing Problem with Product Backhauls (VRPPB)
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• Vehicle Routing Problem with Heterogeneous Fleet (VRPHF)

The Capacitated Vehicle Routing Problem (CVRP) has one depot and a fleet
of identical vehicles where the capacity of each vehicle must not be exceeded.
CVRP produces optimal delivery routes where each vehicle only travels one
route and each route must start and end at the depot. CVRP is also known
as the classical VRP and is the most common variant as vehicles are rarely
assumed incapacitated [6]. The Vehicle Routing Problem with Time Win-
dows (VRPTW) is another variant of VRP in which, optimal routes must
be constructed while ensuring that each task is carried out within a given
time interval at minimum cost without violating the capacity and total trip
time constraints of each vehicle [7] [8]. Time Windows are defined as hard
constraints when it is not allowed to deliver outside of the given time [9]
[10] and when it is allowed outside of the given time against a penalty, they
are considered to be soft constraints [11] [12]. In the Vehicle Routing Prob-
lem with Pickup and Delivery (VRPPD), either objects or people need to
be picked up from a certain location and dropped off at another. The main
objective is to transport from an origin to a destination [13]. The pick up and
drop off must be done by the same vehicle, therefore both locations must be
included in the route [11]. The Vehicle Routing Problem with Product Back-
hauls (VRPPB) is when a vehicle does deliveries as well as pickups in one
route [14]. The routes must consider collecting items from some customers
and delivering items to another in the same route, either in a sequential or
discontinuous manner. In the Vehicle Routing Problem with Heterogeneous
Fleet (VRPHF), the vehicles do not share the same characteristics; they may
have different capacities and fixed costs depending on vehicle type and con-
figuration [15]. Exact Methods produce optimal solutions [16] when applied
to a small-sized VRP. However, larger VRPs are best solved using heuris-
tics because exact algorithms cannot be guaranteed to find the optimal tours
within reasonable computing time when the number of locations to be visited
is large. Heuristics allow acceptable performance at acceptable costs for a
wide range of VRP variants [16].

A VRP with a set of vehicles and a set of locations, where each vehicle
visits at least one location, can be formulated and solved as a Traveling Sales-
man Problem. The Travelling Salesman Problem (TSP) is a combinatorial
optimisation problem which was first formulated as a mathematical problem
in 1930, [17]. Since its introduction, TSP has been intensively studied in
operations research and theoretical computer science. TSP in its pure form
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appears in the planning and transportation problems. However, it often ap-
pears as a sub-problem in more complex combinatorial problems with added
constraints, for example vehicle routing, airport flight scheduling, time and
job scheduling machines, DNA sequencing and manufacturing of microchips,
[18]. The VMSP contains an asymmetric TSP sub-problem where there is a
set of jobs at different locations, each job must only be carried out once, an
employee must travel from the depot to a set of job locations and return to
the depot, and the route through all the jobs must be optimised to ensure
optimal use of company resources such as vehicle mileage and fuel. A TSP
can be solved using either an exact algorithm or an approximate algorithm.
An exact algorithm would fully search the solution space for the global op-
timal solution while an approximate algorithm provides a solution as close
as possible to the optimal value in a reasonable amount of time but it does
not ensure the optimal solution. With an exact algorithm, it is difficult to
solve a large-scale problem because of its exponential time complexity. Exact
algorithms used to solve the TSP include branch and bound [19] [20], Branch
and cut, and brute force. Approximate algorithms used to solve the TSP in-
clude Simulated Annealing algorithm (SA) [21] [22], Tabu Search (TS) [21],
Ant Colony Optimization (ACO) [23], and the Genetic algorithm (GA) [24]
[25]. The hybridisation of algorithms has become popular in recent years as
it combines useful features of multiple algorithms, while overcoming the lim-
itations of individual algorithms. It was shown that a combination of genetic
algorithm and 2-opt method produced a more efficient algorithm for solving
TSP compared to using a genetic algorithm alone [26]. The hybridisation
of a Genetic Algorithm with Nearest Neighbour heuristic produced an algo-
rithm that was more efficient in terms of computational time and space, and
had better convergence than a pure Genetic Algorithm or Nearest Neigh-
bour heuristic [27]. Other examples of hybrid algorithms are; the glowworm
swarm optimization and the complete 2-opt algorithm [28] and a stochastic
approach combined with a variable neighborhood search algorithm [29]. New
algorithms such as the water cycle algorithm [30] or improvements on older
algorithms such as variations of the basic GA that produce larger numbers
of offspring [31] have also been shown to be effective.

The Genetic Algorithm (GA) has been adapted for use in solving per-
mutation problems such as the Traveling Salesman Problem (TSP) [32] [33].
The GA was introduced in 1975 [34] [35] and mimicked biological evolution
as described by Charles Darwin in his 1880 book ’On the origin of species by
means of natural selection’ [36]. It consists of a population of chromosomes
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that goes through various stages, the stages are; parent selection, crossover
providing an offspring, offspring mutation that adds variation in the popula-
tion, and finally replacement. Replacement happens when the fitness of the
offspring is superior to the fitness of a member of the existing population.
The stages are repeated iteratively leading to the fitness of the population
improving over time.

A drawback of using a genetic algorithm is that often, time must be spent
fine-tuning its parameters [37] [38]. Such parameters may control population
size, crossover type, crossover probability, mutation operator and mutation
probability. To ease this problem self-adaption of some or all of these pa-
rameters has been developed. In particular, mutation operator and mutation
probability have been self-adapted in the continuous [39] [40], binary [41] [42]
[43] [44] and permutation domains [45]. Self-adaption of the mutation op-
erator in permutation GAs has been shown to be advantageous. This is
because each permutation mutation operator sees the fitness landscape in a
very different way [46] [47] [48] [49]; what is a local optimum to one mutation
operator is not to another and hence switching between mutation operators
help prevent the GA getting stuck in a local optimum. It was found that
self-adaptive permutation GA’s produced better or comparable results com-
pared to the best tuned non-adaptive GA’s and this was irrespective of other
GA parameter settings [45]. They demonstrated that the choice of muta-
tion operator changed over time as each in turn became trapped in a local
optimum within its associated fitness landscape. The next successful muta-
tion operator to spread through the population was one that had a fitness
landscape with no local Optima at that location. Since then self-adaption,
in permutation GAs, has been applied to many problem types [50] [51] [52]
[53] [54] [55].

3. Mathematical model for the Variable Message Sign Problem

A rigorous mathematical model for the VMSP was developed. The ob-
jective function of the VMSP had to ensure that the most urgent tasks were
carried out whilst also trying to minimise the travel time between jobs and
hence fuel costs.

Maximise
∑

b∈B

xb(α
∑

j∈J

cbjpj − βtb) (1)

Where J is the set of jobs that need to be done, B is the set of batches
(jobs that are to be done together), xb is weighting allocated to Batch b, cbj

5



indicates that Batch b contains Job j, pj is the priority allocated to Job j,
and tb is the time to complete the jobs in Batch b. The batch weighting,
xb, allows for the most current work to be weighted higher than the work
to be done in the following days. This is important as the priorities of the
work to be carried out can change on a daily basis. The VMSP objective
function has two parts; one to ensure that the most urgent tasks are carried
out (

∑
j∈J cbjpj) and one to minimise the travel time (tb). The weighting of

these two components are controlled by two constants, α and β.

The time component, tb, is made up from the time it takes to carry out
each task or job and the time it takes to travel between the jobs.

tb =
∑

i=1,...,|kb|

(Dji−1ji + Tji) +D|kb|0, ∀b ∈ B (2)

Where kb is the sequence of Jobs in Batch b, Dij is the time to travel between
Job i and Job j, D0i is the time to travel between the Depot and Job i, Di0

is the time to travel between Job i and the Depot, and Ti is the time taken
to complete Job i.

The objective function is subject to a set of constraints. The jobs that can
be carried out are put into batches. Each batch of jobs is allocated to a pair
of workers and also a vehicle which will carry the signs and the batteries to
be replaced. Each job may only be in one batch so each job which might be
moving a sign or swapping batteries can only be carried out by one pair of
workers using one vehicle.

∑

b∈B

cbj = 1, ∀j ∈ J (3)

Each batch of work may only contain no more than a given number of jobs
in this case we set the number to N.

∑

j∈J

cbj ≤ N, ∀b ∈ B (4)

Each batch is associated with a single vehicle.

∑

v∈V

hbv = 1, ∀b ∈ B (5)
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Where V is the set of Vehicles that are available, and hbv indicates that Batch
b uses Vehicle v.

Each vehicle can only be used once in a given day. If L batches of work
can be carried out each day we need to ensure that no vehicle is used more
than once on the first day. We only need to check the first day as a new
schedule is generated daily.

∑

b=1..L

hbv ≤ 1, ∀v ∈ V (6)

There is a load weight restriction each vehicle is allowed to carry. Each batch
may involve the picking up and dropping off of multiple signs. Therefore, two
constraints were used, the first to ensure a positive weight limit is not broken,
when signs are being collected.

∑

j∈J

cbj(
∑

s∈Ss

gjsW
s +

∑

s∈Sm

gjsW
m +

∑

s∈Sl

gjsW
l

+
∑

s∈Sr

gjsW
r + rjW

b) ≤
∑

v∈V

hbvW
v
v , ∀b ∈ B (7)

The second constraint ensuring that the weight limits are not broken when
signs are being dropped off.

∑

j∈J

cbj(
∑

s∈Ss

gjsW
s +

∑

s∈Sm

gjsW
m +

∑

s∈Sl

gjsW
l

+
∑

s∈Sr

gjsW
r + rjW

b) ≥ −
∑

v∈V

hbvW
v
v , ∀b ∈ B (8)

For both constraints S is the set of all signs. However, there are four types
of sign that can be allocated to each job; Ss is the set of all small sized signs,
Sm is the set of all medium sized signs, Sl is the set of all large sized signs,
and Sr is the set of all radar speed signs.

Ss ∪ Sm ∪ Sl ∪ Sr = S (9)

Ss ∩ Sm = ∅, Ss ∩ Sl = ∅, Ss ∩ Sr = ∅,

Sm ∩ Sl = ∅, Sm ∩ Sr = ∅, Sl ∩ Sr = ∅ (10)
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Each size of sign has a weight; W s is the weight of a small sized sign, Wm

is the weight of a medium sized sign , W l is the weight of a large sized sign,
and W r is the weight of a radar speed sign. The variable gjs indicates that
Sign s is allocated to Job j. gjs ∈ {−1, 0,+1} where −1 indicates that a sign
is being dropped off and +1 that a sign is being picked up. The variable rj
indicates the number of batteries allocated to Job j, and W b is the weight of
a single battery. W v

v is the weight capacity of Vehicle v.

The combination of constraints allows for signs both being picked up and
dropped off in the same batch of work. Similarly, we need constraints to deal
with the volume of materials that can be carried by the vehicles.

∑

j∈J

cbj(
∑

s∈Ss

gjsM
s +

∑

s∈Sm

gjsM
m +

∑

s∈Sl

gjsM
l

+
∑

s∈Sr

gjsM
r + rjM

b) ≤
∑

v∈V

hbvM
v
v , ∀b ∈ B (11)

∑

j∈J

cbj(
∑

s∈Ss

gjsM
s +

∑

s∈Sm

gjsM
m +

∑

s∈Sl

gjsM
l

+
∑

s∈Sr

gjsM
r + rjM

b) ≥ −
∑

v∈V

hbvM
v
v , ∀b ∈ B (12)

Where M s is the volume of a small sized sign, Mm is the volume of a medium
sized sign, M l is the volume of a large sized sign, M r is the volume of a radar
speed sign, M b is the volume of a battery, and M v

v is the volume capacity of
Vehicle v.

Three batches of work are carried out each day, and we need a constraint
that ensures that the number of batteries that are used on that day is less
than or equal to the number of batteries in reserve. All spare batteries are
left on charge overnight at a secure unit.

∑

b=1,2,3

∑

j∈J

cbjrj ≤ R (13)

Where R is the number of spare batteries in stock.

The jobs that are allocated to each batch are ordered, that is to say the
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permutation in which the jobs are done is very important as this affects the
time taken to do the jobs and the fuel usage. Therefore, the ordered set, kb,
was introduced to hold the permutation of the jobs in each batch. With the
introduction of this variable it is important again to ensure that no job is
allocated to more than one batch.

∑

b∈B

cbji = 1, i = 1, ..., |kb|, ∀b ∈ B (14)

Further checks must be carried out on the permutation to ensure that both
the weight of signs and batteries placed on a vehicle and the volume of the
signs and the batteries placed on the vehicle do not break its load constraint.

wbji = wbji−1
+

∑

s∈Ss

gjisW
s +

∑

s∈Sm

gjisW
m

+
∑

s∈Sl

gjisW
l +

∑

s∈Sr

gjisW
r, i = 1, ..., |kb|, ∀b ∈ B (15)

wbji ≤
∑

v∈V

hbvW
v
v , ∀i ∈ kb, ∀b ∈ B (16)

Where wbi is the weight of the items on the vehicle after Job i in Batch b,
and wb0 is the weight of the items on the vehicle in Batch b when it leaves
the Depot.

vbji = vbji−1
+

∑

s∈Ss

gjisM
s +

∑

s∈Sm

gjisM
m

+
∑

s∈Sl

gjisM
l +

∑

s∈Sr

gjisM
r, i = 1, ..., |kb|, ∀b ∈ B (17)

vbji ≤
∑

v∈V

hbvM
v
v , ∀i ∈ kb, ∀b ∈ B (18)

Where vbi is the volume of the items on the vehicle after Job i in Batch b,
and vb0 is the volume of the items on the vehicle in Batch b when it leaves
the Depot.

Each batch of work should not take more than 8 hours (480 minutes) to
complete; however in exceptional circumstances they are allowed up to 10
hours (600 minutes). To cater for this, two soft constraints are added.

tb ≤ 480 (19)
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Figure 1: Permutation Encoding

tb ≤ 600 (20)

Figure 7 shows the time that each batch is expected to take; it is these
calculated times that are used in constraint equations 19 and 20.

4. Reformulating the VMSP mathematical model using a permu-

tation representation

The VMSP mathematical model attempts to find the shortest path be-
tween jobs in a given batch. Mathematical models and mathematical solvers
have been shown to be very poor at solving this type of permutation problem.
They can provide invalid solutions which contain a set of sub-tours which are
not connected into a single tour.

A reformulation of the mathematical model into one that uses a permu-
tation representation was developed; such a representation does not have the
problem of creating sub-tours as by its very nature it can only create a single
tour. The permutation representation contained the jobs that need to be
carried out and the vehicles available to carry out those jobs. The fitness of
a given permutation was calculated using the mathematical model’s objec-
tive function and constraints after copying the jobs and vehicles within the
permutation representation into the mathematical model variables cbj, hbv,
gjs, rj, and kb.

The genotype is a permutation of the pending jobs and the available
vehicles, as shown in the example in Fig. 1. Within this representation an
individual solution is a string of jobs and vehicles. A batch is represented
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as one or more adjacent job followed by a vehicle. A batch may contain 0
or more jobs and always end with a vehicle. A batch with 0 jobs is called
an empty batch. The vehicle belonging to this batch is not scheduled. Jobs
which do not belong to a batch are not scheduled; for example, J8, J9 and
J10 in Fig. 1. The sequence of jobs in a batch determines the route that the
vehicle will follow. For example, vehicle V1, belonging to batch 1, will travel
from the depot to J1, J2 and J3, in that order, before returning to the depot.
In this example, each batch of jobs is required to be carried out by a pair of
employees. If the company has 6 employees, first three non-empty batches
define the workload of day 1; second 3 batches define the workload of day 2
and so on. Each vehicle object is present in the representation 5 times. A
vehicle can be used once per day and the schedule is created for 5 days. If
the jobs in Fig. 1 are as follows.

• J1 = drop-off

• J2 = drop-off

• J3 = pickup

• J4 = battery change

• J5 = drop-off

• J6 = pickup

• J7 = drop-off

• J8 = drop-off

• J9 = drop-off

• J10 = drop-off

Then the mathematical model variables cbj, hbv, gjs, rj, and kb are as shown
in Figures 2, 3, 4, 5, and 6. The time taken to complete each batch of jobs
is calculated and stored in tb, as shown in Fig. 7. Implementing the time
constraints shown in equations 19 and 20 required consideration. As soft
constraints, they can be broken with the penalty increasing with the length
of time that they are broken by. This is because with a single value penalty
there is no reason for any search strategy to distinguish between a slight time
overrun on the day’s work and a massive one.
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Figure 2: Mathematical Model Variable cbj

Figure 3: Mathematical Model Variable hbv
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Figure 4: Mathematical Model Variable gjs

Figure 5: Mathematical Model Variable rj

Figure 6: Mathematical Model Variable kb
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Figure 7: Mathematical Model Variable tb

Using this permutation representation leads to the constraints shown in
equations 3, 5 and 14 becoming redundant. This is because each job only
occurs once in the permutation and therefore can only ever occur once in the
Mathematical Models variables c and h.

The fitness function, for the search strategy, is a combination of the objec-
tive function value (obj fn) and the weighting (Wi) of the broken constraints
(BCi) as shown in equation 21. The values of α and β in the objective func-
tion described by equation 1 balance the importance of the priority of the
tasks and the time taken to carry them out. The value of α was set to 20
and β to 1 to ensure that high priority jobs took precedence over shorter
routes. The strategy for dealing with broken constraints was chosen for both
its simplicity and its ability to reflect the number and importance of any
constraint violations. The weighting (Wi) was set punitively high, so that
any broken constraints would give a fitness function with a negative value.
As the objective is to maximise utility, the higher the fitness value the better
the solution.

fitness = obj fn−
∑

i=constraint 3..20

WiBCi (21)

One modification must be made when implementing this fitness function.
The objective function contains a weighting, xb for each batch, which en-
sures that the jobs for the current day (and those to shortly follow) are
given a higher weighting. This weighting must also be applied to the broken
constraints BCi.

The permutation representation has been designed to be compatible with
multiple search strategies.
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5. Local versus global search

A comparison of a local and global search technique using the newly
designed permutation representation was carried out. The local search and
GA search strategies were kept as similar as possible. Both used the same
mutation operator, both were allowed to run for the same numbers of calls to
the fitness function and both had the same termination criteria. Local search
was represented by a Greedy Local Search algorithm that used the swap
operator. Global search was represented by a Genetic Algorithm (GA) which
used swap for its mutation operator; the GA parameters are given in Table 1.
Each search strategy was allowed to run for up to 1,000,000 calls to the fitness

Table 1: GA parameter settings for local versus global search

Parent population size 40
Parent population Completely random
initialisation
Mating population size 2
Offspring population size 1
Selection Binary tournament between two random

parents
Crossover probability 0.7
Crossover operator Partially Mapped Crossover
Mutation probability Fixed: 0.4
Mutation operator Fixed: SWAP
Replacement Binary tournament between the

offspring and a random parent

function and terminate if 100,000 showed no improvement. Each algorithm
was run ten times on five different datasets. A Mann-Whitney Test showed
with > 99.9% confidence that the global search performed best. Detailed
examination of the search data showed that the local search became stuck in
a local optimum and terminated early. The global search, however managed
to avoid becoming stuck and went on to find better solutions; terminating
much later.

The important finding however is that this permutation representation
is compatible with multiple search strategies. Many operators have been
developed for permutation representations and selecting between them can
be problematic.
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Figure 8: GA Encoding Self-Adaption

6. Using a permutation genetic algorithm with self-adaption of the

mutation operator and probability

Previous research [45] has shown that self-adapting the mutation opera-
tor and probability has proved beneficial for solving permutation problems
such as the Traveling Salesman Problem. Changes to the pool size, selec-
tion algorithm, crossover operator and replacement strategies were shown
not to affect performance significantly. There are a large variety of mu-
tation operators that can be used in a permutation representation genetic
algorithm as well as a variety of mutation rates. To avoid the need to
choose a particular mutation operator or probability, self-adaption was added
into each chromosome with the addition of two new genes at the end of
the chromosome. The first gene represented the mutation operator and
was an integer between 0 and 4 where 0 = Swap, 1 = Insertion, 2 = In-
version, 3 = Scramble, and 4 = Translocation. The second gene repre-
sented the mutation probability and was an integer between 0 and 7 where
0 = 0.0, 1 = 0.05, 2 = 0.1, 3 = 0.15, 4 = 0.2, 5 = 0.3, 6 = 0.4, and 7 = 0.5.
At population initialisation, these integers were generated randomly in their
given ranges and a 0.1 mutation probability was applied to each gene during
an evolution. A set of experiments was carried out to evaluate the perfor-
mance of self-adaption.

7. Evaluating the performance of self-adaption

A steady-state GA was used in all experiments, the GA’s parameters are
given in Table 2. In these experiments the mutation probability is the prob-
ability of a single mutation operation taking place once on the chromosome
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as a whole. Ten realistic synthetic datasets describing a busy period were
generated. To enable statistical analysis, each time one of the settings of
the GA was applied to a dataset and run twenty times with a different seed
and the results were recorded. When self-adaption of the mutation operator
or mutation probability is in play, then the offspring has an equal chance
of inheriting the mutation operator or mutation probability from each of its
parents. The GAs were allowed to run for up to 100, 000 calls to the fitness
function or until no improvement was detected for 10, 000 iterations. It is not

Table 2: GA parameter settings for the self-adaption experiments

Parent population size 40
Parent population Completely random
initialisation
Mating population size 2
Offspring population size 1
Selection Binary tournament between two random

parents
Crossover probability 0.7
Crossover operator Partially Mapped Crossover
Mutation probability Fixed: 0.05, 0.1, 0.15, 0.2, 0.3, 0.4

and 0.5
Self-adaptive: Randomly switch between
the above with probability 0.1

Mutation operator Fixed: INSERT, INVERSION,
SCRAMBLE, SWAP
or TRANSLOCATION [32]
Self-adaptive: Randomly switch between
the above with probability 0.1

Replacement Binary tournament between the
offspring and a random parent

uncommon to initialise the initial parent population with some best guesses
at a reasonable solution. In this case it would have been easy to sort the
jobs by both latitude and longitude and insert these possible solutions into
the initial population. This however would not have allowed such a rigorous
examination of the mutation operators, as initialising the parent population
completely randomly would do. The GAs were only allowed to run up to
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100, 000 calls to the fitness function, this value was chosen simply for prac-
ticality. Choosing a larger value would have meant much larger execution
time without showing us much more about the behaviour of the algorithm.
In reality, when this software is put into real use the number of calls to the
fitness function will be increased.

8. Results

In total the experiment was run 9,600 times; twenty differently seeded
runs for each combination of mutation operator, mutation probability and
dataset. Each run of the experiment was configured as described in Table 2
and allowed to execute for up to 100,000 calls to the fitness function. The
results are given in Tables 3 and 4. Solutions with broken constraints were
heavily penalised by the addition of a large negative penalty. The penalty
was so large that any such solution would have a negative fitness value and
this allowed easy identification of these solutions. Any solution with a broken
constraint is likely to be infeasible; for example the solution might instruct
a driver to place four signs on a lorry that can only physically carry three.
An analysis of the experimental results was carried out to see if any of the
GA configurations produced such infeasible solutions.

Table 3: The number of runs that produced a valid solution (the number of solutions with
broken constraints in brackets) for each mutation operator for the ten datasets

Mutation Datasets
type 1 2 3 4 5 6 7 8 9 10

INSERT 149 148 151 146 147 156 157 155 154 153
(11) (12) (9) (14) (13) (4) (3) (5) (6) (7)

INVERSION 72 55 73 53 51 69 85 75 66 58
(88) (105) (87) (107) (109) (91) (75) (85) (94) (102)

SCRAMBLE 29 24 31 23 20 34 46 36 29 19
(131) (136) (129) (137) (140) (126) (114) (124) (131) (141)

SWAP 153 138 157 150 144 150 154 155 147 149
(7) (23) (4) (11) (17) (11) (7) (6) (15) (13)

TRANS- 58 52 70 62 35 68 75 71 68 52
LOCATION (102) (108) (90) (98) (125) (92) (85) (89) (92) (108)

Self- 132 126 134 129 130 133 137 134 134 136
adaptive (28) (34) (26) (31) (30) (27) (23) (26) (26) (24)

Table 3 shows the number of feasible and infeasible solutions for each of
the mutation operators operating on each of the ten datasets. Each of the
mutation operators produced a significant number of infeasible solutions. A
simple glance at the table shows that mutation operators insert and swap
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produce less infeasible solutions than the other mutation operators. The fact
that none of the mutation operators under investigation could guarantee to
produce a valid solution was unexpected. Previous research [45] has shown
that the number of calls to the fitness function is relatively low and that
maybe with more time valid solutions may have been found.

Table 4: The number of runs that produced a valid solution (the number of solutions with
broken constraints in brackets) for each mutation probability for the ten datasets

Mutation Datasets
probability 1 2 3 4 5 6 7 8 9 10

0.05 33 20 36 29 23 35 41 36 30 33
(87) (101) (85) (92) (98) (86) (80) (85) (92) (89)

0.1 52 44 53 45 45 52 58 57 58 52
(68) (76) (67) (75) (75) (68) (62) (63) (62) (68)

0.15 68 58 67 61 58 69 75 69 67 63
(52) (62) (53) (59) (62) (51) (45) (51) (53) (57)

0.2 75 67 78 75 65 77 80 85 78 75
(45) (53) (42) (45) (55) (43) (40) (35) (42) (45)

0.3 92 86 98 88 82 91 103 96 91 85
(28) (34) (22) (32) (38) (29) (17) (24) (29) (35)

0.4 101 99 99 95 87 102 105 100 98 94
(19) (21) (21) (25) (33) (18) (15) (20) (22) (26)

0.5 103 102 107 103 102 106 107 106 105 99
(17) (18) (13) (17) (18) (14) (13) (14) (15) (21)

Self- 69 67 78 67 65 78 85 77 71 66
adaptive (51) (53) (42) (53) (55) (42) (35) (43) (49) (54)

Table 4 shows the number of feasible and infeasible solutions for each
of the mutation probabilities under investigation for each of the datasets.
Again Table 4 shows that each mutation probability creates many infeasible
solutions. However, this time a striking pattern within the data can be seen.
Looking down each column shows that for each of the datasets the number
of feasible solutions increases and the number infeasible solutions decreases.
So Table 4 indicates that as the mutation probability increases, so does the
number of feasible solutions. In fact the best solutions are achieved with the
very large mutation probability of 0.5. This is surprising as it tells us that
mutation is playing a very significant part in the search for feasible solutions.
This implies that there is a landscape pot marked by local Optima and that
only by trying more and newer directions will the algorithm be able to move
across the fitness landscape.

Table 5 contains the counts of feasible and infeasible solutions by mutation
probabilities and mutation operators. Scanning down the columns of Table 5
again shows that the number of feasible solutions increases with the mutation

19



Table 5: The number of runs that produced a valid solution (the number of solutions with
broken constraints in brackets) for each GA configuration for the ten datasets combined;
GA configurations where all solutions were valid are in bold

Mutation INSERT INVERSION SCRAMBLE SWAP TRANS- Self-adaptive
probability LOCATION

0.05 142 (58) 4 (196) 1 (199) 121 (90) 1 (199) 47 (153)
0.1 190 (10) 13 (187) 3 (197) 181 (19) 15 (185) 114 (86)
0.15 190 (10) 38 (162) 14 (186) 197 (3) 41 (159) 175 (25)
0.2 198 (2) 77 (123) 18 (182) 199 (1) 67 (133) 196 (4)
0.3 200 (0) 129 (71) 59 (141) 200 (0) 124 (76) 200 (0)
0.4 199 (1) 157 (43) 79 (121) 200 (0) 145 (55) 200 (0)
0.5 199 (1) 176 (24) 95 (105) 200 (0) 170 (30) 200 (0)
Self- 198 (2) 63 (137) 22 (178) 199 (1) 48 (152) 193 (7)

adaptive

probability. With the data displayed in this format table 4 shows that some
combinations of mutation operator and mutation probability have produced
feasible solutions. In particular, mutation operator insert with mutation
probability 0.3, swap with mutation probability 0.3 to 0.5 and self-adaptive
with mutation probability 0.3 to 0.5 produced only feasible solutions. This
indicates that the mutation operators insert and swap are well suited for solv-
ing this particular problem and it is assumed that when self-adaption is used
that it will make good use of these two operators. This assumption will be
examined later in this paper. Table 5 also clearly shows that the higher mu-
tation probabilities produced the best results. Self-adaption of the mutation
probability produced most feasible solutions for mutation operators insert,
swap and self-adaptive. At the beginning of each run, when there is a lot of
variation in the population, crossover should dominate the search across the
fitness landscape. Once the population converges to a few similar solutions,
then mutation should become more important to the search. Hence, when
self-adaption of the mutation probability is used, the probability typically
starts with a low value but increases over time ensuring that variation is
maintained within the population. In these experiments, self-adaption of the
mutation probability has not guaranteed that only feasible solutions will be
found. This may be explained by the fact [45] that when using self-adaption
the GA will typically need to run longer. One of the runs will be examined
in more detail later in this paper to see if that is the case here.

Table 6 shows the mean fitness by mutation operator and mutation prob-
ability. The table shows that the fitness increases with the mutation proba-
bility as was seen in Tables 4 and 5. The highest mean fitness was produced
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Table 6: Mean fitness for each GA configuration for the ten datasets; GA configurations
where all solutions were valid are in bold

Mutation INSERT INVERSION SCRAMBLE SWAP TRANS- Self-adaptive
probability LOCATION

0.05 487.04 -2027.64 -2290.24 12.92 -1958.90 -989.03
0.1 2249.58 -1357.80 -1877.32 994.72 -1290.52 154.78
0.15 2668.96 -926.03 -1409.52 1518.14 -752.04 1685.80
0.2 3026.88 -477.66 -1190.07 2130.19 -344.85 2805.89
0.3 3480.01 369.37 -697.59 2681.28 199.42 3831.60
0.4 3696.30 961.40 -405.01 3274.05 484.40 4428.89
0.5 3921.02 1307.52 -107.11 3586.01 925.14 4773.14
Self- 3073.74 -535.96 -1252.59 1958.75 -736.51 2428.72

adaptive

with a self-adapting mutation operator and the highest mutation probabil-
ity of 0.5. When only considering the combinations of mutation operator of
mutation probability that produced only feasible solutions, a self-adaptive
mutation operator performed the best. The Kruskal-Wallis Test indicated
with > 99.9% confidence that there was a significant difference in the per-
formance of the seven combinations of mutation probabilities and mutation
operators used in the GA that produced only feasible results. The Mann-
Whitney Test indicated, with 99.9% confidence, that the performance of the
GA using the combination of mutation operator and mutation probability
that gave the highest mean fitness value was significantly better than that
with the second highest. Hence, these results indicate that the GA that
uses the self-adaptive mutation operator and a mutation probability of 0.5
significantly outperforms other GAs. Table 6 clearly shows the superior per-
formance of the self-adaptive mutation operator. Whereas the other single
operators will always see the same fixed fitness landscape the self-adaptive
mutation operator can switch between the fitness landscapes seen by the sin-
gle operators at will, giving it the ability to move past any obstacles found
in a single landscape.

Figure 9 indicates which mutation operator was used whilst solving one
of the pick-up/drop-off problems. The initial fitness readings have not been
plotted as they contained large negative numbers indicating broken con-
straints. If these values had been plotted, then the remaining values would
not be distinguishable. The fitness plot contains many plateaus which indi-
cate that the search is stuck in a local optimum as a result of both crossover
and mutation failing to find a better solution. Figure 9 shows us that dif-
ferent mutation operators dominate mutation at different times during the
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Figure 9: Self-adaption of the Mutation Operator
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Figure 10: Self-adaption of the Mutation Probability with the SWAP mutation operator

search. The translocation operator comes into play very early on; at the
beginning of the search it must be moving good partial solutions around and
fixing broken constraints. Swap and insertion dominate improving the qual-
ity of the solution with the inversion operator playing a lesser role. Scramble
seems to come into play when the other operators are unable to move out of
local Optima. It seems to behave in a similar way as allowing immigration
[56] of new population members, i.e. adding new blood to the population.
The inversion operator may be playing a similar role, but in a much sub-
tler way. It is clear from Figure 9 that the self-adaption of the mutation
operator has allowed this search to escape from local Optima. This happens
because each of the mutation operators sees a different fitness landscape.
Where one mutation operator can see no way of escaping the local Optima
in which it is trapped, another mutation operator can see a clear pathway
ahead. Figure 10 shows the self-adaption of the mutation probability with a
fixed mutation operator. It shows that the mutation probability has drifted
up and down between its limits without any underlying pattern. It was ex-
pected from prior research that the mutation probability would increase over
time, increasing the amount of mutation in the latter stages of the search.
The fact that this did not happen may be explained by the shape of the
fitness plot. It is made up of numerous plateaus, indicating local Optima,
connected by sharp improvements. Whilst the algorithm is stuck in one of the
local Optima and no improvements are found no preference for the mutation
probability can be inferred by the algorithm. Instead, if the fitness plot had
shown a smooth improvement instead of these large steps, then the search
algorithm would have learned the benefit of a high mutation probability and
that would spread throughout the population. Between them Figures 9 and
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10 indicate that the behaviour of the self-adaption is dependent on the shape
of the fitness landscape.

A further experiment was run where both the mutation operator and
probability were allowed to self-adapt. This experiment was allowed to run
for 500,000 iterations and it was expected that given more time the mutation
probability might increase towards the end of the search. This however was
not the case, the mutation probability behaved in exactly the same way
as shown in Figure 10 indicating that self-adaption of the mutation operator
plays a greater role in finding better solutions. Given the extra time, however
the search produced a much superior solution. This demonstrates the power
of self-adaption to avoid searches becoming stuck in local Optima and to do
this without the need for the user to tune the search algorithm.

9. Conclusions and Further research

In this paper a rigorous mathematical model was developed to describe
the VMSP. Mathematical models that describe route optimisation often can-
not guarantee the creation of illegal sub-tours within a solution without the
addition of sub-tour elimination constraints. To avoid this problem a refor-
mulation of the mathematical model into a permutation representation was
also developed which could then be solved using search techniques from the
artificial intelligence domain. This reformulation

• removed the need to introduce sub-tour elimination constraints,

• removed the need for hard constraints that prevented jobs, vehicles and
personnel being multiply assigned,

• identified the need for time related soft constraints to be interpreted
differently to allow for a graduated penalty when those constraints were
broken.

This reformulation of the VMSP created valid solutions which the origi-
nal mathematical model could not guarantee. However, reformulating the
mathematical model as a permutation introduced its own problems; there
are many permutation operators from which to choose, and they tend to
be more complex than non-permutation operators. To lessen this problem
the reformulation added the ability to automatically select which permuta-
tion operator and probability to use, via a self-adaption mechanism. The
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self-adaption of the mutation operator played a greater role than that of the
mutation probability in finding better solutions. In the VMSP a combination
of the self-adaption of the mutation operator with a high mutation proba-
bility performed best leading to the conclusion that the fitness landscape is
made up of numerous local Optima. The addition of self-adaption to the GA
produced significantly better solutions with > 99.9% confidence and removed
the need to select the mutation operator or probability.

A comparison of the performance of other search strategies applied to
this problem could form a basis for future research. This research identified
that changing the paradigm describing a problem can lead to its simplification
which could be applied to other problem areas. This research has also touched
on how the fitness landscape affects the performance of the search strategy.
Examining and predicting the properties of different fitness landscapes and
the best ways to search them will make an interesting area of future research.
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