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Abstract

In this paper, a conscious neighborhood-based crow search algorithm (CCSA) is proposed for
solving global optimization and engineering design problems. It is a successful improvement
to tackle the imbalance search strategy and premature convergence problems of the crow search
algorithm. CCSA introduces three new search strategies called neighborhood-based local
search (NLS), non-neighborhood based global search (NGS) and wandering around based
search (WAS) in order to improve the movement of crows in different search spaces. Moreover,
a neighborhood concept is defined to select the movement strategy between NLS and NGS
consciously, which enhances the balance between local and global search. The proposed CCSA
is evaluated on several benchmark functions and four applied problems of engineering design.
In all experiments, CCSA is compared by other state-of-the-art swarm intelligence algorithms:
BA, CLPSO, GWO, EEGWO, WOA, KH, ABC, GABC, and Best-so-far ABC. The
experimental and statistical results show that CCSA is very competitive especially for large-
scale optimization problems, and it is significantly superior to the compared algorithms.
Furthermore, the proposed algorithm also finds the best optimal solution for the applied

problems of engineering design.

Keywords: Optimization, Bio-inspired metaheuristic algorithm, Swarm intelligence
algorithms, Crow search algorithm, Conscious neighborhood-based crow search algorithm.

1. Introduction

Global numerical optimization problems have challenges such as being complex
nonlinear, multi-modality, hybrid, composite, and large-scale. Solving these problems by
exhaustive search algorithms increases the computational and time complexities [1]. To
overcome these complexities, metaheuristic algorithms present a local and randomization
exploration framework to extract near-optimal solutions with cognitive computational

complexity [2, 3]. They start their exploration process with the minimum knowledge of the
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problem and through trial and error, using two local and global search strategies. Accessing
new areas of the search space, the global search strategy results in diversity among solutions,
while the local search strategy concentrates the exploration around the near-optimal solution
[4].

Problems can be solved either in a continuous or discrete space, therefore, metaheuristic
algorithms are also classified into two categories continuous and binary (discrete). The ant
colony algorithm (ACO) [5] was proposed for solving the discrete problems. It is inspired by
the extraordinary ability of the ants in finding the shortest path to the food source. Consistently,
different methods are used to adopt a continuous metaheuristic algorithm to work in a binary
search space [6]. It is worth mentioning here that both continuous and binary metaheuristic
algorithms strive to create a proper balance between local and global search, which have a
direct impact on the efficiency and convergence behavior.

Mother Nature, because of its longtime presence as the most significant problem solver,
has the potential to inspire us to strike a balance between these two search strategies [7].
Accordingly, bio-inspired metaheuristic algorithms are inspired by nature. Their robustness
and powerful adaptation has made them suitable for a wide range of complex problems [8].
One of the exciting sub-branches of this category is swarm intelligence (SI) algorithms, which
are inspired by the optimization behavior in the life of insects, aquatic animals, terrestrial
animals, and birds. Based on their behaviors, there have been proposed many successful
algorithms such as particle swarm optimization (PSO) [9], the artificial bee colony (ABC)
algorithm [10], whale optimization algorithm (WOA) [11], krill herd (KH) [2] and spider
monkey optimization (SMO) algorithm [12].

Such the population-based algorithms have good exploration and sharing information
between their swarms which usually increases their robustness. This ability or robustness
makes them quite powerful to solve a wide range of application such as mechanical engineering
design, pattern recognition, and signal processing. However, some of these algorithms such as
PSO and ABC suffer from weak robustness and imbalance between local and global search
strategies for complicated problems. Therefore, they have been improved to introducing better
algorithms like comprehensive learning particle swarm optimization (CLPSO) [13] and gbest-
guided ABC (GABC) [14]. Meanwhile, the slower convergence speed of some metaheuristic
can be an important limitation for applying them when time is critical. Thus, algorithms such
as NSABC [15] and gABC [16] have been introduced to increase the convergence speed.

Crow search algorithm (CSA) [17] is another successful Sl algorithm, which was recently

proposed, and it is based on the social behavior of the crows. The evaluation results of CSA
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show that it can solve the continuous optimization problems, especially in science and
engineering. However, it selects the movement strategy by a random comparison, which
decreases the balance between local and global search and it converges to non-optimal
solutions. Moreover, the results indicate that its robustness is weak to deal with a wide range
of problem and this algorithm cannot escape from exit local optima especially in high
dimensional problems.

To overcome these shortcomings, in this paper, an improvement of CSA named conscious
neighborhood-based crow search algorithm (CCSA) is proposed. CCSA improves the
movement of crows by introducing three new search strategies: Neighborhood-based Local
Search (NLS), Non-Neighborhood based Global Search (NGS) and Wandering Around based
Search (WAS). NLS improves the local search, and NGS increases the domain of global search,
causing the CCSA to be less influenced by the asymmetrical search space of the various
problems. WAS is inspired by another social behavior of crows in nature named wandering
around. It provides another movement opportunity for those crows located in the flat zone or
local optima which could not update their positions.

Moreover, in CCSA, a new neighborhood concept is defined to perceive the search space
and select the movement strategies consciously. After determining the neighborhood of a crow
by this definition, if the quality of neighbor crows is better than non-neighbor crows, then the
crow selects NLS strategy. Otherwise, it moves towards the best crow out of its neighborhood
using NGS strategy.

The efficiency of the proposed CCSA is experimentally evaluated and compared with
other state-of-the-art swarm intelligence algorithms, which are named compared algorithms
from now on. The compared algorithms consist of crow search algorithm (CSA) [17], bat
algorithm (BA) [18,19], comprehensive learning particle swarm optimization (CLPSO) [13],
gray wolf optimization (GWO) [20], exploration-enhanced GWO (EEGWO) [21], whale
optimization algorithm (WOA) [11], krill herd (KH) [2], artificial bee colony (ABC) [22],
gbest-guided ABC (GABC) [14] and Best-so-far ABC [23].

This evaluation is conducted by various experiments on benchmark function CEC 2017
[24] with different dimensions of 30, 50 and 100. The experimental results show that the
proposed CCSA performs better than the compared algorithms on unimodal, simple multi-
modal, hybrid and composition functions, especially with dimensions over 50 and 100.
Moreover, another experiment set on benchmark functions CEC 2010 [25] with dimension
1000 proves the efficiency of the proposed CCSA for the large-scale global optimization
problems. In addition, CCSA is statistically evaluated by tests of Mean Absolute Error (MAE)



and Friedman test revealed, and results showed that CCSA is superior to the compared
algorithms. Finally, the applicability of the proposed algorithm for solving real application
problems is also tested by four different engineering design problems. The results of this
experiment set show that CCSA outperforms the compared algorithms for solving these

engineering problems.
2. Related work

Bio-inspired metaheuristic algorithm is a new research paradigm that is powerful and
efficiently used in solving modern nonlinear numerical global optimization problems [26]. As
shown in Fig.1, bio-inspired metaheuristic algorithms can be classified into evolutionary
metaheuristic and swarm intelligence (SlI) algorithms.

Evolutionary metaheuristic algorithms are a sub-branch of evolutionary computation that
have been formed based on Darwin’s theory of biological evolution and mostly mimic
evolutionary concepts in nature. Evolutionary metaheuristic algorithms use two main operators
cross-over and mutation [7,27,28]. The cross-over is to combine the solutions during the
optimization process and is the essential mechanism to exploit the search space. While the
mutation operators are to change some of the solution, which emphasizes the exploration. There
have been proposed some well-known evolutionary-based algorithms such as genetic algorithm
(GA) [29], genetic programming (GP) [30], evolution strategy (ES) [31] and differential
evolution (DE) [32]. Among them, the DE algorithm is an accurate, reasonably fast and robust
optimizer for solving a wide range of optimization problems. However, DE cannot guarantee
to find the global optimum, especially for complex problems. Therefore, there is still much
attention to improve this algorithm; recently IDEI [28], DECMSA [33], NDE [34], QUATRE-
EAR [35] and PaDE [36] were proposed.

The SI algorithms are created based on simple behavioral models of animals and
organisms with each other and their surroundings. They can map complex optimization
problems into simple behavioral models to find optimal solutions [37]. In these algorithms,
each organism is a search agent, which explores the search space using the local and global
search strategy defined in their algorithms. Although Sl algorithms such as PSO [9], ABC [22]
and WOA [11] have attracted the attention of many researchers for solving optimization
problems, they may have weaknesses such as local optima trapping, premature convergence
and the imbalance search strategy [14, 15, 17]. Therefore, there have been proposed many
improvements to tackle their weaknesses.

One of the significant challenges which affect the efficiency of metaheuristic algorithm is

the ability to strike a balance between local and global search [37,38]. This balance enhances
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the algorithm to cross the local optima and reach the promising areas of the search space. To
overcome this challenge, numerous studies have been conducted on various species of
organisms regarding their optimization behavior in the nature for survival, leading to the
creation of a new Sl algorithm. As shown in Fig.1, Sl algorithms can be categorized into four
categories: insects, terrestrial animals, aquatic animals, and birds. In the following, some well-

known Sl algorithms of these categories are reviewed.
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Fig. 1 Classification of bio-inspired metaheuristic algorithms

2.1. Swarm intelligence algorithms based on insects behaviors

Although insects have elementary behaviors and mental structures, self-organization, and
cooperation they are regarded as the essential characteristic of their behavior in nature. They

can perform several complex tasks in the best way by modeling these simple behaviors of



insects and solve the complex problems. Karaboga et al. [22] proposed the artificial bee colony
(ABC) algorithm consist of three groups of bees: onlooker, employed and scout, and three
different search strategies: local, global, and random. Although its evaluation results show that
ABC is good at global search, its local search is weak, and it suffers from the imbalance
between local and global search strategies. Tsai et al. [39] made the first improvement to
increase the exploitation capability of the ABC by introducing interactive artificial bee colony
(IABC) algorithm. It improves the ABC by utilizing the Newtonian law related to the
gravitational force between masses and enhances the relationship of the employed and the
onlooker bees. In order to enhance the balance between local and global search in the ABC
algorithm, an extended version of this algorithm was proposed named gbest-guided ABC
(GABC) [14]. In GABC, the global best (gbest) solution has also been added to the onlooker
and employed bees phase to improve local search in this algorithm.

Accordingly, to improve the efficiency of the onlooker bees and to enhance local and
global search, Best-so-far ABC algorithm [23] was proposed. In this algorithm, the information
obtained from all employed bees is used by onlooker bees to decide about a candidate food
source and choose the best-so-far position. Although the Best-so-far ABC algorithm improves
the search strategy of the ABC algorithm, its evaluation results show that it still inherently
suffers from a lack of balance between local and global search. Karaboga et al. [16] introduced
gABC algorithm for enhancing the performance of the ABC algorithm in term of local search
ability. They introduce a new control parameter named neighborhood radius by which onlooker
bees choose the best food source in the neighborhood of the selected food source. Although
their evaluation results show that the better local search ability in gABC algorithm, it suffers
from the premature convergence problem. Thus, igABC [40] was recently proposed by
introducing different search schemas by which the qualities of the final solutions and
convergence speeds are enhanced.

GOA algorithm was proposed [41] by simulating repulsion and attraction forces between
the grasshoppers. Grasshoppers explore the search space using repulsion forces, whereas
attraction forces encourage them to exploit the promising regions. GOA is equipped with a
coefficient that adaptively decreases the comfort zone of the grasshoppers in order to strike a
balance between local and global search. In 2015, Mirjalili introduced the Ant Lion Optimizer
(ALO) [42] algorithm that mimics the hunting behavior of antlions using five main steps: the
random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building
traps. Its experimental results indicated that ALO benefits from high exploitation and

convergence rate.



Dragonfly algorithm (DA) [43] is inspired by the static and dynamic swarming behaviors
of dragonflies to explore and exploit the search space. It is equipped with five parameters to
control cohesion, alignment, separation, attraction, and distraction of dragonflies in the swarm.
Accordingly, the author used suitable operators and proposed binary and multi-objective
versions as well. The results showed that all of the versions have high exploration and
convergence because of using the static and dynamic swarming behavior of dragonflies
respectively. MFO [44] was mainly inspired by the navigation method of moths in nature called
transverse orientation. Moths fly in a straight line for long distances by this mechanism,
although they are trapped in a winding path around artificial lights. In fact, this spiral
convergence was the main inspiration of the MFO. It updates positions and obtains neighboring
solutions around the flames to increase the local search ability. Furthermore, each moth

assigned a flame to increases global search ability and decreases the probability of local optima.

2.2. Swarm intelligence algorithm based on terrestrial animal behavior

The second category of swarm intelligence algorithms mimics terrestrial animal behaviors
such as searching for prey, information sharing, herd leadership, encircling and attacking prey.
A well-known instance of this category is the gray wolf optimization algorithm (GWO) [20]
inspired by the hunting mechanism and the leadership hierarchy of gray wolves. The evaluation
results GWO show that although its local search is efficient, its global search is weak. To
enhance the performance of GWO, Long et al. [21] proposed exploration-enhanced GWO
(EEGWO) algorithm. It creates a proper balance between local and global search by improving
the movement strategy. Also, the evaluation results of EEGWO show more efficiency in high-
dimensional problems compared with GWO algorithm.

Lions are another species of these animals whose philosophy of group living and pride
behavior in the herd has formed the main idea for introducing the lion pride optimizer (LPO)
algorithm [45]. The efficiency of LPO is mostly from herd update strategy and competition
among lions. The spotted hyena optimizer (SHO) [46] algorithm is proposed based on the
spotted hyena behaviors. SHO uses two phases: searching for prey and attacking prey for
exploration and extraction by which it creates a proper balance between local and global search.

Squirrel search algorithm (SSA) [47] is designed for unconstrained optimization problems
by imitating of the dynamic foraging behavior of southern flying squirrels and their efficient
way of locomotion known as gliding. Although its results showed that SSA finds the global
optimum solutions in the low dimension optimization problems with good convergence, it

losses the effectiveness in the large scale optimization problems.



2.3. Swarm intelligence algorithm based on aquatic animal behaviors

Behaviors such as movement, prey encircling and mating in aquatic animals play an
important role in modeling and creating algorithms of this category. Some well-known
algorithms of this category are salp swarm algorithm (SSA) [48], dolphin echolocation (DE)
[49], krill herd (KH) [2] and whale optimization algorithm (WOA) [11].

WOA models the social behavior of humpback whales by three phases: encircling prey,
bubble-net attacking method and search for prey. Its experimental evaluations show that WOA
suffers from an imbalance between global and local search and premature convergence.
Because of these weaknesses, WOA is trapped by the local optima. Meanwhile, WOA adapted
for solving discrete problems such as feature selection from medical data [50]. Opposition-
based learning WOA was proposed [51] to increase the performance of WOA by considering
the ‘opposite’ position of whales for position updating. Moreover, the position of whales has
been updated by levy flight and random flights [52, 53] as well by which the exploitation and
convergence speed of WOA can be increased.

KH simulates the food searching behavior of krill through the three phases of foraging
motion, motion induced by other krill individuals, and random physical diffusion. The local
and global search strategies are implemented in two phases of motion induced by other krill
individuals and foraging motion. By doing this, the KH algorithm can improve the balance
between local and global search.

SailFish Optimizer (SFO) [54] is inspired by the group hunting behavior of sailfish. It
simulates the search for prey, attack-alternation strategy, and hunting and catching prey of the
hunting behavior of sailfishes. This algorithm uses two kinds of populations: sailfish population
for exploitation around the best so far and sardine’s population for exploration which results in
low local optima stagnation. It has a proper exploration by saving a promising area in each

iteration.
2.4. Swarm intelligence algorithm based on bird behaviors

The main idea behind this category is the survival behaviors of birds, such as nesting,
mating habits, protection against predators, feeding and interaction with others. Particle swarm
optimization (PSO) [9] is a famous instance of this category which is inspired by the social
behavior of flocks, shoals of fish and swarms of insects searching for food. The main active
elements in particles movements are the current position of the particle, the best personal
position, the best group history, and velocity. Although PSO algorithm is efficient in solving

unimodal problems, it is trapped in local optima when solving complex multimodal problems.



This is because having poor exploration and imbalance between local and global search. In
order to exit from the local optima, Liang et al. proposed the comprehensive learning particle
swarm optimization (CLPSO) [13] in which each particle effects from other particles in
different dimensions. CAPSO was introduced [55] to enhance the convergence speed and
global optimality of PSO. There is still much attention to improve PSO, then recently PSOTD
[56], OSC-PSO [57] and CLPSO-LOT [58] were proposed.

Bat algorithm (BA) [18,19] is a combination of the PSO algorithm without the best
personal histories along with a local search based on loudness and pulse rate. BA uses
echolocation behavior to detect their prey, avoid hitting obstacles and find their nest. These
approaches strengthen the local search ability by choosing a new solution based on the best
available solutions. To overcome the premature convergence and improve the performance of
BA on complex continuous optimization problems, an improved BA (HBA) was proposed by
Liu et al. [59]. They developed HBA with three modifications, to improve the performance of
BA on complex continuous optimization problems as follows: modification of the initial
population to enhancing the diversity of the initial bat population in the search space;
modification of location updating to improve the local search capability; and hybridization with
extremal optimization for increasing the local search capability and the strengthen ability to
tradeoff between local and global abilities. HBA shows the worse performance on some high-
dimensional functions with the computation time.

Cuckoo search (CS) [60,61] algorithm is inspired by the life and egg-laying of cuckoo
species. Bird swarm algorithm (BSA) [62] is inspired by foraging behavior, vigilance behavior
and flight behavior of birds. Crow search algorithm (CSA) [17] is a population-based bio-
inspired algorithm inspired by the social behavior of crows. In the next section, CSA is

explained in detail.

3. Crow search algorithm

The social behaviors of crows are the main idea of the development of the crow search
algorithm (CSA). Crows are smart birds that can hide their excess foods in hiding places and
retrieve them when the foods are needed. In CSA, each crow seeks to steal the food resources
of other crows, and they predict the behavior of the pilferer crow using their own experience
of having been a thief. The awareness of the crow being followed by another crow plays a key
role in search strategy selection. Consequently, there is considered an awareness probability
(AP) value for each crow, which is compared with a random number r. As the pseudo-code of
CSA shown in Fig. 2, then, based on the result of this comparison, two states may happen for

the pilferer. In the first state r; >AP;(t), which means the awareness probability of crow j (AP;)



in iteration t is less than this random number. In such a case, according to Eq. (1), m;(t) as the
hiding place of crow j is stolen by crow i, where X;(t) is the position of the pilferer
crow, r; and r; are the random number with uniform distribution in the interval of [0, 1]. In
addition, fI;(t) is the crow’s flight length in the iteration t for creating a suitable balance
between local and global search. The low value of fl encourages local search around Xx;(t),
while the high value of this parameter reduces the focus on local search, as the result of which
the range of the global search is increased.

Xi(t+1) = %;(t) + r; X fl;(£) x (m;(t) — x;(¢)) 1)

In the second state rj < AP;(t), which means crow j is aware of being followed by the crow
i. In this state, according to Eq. (2), the crow i is moved to a new random position in the search
space.

X;(t + 1) = arandom position of search space (2

Like PSO, CSA explores the search space using a population of N crows (particles) which
increase the probability of finding a near optimal solution. Although PSO uses the personal and
global best solutions to increases the probability of convergence and finding a better solution
[13,44], CSA selects randomly another crow (it may be itself) and moves towards its best
position. This strategy increases the probability of escaping from the local optima and the
diversity of generated solutions. Meanwhile, in CSA contrary to PSO only two main parameters
flight length (fl) and awareness probability (AP) must be adjusted and tuned.

The evaluation results of CSA show that its efficiency is not suitable for solving multi-
modal, hybrid, composition and large-scale problems. In fact, it suffers from lacking a proper
balance between local and global search and having premature convergence, especially in
large-scale problems. Mostly, this is because it selects search strategy unconsciously by
comparing AP value with a random number. In addition, the parameter fl is manually set for
all iterations by a constant value, which affects determining the flight length and striking a

balance. Section 4 describes how the proposed CCSA tackles these weaknesses.



Algorithm 1 Crow search algorithm
Input: Population size N and the number of iteration MaxIt.
Output: Optimal hiding place of crow m, best fitness value fbest.

1: procedure CSA

2: Randomly initialize the position of a flock of N crows in the search space.
3: Evaluate the position of the crows.

4: Initialize the memory of each crow.

5: While t < MaxIt

6: For each search crow do

7. Randomly choose one of the crows to follow.

8: Define an awareness probability.

9: If r, > AP;(t)

10: Bt +1) = Z(O) + 1 x fL(0) x () — %(©))-
11 Else

12: %;(t + 1) = arandom position of search space.

13: end if

14: end for

15: Check the feasibility of new positions.

16: Evaluate the fitness value of new positions.

17: Update the memory of crows.

18: end while

19: Return fitness value and the position of the best crow.

20:  end procedure

Fig. 2 Pseudo code of CSA [17]

4. Conscious neighborhood-based crow search algorithm (CCSA)

The flowchart of the proposed CCSA is shown in Fig. 3. In this flowchart, initially, a finite

set of C = {c,, c,, ..., cn} consisting of N crows are distributed by uniform random distribution
in D-dimensional problem space. Each crow c; in the current iteration t is considered by a 4-
tuplec;(t) = < X;(t), f;(t), m;(t), fbest;(t). In this 4-tuple, the vector X;(t) = [Xi1, X2, ---» Xip]
and f;(t) are the position and the fitness value of crow c; in the iteration t respectively. Then,
fbesti(t) is the best fitness value of crow c;i till the iteration t and the vector m; (t) =
[m;1, m;5, ..., m;p] represents the position where the crow c; has obtained the fbest;. In
addition, by inspiring the intelligent behavior of crows and based on Definition 1, a hiding
place mj is considered by a 2-tuple (m;, fbest;) for crow ci.
Definition 1 (hiding place of crow): Consider m;= (m;, fbest;) is the hiding place of crow ci.
Then, in the first iteration, m; « X;(t = 1) and for the other iterations, m; « X; (s) such that
F(X;(s)) = min{F(%;(k)),k = 2, ..., t} where F (X;(k)) is the fitness function to evaluate the
position of crow ciin iteration k.

In CCSA we introduce three new strategies called Neighborhood-based Local Search
(NLS), Non-Neighborhood based Global Search (NGS) and Wandering Around based Search
(WAS) in order to enhance the efficiency of movement of crows in different problems space.

Moreover, it uses a new conscious neighborhood concept defined by Definition 2 to select the



movement strategy between NLS or NGS consciously, and improve the balance between local
and global search. For doing this, as shown in Fig. 3, first, CCSA generates neighborhood of
crow ci by Definition 2. Then, instead of CSA, CCSA selects either NLS or NGS consciously

by comparing the fitness value of its neighbors with non-neighbors.
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Fig. 3 Flowchart of the proposed CCSA

Definition 2 (conscious neighborhood): Given C is a set of N crows distributed in the problem
space and crow c; € C. Then, a conscious neighborhood of crow ci or N (ci) is a subset Y of ¢;
that d(x;,m;) x wij < p for j=1,.., N and j#i and accordingly, subset C-Y is non-neighborhood
of ci. In this definition, d(¥;,m;) is the Euclidean distance between position crow ci and hiding
place of crow c;. Besides, wij and p are computed by Eqgs. 3 and 4 where fj and fbest; are the

fitness of position crow ¢i and mj respectively.
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The conscious neighborhood concept is illustrated by Fig. 4 where Fig. 4(a) shows it in
2D graphical representation and Fig. 4(b) demonstrates this concept computed by Egs. 3 and 4

in a real problem.
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Fig. 4 Graphical representation of the neighborhood concept

4.1. Neighborhood-based local search (NLS) strategy

After generating the neighborhood of crow c;, it should be exploited if the quality of the
neighborhood is good. Thus, the NLS strategy is to improve the exploitation based on the
conscious neighborhood as follows. A crow among the neighbor of crow ci is randomly selected
named Ciocar, and the best crow among non-neighbor with the lowest fitness is selected named
Cglobal. Given, fhestiocar and fbestgional are the best fitness of selected crows Ciocar and Cgiobal
respectively, if fhestiocar < fhestgional, then ¢i will approach to the hiding place of Ciocar and the
new position X;(t + 1) of c; is obtained by Eq.5. In fact, the neighbors can be considered as

candidate solutions and be exploited.

Xi(t+1) = X(0) + 73 X fli(6) X (Wijocal (t) = Xi(6)) (5)
Where fl;(t) is the flight length of the crow ci in the current iteration t which is a decreased
linearly variable, r; is a random number with uniform distribution in an interval [0, 1], and
myca1(t) is the hiding place of ciecal in the current iteration. Fig. 5 illustrates the graphical
representation of the NLS strategy, and the pseudo-code of the NLS is shown in Fig. 6. Both
NLS and NGS uses a function named CC (X; (t+1)) to check the newly obtained position of



crow i and correct it if necessary. If the newly position value is out of the problem space, then

it resets the exceeded dimensions randomly within the problem space.
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Fig. 5 Graphical representation of NLS strategy

Algorithm 2: Neighborhood-based local search (NLS)
Input: X; (position of crow ¢i) and X,,c1 (Osition of crow Ciocal).
Output: the new position of crow ci.
Procedure NLS
Xt +1) = %) + 1 X fi(0) X (Mpocar (t) — X;(2)).
CC (%; (t+1)).
Return the new position of crow ci.
end procedure

Fig. 6 Pseudo-code of NLS strategy

4.2. Non-neighborhood based global search (NGS) strategy

CCSA uses NGS to improve the exploration and robustness based on the conscious
neighborhood as follows. When the fitness value of fbestioca is greater than and equal with
fbestgionar. Then, crow ci extends its range of exploration into its non-neighborhood towards the
Cglobal DY Selecting k dimensions randomly and changing their values using Eqg. (6).

xij (¢ + 1) =13 X f1i(8) X (Mgioparj (£) = x55(0)) (©)

Where, x;;(t + 1) and x;;(t) are the values of dimension j of the new and current position

of crow ci respectively. Meanwhile, 7; isarandom number with a uniform distribution between



0 and 1, mg;,pq; is the value of dimension j of hiding place of cgoba. The graphical

representation and pseudo-code of NGS strategy is shown in Figs. 7 and 8 respectively.
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Fig. 7 Graphical representation of NGS strategy

Algorithm 3: Non-neighborhood based global search (NGS)
Input: X; (position crow ci) and Xgjopa (POSItion of Crow Cyioba).
Output: the new position of crow ci.

CC (%; (t+1)).
Return the new position of crow c;.
end procedure

1: Procedure NGS

2: Selecting k dimensions of X;(t) randomly.

3: Forj=1:k

4 xij(t + 1) =1; X fI;(t) X (mglobalj(t) - Xij(t))-
5: end for

6:

7.

8:

Fig. 8 Pseudo code of NGS strategy

4.3. Wandering around based search (WAS) strategy

CCSA introduces WAS based on an intelligent behavior of crows by which they analyze
their surrounding environment and move to a better position by a number of jumps if their
position is not good. In fact, the reason for using WAS is to correct the position of those crows
that could not acquire a better fitness by using NLS or NGS. If the newly fitness of crow i is
not less than the fitness of its hiding place, first, the position of the crow is set with its hiding
place position ( ¥;(t) « m;). Then, crow i explore the search space by doing a random number
of jumps (NJ) such that in each jump, k dimensions are randomly selected and their values are

changed using Eq. (7).



Xij(t + 1) = Mygpese;(6) + 13 X fLi(8) X (. (E) — x;5(8)) @)

Where, x;;(t + 1) is the value of dimension j in the new position of crow i, mgpeg.;(t)
is the value of dimension j of the best hiding place in the total population and x,.;(t) is the

dimension j of a random crow. The graphical representation and pseudo-code of the WAS
strategy are shown in Figs. 9 and 10 respectively.
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Fig. 9 Graphical representation of WAS strategy using four jumps

Algorithm 4: Wandering around based search (WAS)
Input: X; (position crow ci), ¥, (random position crow ¢, r # i) and Xgps (POSition
of the best global crow).
Output: the new position of crow ci.
Procedure WAS
fl(t) = ﬁi.
NJ = number of jumps.
For f=1:NJ
Selecting k dimensions of X;(t) randomly.
For j=1:k
Xij(t + 1) = Mypese;(€) + 17 X fLi(E) X O (8) — x5(2))
end for
CC (x; (t+1)).
10: end for
11: Return the new position of crow c;.
12:  end procedure

©

Fig. 10 Pseudo code of WAS strategy

The pseudo-code of CCSA is shown in Fig. 11 and its parameters description are presented
in Table 1.

Algorithm 5: Conscious neighborhood-based crow search algorithm (CCSA)
Input: N (population size), D (dimension of search space) and Maxlt (the number of iteration).
Output: Copiima (Optimal solution) with position Xeptima={X1, X2, X3, ..., X0}
Begin




1:  Randomly distributing N crows in the search space.

2:  Set the hiding place of each crow.

3:  For t=2:Maxlt

4: Fori=1:N

5: Evaluating the fitness f (¥;(t)) and updating the global best crow position.
6: Updating the hiding place of crow of c; based on Definition 1.

7: Generating the neighborhood N (c;) for crow c; based on Definition 2.

8: Selecting a random neighbor (Ciecar) and the best non-neighbor (Cgiobar) OF Ci.
9: If fbestioca < fbestg|oba|

10: 2i(t + 1) =NLS (ii(t)'ilocal (t))

11: else

12: X;(t+ 1) = NGS (X; (1), Xg10pa (1))

13: end if

14: If fbest; (t) < fi(t+1)

15: X, = Randomly generated crow ¢, r # i.

16: ii(t + 1) =WAS (9—51 (t)' fr (t)' _)Zgbest (t))

17: end if

18: end for

19: end for

20:  Return Coptimal
21: end procedure

Fig. 11 The pseudo code of CCSA

Table 1 Nomenclature used in CCSA

Parameters Description

N Population size.

Ci Crow ci.

t and MaxIt Current and maximum number of iterations.

X;(t) and m; (t) Current position of crow c; and its hiding place position.

fi (t) and fbest; Fitness value of current and hiding place positions of crow ci.
%, (t) A random crow position.

Xgpest () The position of the best global crow in all population.

fli(t) Flight length of crow c; in iteration t.

T Random number with uniform distribution in the interval of [0, 1].
NJ The number of jumps.

N(Ci) The neighborhood of crow c;.

4.4. Computational complexity analysis

As Fig. 11 shown CCSA algorithm consists of two main phases: initialization (lines 1-2)
and movement (lines 3-19). The computational complexity of the initialization phase for
distributing N crows in the search space with D dimensions is O(ND). Meanwhile, in the
movement phase, the computational complexity of generating the neighborhood of each crow
(line 7), using either NLS or NGS (lines 9-13) and then WAS (lines 14-17) is O(ND+D+D).
Thus, the computational complexity of the movement phase for N crows for all iterations (T)
is O(TN(ND+D+D)) which results the overall computational complexity of CCSA is equal to
O(TN?D). Although there are two similar initialization and movement phases in the CSA

algorithm, the computational complexity of the CSA algorithm is O(TND). This is because, as



Fig. 2 shown, the computational burden of its initialization (lines 2-4) and movement (line 5-
18) phases is O(ND) and O(TND) respectively. In the next section, experimental results verify

the benefits of the additional cost caused by the introduced conscious neighborhood.

5. Experimental evaluation and results

Since no metaheuristic algorithm can solve all optimization problems, in this section, the
numerical efficiency of the proposed CCSA was experimentally evaluated by several
experiments. First, CCSA was evaluated for solving global optimization problems by
benchmark functions CEC 2017 [24] with different dimensions of 30, 50 and 100. Then, the
efficiency of CCSA was evaluated for solving large-scale global optimization problems by
benchmark functions CEC 2010 [25] with dimensions 1000. In all experiments, the efficiency
of CCSA was compared with CSA and some of the state-of-the-art swarm intelligence
algorithms: BA [18], CLPSO [13], GWO [20], EEGWO [21], WOA [11], KH [2], ABC[22],
GABC [14] and Best-so-far ABC [23], which were named compared algorithms. Finally,
CCSA and these algorithms were statistically compared by Mean Absolute Error (MAE) and

Friedman tests.

5.1. Benchmark functions

To evaluate the numerical efficiency of CCSA, the benchmark functions CEC 2017 was
used. CEC 2017 consists of four groups of different functions: unimodal, simple multi-modal,
hybrid and composition. This diversity of functions is suitable to compare the proposed CCSA
with the compared algorithms in terms of its ability to escape from local optima, convergence
behavior, local search, and global search.

In this benchmark, the first group consists of three unimodal functions Fi-F3, which have
only a global optimization, and they are a unimodal, non-separable, symmetric, and smooth but
narrow ridge. Thus, they are suitable for evaluating the ability of algorithms in terms of local
search and convergence speed. In the second group, there are seven multi-modal functions Fs-
Fi0, which have a large number of local optima. These functions have the required
characteristics to test the global search capabilities of the proposed CCSA. The third and fourth
groups consist of ten hybrid functions Fii1-F20, and ten composition functions Fzi-Fso
respectively. Due to possessing the characteristic of maintaining the continuity around the local
and global optima, their functions can evaluate the proposed algorithm in terms of the balance
between local and global search and premature convergence.



Many efficient metaheuristic algorithms often lose their efficiency when applied to large-
scale problems. They suffer from the “curse of dimensionality”, by which their performance
decreases dramatically as the dimensionality of the search space increases. Therefore, the
proposed algorithm was also evaluated for solving the large-scale global optimization problems
conducted by benchmark functions CEC 2010 [25] with dimensions 1000. This benchmark
consists of twenty benchmark functions with different properties: unimodal, multi-modal,

shifted, separable, fully nonseparable and scalability in the different range space.

5.2. Experimental setup

The MATLAB 2014b programming language was used to implement CCSA and the
compared algorithms. To make sure that the comparison is fair, all these algorithms were run
under the same conditions on the pc with Intel Core i7, 3.4 GHz CPU and 8 GB memory in
windows 7.

The efficiency of CCSA was evaluated for solving different problems unimodal, simple
multi-modal, hybrid and composition of the benchmark functions CEC 2017. The values of the
common parameters such as population size (N) and the maximum number of iterations
(MaxIt) were set to 200 and1500 respectively. Due to the random nature of the metaheuristic
algorithms, the algorithms in all experiments of the efficiency evaluation and statistical tests
were run 30 times for each function in different dimension 30, 50 and 100. The efficiency was
computed by average (Avg), standard deviation (SD) and minimum (Min) of the best obtained
optimal solution until the last iteration in each run. In the proposed CCSA, a few parameters
must be adjusted. The flight length fl is linearly decreased from 2 to 0.9, € is set by 0.02 and
based on the results of our experiments the number of jumps (NJ) can be randomly set between
1 and 50.

The required parameters of the compared algorithms were set as same as their original
algorithms as follows. In ABC, the limit control parameter was set to 100. Since this value can
change depending on the dimension of search space, thus it was set to NxD for Best-so-far
ABC and GABC. In CLPSO, the cognitive (c1) and social components (c2) were set to 1.49445,
and the inertia weight was considered between 0.2 and 0.9. In BA, Pulse rate (r) and Loudness
(A) were set to 0.5. Moreover, the minimum and maximum frequency were set to 0 and 2
respectively. In KH algorithm, the maximum diffusion speed, velocity of foraging and
maximum induced speed were set to 0.005, 0.02 and 0.01 respectively. Consistently, the inertia
weights of the motion and foraging motion were linearly decreased from 0.9 to 0.1 and C; was

set to 0.5 by which the krill individuals can search the problem space carefully. In the



exploration and exploitation phases of WOA, control parameter a was linearly decreased from
2 to 0 over iterations and shape of the logarithmic spiral b was set to 1. In EEGWO, the constant
coefficient values by and b2 were set to 0.1 and 0.9 respectively. Also, non-linear modulation
index p and an initial and a final were set to 1.5, 2 and 0 respectively. In CSA, as the original
work, AP=0.1 and fl=2.

5.3. Numerical efficiency evaluation

In this section, through various experiments conducted by different functions of the
benchmark CEC 2017, the efficiency of CCSA was evaluated. Its results were compared with
the compared algorithms concerning local and global search ability and escape from local
optima. The experimental results are shown in Tables 2-5 in which the bold values show the
winning algorithms or the best solutions. Moreover, at the end of each table, the comparison
of the results by the numbers of win (W), tie (T) and loss (L) of each algorithm is shown.

5.3.1. Evaluation of local searchability

Due to the properties of functions F1-F3, they can evaluate the local search ability of CCSA and
other compared algorithms. The results of local search evaluation for different dimensions 30,
50 and 100 are shown in Table 2. The experimental results show CCSA is superior to the
compared algorithms on functions Fy and F2 with dimensions 30 and 50 and on all functions

with dimension 100.

5.3.2. Evaluation of global searchability

The functions F4-F10 as simple multi-modal functions in CEC 2017 benchmark have a
global optimization and several local optima. In addition, the number of local optima is
exponentially increased by increasing the dimensions. Then, these functions are a good
criterion for evaluating global search ability of optimization algorithms. The efficiency of the
proposed algorithm for these functions was evaluated in three separate experiments for
different dimensions 30, 50 and 100. The experimental results of proposed CCSA and other
compared algorithms are shown in Table 3. The results show that CCSA is superior to the
compared algorithms on all functions Fs-F1o for all three different dimensions 30, 50 and 100.

In addition, the efficiency of CCSA and compared algorithms for hybrid functions F11-F2o
were evaluated and compared by the different dimensions. The results of these experiments are

shown in Table 4. In dimension 30, CCSA had a better efficiency for nine of ten hybrid



functions, and it is more efficient than the compared algorithms for dimensions 50 and 100 on

all functions.

Table 2 Comparison of optimization results obtained from the unimodal benchmark functions

F D Index CCSA CSA BA CLPSO GWO EEGWO  WOA KH ABC  GABC fBafSL;%
Avg 2.515E+03 2.542E+03 1.717E+10 6.169E+05 8.871E+08 5.726E+10 2.480E+06 1.716E+09 4.348E+02 1.464E+03 6.766E+03
30 SD 1.957E+03 1.874E+03 6.206E+09 1.513E+05 8.705E+08 3.622E+09 1.451E+06 9.407E+09 2.853E+02 1.094E+03 1.370E+03
Min  1.018E+02 2.666E+02 5.995E+09 4.434E+05 4.421E+07 4.982E+10 4.824E+05 7.541E+03 1.815E+02 1.177E+02 3.568E+03
Avg  1.222E+03 3.554E+05 5.583E+10 7.296E+07 3.627E+09 1.101E+11 5.272E+07 2.406E+06 2.398E+04 2.757E+04 9.087E+06
Fl 50 SD 1.028E+03 1.192E+05 1.105E+10 1.238E+07 2.726E+09 4.755E+09 2.874E+07 2.558E+06 1.679E+04 2.918E+04 2.35E+06
Min 2.148E+02 1.995E+05 2.481E+10 4.816E+07 1.745E+08 1.011E+11 9.504E+06 8.774E+04 1.654E+03 1.418E+03 5.070E+06
Avg 7.003E+03 3.477E+08 1.811E+11 3.937E+09 2.481E+10 2.671E+11 1.753E+09 1.096E+10 4.520E+05 3.095E+05 1.676E+09
100 SD 2.481E+03 7.768E+07 3.245E+10 4.341E+08 7.258E+09 6.997E+09 4.974E+08 3.601E+09 4.450E+05 2.460E+05 3.011E+08
Min  3.235E+03 1.980E+08 9.765E+10 2.842E+09 1.413E+10 2.449E+11 8.725E+08 4.183E+09 4.895E+04 2.541E+04 1.016E+09
Avg 2.042E+02 3.571E+13 4.878E+45 1.337E+21 3.506E+27 1.018E+48 1.696E+24 1.272E+41 2.079E+11 1.125E+12 7.869E+15
30 SD 1.294E+01 8.456E+13 1.618E+46 3.373E+21 1.203E+28 2.601E+48 5.332E+24 3.984E+41 3.826E+11 5.214E+12 1.520E+16
Min  2.000E+02 5.852E+10 4.139E+36 1.0478E+18 1.054E+15 8.862E+42 6.743E+17 2.627E+21 2.651E+07 6.510E+06 4.829E+12
Avg  4.134E+02 5.076E+31 2.463E+82 4.282E+48 4.390E+50 1.214E+82 1.367E+64 1.259E+78 2.936E+28 1.867E+28 8.621E+39
|:2 50 SD 1.759E+02 2.190E+32 1.340E+83 7.856E+48 2.292E+51 4.546E+82 6.210E+64 6.319E+78 7.792E+28 5.679E+28 3.340E+40
Min 2.990E+02 1.909E+23 2.151E+68 5.953E+45 4.928E+38 4.882E+71 1.866E+46 6.889E+54 1.059E+24 6.517E+17 5.257E+33
Avg 7.921E+19 2.322E+101 5.545E+177 4.708E+132 5.569E+120 1.391E+176 2.299E+164 1.956E+176 1.575E+93 4.725E+93 5.756E+113
100 SD 2.690E+20 8.315E+101 INF 1.276E+133 1.586E+121 6.343E+164 INF INF 8.126E+93 2.558E+94 1.755E+114
Min  3.406E+09 1.319E+86 1.414E+156 1.124E+123 2.351E+99 INF 2.603E+131 1.000E+152 3.198E+71 1.901E+63 1.798E+106
Avg 1.969E+03 4.749E+02 1.352E+05 7.230E+04 2.504E+04 8.798E+04 1.455E+05 4.477E+04 1.098E+05 1.192E+05 1.297E+05
30 SD 7.909E+02 1.141E+02 8.637E+04 1.055E+04 7.862E+03 3.742E+03 6.015E+04 1.912E+04 1.549E+04 1.803E+04 1.429E+04
Min  5.635E+02 3.297E+02 3.346E+04 5.300E+04 5.637E+03 7.771E+04 2.831E+04 2.205E+04 8.322E+04 6.766E+04 8.080E+04
Avg 2.461E+04 1.235E+04 3.674E+05 1.991E+05 6.951E+04 3.659E+05 8.681E+04 1.190E+05 2.171E+05 2.465E+05 2.542E+05
F3 50 SD 5.441E+03 3.247E+03 3.094E+05 2.634E+04 1.521E+04 2.986E+05 4.003E+04 1.906E+04 2.053E+04 2.226E+04 3.065E+04
Min 1.113E+04 7.296E+03 6.106E+04 1.471E+05 4.263E+04 1.802E+05 4.522E+04 8.715E+04 1.791E+05 1.976E+05 1.776E+05
Avg 1.264E+05 1.303E+05 7.612E+05 5.638E+05 2.163E+05 3.881E+05 7.593E+05 3.742E+05 5.696E+05 6.239E+05 6.463E+05
100 SD 1.865E+04 1.280E+04 4.109E+05 5.417E+04 2.713E+04 4.770E+04 2.013E+05 4.147E+04 3.621E+04 3.561E+04 4.354E+04
Min  9.528E+04 1.034E+05 1.815E+05 4.470E+05 1.749E+05 3.271E+05 3.081E+05 3.147E+05 4.933E+05 5.323E+05 5.671E+05
Ranking 30 201 102 ooR ooR ooR ooR 03 03 00f3 00p3 003
W|TIL
50 201 102 003 003 003 003 00[3 ooR ooR ooR ooR
W[TIL
100 3000 003 003 003 003 003 003 ooR ooR ooR ooR
W[TIL

5.3.3. Ability evaluation to escape from local minima

The ability of an optimization algorithm to exit from the local minima depends

significantly on balance between local and global search. Then, the power of CCSA for

balancing between local and global search was evaluated by composite benchmark functions.

Table 5 shows the experimental results of this evaluation compared to other algorithms. As the

results show, in the most functions for different dimensions, the ability of CCSA to escape

from local minima is better than the compared algorithms.



Table 3 Comparison of optimization results obtained from the simple multi-modal benchmark functions

F D Index CCSA  CSA BA  CLPSO GWO EEGWO WOA KH ABC  GABC E?S;SB%
Avg 4,152E+02 5.023E+02 3.441E+03 5.294E+02 5.360E+02 1.725E+04 5.446E+02 5.046E+02 4.310E+02 4.490E+02 4.703E+02
30 SD 2.122E+01 3.100E+01 1.480E+03 1.578E+01 2.866E+01 2.190E+03 3.373E+01 1.534E+01 2.310E+01 2.377E+01 1.583E+01
Min 4,000E+02 4.172E+02 1.282E+03 4.628E+02 4.802E+02 1.366E+04 4.957E+02 4.748E+02 4.033E+02 4.080E+02 4.274E+02
FA Avg 4.302E+02 6.302E+02 1.260E+04 7.530E+02 7.985E+02 3.717E+04 7.480E+02 5.811E+02 4.816E+02 4.735E+02 5.923E+02
50 SD 1.593E+01 4.836E+01 3.802E+03 2.470E+01 1.424E+02 3.292E+03 6.975E+01 4.505E+0 2.283E+01 2.545E+01 2.099E+01
Min 4,012E+02 5.000E+02 4.964E+03 7.041E+02 5.946E+02 2.928E+04 6.307E+02 4.919E+02 4.344E+02 4.369E+02 5.622E+02
Avg 5.906E+02 1.198E+03 4.777E+04 2.050E+03 2.487E+03 1.076E+05 1.589E+03 2.425E+03 8.103E+02 7.482E+02 1.276E+03
100 SD 1.842E+01 1.212E+02 1.316E+04 1.100E+02 5.815E+02 7.951E+03 2.223E+02 6.720E+02 5.067E+01 2.955E+01 9.792E+01
Min 5.513E+02 1.012E+03 2.095E+04 1.810E+03 1.636E+03 8.855E+04 1.221E+03 1.557E+03 7.172E+02 6.953E+02 1.033E+03
Avg 5.311E+02 6.159E+02 7.267E+02 5.958E+02 5.869E+02 9.595E+02 7.783E+02 6.440E+02 5.848E+02 5.572E+02 5.890E+02
30 SD 7.247E+00 2.400E+01 3.623E+01 7.863E+00 3.560E+01 2.085E+01 6.196E+01 7.491E+01 1.020E+01 7.316E+00 1.098E+01
Min 5.131E+02 5.756E+02 6.343E+02 5.766E+02 5.484E+02 9.084E+02 6.540E+02 5.995E+02 5.625E+02 5.433E+02 5.594E+02
F5 Avg 5.790E+02 7.454E+02 8.730E+02 7.781E+02 6.732E+02 1.230E+03 9.388E+02 7.534E+02 7.137E+02 6.565E+02 7.358E+02
50 SD 1.215E+01 4.017E+01 5.720E+01 1.442E+01 3.461E+01 1.887E+01 6.987E+01 2.948E+01 1.751E+01 1.921E+01 2.127E+01
Min 5.488E+02 6.711E+02 7.776E+02 7.420E+02 5.970E+02 1.177E+03 8.168E+02 6.981E+02 6.693E+02 6.098E+02 6.914E+02
Avg 7.765E+02 1.194E+03 1.412E+03 1.471E+03 1.033E+03 2.161E+03 1.529E+03 1.203E+03 1.288E+03 1.149E+03 1.353E+03
100 SD 2.850E+01 6.247E+01 9.671E+01 3.265E+01 4.555E+01 2.386E+01 1.622E+02 5.674E+01 4.116E+01 4.212E+01 4.329E+01
Min 7.260E+02 1.041E+03 1.248E+03 1.403E+03 9.358E+02 2.095E+03 1.228E+03 1.109E+03 1.211E+03 1.035E+03 1.259E+03
Avg 6.000E+02 6.203E+02 6.581E+02 6.003E+02 6.029E+02 7.013E+02 6.680E+02 6.386E+02 6.000E+02 6.000E+02 6.001E+02
30 SD 3.070E-03 6.125E+00 8.323E+00 4.436E-02 2.024E+00 4.267E+00 1.068E+01 6.705E+00 1.271E-04 1.265E-05 2.667E-02
Min 6.000E+02 6.069E+02 6.428E+02 6.002E+02 6.007E+02 6.898E+02 6.480E+02 6.245E+02 6.000E+02 6.000E+02 6.001E+02
FG Avg 6.000E+02 6.333E+02 6.617E+02 6.029E+02 6.088E+02 7.123E+02 6.799E+02 6.508E+02 6.001E+02 6.000E+02 6.019E+02
50 SD 3.514E-03 6.161E+00 6.233E+00 2.720E-01 2.636E+00 4.097E+00 1.036E+01 4.513E+00 1.853E-02 3.290E-03 2.272E-01
Min 6.000E+02 6.218E+02 6.475E+02 6.023E+02 6.047E+02 7.026E+02 6.639E+02 6.419E+02 6.001E+02 6.000E+02 6.015E+02
Avg 6.000E+02 6.520E+02 6.658E+02 6.178E+02 6.245E+02 7.167E+02 6.847E+02 6.607E+02 6.028E+02 6.018E+02 6.140E+02
100 SD 2.495E-03 5.739E+00 3.272E+00 9.061E-01 3.803E+00 3.143E+00 8.585E+00 3.549E+00 5.942E-01 8.392E-02 9.203E-01
Min 6.000E+02 6.427E+02 6.594E+02 6.157E+02 6.166E+02 7.085E+02 6.727E+02 6.557E+02 6.016E+02 6.017E+02 6.119E+02
Avg 7.629E+02 8.241E+02 1.286E+03 8.421E+02 8.222E+02 1.454E+03 1.215E+03 8.273E+02 8.068E+02 7.826E+02 8.104E+02
30 SD 5.783E+00 2.991E+01 1.099E+02 7.982E+00 2.433E+01 3.998E+01 9.981E+01 2.636E+01 8.711E+00 7.264E+00 8.208E+00
Min 7.497E+02 7.785E+02 1.047E+03 8.259E+02 7.808E+02 1.348E+03 1.020E+03 7.813E+02 7.892E+02 7.612E+02 7.920E+02
Avg 8.322E+02 1.003E+03 1.882E+03 1.052E+03 9.829E+02 2.077E+03 1.687E+03 1.065E+03 9.411E+02 9.036E+02 9.909E+02
I:7 50 SD 1.051E+01 5.068E+01 1.768E+02 1.582E+01 3.842E+01 4.253E+01 1.377E+02 4.735E+01 1.662E+01 1.491E+01 1.881E+01
Min 8.083E+02 9.047E+02 1.554E+03 1.016E+03 8.946E+02 1.952E+03 1.329E+03 9.950E+02 8.893E+02 8.717E+02 9.537E+02
Avg 1.031E+03 1.772E+03 3.868E+03 1.859E+03 1.670E+03 4.047E+03 3.264E+03 2.137E+03 1.530E+03 1.428E+03 1.882E+03
100 SD 3.652E+01 1.614E+02 2.682E+02 2.621E+01 7.105E+01 5.176E+01 1.524E+02 1.010E+02 4.910E+01 2.697E+01 4.423E+01
Min 9.656E+02 1.501E+03 3.264E+03 1.815E+03 1.558E+03 3.915E+03 2.932E+03 1.978E+03 1.419E+03 1.379E+03 1.795E+03
Avg  8.363E+02 B.936E+02 9.700E+02 9.000E+02 B.729E+02 1.167E+03 9.959E+02 9.045E+02 B.946E+02 B.643E+02 8.980E+02
30 SD  7.906E+00 1.607E+01 2.896E+01 7.935E+00 2.034E+01 1.786E+01 5054E+01 1993E+01 1.072E+01 7.597E+00 1267E+01
Min  8.150E+02 8.597E+02 8.985E+02 8.842E+02 8.424E+02 1.118E+03 8.938E+02 8.627E+02 8.652E+02 8.440E+02 8.604E+02
Fs Avg  8.818E+02 1048E+03 1.183E+03 1.0BIE+03 9.806E+02 1.558E+03 1.219E+03 1.069E+03 1.023E+03 9.648E+02 1.044E+03
50 SD 1.017E+01 3.502E+01 5.770E+01 1.908E+01 2.521E+01 2.810E+01 7.732E+01 2.846E+01 1.474E+01 1.382E+01 1.548E+01
Min 8.607E+02 9.602E+02 1.084E+03 1.030E+03 9.228E+02 1.482E+03 1.072E+03 1.001E+03 9.948E+02 9.320E+02 1.015E+03
Avg 1.077E+03 1.534E+03 1.862E+03 1.764E+03 1.337E+03 2.648E+03 1.928E+03 1.589E+03 1.603E+03 1.461E+03 1.670E+03
100 SD 2.390E+01 8.577E+01 8.071E+01 2.741E+01 1.135E+02 2.965E+01 1.062E+02 7.974E+01 6.448E+01 3.737E+01 3.156E+01
Min 1.037E+03 1.333E+03 1.695E+03 1.689E+03 1.218E+03 2.585E+03 1.751E+03 1.425E+03 1.494E+03 1.381E+03 1.612E+03
Avg 9.001E+02 1.331E+03 5.608E+03 1.452E+03 1.231E+03 1.340E+04 7.802E+03 3.156E+03 2.112E+03 1.092E+03 2.871E+03
30 SD 1.758E-01 2.736E+02 1.401E+03 1.401E+02 2.459E+02 9.302E+02 2.727E+03 4.542E+02 4.657E+02 8.268E+01 4.348E+02
Min 9.000E+02 9.842E+02 3.371E+03 1.163E+03 9.419E+02 1.109E+04 3.580E+03 2.269E+03 1.398E+03 9.626E+02 2.117E+03
Fg Avg 9.011E+02 3.829E+03 1.361E+04 8.227E+03 4.089E+03 4.300E+04 2.304E+04 1.004E+04 1.061E+04 3.268E+03 9.792E+03
50 SD 8.190E-01 9.026E+02 2.099E+03 9.653E+02 2.519E+03 3.291E+03 6.037E+03 1.827E+03 1.823E+03 5.518E+02 1.431E+03
Min 9.000E+02 2.175E+03 9.923E+03 5.771E+03 1.714E+03 3.431E+04 1.432E+04 6.747E+03 6.838E+03 2.197E+03 7.116E+03
Avg 9.312E+02 1.755E+04 2.583E+04 5.077E+04 2.129E+04 8.798E+04 4.749E+04 2.730E+04 5.491E+04 3.282E+04 4.871E+04
100 SD 2.229E+01 3.452E+03 2.970E+03 4.223E+03 9.530E+03 3.037E+03 1.464E+04 7.015E+03 3.593E+03 3.093E+03 4.384E+03
Min 9.051E+02 1.091E+04 1.895E+04 4.057E+04 9.667E+03 8.052E+04 2.796E+04 2.061E+04 4.732E+04 2.384E+04 3.845E+04
Avg 2.294E+03 4.481E+03 5.598E+03 5.001E+03 3.852E+03 9.297E+03 5.957E+03 5.230E+03 3.507E+03 3.221E+03 3.551E+03
30 SD 2.633E+02 7.359E+02 6.223E+02 2.194E+02 5.301E+02 3.4215E+02 9.592E+02 1.066E+03 2.257E+02 2.125E+02 1.965E+02
Min 1.740E+03 2.749E+03 4.575E+03 4.496E+03 2.849E+03 8.424E+03 4.111E+03 3.149E+03 2.893E+03 2.692E+03 3.145E+03
FlO Avg 3.744E+03 6.972E+03 8.828E+03 9.071E+03 7.183E+03 1.607E+04 1.015E+04 7.840E+03 5.936E+03 5.692E+03 6.410E+03
50 SD 3.516E+02 7.636E+02 1.043E+03 3.480E+02 2.048E+03 3.757E+02 1.378E+03 9.335E+02 3.295E+02 4.212E+02 3.611E+02
Min 2.768E+03 4.924E+03 6.158E+03 8.249E+03 4.977E+03 1.505E+04 7.176E+03 5.974E+03 5.201E+03 4.635E+03 5.554E+03
Avg 9.416E+03 1.514E+04 1.708E+04 2.247E+04 1.426E+04 3.332E+04 2.248E+04 1.762E+04 1.443E+04 1.491E+04 1.654E+04
100 SD 6.284E+02 1.256E+03 1.491E+03 6.286E+02 8.378E+02 6.755E+02 2.671E+03 3.398E+03 7.242E+02 6.757E+02 4.362E+02
Min 7.613E+03 1.207E+04 1.456E+04 1.997E+04 1.296E+04 3.165E+04 1.808E+04 1.420E+04 1.252E+04 1.354E+04 1.573E+04
Ranking 30 W[TIL _ 6[10 o7 oo 007 oo 07 oo o7 ol ol ool
50 W[T|L _ 6[10 ool ool o7 ool o7 ool o7 ool 0l o7
100 WTIL 7[00 0pol7 ol o7 ool o7 ol o7 ool ool o7




Table 4 Comparison of optimization results obtained from the hybrid benchmark functions

F D Index CCSA CSA BA  CLPSO GWO EEGWO WOA KH ABC  GABC ng;EOC

Avg 1.114E+03 1.247E+03 4.814E+03 1.333E+03 1.330E+03 9.920E+03 1.494E+03 1.619E+03 1.746E+03 1.504E+03 1.990E+03

30 SI;) 1.114E+01 4.828E+01 1.987E+03 2.736E+01 1.047E+02 1.903E+03 1.312E+02 2.1399E+02 3.108E+02 2.761E+02 5.763E+02

Min  1.104E+03 1.166E+03 2.122E+03 1.286E+03 1.236E+03 5.168E+03 1.285E+03 1.3159E+03 1.224E+03 1.181E+03 1.294E+03

Avg 1.173E+03 1.452E+03 2.215E+04 2.555E+03 2.393E+03 2.479E+04 1.699E+03 6.483E+03 4.821E+03 3.647E+03 9.057E+03

50 SD 2.114E+01 7.515E+01 1.317E+04 3.042E+02 9.024E+02 1.455E+03 1.421E+02 2.0689E+03 1.880E+03 1.527E+03 2.624E+03

Fll Min 1.135E+03 1.298E+03 3.162E+03 1.918E+03 1.481E+03 2.153E+04 1.452E+03 3.360E+03 1.928E+03 1.804E+03 3.421E+03

Avg 1.769E+03 8.264E+03 2.778E+05 9.913E+04 3.304E+04 4.984E+05 2.962E+04 1.023E+05 8.343E+04 7.319E+04 9.386E+04

100 SD 2.398E+02 1.288E+03 1.968E+05 1.035E+04 1.069E+04 4.313E+05 1.073E+04 2.268E+04 1.507E+04 1.387E+04 1.682E+04

Min 1.370E+03 5.830E+03 3.640E+04 7.926E+04 1.392E+04 1.854E+05 1.674E+04 5.463E+04 5.922E+04 4.913E+04 5.859E+04

Avg 2.694E+04 1.599E+06 9.949E+08 4.730E+06 2.516E+07 1.508E+10 3.285E+07 4.272E+08 9.470E+05 5.080E+05 2.229E+06

30 SI;) 1.383E+04 1.262E+06 7.941E+08 1.687E+06 2.458E+07 2.915E+09 2.454E+07 2.294E+09 4.014E+05 2.734E+05 6.904E+05

Min  7.888E+03 9.190E+04 6.339E+07 2.185E+06 2.278E+06 7.550E+09 2.544E+06 1.164E+06 2.354E+05 9.275E+04 9.835E+05

Avg 2.069E+05 2.848E+07 1.671E+10 1.435E+08 2.331E+08 8.270E+10 2.376E+08 2.718E+09 6.983E+06 6.259E+06 4.548E+07

50 SD 1.151E+05 1.582E+07 6.712E+09 1.995E+07 1.979E+08 8.814E+09 1.137E+08 1.476E+10 2.738E+06 2.316E+06 9.336E+06

F12 Min 6.780E+04 3.526E+06 4.744E+09 1.117E+08 2.073E+07 6.442E+10 3.681E+07 7.393E+06 2.183E+06 2.479E+06 2.456E+07

Avg 9.028E+05 6.766E+08 9.719E+10 2.417E+09 3.552E+09 2.007E+11 1.312E+09 8.432E+08 8.027E+07 7.517E+07 1.562E+09

100 SD 3.350E+05 2.510E+08 1.793E+10 3.063E+08 1.892E+09 1.218E+10 4.395E+08 4.520E+08 2.637E+07 2.600E+07 2.612E+08

Min 3.733E+05 1.892E+08 5.691E+10 1.785E+09 5.329E+08 1.635E+11 5.125E+08 2.983E+08 4.238E+07 3.048E+07 1.043E+09

Avg 2981E+03 2.340E+04 1.113E+07 2.135E+05 4.674E+06 1.358E+10 1.485E+05 2.706E+08 3.650E+04 3.066E+04 4.008E+05

30 SI;) 1.781E+03 8.110E+03 4.570E+07 1.222E+05 2.113E+07 4.735E+09 1.051E+05 1.482E+09 1.693E+04 2.141E+04 1.698E+05

Min 1.331E+03 1.047E+04 8.884E+03 7.228E+04 2.316E+04 3.820E+09 2.772E+04 1.139E+04 1.307E+04 4.022E+03 1.180E+05

Avg 2.955E+03 5.134E+04 3.430E+09 8.468E+06 7.131E+07 4.768E+10 3.328E+05 1.836E+09 9.900E+04 2.468E+04 8.418E+06

50 SD 1.766E+03 2.945E+04 2.774E+09 3.510E+06 9.487E+07 9.488E+09 2.744E+05 1.006E+10 6.601E+04 1.517E+04 3.330E+06

F13 Min  1.375E+03 1.794E+04 1.763E+05 2.446E+06 8.000E+04 2.640E+10 7.820E+04 1.733E+04 1.231E+04 7.108E+03 3.261E+06

Avg 4.334E+03 4.205E+04 1.398E+10 2.752E+07 3.678E+08 4.921E+10 1.260E+06 3.230E+05 1.849E+05 7.767E+04 7.591E+07

100 SD 2.500E+03 1.361E+04 5.938E+09 5.942E+06 4.572E+08 2.957E+09 1.011E+06 2.668E+05 1.250E+05 8.670E+04 2.150E+07

Min 1551E+03 1.866E+04 2.697E+09 1.713E+07 8.952E+05 4.186E+10 3.575E+05 6.782E+04 5.286E+04 8.143E+03 3.430E+07

Avg 1473E+03 1.581E+03 5.579E+05 3.474E+04 1.162E+05 7.639E+06 8.756E+05 3.154E+05 1.409E+05 7.30E+04 2.396E+05

30 SI;) 9.612E+01 6.163E+01 9.061E+05 1.893E+04 1.665E+05 4.582E+06 1.119E+06 2.585E+05 7.485E+04 5.427E+04 1.343E+05

Min 1.415E+03 1.500E+03 4.418E+03 7.023E+03 4.683E+03 2.011E+06 5.098E+04 4.814E+03 3.254E+04 7.845E+03 4.939E+04

Avg 4.830E+03 8.667E+03 7.051E+06 9.222E+05 5.086E+05 1.523E+08 8.733E+05 3.413E+06 1.307E+06 6.426E+05 1.767E+06

50 SD 4,793E+03 7.2672E+03 7.269E+06 3.676E+05 7.507E+05 6.449E+07 5.695E+05 9.103E+06 6.204E+05 3.519E+05 8.467E+05

F14 Min  1.622E+03 1.958E+03 9.246E+04 3.973E+05 3.019E+04 3.961E+07 1.479E+05 3.732E+05 3.931E+05 1.177E+05 6.119E+05

Avg 1.269E+05 2.693E+05 2.731E+07 1.801E+07 3.565E+06 1.581E+08 4.512E+06 6.817E+06 1.276E+07 9.08E+06 2.249E+07

100 SD 6.377E+04 1.198E+05 2.092E+07 5.073E+06 2.635E+06 4.045E+07 2.015E+06 1.730E+06 4.182E+06 2.825E+06 6.379E+06

Min  2.795E+04 1.041E+05 4.944E+06 9.314E+06 5.288E+05 7.909E+07 1.863E+06 3.473E+06 5.884E+06 3.263E+06 9.153E+06

Avg 1572E+03 4.520E+03 6.927E+05 6.459E+03 1.900E+05 5.348E+08 6.966E+04 1.900E+04 9.555E+03 1.413E+04 9.534E+04

30 SI;) 9.389E+01 1.511E+03 2.386E+06 2.303E+03 5.575E+05 1.909E+08 4.899E+04 8.677E+03 4.917E+03 1.019E+04 5.172E+04

Min  1.510E+03 2.326E+03 9.045E+03 2.496E+03 7.366E+03 7.384E+07 1.544E+04 7.302E+03 1.953E+03 2.486E+03 1.839E+04

Avg 3537E+03 1.230E+04 2.954E+07 4.526E+05 3.890E+06 8.693E+09 8.793E+04 3.915E+08 2.765E+04 1.829E+04 1.701E+06

50 SD 1.778E+03 5.402E+03 1.353E+08 2.595E+05 6.158E+06 2.288E+09 5.358E+04 2.144E+09 7.156E+03 1.367E+04 8.603E+05

F15 Min 1572E+03 4.126E+03 8.125E+03 5.978E+04 2.057E+04 3.848E+09 3.430E+04 7.720E+03 2.028E+04 2.208E+03 4.261E+05

Avg 2.420E+03 3.470E+04 3.821E+09 6.705E+06 7.859E+07 2.576E+10 1.119E+05 2.795E+04 1.703E+05 6.664E+04 2.792E+07

100 SD 9.240E+02 1.264E+04 2.694E+09 2.525E+06 1.029E+08 3.272E+09 6.282E+04 5.531E+03 1.327E+05 9.058E+04 1.100E+07

Min 1.631E+03 1.913E+04 1.366E+08 1.661E+06 4.607E+04 1.937E+10 6.096E+04 1.920E+04 1.466E+04 7.463E+03 1.276E+07

Avg 1.922E+03 2.380E+03 3.689E+03 2.252E+03 2.352E+03 6.912E+03 3.505E+03 3.188E+03 2.211E+03 2.078E+03 2.235E+03

30 SI;) 1.171E+02 2.316E+02 5.459E+02 9.787E+01 2.398E+02 8.225E+02 4.066E+02 8.783E+02 1.331E+02 1.576E+02 1.254E+02

Min  1.638E+03 1.939E+03 2.898E+03 2.003E+03 1.932E+03 5.319E+03 2.770E+03 2.408E+03 1.850E+03 1.780E+03 1.990E+03

Avg 2377E+03 3.065E+03 4.796E+03 3.191E+03 2.833E+03 1.080E+04 4.811E+03 3.753E+03 2.854E+03 2.859E+03 3.022E+03

50 SD 1.623E+02 3.759E+02 5.697E+02 1.696E+02 3.579E+02 1.052E+03 8.071E+02 1.595E+03 2.201E+02 2.135E+02 1.955E+02

FIG Min  2.032E+03 2.431E+03 3.899E+03 2.823E+03 2.192E+03 8.766E+03 3.358E+03 2.745E+03 2.362E+03 2.242E+03 2.398E+03

Avg 4.055E+03 6.221E+03 1.045E+04 8.111E+03 5.550E+03 2.532E+04 1.087E+04 7.042E+03 5.352E+03 5.626E+03 6.272E+03

100 SD 3.253E+02 7.013E+02 1.184E+03 4.087E+02 9.919E+02 1.858E+03 1.941E+03 8.702E+02 3.164E+02 2.659E+02 2.498E+02

Min  3.300E+03 4.521E+03 8.734E+03 7.267E+03 3.734E+03 2.227E+04 8.341E+03 5.035E+03 4.781E+03 5.087E+03 5.672E+03

Avg 1.743E+03 1.956E+03 2.889E+03 1.831E+03 1.936E+03 4.895E+03 2.506E+03 2.221E+03 1.892E+03 1.824E+03 1.905E+03

30 SI;) 2.981E+01 1.053E+02 4.419E+02 3.028E+01 1.512E+02 1.021E+03 2.351E+02 1.949E+02 7.049E+01 5.534E+01 6.026E+01

Min  1.714E+03 1.782E+03 2.032E+03 1.773E+03 1.767E+03 3.554E+03 1.946E+03 1.896E+03 1.792E+03 1.756E+03 1.801E+03

Avg 2.186E+03 2.952E+03 4.669E+03 2.857E+03 2.696E+03 1.203E+04 3.910E+03 3.431E+03 2.731E+03 2.686E+03 2.793E+03

50 SD 8.392E+01 2.264E+02 7.663E+02 1.319E+02 3.139E+02 3.233E+03 3.257E+02 3.148E+02 1.377E+02 1.472E+02 1.302E+02

F17 Min  2.045E+03 2.493E+03 3.671E+03 2.497E+03 2.212E+03 6.754E+03 3.352E+03 2.686E+03 2.462E+03 2.340E+03 2.517E+03

Avg 3.359E+03 5.116E+03 5.527E+04 6.783E+03 4.385E+03 1.098E+07 7.562E+03 2.147E+04 4.898E+03 4.889E+03 6.126E+03

100 SD 2.454E+02 4.409E+02 4.997E+04 3.911E+02 4.341E+02 5.047E+06 9.255E+02 8.492E+04 3.116E+02 3.112E+02 3.426E+02

Min  2.777E+03 4.274E+03 1.144E+04 5.705E+03 3.137E+03 1.861E+06 6.176E+03 4.805E+03 4.213E+03 3.953E+03 5.384E+03

Avg 1217E+04 1.738E+04 3.754E+06 2.558E+05 5.327E+05 1.178E+08 2.201E+06 5.259E+05 3.388E+05 1.821E+05 3.890E+05

30 Sl_D 5.831E+03 9.833E+03 5.014E+06 1.121E+05 3.574E+05 6.033E+07 2.341E+06 8.758E+05 1.317E+05 8.682E+04 1.300E+05

Min  3.558E+03 2.217E+03 8.665E+04 9.957E+04 7.997E+04 3.815E+07 1.374E+05 8.565E+04 9.718E+04 7.404E+04 1.366E+05

Avg 4.197E+04 1.028E+05 3.687E+07 4.033E+06 1.935E+06 2.175E+08 6.962E+06 4.624E+06 2.135E+06 1.115E+06 3.438E+06

50 SD 1.525E+04 4.066E+04 3.812E+07 1.916E+06 1.304E+06 7.982E+07 6.496E+06 3.369E+06 9.077E+05 5.291E+05 1.346E+06

F18 Min  1.494E+04 4.014E+04 1.722E+05 6.679E+05 1.955E+05 6.998E+07 1.956E+06 1.278E+06 5.251E+05 2.909E+05 9.779E+05

Avg 1.573E+05 3.830E+05 2.972E+07 1.891E+07 3.954E+06 2.884E+08 4.305E+06 4.116E+06 1.075E+07 6.416E+06 1.858E+07

100 SD 4.327E+04 1.895E+05 2.509E+07 5.602E+06 1.886E+06 1.047E+08 1.996E+06 1.682E+06 2.746E+06 2.495E+06 4.145E+06

Min  9.160E+04 1.891E+05 3.348E+06 8.117E+06 1.010E+06 1.141E+08 1.514E+06 1.900E+06 2.846E+06 2.172E+06 1.162E+07

Avg 2.002E+03 7.177E+03 1.401E+06 4.388E+03 2.421E+05 9.891E+08 2.100E+06 3.328E+05 1.780E+04 1.602E+04 5.779E+04

30 Sl_D 1.858E+02 6.929E+03 2.335E+06 1.608E+03 3.013E+05 4.047E+08 1.835E+06 3.565E+05 1.039E+04 1.314E+04 2.729E+04

Min  1.908E+03 2.054E+03 2.329E+04 2.224E+03 7.217E+03 4.775E+08 2.199E+04 2.227E+04 2.838E+03 2.511E+03 2.480E+04

Avg 2.332E+03 7.467E+04 1.340E+07 6.440E+04 2.300E+06 5.102E+09 3.268E+06 4.519E+05 4.848E+04 2.334E+04 1.649E+05

F19 50 SD 9.228E+02 8.324E+04 1.901E+07 3.220E+04 5.777E+06 1.344E+09 2.690E+06 3.709E+05 1.533E+04 1.422E+04 6.756E+04

Min  1.923E+03 1.687E+04 7.185E+04 2.432E+04 1.203E+05 1.727E+09 2.170E+05 4.519E+04 1.960E+04 2.742E+03 6.816E+04

Avg 3.205E+03 1.023E+06 3.480E+09 9.111E+06 5.703E+07 2.575E+10 2.580E+07 1.527E+09 3.664E+05 7.553E+04 3.377E+07

100 SD 1.562E+03 9.691E+05 2.173E+09 3.167E+06 5.439E+07 2.943E+09 1.128E+07 5.810E+09 1.956E+05 9.861E+04 1.292E+07

Min  1.968E+03 1.158E+05 1.938E+08 3.225E+06 3.113E+06 1.814E+10 6.023E+05 2.801E+05 8.428E+04 1.615E+04 1.280E+07

Avg 2.046E+03 2.329E+03 2.904E+03 2.206E+03 2.328E+03 3.247E+03 2.660E+03 2.537E+03 2.247E+03 2.197E+03 2.222E+03

30 SD 5.215E+01 8.615E+01 2.154E+02 6.202E+01 1.499E+02 1.626E+02 1.976E+02 1.700E+02 8.792E+01 7.295E+01 7.172E+01

Min  2.004E+03 2.258E+03 2.494E+03 2.070E+03 2.116E+03 2.771E+03 2.339E+03 2.267E+03 2.11E+03 2.077E+03 2.092E+03

Avg 2.328E+03 2.802E+03 3.666E+03 2.801E+03 2.858E+03 4.539E+03 3.639E+03 3.314E+03 2.943E+03 2.788E+03 2.873E+03

50 SD 1.144E+02 2.167E+02 3.761E+02 1.412E+02 3.015E+02 1.704E+02 4.725E+02 3.226E+02 1.217E+02 1.380E+02 1.412E+02

FZO Min  2.112E+03 2.328E+03 2.975E+03 2.559E+03 2.299E+03 4.050E+03 2.783E+03 2.636E+03 2.569E+03 2.524E+03 2.476E+03

Avg 3.662E+03 4.666E+03 6.307E+03 5.339E+03 4.514E+03 8.324E+03 6.208E+03 5.307E+03 5.239E+03 5.081E+03 5.307E+03

100 SD 2.481E+02 4.340E+02 3.953E+02 2.467E+02 7.693E+02 3.930E+02 5.920E+02 6.505E+02 2.251E+02 2.965E+02 2.761E+02

Min  3.108E+03 3.888E+03 5.590E+03 4.931E+03 3.164E+03 7.173E+03 4.746E+03 3.852E+03 4.719E+03 4.407E+03 4.509E+03
30 W|TIL 90]1 1/0]9 0[0]10 0[0[10 0[0J10 0[0J]10 0[0]10 0[0]10 0/0J]10 0/0J]10 0[0|10
Ranking 50 WIT|L 10|00 0]0j20 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10
100 WIT|L 10|00 0]0[10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10 0[0]10




Table 5 Comparison of optimization results obtained from the composition benchmark functions

F D Index CCSA  CSA BA  CLPSO GWO EEGWO WOA KH ABC  GABC gers;sBoc
Avg 2.313E+03 2.398E+03 2.520E+03 2.379E+03 2.376E+03 2.800E+03 2.556E+03 2.427E+03 2.304E+03 2.311E+03 2.343E+03

30 SD 5.103E+01 2.161E+01 4.481E+01 3.930E+01 4.077E+01 2.993E+01 4.199E+01 7.347E+01 7.602E+01 6.167E+01 6.819E+01

Min 2.200E+03 2.350E+03 2.440E+03 2.267E+03 2.332E+03 2.727E+03 2.490E+03 2.372E+03 2.224E+03 2.225E+03 2.229E+03

F21 Avg 2.383E+03 2.514E+03 2.776E+03 2.585E+03 2.469E+03 3.302E+03 2.889E+03 2.557E+03 2.529E+03 2.477E+03 2.556E+03
50 SD 1.411E+01 4.267E+01 9.493E+01 1.695E+01 2.597E+01 6.687E+01 9.921E+01 3.325E+01 2.034E+01 2.262E+01 1.826E+01

Min 2.351E+03 2.445E+03 2.594E+03 2.538E+03 2.409E+03 3.170E+03 2.670E+03 2.484E+03 2.479E+03 2.382E+03 2.518E+03

Avg 2.585E+03 3.120E+03 3.988E+03 3.323E+03 2.842E+03 5.230E+03 3.923E+03 3.727E+03 3.129E+03 2.998E+03 3.204E+03

100 SD 3.624E+01 9.639E+01 2.355E+02 2.469E+01 6.117E+01 1.477E+02 1.905E+02 4.624E+02 4.526E+01 3.878E+01 4.509E+01

Min 2.511E+03 2.863E+03 3.510E+03 3.283E+03 2.745E+03 4.806E+03 3.565E+03 3.282E+03 3.017E+03 2.912E+03 3.073E+03

Avg 2.300E+03 2.301E+03 6.383E+03 2.526E+03 4.418E+03 9.784E+03 6.355E+03 2.708E+03 2.318E+03 2.306E+03 2.336E+03

30 SD 3.794E+00 1.256E+00 1.185E+03 8.174E+01 1.456E+03 5.427E+02 2.323E+03 1.570E+03 3.564E+00 4.109E+00 7.312E+00

Min 2.280E+03 2.300E+03 3.443E+03 2.419E+03 2.312E+03 8.381E+03 2.315E+03 2.300E+03 2.311E+03 2.301E+03 2.326E+03

F22 Avg 2.971E+03 3.346E+03 1.041E+04 1.018E+04 8.885E+03 1.814E+04 1.160E+04 9.809E+03 6.447E+03 6.133E+03 7.466E+03
50 SD 1.369E+03 2.686E+03 1.155E+03 2.032E+03 2.179E+03 4.406E+02 1.185E+03 6.751E+02 2.415E+03 2.333E+03 1.946E+03

Min 2.300E+03 2.306E+03 8.564E+03 4.358E+03 6.391E+03 1.703E+04 9.473E+03 8.646E+03 2.341E+03 2.337E+03 2.534E+03

Avg 1.062E+04 1.796E+04 2.042E+04 2.534E+04 1.748E+04 3.584E+04 2.482E+04 2.080E+04 1.766E+04 1.728E+04 1.899E+04

100 SD 3.403E+03 5.383E+03 1.991E+03 5.042E+02 1.233E+03 4.936E+02 2.296E+03 2.504E+03 4.786E+02 7.412E+02 5.099E+02

Min 2.301E+03 2.437E+03 1.622E+04 2.420E+04 1.539E+04 3.455E+04 2.079E+04 1.693E+04 1.667E+04 1.591E+04 1.797E+04

Avg 2.674E+03 2.841E+03 3.326E+03 2.757E+03 2.738E+03 3.733E+03 3.037E+03 3.015E+03 2.715E+03 2.707E+03 2.721E+03

30 SD 5.200E+01 4.955E+01 1.317E+02 1.296E+01 5.199E+01 1.617E+02 9.167E+01 2.696E+02 2.103E+01 1.186E+01 1.837E+01

Min 2.401E+03 2.753E+03 3.068E+03 2.709E+03 2.685E+03 3.445E+03 2.876E+03 2.817E+03 2.692E+03 2.687E+03 2.701E+03

FZS Avg 2.804E+03 3.206E+03 3.991E+03 3.062E+03 2.901E+03 4.915E+03 3.588E+03 3.633E+03 2.956E+03 2.924E+03 2.974E+03
50 SD 7.758E+01 8.588E+01 2.269E+02 1.826E+01 2.915E+01 2.435E+02 1.552E+02 5.127E+02 6.455E+01 1.480E+01 6.395E+01

Min 2.401E+03 3.065E+03 3.501E+03 3.031E+03 2.845E+03 4.428E+03 3.257E+03 3.237E+03 2.788E+03 2.882E+03 2.799E+03

Avg 2.973E+03 4.383E+03 5.499E+03 3.738E+03 3.391E+03 7.716E+03 4.789E+03 5.437E+03 3.287E+03 3.216E+03 3.374E+03

100 SD 2.702E+01 3.367E+02 3.102E+02 3.380E+01 5.721E+01 4.449E+02 2.209E+02 1.026E+03 4.052E+01 2.415E+01 3.160E+01

Min 2.915E+03 3.877E+03 4.915E+03 3.664E+03 3.258E+03 6.702E+03 4.224E+03 4.561E+03 3.179E+03 3.156E+03 3.289E+03

Avg 2.870E+03 2.951E+03 3.471E+03 2.955E+03 2.890E+03 4.044E+03 3.181E+03 3.253E+03 2.706E+03 2.826E+03 2.796E+03

30 SD 1.531E+01 3.895E+01 1.575E+02 4.635E+01 3.818E+01 1.964E+02 8.929E+01 2.999E+02 1.538E+02 1.581E+02 1.695E+02

Min 2.845E+03 2.869E+03 3.175E+03 2.756E+03 2.853E+03 3.668E+03 3.003E+03 3.016E+03 2.614E+03 2.612E+03 2.617E+03

F24 Avg 3.026E+03 3.290E+03 4.191E+03 3.320E+03 3.094E+03 5.381E+03 3.668E+03 3.888E+03 3.412E+03 3.301E+03 3.312E+03
50 SD 3.208E+01 9.406E+01 2.186E+02 2.383E+01 1.056E+02 2.830E+02 1.357E+02 4.175E+02 5.711E+01 4.551E+01 3.922E+01

Min 2.958E+03 3.141E+03 3.746E+03 3.261E+03 3.002E+03 4.716E+03 3.382E+03 3.508E+03 3.290E+03 3.200E+03 3.183E+03

Avg 3.560E+03 5.394E+03 8.789E+03 4.400E+03 3.928E+03 1.279E+04 5.977E+03 7.006E+03 4.003E+03 3.892E+03 4.107E+03

100 SD 3.312E+01 3.254E+02 7.068E+02 3.347E+01 1.364E+02 9.982E+02 4.496E+02 1.976E+03 5.358E+01 3.335E+01 2.741E+01

Min 3.464E+03 4.634E+03 7.445E+03 4.342E+03 3.731E+03 1.045E+04 5.186E+03 5.544E+03 3.826E+03 3.816E+03 4.027E+03

Avg 2.884E+03 2.914E+03 3.453E+03 2.907E+03 2.944E+03 5.538E+03 2.945E+03 2.919E+03 2.886E+03 2.886E+03 2.891E+03

30 SD 6.165E-01 2.093E+01 2.288E+02 4.289E+00 1.990E+01 3.097E+02 3.010E+01 1.547E+01 1.200E+00 1.261E+00 1.210E+00

Min 2.883E+03 2.884E+03 3.064E+03 2.898E+03 2.89E+03 4.991E+03 2.899E+03 2.889E+03 2.884E+03 2.884E+03 2.889E+03

FZS Avg 2.980E+03 3.114E+03 7.997E+03 3.248E+03 3.299E+03 1.520E+04 3.190E+03 3.104E+03 3.055E+03 3.023E+03 3.096E+03
50 SD 2.093E+01 2.792E+01 1.378E+03 1.753E+01 1.167E+02 1.114E+03 4.272E+01 2.110E+01 1.919E+01 1.676E+01 1.532E+01

Min 2.959E+03 3.041E+03 4.385E+03 3.206E+03 3.159E+03 1.196E+04 3.132E+03 3.044E+03 2.995E+03 2.991E+03 3.058E+03

Avg 3.186E+03 3.860E+03 1.832E+04 4.875E+03 4.959E+03 2.870E+04 4.084E+03 4.038E+03 3.539E+03 3.448E+03 4.230E+03

100 SD 4509E+01 1.045E+02 2.780E+03 1.012E+02 3.690E+02 1.667E+03 1.189E+02 1.613E+02 4.108E+01 2.957E+01 8.839E+01

Min 3.079E+03 3.642E+03 1.174E+04 4.661E+03 4.372E+03 2.299E+04 3.888E+03 3.733E+03 3.472E+03 3.393E+03 4.088E+03

Avg 2.869E+03 3.190E+03 7.961E+03 4.326E+03 4.445E+03 1.169E+04 7.349E+03 5.923E+03 2.898E+03 3.015E+03 3.389E+03

30 SD 1.942E+02 9.577E+02 8.326E+02 3.941E+02 2.886E+02 4.630E+02 1.330E+03 1.108E+03 3.723E+01 2.849E+02 2.433E+02

Min 2.800E+03 2.800E+03 6.255E+03 3.550E+03 3.963E+03 1.043E+04 3.481E+03 2.800E+03 2.840E+03 2.841E+03 2.996E+03

F26 Avg 3.231E+03 4.144E+03 1.376E+04 6.880E+03 5.727E+03 1.784E+04 1.273E+04 9.828E+03 3.896E+03 4.358E+03 5.074E+03
50 SD 6.747E+02 2.197E+03 1.013E+03 1.778E+02 3.966E+02 4.991E+02 1.316E+03 1.662E+03 9.960E+02 8.445E+02 9.164E+02

Min 2.900E+03 2.921E+03 1.128E+04 6.521E+03 4.928E+03 1.667E+04 9.864E+03 4.078E+03 3.040E+03 3.443E+03 3.979E+03

Avg 8.424E+03 2.032E+04 4.476E+04 1.676E+04 1.247E+04 5.648E+04 3.224E+04 2.715E+04 1.254E+04 1.215E+04 1.478E+04

100 SD 3.758E+02 6.305E+03 6.951E+03 3.457E+02 9.677E+02 1.939E+03 4.359E+03 5.715E+03 2.905E+03 1.253E+03 3.612E+02

Min 7.676E+03 6.524E+03 3.609E+04 1.608E+04 1.085E+04 5.120E+04 2.238E+04 2.036E+04 4.908E+03 5.818E+03 1.401E+04

Avg 3.199E+03 3.360E+03 3.200E+03 3.233E+03 3.229E+03 4.905E+03 3.366E+03 3.456E+03 3.212E+03 3.207E+03 3.213E+03

30 SD 6.103E+00 5.440E+01 8.012E-05 4.773E+00 1.194E+01 4.323E+02 8.122E+01 2.132E+02 4.458E+00 3.707E+00 4.228E+00

Min 3.185E+03 3.258E+03 3.200E+03 3.222E+03 3.210E+03 4.040E+03 3.228E+03 3.326E+03 3.201E+03 3.199E+03 3.206E+03

F27 Avg 3.254E+03 4.132E+03 3.200E+03 3.643E+03 3.466E+03 8.082E+03 4.364E+03 4.880E+03 3.375E+03 3.327E+03 3.396E+03
50 SD 2.293E+01 3.163E+02 8.660E-05 3.950E+01 6.295E+01 4.811E+02 3.935E+02 9.250E+02 2.678E+01 1.904E+01 3.081E+01

Min 3.212E+03 3.715E+03 3.200E+03 3.547E+03 3.366E+03 6.862E+03 3.621E+03 3.943E+03 3.317E+03 3.283E+03 3.327E+03

Avg 3.354E+03 4.885E+03 3.200E+03 4.379E+03 3.819E+03 1.520E+04 4.937E+03 8.055E+03 3.529E+03 3.482E+03 3.550E+03

100 SD 1.721E+01 3.540E+02 7.336E-05 9.789E+01 1.003E+02 1.250E+03 6.336E+02 2.809E+03 3.258E+01 2.202E+01 2.115E+01

Min 3.315E+03 4.242E+03 3.200E+03 4.126E+03 3.607E+03 1.252E+04 4.142E+03 5.069E+03 3.460E+03 3.434E+03 3.494E+03

Avg 3.133E+03 3.233E+03 3.307E+03 3.317E+03 3.340E+03 7.492E+03 3.309E+03 3.253E+03 3.216E+03 3.212E+03 3.277E+03

30 SD 4.681E+01 2.273E+01 9.119E-05 7.890E+00 6.090E+01 4.713E+02 3.867E+01 2.542E+01 6.175E+00 5.546E+00 1.307E+01

Min 3.100E+03 3.202E+03 3.300E+03 3.300E+03 3.221E+03 6.537E+03 3.231E+03 3.199E+03 3.203E+03 3.205E+03 3.241E+03

FZS Avg 3.259E+03 3.413E+03 3.300E+03 4.080E+03 3.741E+03 1.354E+04 3.570E+03 3.509E+03 3.336E+03 3.293E+03 3.501E+03
50 SD 3.632E-02 4.972E+01 6.639E-05 1.113E+02 2.119E+02 7.835E+02 9.093E+01 6.137E+02 1.716E+01 1.379E+01 6.798E+01

Min 3.259E+03 3.293E+03 3.300E+03 3.867E+03 3.452E+03 1.164E+04 3.429E+03 3.335E+03 3.299E+03 3.269E+03 3.409E+03

Avg 3.355E+03 4.079E+03 3.300E+03 9.445E+03 6.264E+03 3.608E+04 4.516E+03 6.059E+03 3.750E+03 3.580E+03 8.729E+03

100 SD 1.368E+01 1.520E+02 5.419E-05 4.483E+02 8.476E+02 1.144E+03 2.318E+02 6.979E+02 7.367E+01 2.403E+01 1.329E+03

Min 3.328E+03 3.888E+03 3.300E+03 8.453E+03 5.098E+03 3.362E+04 4.089E+03 4.724E+03 3.634E+03 3.523E+03 5.892E+03

Avg 3.318E+03 3.855E+03 5.433E+03 3.571E+03 3.593E+03 8.893E+03 4.789E+03 4.227E+03 3.529E+03 3.438E+03 3.574E+03

30 SD 3.954E+01 1.723E+02 5.608E+02 5.949E+01 9.701E+01 1.634E+03 3.299E+02 2.440E+02 5.690E+01 5.260E+01 5.669E+01

Min 3.243E+03 3.632E+03 4.604E+03 3.417E+03 3.437E+03 6.989E+03 4.131E+03 3.745E+03 3.398E+03 3.334E+03 3.468E+03

F29 Avg 3.364E+03 5.025E+03 1.145E+04 4.390E+03 4.186E+03 8.244E+04 7.318E+03 5.576E+03 4.040E+03 3.721E+03 3.991E+03
50 SD 9.855E+01 4.051E+02 2.600E+03 1.641E+02 2.598E+02 5.540E+04 9.797E+02 5.709E+02 1.479E+02 1.279E+02 1.190E+02

Min 3.218E+03 4.095E+03 6.253E+03 4.021E+03 3.813E+03 1.801E+04 5.596E+03 4.961E+03 3.763E+03 3.472E+03 3.697E+03

Avg 5.285E+03 9.439E+03 2.697E+04 1.054E+04 7.316E+03 6.969E+05 1.431E+04 1.026E+04 7.427E+03 6.535E+03 8.442E+03

100 SD 3.146E+02 6.810E+02 1.080E+04 4.319E+02 4.519E+02 2.777E+05 1.789E+03 1.434E+03 3.637E+02 3.193E+02 4.498E+02

Min 4.590E+03 8.393E+03 1.265E+04 9.461E+03 6.714E+03 1.906E+05 1.102E+04 8.373E+03 6.776E+03 6.039E+03 7.701E+03

Avg 7.931E+03 1.488E+05 3.719E+07 9.198E+04 3.965E+06 1.935E+09 9.906E+06 1.975E+08 2.264E+04 1.228E+04 5.418E+04

30 SD 1.313E+03 1.080E+05 5.262E+07 3.625E+04 2.571E+06 5.672E+08 6.675E+06 5.001E+08 6.028E+03 3.961E+03 1.704E+04

Min 5.985E+03 2.504E+04 4.080E+04 3.205E+04 3.430E+05 1.029E+09 1.464E+06 3.711E+05 1.231E+04 6.546E+03 2.528E+04

F30 Avg 7.621E+05 3.413E+07 3.740E+08 1.847E+07 8.182E+07 7.971E+09 9.342E+07 7.253E+07 1.019E+06 1.012E+06 2.840E+06
50 SD 8.736E+04 9.782E+06 2.692E+08 4.622E+06 2.546E+07 1.731E+09 2.752E+07 2.770E+07 1.172E+05 2.019E+05 6.412E+05

Min 5.922E+05 1.207E+07 1.731E+07 1.102E+07 3.747E+07 4.628E+09 3.183E+07 2.884E+07 8.375E+05 6.900E+05 1.699E+06

Avg 1.197E+04 6.820E+07 1.106E+10 8.306E+07 3.657E+08 4.304E+10 4.485E+08 1.089E+08 3.453E+05 8.764E+04 8.160E+07

100 SD 2.287E+03 4.220E+07 3.575E+09 1.516E+07 2.942E+08 4.262E+09 2.620E+08 6.428E+07 2.194E+05 4.842E+04 2.113E+07

Min 8.657E+03 1.854E+07 4.521E+09 4.492E+07 1.621E+07 3.481E+10 1.697E+08 2.625E+07 7.121E+04 2.208E+04 4.485E+07

30 WTIL_ 9olL R 109 000 000 O00[l0 _ 0010 O1@ olLI9 U8 00j10
Ranking 50 W[TIL 1000 _ O[O0 _ 0010 __ 0010 _ 000 __ OfJi0__ O0[010___ 00jl0__ O[0[0 __ 0010 ___ 00|10
00W[TIL 708 000 208 _ 0010 _ 0010 _ 000 _ 0010 _ 0010 _ 109 _ 00010 __ 0[10




Best Run Values F1

1012

5.4. Convergence analysis

In this experiment, the convergence behavior of CCSA was compared with other state-of-

the-art swarm intelligence algorithms. Figures 12-15 show the convergence curves for solving

different categories unimodal, simple multi-modal, hybrid and composition, respectively. In all

curves, the convergence of CCSA is better than compared algorithms.
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Fig. 12 Convergence analysis of unimodal functions with different dimensions
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Fig. 13 Convergence analysis of simple multi-modal test functions with different dimensions
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Fig. 14 Convergence analysis on hybrid test functions with different dimensions
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Fig. 15 Convergence analysis on composition test functions with different dimensions



5.5. Efficiency evaluation for large-scale global optimization

Although some bio-inspired optimization algorithms have functional search capabilities
for solving low-dimensional problems (D <100), their efficiency is decreased when the
dimension is increased in large-scale global optimization problems. In this experiment set, the
efficiency of CCSA was compared with the compared algorithms by several experiments on
benchmark functions CEC 2010 with dimension 1000. This experiment was run 15 times with
MaxIt = 300 and population size N=30. The experimental results are shown in Table 6, and
their convergence curves are shown in Fig. 16. The results show that the proposed CCSA is

more efficient than compared algorithms for solving large-scale problems.

Table 6 Comparison of optimization results obtained from CEC 2010 benchmark functions with D=1000

F Index  CCSA CSA BA CLPSO GWO EEGWO WOA KH ABC  GABC fifs/:';%
Avg 1.440E+09 1.134E+11 2.314E+11 2.441E+11 6.510E+10 1.908E+11 1.252E+11 1.771E+11 3.148E+11 3.025E+11 3.078E+11
Fl SD 2.439E+08 6.931E+09 2.145E+10 2.125E+10 5.477E+09 3.285E+09 6.213E+09 8.614E+09 1.844E+10 1.079E+10 1.271E+10

Min 1.170E+09 1.009E+11 1.953E+11 2.116E+11 5.380E+10 1.827E+11 1.121E+11 1.631E+11 2.800E+11 2.784E+11 2.835E+11
Avg 1.719E+11 1.933E+11 1.910E+11 1.935E+11 1.829E+11 1.966E+11 1.822E+11 1.958E+11 1.951E+11 1.930E+11 1.926E+11
F> sD 3.972E+08 8.086E+08 2.854E+09 7.048E+08 6.775E+08 6.716E+08 1.147E+09 9.188E+08 6.799E+08 5.435E+08 4.830E+08
Min 1.715E+11 1.915E+11 1.861E+11 1.921E+11 1.817E+11 1.954E+11 1.803E+11 1.945E+11 1.932E+11 1.921E+11 1.916E+11
Avg 6.603E+10 1.617E+11 1.841E+11 1.754E+11 1.122E+11 1.911E+11 1.273E+11 1.911E+11 1.872E+11 1.784E+11 1.767E+11
Fs3 SD 5.768E+08 2.803E+09 2.009E+10 7.186E+09 3.093E+09 3.213E+09 3.660E+09 3.889E+09 6.522E+09 4.239E+09 3.930E+09
Min 6.548E+10 1577E+11 1.149E+11 1.593E+11 1.067E+11 1.857E+11 1.193E+11 1.808E+11 1.768E+11 1.711E+11 1.697E+11
Avg 1.454E+09 1.165E+11 2.453E+11 2.478E+11 6.160E+10 1.925E+11 1.296E+11 1.782E+11 3.206E+11 3.025E+11 3.053E+11
Fs sD 1.960E+08 3.893E+09 2.012E+10 1.494E+10 5.737E+09 3.357E+09 6.509E+09 5.631E+09 1.887E+10 1.485E+10 1.511E+10
Min 1.138E+09 1.080E+11 2.029E+11 2.102E+11 5.199E+10 1.835E+11 1.162E+11 1.661E+11 2.853E+11 2.735E+11 2.751E+11
Avg 4.237E+08 1.935E+11 1.897E+11 1.932E+11 1.830E+11 1.968E+11 1.821E+11 1.960E+11 1.947E+11 1.931E+11 1.925E+11
Fs SD 5.066E+07 5.587E+08 3.634E+09 7.306E+08 4.957E+08 7.565E+08 1.528E+09 6.349E+08 9.296E+08 7.446E+08 7.399E+08
Min 3.380E+08 1.925E+11 1.789E+11 1.914E+11 1.821E+11 1.957E+11 1.798E+11 1.947E+11 1.930E+11 1.917E+11 1.906E+11
Avg 5.052E+08 1.622E+11 1.908E+11 1.775E+11 1.119E+11 1.916E+11 1.237E+11 1.920E+11 1.894E+11 1.772E+11 1.741E+11
Fe sD 2.904E+07 2.245E+09 6.995E+09 5.392E+09 3.365E+09 2.280E+09 5.151E+09 4.469E+09 3.314E+09 5.040E+09 4.682E+09
Min 4.548E+08 1.584E+11 1.769E+11 1.694E+11 1.056E+11 1.883E+11 1.155E+11 1.853E+11 1.843E+11 1.667E+11 1.609E+11
Avg 6.181E+08 1.124E+11 2.360E+11 2.510E+11 6.222E+10 1.912E+11 1.292E+11 1.754E+11 3.021E+11 2.954E+11 3.140E+11
F SD 6.298E+07 4.775E+09 1.568E+10 1.950E+10 5.621E+09 3.153E+09 5.991E+09 9.804E+09 2.426E+10 1.498E+10 1.303E+10
Min 4.887E+08 1.044E+11 2.093E+11 2.138E+11 4.953E+10 1.833E+11 1.224E+11 1.623E+11 2.402E+11 2.660E+11 2.868E+11
Avg 5.767E+08 1.131E+11 2407E+11 2.462E+11 5.873E+10 1.920E+11 1.281E+11 1.771E+11 3.198E+11 3.009E+11 3.066E+11
Fg sD 4.465E+07 7.824E+09 1.951E+10 1.662E+10 5.064E+09 3.008E+09 4.703E+09 8.584E+09 1.739E+10 1.792E+10 1.492E+10
Min 5.167E+08 1.047E+11 2.134E+11 2.218E+11 5.014E+10 1.859E+11 1.197E+11 1.620E+11 2.889E+11 2.592E+11 2.789E+11
Avg 5.912E+08 1.128E+11 2.464E+11 2432E+11 6.018E+10 1.938E+11 1.279E+11 1.752E+11 3.064E+11 3.006E+11 3.167E+11
Fo SD 5.433E+07 3.877E+09 2417E+10 1.683E+10 4.090E+09 1.874E+09 6.135E+09 1.023E+10 1.671E+10 1.407E+10 1.164E+10
Min 5.211E+08 1.072E+11 2.014E+11 2.109E+11 5.392E+10 1.899E+11 1.139E+11 1536E+11 2.717E+11 2.718E+11 2.930E+11
Avg 4.176E+08 1.934E+11 1.904E+11 1.931E+11 1.827E+11 1.969E+11 1.822E+11 1.956E+11 1.947E+11 1.932E+11 1.926E+11
Fio sD 4.137E+07 8.662E+08 3.117E+09 7.037E+08 5.223E+08 8.726E+08 7.863E+08 9.685E+08 1.210E+09 6.270E+08 8.025E+08
Min 3.631E+08 1.917E+11 1.854E+11 1.917E+11 1.820E+11 1.950E+11 1.805E+11 1.938E+11 1.927E+11 1.923E+11 1.911E+11
Avg 2.093E+02 1.615E+11 1.908E+11 1.776E+11 1.128E+11 1.931E+11 1.235E+11 1.899E+11 1.873E+11 1.790E+11 1.765E+11
Fi1 sD 2.876E+00 3.189E+09 6.545E+09 6.467E+09 3.948E+09 2.744E+09 5.967E+09 4.215E+09 8.921E+09 4.663E+09 5.263E+09
Min 2.049E+02 1538E+11 1.778E+11 1.649E+11 1.048E+11 1.887E+11 1.158E+11 1.807E+11 1.634E+11 1.658E+11 1.675E+11
Avg 2.104E+02 1.156E+11 2.357E+11 2.454E+11 6.026E+10 1.928E+11 1.294E+11 1.778E+11 3.176E+11 2.994E+11 3.076E+11
Fio sD 5.192E+00 5.406E+09 2.202E+10 1.541E+10 5.639E+09 3.095E+09 6.332E+09 7.112E+09 1.998E+10 1.487E+10 1.253E+10
Min 2.043E+02 1.061E+11 2.018E+11 2.161E+11 5.135E+10 1.858E+11 1.158E+11 1.643E+11 2.515E+11 2.672E+11 2.857E+11
Avg 2.085E+02 1.146E+11 2.340E+11 2455E+11 6.187E+10 1.914E+11 1.222E+11 1.775E+11 3.233E+11 3.075E+11 3.112E+11
Fis sD 5.194E+00 3.707E+09 1.285E+10 1.547E+10 5.771E+09 3.382E+09 6.733E+09 7.389E+09 2.156E+10 1.956E+10 1.416E+10
Min 2.020E+02 1.094E+11 2.135E+11 2.148E+11 5.467E+10 1.859E+11 1.130E+11 1.619E+11 2.822E+11 2.503E+11 2.933E+11
Avg 2.122E+02 1.134E+11 2.389E+11 2.516E+11 6.077E+10 1.922E+11 1.248E+11 1.771E+11 3.244E+11 3.000E+11 3.126E+11
Fia sD 2.958E+00 5.803E+09 1.983E+10 1.150E+10 5.901E+09 3.796E+09 4.432E+09 6.089E+09 1.799E+10 1.178E+10 1.351E+10
Min 2.080E+02 1.065E+11 2.097E+11 2.315E+11 4.721E+10 1.834E+11 1.176E+11 1.686E+11 3.004E+11 2.821E+11 2.762E+11
Avg 2.202E+02 1.935E+11 1.910E+11 1.935E+11 1.829E+11 1.963E+11 1.815E+11 1.959E+11 1.947E+11 1.931E+11 1.926E+11
Fis sD 1.053E+00 7.479E+08 3.946E+09 7.550E+08 8.862E+08 1.015E+09 1.178E+09 7.583E+08 1.098E+09 6.566E+08 6.476E+08
Min 2.183E+02 1.924E+11 1.790E+11 1.919E+11 1.811E+11 1945E+11 1.795E+11 1.943E+11 1.929E+11 1.921E+11 1.918E+11
Avg 2.101E+02 1.627E+11 1.851E+11 1.765E+11 1.115E+11 1.908E+11 1.263E+11 1.911E+11 1.882E+11 1.781E+11 1.744E+11
Fi sD 3.071E+00 3.074E+09 1.715E+10 5.363E+09 3.428E+09 4.894E+09 5.168E+09 4.346E+09 7.595E+09 4.364E+09 4.927E+09
Min 2.033E+02 1.563E+11 1.380E+11 1.682E+11 1.036E+11 1.775E+11 1.189E+11 1.852E+11 1.760E+11 1.712E+11 1.621E+11
Avg 2.088E+02 1.136E+11 2.363E+11 2416E+11 6.184E+10 1.930E+11 1.257E+11 1.798E+11 3.199E+11 3.017E+11 3.080E+11
Fi7 SD 3.649E+00 3.720E+09 1.120E+10 1.441E+10 5.345E+09 1.900E+09 6.958E+09 7.104E+09 2.350E+10 1.048E+10 1.410E+10
Min 2.007E+02 1.072E+11 2.155E+11 2.189E+11 5.227E+10 1.891E+11 1.140E+11 1.654E+11 2.794E+11 2.861E+11 2.791E+11
Avg 2.100E+02 1.125E+11 2.425E+11 2.509E+11 6.071E+10 1.929E+11 1.256E+11 1.749E+11 3.224E+11 3.050E+11 3.123E+11
Fis sD 3.683E+00 5.672E+09 1.442E+10 1.227E+10 5.333E+09 2.874E+09 4.290E+09 7.353E+09 1.722E+10 1.315E+10 1.729E+10
Min 2.044E+02 1.042E+11 2.192E+11 2.285E+11 5.008E+10 1.860E+11 1.188E+11 1.623E+11 2.948E+11 2.763E+11 2.807E+11
Avg 2.110E+02 1.128E+11 2.371E+11 2476E+11 6.182E+10 1.917E+11 1.284E+11 1.808E+11 3.198E+11 2.985E+11 3.114E+11
Fio sD 4.047E+00 6.283E+09 2.390E+10 1.312E+10 6.175E+09 3.265E+09 7.918E+09 6.796E+09 1.310E+10 1.088E+10 1.170E+10
Min 2.042E+02 1.022E+11 2.050E+11 2.277E+11 5.089E+10 1.839E+11 1.151E+11 1.696E+11 2910E+11 2.778E+11 2911E+11
Avg 2.094E+02 1.120E+11 2.316E+11 2.473E+11 6.005E+10 1.935E+11 1.276E+11 1.743E+11 3.107E+11 2.963E+11 3.101E+11
Fao sD 4.656E+00 4.190E+09 1.452E+10 1.989E+10 6.312E+09 2.875E+09 6.609E+09 8.446E+09 2.179E+10 1.470E+10 1.083E+10

Min 2.003E+02 1.060E+11 2.067E+11 2.036E+11 5.155E+10 1.866E+11 1.130E+11 1.572E+11 2.740E+11 2.607E+11 2.837E+11
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Fig. 16 Convergence analysis on benchmark functions CEC 2010



5.6. Statistical analysis

Besides the above experimental evaluation, CCSA was statistically evaluated to prove its
overall performance. Therefore, in this section, the non-parametric Friedman test and Mean
Absolute Error (MAE) tests were used by different dimensions 30, 50, 100, and 1000.

5.6.1. Non-parametric Friedman test

The Friedman statistic test (F) is used to detect significant differences between the results
of two or more algorithms on continuous data. Fr can be used for multiple comparisons among
several algorithms by computing the ranking of the observed results for each bio-inspired
metaheuristic algorithm. Such that, in each function, the best results and the second best results

are considered by rank 1 and 2, and the ranking k is given to the worst results. Fr is computed
by Eg. (8) [63].

2 (8)
o _ 12N 22R2_1¢k+1)

:k&+1)j J 4

Where K is the number of bio-inspired metaheuristic algorithms participated in the test, |
represents its associated index, N is the number of test cases or runs, and R; is standing for the
average rank for each algorithm. In addition, the distribution of p-value is according to a chi-
squared distribution with k-1degrees of freedom. It is common to declare a result as a
significant one if the p-value is less than 0.05 or 0.01.

Based on the results of the Friedman statistical test shown in Tables 7 and 8, there exists a
significant difference between CCSA and the compared algorithms for benchmark functions
CEC 2017 and CEC 2010. Moreover, Table 9 shows the p-value of some benchmark functions
in CEC 2017 for different dimensions 30, 50 and 100, and in CEC 2010 for dimension1000. In
this regard, for a majority of functions in both CEC 2017 and CEC 2010, the p-values are below
0.05, which verify the efficiency of the proposed CCSA.



Table 7 Overall rank by Friedman test in dimensions D=30, 50 and 100

Algorithm D F1 F2 F3 Fa Fs Fe F7 Fs Fo F1o Fu1 F12 Fi3 Fi4 Fis
30 2.97 1 2 1.30 1 3 1.03 1 1 1 1 1 1 1.10 1
CCSA 50 1 1 197 11 1 1 1 1 1 1 1 1 1 1.30 1.07
100 1 1 1.47 1 1 1 1 1 1 1 1 1 1 1.20 1
30 317 3.87 1 560  6.63 7 543 523 360 633 250 383 280 190 257
CSA 50  4.067 3.53 103 573 603 703 533 58 337 533 207 47 3.37 170 263
100 4 3.87 153 4.27 4 7.0 523 437 247 460 2 457 247 1.80 313
30 9.97 10.03  8.40 10 907 917 977 9.2 923 860 1007 997  7.27 6.70 8
BA 50 10 10.07  9.27 10 913 897 993 9.2 873 823 997 997 987 860  6.53
100 10 9.77 8.53 10 797 887 1033 913 440 690  9.90 10 10 853 10
30 7 633 533 7.67 553 5 717 643 463  7.60 4 6.43 803 447 337
CLPSO 50 7.67 6.87 68 803 757 5 717 743 5.4 863 493 757 787 5.9 8.30
100 7.033 703 720 7.60 903 507 607 813 863 947 787 830 720 840  7.40
30 8.97 7.57 313 747 413 6 543 343 337 480 373 790 697 517 7.80
GWO 50 9 6.17 343 793  3.03 6 483 283 317 533 443 793 827 397 8.30
100 9 560 313 830 207 593 427 227 347 327 363 820 853 363 7.60
30 11 109  6.60 11 10.97 11 10.9 11 11 11 10.9 11 11 11 11
EEGWO 50 1 10.83  9.33 1 1 1 10.9 1 1 1 10.67 1 10.97 11 10.97
100 1 1013 4.80 1 1 1 10.67 1 10.97 1 10.73 1 11 11 1
30 7.93 7.37 903 810 977 983 933 953 977 9 6.10 840 740 883 8.40
WOA 50 7.30 8 383 777 977 997 917 973 993 9.3 3.20 8.3 613 583 6.83
100 553 7.97 963 607 930 10 9 9.67 770 927 343 620 587 417 5.33
30 6.1 880 413 563 7.3 8 5.9 643 757 773 687 703 450 7.37 5.80
KH 50 5 9.03 497 463 617 803 73 673 673  6.70 8 457 393 797 433
100  7.97 10.10 470 8 443 803 797 513 437 643 787 493 4.8 4.97 2.80
30 1.4 253 807 207 453 2 423 533 607 360 753 333 393 6.73  4.20
ABC 50 2.47 3.2 75 253 437 3 333 433 717 330 687 277 453 707 467
100 2.63 270 723 280 620 297 303 550 943 333 640 260 417 7.17 5.47
30 2.53 260 883 317 203 1 217 243 257 247 533 243 377 510 483
GABC 50 2.53 2.27 880 243 233 2 2.1 233 273 263 593 247 243 483 3.03
100 237 243 867 220 337 203 203 323 550 4.1 577 240 273 6 3.77
30 4.97 5 9.47 4 4.7 4 463 597 720 387 797 467 933 7.63 9.03
Best-so-far ABC 50 5.97 503 907 483 560 4 493 553 677 453 893 573  7.63 7.83 9.33
100 547 540 910 477 720 4 6.40 657 807 663 740 280 823 913 8.5
Table 7 Continued
un D Fie Fi7 Fis Fio F2o Fa1 F22 Fas Faa Fas F2s Fa7 Fas F2o Fao
Alg.
30 1.33 1.10 1.40 1.07 120 2.50 117 1 3.07 1.07 1.63 1.70 1 1.03  1.07
CCSA 50 1.37 1.07 1.03 1 1.03 1.03 1.40 1.10 1.33 1.07 157 2.03 1 1 113
100 1.03 1.03 1 1 1.20 1 11 1 1 1 1.30 2 2 1 1
30 5.70 5.73 1.60 297 613 6.40 2.47 7.10 5.37 6.30 3.20 8.90 393 7.03 540
CSA 50 4.83 5.57 2 403 440 4.37 2.57 717 423 5.43 2.90 8.40 577 703  6.07
100 5.17 4.30 2 403 350 4.63 5.80 7.13 7.13 437 6.23 8.53 507 633 493
30 9.37 9.63 857 860  9.87 9.23 9.23 9.83 9.73 10 9.53 1.57 7.80 983 917
BA 50 9.43 9.87 9.40 917 927 9.13 8.03 9.70 9.80 10 9.70 1 2.7 993 977
100 95 9.97 8.77 993 937 9.43 6.90 9.70 9.87 10 10 1 1 9.90 10
30 4.90 3.23 5.23 273 3.60 5.43 7.37 5.73 5.90 5.87 6.37 6.67 9 473 530
CLPSO 50 6.33 5.47 7.13 420 47 7.60 8.03 6 4.73 8.27 6.93 6.97 983 583 5.1
100 7.87 7.97 8.8 6.23  6.40 6.97 9.53 6 5.97 8.50 6.20 717 9.60 750 573
30 513 5.20 6.97 6.70 587 4.47 7.97 417 373 8.13 6.60 6.23 87 467 7.90
GWO 50 38 3.77 4.67 823 473 2.60 5.97 257 2.07 8.47 5.37 5.87 87 453 793
100 3.20 2.37 4.10 8.07 3.3 2.03 3.40 4.47 2.90 8.50 2.93 6 7.67 333 810
30 11 11 11 11 109 1097 11 10.97 11 1 11 11 11 11 1
EEGWO 50 10.97 1 10.97 1 10.9 11 1 11 10.97 1 11 11 1 1 1
100 11 1 11 1 1 11 1 11 11 1 10.93  10.97 1 1 11
30 9.23 8.93 8.53 940 863 9.67 8.93 8.67 8.67 7.80 9.10 8.87 7.87 9 8.80
WOA 50 9.33 8.97 7.97 890 873 9.83 9.37 8.70 8.20 7.2 9.27 9.03 7.87 9 8.47
100 9.43 8.70 45 747 890 9.30 9.10 8.10 8.13 5.70 8.93 8.30 593 903 853
30 8.23 7.90 5.80 7.90  7.87 7.20 2.97 8.30 8.60 6.63 7.70 9.20 473 803 803
KH 50 7.07 8.03 7.10 713 773 6.17 7.37 8.43 8.93 4.83 7.77 9.57 5.5 7.9 7.67
100 6.50 6.50 4.23 5.10 6 8.20 6.97 9.07 8.87 5.37 7.97 10.03 740 713 6.03
30 4.03 4.93 6.33 460 447 3.03 5 3.30 2.6 2.57 2.60 4.30 307 380 287
ABC 50 3.7 3.83 5.13 390 587 4.90 3.83 3.97 6.87 3.1 2.97 4.27 407 390 263
100 2.93 3.70 7.20 317 567 4.67 3.57 3.07 3.70 2.97 3.67 4.20 4 363 293
30 2.83 3.07 3.90 423 333 2.60 380 3.07 3.63 2.43 3.30 323 267 220 207
GABC 50 3.83 3.67 3.80 230 420 2.97 3.50 3.03 4.30 2 3.8 3.07 24 213 223
100 3.80 3.73 5.53 21 497 3.07 3.10 2.03 2.50 2.03 2.77 3.13 3 210 207
Best-so-far 30 423 5.27 6.67 6.80 4.10 450 6.10 387 370 4.20 4.97 433 6.23 463 440
50 5.33 4.77 6.80 6.13 497 6.40 493 433 457 4.63 473 4.80 717 373 4
ABC 100 5.57 6.73 8.87 7.90 597 5.70 5.53 4.43 4.93 6.57 5.07 4.67 933 503 567




Table 8 Overall rank by Friedman test for large-scale problems with D=1000

lg. CCSA CSA BA CLPSO GWO EEGWO WOA KH ABC GABC Best-so-

Fun far ABC
F1 1 313 7.27 7.73 2 5.87 3.87 513  10.40 9.60 10
F. 1 6.67 520 7.07 2.87 10.80 2.13 9.93 9 6.07 5.27
Fs 1 413 8.0 6.13 2.07 9.87 3.07 9.67 8.73 6.33 6.20
F4 1 3 7.47 7.60 2 6 4 5 10.60 9.60 9.73
Fs 1 720 413 6.73 2.87 10.73 2.27 10.2 8.60 6.80 5.47
Fs 1 407 933 6.40 2 9.60 3 9.73 9 6.40 5.47
F; 1 3 7.27 7.80 2 5.93 4 5.07 10 9.53 10.40
Fs 1 313 747 7.53 2 6 3.87 5 10.4 9.67 9.93
Fo 1 307 767 7.33 2 5.93 3.93 5.07 9.93 9.67 10.40
F1io 1 713 493 6.47 2.60 10.80 2.40 9.73 8.87 6.60 5.47
Fi 1 407 947 6.47 2.07 10.20 2.93 9 8 6.27 5.93
Fi 1 3 7.13 7.87 2 5.93 4 507  10.60 9.47 9.93
Fi3 1 320  7.27 7.73 2 5.93 3.80 5.7 10.47 9.80 9.73
Fia 1 313 7.20 7.80 2 5.93 3.87 507  10.53 9.33 10.13
Fis 1 6.87 520 6.80 2.87 10.47 2.27 10 8.93 6.27 5.33
Fie 1 420 873 6.33 2 9.80 3 9.60 8.93 6.60 5.80
Fi7 1 3 7.47 7.53 2 5.93 4 507  10.53 9.67 9.80
Fis 1 307 7.27 7.73 2 6 3.93 5 10.40 9.60 10
Fio 1 3 7.33 7.67 2 5.93 4 507  10.47 9.40 10.13
Fao 1 3 7.13 7.87 2 6 4 5 10.27 9.33 10.40
AvD. 1 4054 719 7.230 2.168 7.6825 3417 696 9733 8.301 8.276
Rank
Overall 1 4 6 7 2 8 3 5 11 10 9
Rank

Table 9 P-value of Friedman test in CEC 2017 and CEC 2010

CEC 2017

D Fy Fr Fio Fis Fao Fas Fasg Fso

30 4.326E-56 2726E-50  2.734E-50  3.148E-50  5.807E-48  1.419E-53 5.245E-52 7.084E-55

50 8.628E-58 2.112E-54  6.938E-50 1.10E-50 2.837E-42  3.309E-56 1.708E-55 4.043E-56

100 6.074E-58 1.215E-56  1.813E-49  2.549E-53  1.057E-43  9.316E-57 8.912E-58 9.344E-57

CEC 2010

D Fy Fo Fs Fio Fia Fis Fis Fao

1000  19127E-26  9.822E-25  1.817E-26  8.453E-24  1.880E-26  3.338E-23 1538E-26  1.018E-26

5.6.2. Mean Absolute Error (MAE) test

As a statistical measure of a difference between two continuous variables, mean absolute

error (MAE) computed by Eq. (9) shows how far estimates or forecasts are from the actual

values.



1 NF (9)
MAE = ﬁz 10; — yil
1=1
Where O; is the global optimum of the function i, NF is the number of functions, and y; is
the best result of the function i obtained by the algorithms. Table 10 shows the results of

performance of MAE criteria on the results of tests for different dimensions 30, 50 and 100 in
CEC 2017 functions, and dimension 1000 in CEC2010 functions.

Table 10 Mean absolute error in different dimensions

Algorithms MAE Rank MAE Rank MAE Rank MAE Rank
D=30 D=30 D=50 D=50 D=100 D=100 D=1000 D=1000
CCSA 502.5183 1 2.2877E+04 1 1.1356E+08 1 1.2098E+10 1
CSA 1.9508E+09 4 6.3620E+21 3 4.3961E+84 4 1.3306E+11 3
BA 1.3798E+35 10 7.1697E+66 10 4.7138E+154 9 1.9154E+11 6
CLPSO 3.4927E+16 8 1.9842E+44 7 3.7458E+121 7 2.0192E+11 7
GWO 6.9483E+15 6 1.6994E+37 6 8.1058E+97 5 8.8258E+10 2
EEGWO 2.9539E+41 11 1.6275E+70 11 2.1144E+163 11 1.8734E+11 5
WOA 2.2478E+16 7 6.2187E+44 8 8.6773E+129 8 1.2906E+11 3
KH 8.7571E+19 9 2.2963E+53 9 3.3333E+150 10 1.7328E+11 4
ABC 8.9938E+05 3 3.5308E+22 4 1.0660E+70 3 2.4058E+11 9
GABC 2.2533E+05 2 2.1723E+16 2 6.3377E+61 2 2.3462E+11 8
Best-so-far ABC 1.6096E+11 5 1.7524E+32 5 5.9946E+104 6 2.4161E+11 10

5.7. Impact analysis of the modifications

Thus far, the experimental and statistical results prove that CCSA is superior to other
compared algorithms. This section is to analyse the impact of the introduced conscious
neighborhood and the strategies NLS, NGS and WAS. As the pseudo code of CCSA shown,
firstly, the neighborhood of each crow c;i is generated by Definition 2. Then, contrary to CSA
which selects a search strategy for all different problems unconsciously, CCSA uses either NLS
or NGS by comparing the quality of the neighborhood with the non-neighborhood. If fhestiocal
< fbestgiobal, then the quality of the neighborhood is considered good enough to be exploited
using NLS because Cioca IS @ random neighbor. Otherwise, CCSA explores the non-
neighborhood towards the cgional by selecting k dimensions randomly and changing their values
using Eq. (6). Eventually, WAS is used to correct the position of the crow c; if it could not
acquire a better fitness after using either NLS or NGS. Therefore, to analyse the impact of our
modification, four algorithms CSA, NLS+WAS, NGS+WAS, and CCSA are considered and
their behavior is compared for solving different problems.

Fig. 17 shows the average of the best fitness of all crows in each iteration (the average
best-so-far) on some functions of CEC 2017 with different dimensions. As the curves showed

for unimodal functions F1 and F», the average distance between solutions found by CCSA and



Average Best-so-far F1

NLS+WAS is less than others which is evident the impact of using NLS in the exploitation.

Meanwhile, for multi-modal functions Fs and Fe which have a large number of local optima,
the average distance between solutions found by CCSA and NGS+WAS is less than others
which is evident the impact of using NGS in the exploration. The average distance between
solutions found by CCSA and other algorithms for hybrid benchmark functions Fis and F2o,

and for composition function F2, show that CCSA is better than NLS+WAS and NGS+WAS

in term of the balance between local and global search and premature convergence. In fact,

applying the introduced conscious neighborhood for selecting search strategy and using
strategies NLS, NGS and WAS enhance CCSA for solving different problems.
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Fig. 17 The average distance between solutions found by CSA, NLS+WAS, NGS+WAS and CCSA



5.8. Solving applied problems of engineering design using CCSA

Applicability of the optimization algorithms for real-world applications is usually
evaluated by real-world problems such as engineering design problems [11,64,65]. Therefore,
in this section, the applicability of CCSA is evaluated and compared with other state-of-the-art
swarm intelligence algorithms using four engineering design problems (described in the
Appendix) as follows:

F1: Parameter estimation for frequency modulated (FM) sound waves
F2: Pressure vessel design problem

Fs: Three-bar truss problem

F4: Welded beam design problem

In this experiment, the population size (N), the maximum number of iterations (MaxIt) and
the number of the run were set to 200, 1500 and 30 respectively. Tables 11-14 show that CCSA
finds the best optimal values for variables of these four engineering problems compared to

other algorithms.

Table 11 Parameter estimation for frequency modulated (FM) sound wave

. Optimal values for variables Optimum

Algorithm cost
ay o a, W, as w3

CCSA 1.0000 5.0311 1.5000 -4.8000 -2.0000 4.9000 2.7889E-11
CSA 0.0195 -2.4574  -1.5678 1.6408 -5.7668 4.5536 14.1112
BA 0.3357 5.0981 0.4667 5.4750 4.7526 -5.0051 23.1104
CLPSO 1.0485 4.9866 -1.4922  4.8086 -2.0223 -4.9030 0.2039
GWO 1.0038 4.9995 -1.4934  4.8002 -1.9993 -4.8998 0.0013
EEGWO 0.5160 5.0089 -0.7298 0.6853 -2.7159  4.6224 24.9337
WOA 0.5715 -5.0077  3.2597 -4.8165 0.0050 -6.3046  13.3999
KH -0.6615 0.0381 3.8776 0.5511 -1.8855 -3.2441  16.2655
ABC -1.0208 -4.9949 -1.4431 -4.8001 2.0372 -4.8994  0.0633
GABC -0.9992 -5.0011 -1.5005 -4.7992 1.9994 -4.9003 5.1475E-04

Best-so-far ABC  1.0048  4.9944  -1.4800 4.8029 2.0029  4.8997  0.0088




Table 12 Results for pressure vessel design problem Table 13 Results for the three-bar truss problem

Algorithms Optimal values for variables Optimum Aldorith Optimal values for variables Ootirmal weiaht
T. T R L cost gorithms X1 X2 ptimal weig
CCSA 0.7782 0.3847 40.3197 199.9991 5.8853E+03 CCSA 0.78865625  0.40830170  2.63895844E+02
CSA 45792 80599 81.430  118.9119 7.7613E+03 CSA 0.69660225  0.88149073  2.63897198E+02
BA 0.9284 0.4589 481000 114.1757 6.1950E+03 BA 0.78871035  0.40814873  2.63895848E+02
CLPSO 0.7903 03905 40.8171 194.0763 5.9425E+03 CLPSO 0.78872952  0.40809450  2.63895848E+02
GWO 0.7782 0.3848 40.3203 200.0000 5.8860E+03 GWO 0.78868348  0.40822490  2.63895864E+02
EEGWO 19370 0.9962 79.0153 10.0000  1.8012E+04 EEGWO 0.78898946  0.40736223  2.64283957E+02
WOA 0.7833 0.3872 40.5855 196.3311 5.8943E+03 WOA 0.78667553  0.41393360  2.63898802E+02
KH 1.0397 0.5247 53.2363 74.6464  6.6129E+03 KH 0.90058694  0.06744589  2.64062751E+02
ABC 0.7786 0.4082 40.3266 200.0000 5.8897E+03 ABC 0.78858225  0.40861455  2.63896340E+02
GABC 0.7782 0.3848 40.3231 199.9534 5.8858E+03 GABC 0.78876674  0.40798940  2.63895865E+02

Bestso-far ABC 07786  0.3850 40.3251 199.9855 5.8898E+03 Bestso-far ABC 078836577  0.40912463  2.63895976E+02

Table 14 Results of the welded beam design problem

Algorithms - Optlmlal values Ior varlablbes Op(t)longtum
CCSA 0.2057 34702 9.0362 0.2057 1.7249
CSA 0.1628 8.1441 12523 13875 1.8162
BA 0.1971 3.7889 8.7538 0.2193 1.8052
CLPSO 0.2058  3.4736  9.0260 02062 1.7275
GWO 0.2057 3.4721 9.0366 0.2057 1.7251
EEGWO 0.1778 6.4368 9.0584 02314  2.2859
WOA 0.2070 3.5250 8.9756 0.2085 1.7450
KH 0.1573 4.8676 9.3590 0.2050 1.8747
ABC 0.2077 3.4707 89381 02110 1.7506
GABC 0.2011  3.5423  9.1140 0.2058  1.7317

Bestso-far ABC ~ 0.1983  3.6412 9.0351  0.2058  1.7364

6. Discussion

This section aims to analyze the experimental results of CCSA and relate them to its
structure and operators. The results and convergence curves shown in Table 2 and Fig. 12 prove
the superiority of the proposed algorithm on the majority of unimodal benchmark functions.
The main reason for this merit of CCSA in the exploitation and convergence rate is using the
local search based on the introduced conscious neighborhood. Moreover, CCSA uses the
introduced NLS for local search when for a random neighbor Ciocal fhestiocal < fhestgional Which
means its neighbors can be considered as candidate solutions and be exploited.

The results and curves in Table 3 and Fig. 13 show that CCSA benefits from high
exploration for multi-modal functions which have a large number of local optima. This is
mostly because when fbestiocal > fbestgionar Which means the chance of having a candidate
solution among the neighbor is very low then CCSA explores the search space to find a
promising zone. Meanwhile, the CCSA algorithm increases the exploration by changing only

k dimensions toward cgional Which makes it far from the greedy fashion.



As the results in Tables 4 and 5 and the convergence curves of Figs. 14 and 15 shown, the
proposed algorithm is superior to the compared algorithms for hybrid and composite
benchmark functions. Because of having the characteristic of maintaining the continuity around
the local and global optima in these functions, these results prove that CCSA increases the
balance between global and local search and reduces the premature convergence. The main
reason is that CCSA uses introduced conscious neighborhood which increases its focus around
the candidate solutions. Moreover, it uses the introduced WAS to correct the position of those
crows that could not acquire a better fitness by using either NLS or NGS in order to escape
from local optima. The convergence curves presented in Figs. 12-15 guarantee convergence of
CCSA because they show the fitness of crows is decreased over the course of iterations.

Besides the experimental results, the statistical results tabulated in Tables 7- 10 reveal that
the proposed algorithm is statistically significant as compared to the compared algorithms. The
results in Tables 11-14 show that CCSA outperforms the compared algorithms for solving
applied problems of engineering design. As a summary, the overall performance comparison

is shown in Table 15.

Table 15 Overall comparison of the proposed CCSA with other state-of-the-art swarm intelligence algorithms

Categories of swarm Insects behavior Terrestrial Marine Bird behavior
intelligence animal behavior animal
algorithms behavior

Algorithms ABC GABC Best-so-far GWO EEGWO KH  WOA BA CLPSO CSA CCsA
Properties [221 [14] ABCI[23] [20] [21] [21 [111  [18] [13] [17]
Local searchability Low High High High High High  High  High High High High
Global searchability High High High Low High High  High Low High High High
Balance between local Low High High Low Low High Low Low High Low High
& global search
Premature High High High High High High  High High High High Low
convergence
High dimension ability ~ Low Low Low Low High High Low Low Low Low High

7. Conclusions and future works

The intelligent behavior of crows inspires the crow search algorithm (CSA) in order to
solve optimization problems. However, it selects a search strategy unconsciously by comparing
a constant value of awareness probability (AP) with a random number. Consequently, it mostly
suffers from lacking a proper balance between local and global search and having premature
convergence, especially in large-scale problems. Moreover, its efficiency for solving some
multi-modal, hybrid and composition problems are not sufficient enough. To tackle these
weaknesses, in this paper, an improved version of CSA named conscious neighborhood-based

crow search algorithm (CCSA) was proposed.



In the proposed algorithm, a new neighborhood concept is defined to perceive the search
space and select local and global search strategies consciously. Furthermore, the movement of
crows in the search space is improved using three new strategies NLS, NGS, and WAS. In
addition, WAS recognizes the crows located in the flat or local optima and provides another
opportunity for them by changing their position during the different jump-flies. The experiment
results and relevant discussions support the following conclusions:

e Using the introduced conscious neighborhood enhances the exploitation and the
balance between local and global search.

e Using introduced NLS and NGS strategies improve the ability of exploitation and
exploration.

e The introduced WAS strategy increases the balance between global and local search
and reduces premature convergence.

e CCSA is more efficient than the compared algorithm for different unimodal, multi-
modal, hybrid and composition problems in several dimensions.

e CCSA is also superior to the compared algorithms for solving large-scale global
optimization problems.

e The proposed CCSA is applicable for solving engineering design problems.

CCSA is developed for single-objective and continuous problems. Therefore, multi-
objective and binary versions of this algorithm may be developed as future works for solving
multi-objective and discrete problems. Moreover, using CCSA for solving optimization
problems in different applications and domains can be another valuable future work.

Appendix

Four engineering problems used in Section 5.7 are described as follows.

F1: Parameter estimation for frequency modulated (FM) sound wave [66]

FM is a highly complex multimodal problem with strong epistasis that generates a sound
similar to the target. This problem has a parameter vector X= [a,, w4, a5, W5, as, w3] with Six
dimension and the minimum fitness value is f(¥;) = 0. To estimate the sound wave, it uses

the following Egs. (A.1) and (A.2) where 6 = %and the parameters are set between [-6.4,

6.35]. In addition, the fitness function is computed by Eq. (A.3).

y(t) = a; Xsin(w; Xt X6 + a, Xsin(w, Xt X0+ az X sin(ws X t X H))) (A1)



yo(t) = (1.0) x sin((5) X t X 8 — (1.5) X sin((4.8) X t X 6 + 2 X sin((4.9) X t

X6 A2
F@ = ) 00 =y (A3)

F2: Pressure vessel design (PVD) problem [67]

In PVD problem, the objective function is to minimize the total cost, including the cost of the
material, forming and welding shown in Fig. A.1. In this problem, there are four decision
following variables: X1 is the thickness of the shell (Ts), X2 is the thickness of the head (Tn), X3
is the inner radius (R), and X4 is the length of the cylindrical section of the vessel, not including
the head (L). This problem with four optimization constraints is formulated by Eq. (A.4).

Consider X = [xyx3%3%,] = [Ts T, R L], (A.4)
Min f(®) = 0.6224x,x3x, + 1.7781x,x3 + 3.1661x%x, +

19.84 x? x5,
Subject to g1(X) = —x; +0.0193x3 <0,

g() = —x, + 0.00954x; < 0,
4
93(X) = —nxix, — §Hx§ + 1,296,000 < 0,

g4(3_6)) = X4_ - 240 S 0,
Variablerange 0 < x; < 100, i=1,2
10 < x; < 200 i=34

T, K L

Il

Fig. A.1 Design of pressure vessel problem

Fs: Three-bar truss problem

In this problem, the volume of a statistically loaded three-bar truss is to be minimized. The
schematic of the three-bar truss problem is shown in Fig. A.2. The formulation of this
optimization problem is computed by Eq. (A.5).

Min F) = (2y2x; + x5) X L, (A.5)
Subject to g1(%) = %P —-0<0,

@ X2
xX) =
92 V2x2 + 2x,x,

P—0oc<0,



1
X)=—P—-0<0,
93 VZx, + %,

Variablerange 0<x; <1, i=1.2

1=100cm,P = 2kN/cm?,and o = 2 kN/cm?

Fig. A.2 Three-bar truss problem

F4: Welded beam design (WBD) problem [67]

In this problem, there are four decision variables including h(x1) is the thickness of weld, 1(x2)
is the length of the clamped bar, t(x3) is the height of the bar, and b(xa4) is the thickness of the
bar. Fig. A.3 represents the schematic of the welded beam. The objective function is designed
for the minimum the fabrication cost subject to constraints on shear stress (t), bending stress in

the beam (u), buckling load on the bar (Pc), end deflection of the beam (d). The formulation of
the WBD problem is computed by Eq. (A.6).

Consider X = [xyxx3x,] =[h L t b], (A.6)
Min f(X) = 1.10471x2x, + 0.04811x3x,(14.0 + x,),
Subject to g1(X) = 17(%) — Trpax <0,

92(55) = 0-(55)) — Omax < 0,

93(X) = 6(X) — 6pax < 0,

94(55) = x1,—x4 =0,

gs(X) = P—P.(¥) £0,

ge(X) = 0.125—x; <0,

g;(%) = 1.10471x? + 0.04811x3x,(14.0 + x,) — 5.0 <0,
Variablerange 0.1 <x; <2, i=14

0.1<x; <10 i=23



Fig. A.3 Welded beam design (WBD) problem
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