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Abstract

The power management system for electronic vehicles selectively activates Elec-
tronic Control Units (ECUs) in the electronic control system according to time-
series vehicle data and predefined operation states. However, at an operation
state transition, the energy overheads used for the selective ECU activation
could be higher than the energy saved by deactivating ECUs. To prevent these
energy-inefficient state transitions, we apply two main ideas to our proposed
algorithm: (A) unacceptable state transitions and (B) adaptive training speed.
For the unacceptable transitions, our energy model evaluates the breakeven time
where energy saving equals to energy overheads. Based on the breakeven time,
our algorithm classifies training dataset as unacceptable and acceptable event
sets. Especially when the algorithm trains neural networks for the two event
sets, the adaptive training speed expedites its training speed based on a history
of training errors. Consequently, without violating in-vehicle time constraints,
the algorithm could provide real-time predictions and save energy overheads
by avoiding unacceptable transitions. In the simulation results on real driving
datasets, our algorithm improves the energy dissipation of the electronic control
system by 5% to 7%.

Keywords: event prediction, neural networks, power management system,
electric vehicles, neural network training, real-time systems, time-series data

1. Introduction

Electronic Vehicles (EVs) could be one of the most promising next-generation
cars. First of all, the driving cost of EVs is lower than the Internal Combustion
Engine (ICE) vehicles because EVs are much more efficient than the ICE vehi-
cles. Based on the U.S. Department of Energy, gasoline vehicles only use 14% -
30% of fuel energy [1] for wheel rotation, while EVs utilize 74% - 94% of battery
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energy [2]. Since the United Nations [3, 4] and European countries [5] regulate
the emission of the ICE vehicles and plan to ban the use of gasoline and diesel
cars, the ICE vehicles could be phased out and replaced with zero-emission EVs.

However, the current technologies of EV batteries support a relatively shorter
driving distance and require a longer recharging time than gasoline and diesel
cars. Although a few models have a driving range from 200 to 300 miles [6],
typical EVs can only drive from 60 to 120 miles on a full charge. Recharging a
battery pack usually takes between 4 and 8 hours [7]. To overcome the limitation
of the current EV batteries, our research improves the energy consumption
of automotive operations by enhancing the power management system for EV
batteries.

The present power management system for EV batteries selectively activates
necessary Electronic Control Units (ECUs) in the automotive’s electronic control
system based on time-series vehicle data and predefined operation states. By
switching off ECUs that do not have a workload, the power management system
can save the battery energy in electric vehicles when the vehicle operating system
changes from one operation state to another. However, at an operation state
transition, the operational energy used for the selective ECU activation could be
higher than the energy that the power management system saves by deactivating
ECUs.

Continuous energy-inefficient transitions rapidly increase the amount of mi-
nus energy balance between energy savings and energy overheads in the power
management system. Inevitably, these state transitions quickly degrade EVs’
energy efficiency. The state transitions motivate our research to enhance the
power management system. In this paper, we prevent such transitions by ap-
plying two main ideas to our proposed algorithm: (A) unacceptable state tran-
sitions and (B) adaptive training speed. For the unacceptable transitions, our
energy model evaluates the breakeven time where energy saving equals to en-
ergy overheads. Based on the breakeven time, our algorithm classifies training
dataset as unacceptable and acceptable event sets. An unacceptable event is an
energy-inefficient transition where the operational energy overhead is greater
than energy savings because the changed state does not last for at least the
breakeven time. When the algorithm trains neural networks for the unaccept-
able and acceptable event sets, the adaptive training speed expedites its training
speed based on a history of training errors. Consequently, without violating in-
vehicle time constraints, the algorithm could provide real-time predictions and
save energy overheads by avoiding unacceptable transitions. In the simulation
results on driving datasets [8, 9, 10, 11], our algorithm improves the energy
dissipation of the automotive’s electronic control system by 5% to 7%.

1.1. Relevant Work

There are two main concepts about the power management systems in au-
tomotive electrical/electronic architectures. First, partial networking only acti-
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Figure 1: Example of partial networking and ECU degradation on CAN (Controller Area
Network) bus.

vates necessary ECUs in Controller Area Networks (CAN) [12] by using Wake-
Up Frames (WUFs) [13] as shown in Figure 1. The concept derives from In-
ternational Organization for Standardization (ISO) 11898-5 [14] and German
car manufacturers [15]. Second, ECU degradation could reduce the energy con-
sumption of ECUs by adjusting power-manageable components without violat-
ing performance requirements and constraints. Dynamic Power Management
(DPM) [16, 17] provides a practical solution such as Adaptive Voltage Scaling
[18] for the low energy consumption of ECUs. However, the existing methods
do not take the energy overhead for the selective ECU activation into account.
Notably, there is a problem when the energy saved by deactivating unnecessary
ECUs is less than the energy overhead dissipated in turning off the ECUs.

To study about the energy imbalance between the energy savings and the
energy overheads associated with power mode changes at the system-level, Lu
[19, 20], Devadas [21], and Zhao [22] use the concept of breakeven time. Be-
fore switching off a subsystem in an embedded system, the power management
system considers how much energy the subsystem consumes for turning on.
Namely, if the power management system reactivates the subsystem too quickly
after turning it off, the energy overheads of the power mode changes would off-
set the energy savings of deactivating the subsystem. Hence, the duration from
the deactivation to the reactivation must be long enough to compensate for the
operational energy overhead. The breakeven time refers to the energy balance
point where the energy overheads of the mode changes become equal to the
energy savings of the deactivated subsystem. Therefore, to make efficient power
mode alterations, the power management system requires forecasting whether
a deactivated period will be larger than the breakeven time or not.
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Research about predicting a specific period against the breakeven time for
the vehicle power management systems can be divided into two primary mod-
els: (A) the estimation models to calculate the breakeven time, and (B) the
algorithm models to forecast whether a particular period is longer than the es-
timated breakeven time. Because the breakeven time depends on the energy
overheads and the energy savings, the estimation models need to compute the
energy consumption of both cases. Schmutzler [23] and Hong [24] assess the
energy savings by adjusting the power mode of vehicle Electronic Control Units
(ECUs) without affecting their performance. However, present estimation mod-
els regarding the energy consumption of ECUs do not evaluate the operational
energy overhead used for ECU mode changes. In contrast, our model estimates
both the energy savings and the energy overheads according to ECU opera-
tion procedures [25], ECU parameters [26, 27, 28, 29], in-vehicle network delays
[30, 31, 32, 33], and network transceivers [34, 35].

The algorithm models predict events whose time series values remain above
or below the threshold for at least the breakeven time. Weiss and Hirsh [36]
proposed a system to predict events based on two steps: (A) identifying temporal
and sequential patterns within time-series data, and (B) generating an ordered
list of prediction patterns from step A. Xi and Song [37] suggested an algorithm
that perceives unusual variations in time-series values and classifies them as
events. Guralnik and Srivastava [38] approached the event problem as change-
point detection in time-series data. The authors proposed two versions of the
algorithms: the batch version receives all data before processing, whereas the
incremental version processes new data points one at a time. Unlike other
research works, the proposed algorithm in this study learns events according
to the breakeven time and predefined event conditions. The algorithm predicts
events by using the correlation between the learned events’ data and current
time-series data.

Power management using machine learning, existing methods train an agent
for previous operation policies by collected data regarding workloads or user
patterns. Based on the present data, the agent can select the best policy for
the most energy savings. The authors in [39, 40, 41] use a supervised learning
algorithm to discover an optimal policy by using performance data such as
processor runtime statistics. Based on evaluating the performance of previous
policies, the learning algorithm can choose the next policy. To maximize energy
savings, the authors of [42] propose that the operating system learns which
policy performs the best for the current workload by using machine learning.
For recognizing workloads at runtime, the system records hard disk accesses and
monitors I/O-related parameters. Jung and Pedram [43] present a supervised
learning-based power management algorithm by Bayesian Classification. The
algorithm learns to predict the system performance state from some readily
available input features and then uses this predicted state to look up the optimal
power management action from a precomputed policy lookup table.
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The paper [44] shows a power management technique based on reinforcement
learning. Without previous information, this learning algorithm dynamically
adapts to the environment to achieve autonomous power management. However,
in this paper, we use supervised learning instead of reinforcement learning. This
is because we assume that the given inputs-outputs (time-series sensor data
and vehicle operation states) are independent and identically distributed. More
specifically, since vehicle sensor data are mostly changed by drivers and outside
driving conditions, operation states made by the power management do not
directly relate to variations of time-series sensor data. Consequently, we cannot
use the power management-based feedback loop between time-series data and
vehicle operation transitions for reinforcement learning.

1.2. Contribution

The contributions of this paper are fourfold:

1. We propose an energy model of an automotive’s electronic control system.
The model estimates the energy dissipation of vehicle operation states
using parameters of Electronic Control Units (ECUs) and predefined state
conditions.

2. We suggest a supervised learning algorithm based on neural networks to
forecast whether the current vehicle state transition is energy-profitable
or not.

3. We propose an adaptive training algorithm that tailors the network pa-
rameters in the neural networks based on the training history such that
the network training can be done within the in-vehicle time constraint
(0.1s).

4. We conduct a feasibility study on the proposed algorithm. To consider the
in-vehicle communication cycles and delays, we evaluate the algorithm ex-
ecution time as well as the average training error and the correct prediction
rate in the feasibility study.

The rest of the paper is organized as follows: In Section 2, we will define a
research problem and show our research object for our proposed algorithm. In
Section 3, we will formulate the defined problem by using our system model.
In Section 4, we propose to address unacceptable state transitions where opera-
tional energy overheads are higher than energy savings by developing a predic-
tion algorithm. In Section 5, we will present evaluation results. Finally, Chapter
6 gives the conclusion.

2. Problem Statement

As shown in Figure 2, the vehicle operating system selects the current opera-
tion state based on the received sensor data and the predefined state conditions.
When the vehicle speed rises or falls from a threshold value, the vehicle operat-
ing system changes the present operation state according to the speed variation.
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Figure 2: Diagram of operation state selections based on sensor data and the predefined state
conditions[24].

At the operation state transition, the power management system in the automo-
tive operating system turns off the ECUs that do not have a workload. However,
when the operation state changes many times during a short interval, the energy
overhead used for reactivating the ECUs after the deactivation could be higher
than the energy saved by switching off the ECUs. Because short-term frequent
state transitions continuously consume more energy overheads than the energy
savings, serial energy-inefficient transitions can radically lower EVs’ energy effi-
ciency. In this section, we define these state transitions as our research problem
by using the concept of unacceptable state transitions and show our research
object for our proposed algorithm.

2.1. Breakeven time (Tbe)

To justify operation state transitions with energy overhead, the power man-
agement system must consider the balance between energy consumed and saved
in the state transitions before making the operation state alteration. More
specifically, as the vehicle operating system changes from one operation state to
another, the ECU without a workload becomes inactive as shown in Figure 3.
The amount of energy savings is determined by the inactive duration (Tsleep) of
the ECU. On the other hand, the energy overhead dissipated in the two ECU
mode alterations depends on the ECU parameters. Therefore, to make energy-
efficient operation state transitions, the power management system needs to
forecast whether Tsleep is long enough to compensate for the energy overhead
associated with the ECU mode changes.

Figure 4 shows the threshold time when the ECU mode alteration becomes
profitable. If the inactive duration (Tsleep) is larger than the breakeven time
(Tbe), taking the operational energy overhead into account, the energy balance
benefits from the ECU deactivation. To be specific, Figure 4 represents two dif-
ferent cases. One line increases linearly over Tsleep because the ECU continued
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Figure 3: Power management from the workload, ECU power mode, and ECU operation
points of view [20]. (Tsd and Twu refer to shut-down delay and wake-up delay respectively.)

Figure 4: Breakeven time (Tbe) for ECU mode changes [26]

to dissipate energy without power mode changes. The other line indicates ECU
energy consumption when the ECU switches the power mode. The line value
mainly expresses the energy overheads of both the deactivation and reactiva-
tion since the deactivated ECU consumes less than 1% of the energy overheads
based on the ECU datasheet [26]. After the two lines cross as shown in Figure
4, the energy with ECU mode changes becomes less than the energy without
ECU mode alterations. Consequently, the inactive duration (Tsleep) where the
two lines intersect denotes the breakeven time (Tbe) between energy with and
without ECU mode changes.

Tbe is calculated in terms of the parameters of an individual ECU. The left
side in Figure 5 describes the energy consumption of an active ECU (Eactive)
according to active power (Pactive). The right side defines the energy dissipation
of an inactive ECU (Esleep) and the energy overheads (Etrans= Esd+Ewu) based
on inactive power (Psleep) and the time overhead (Ttrans= Tsd+Twu). When the
two energy consumption values are equal, Tbe is computed by using Equation 1.

Tbe =
Etrans − Psleep ∗ Ttrans

Pactive − Psleep
(1)
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Figure 5: Tbe = Tsleep when the same energy consumption of two different cases [16, 20]

2.2. Unacceptable State Transition

As shown in Figure 6, when a vehicle enters a low-speed zone such as a
roundabout, the driver will reduce the vehicle speed gently to less than 20 mph.
Consequently, the vehicle operating system will make a state transition from
cruising to low-speed. After passing the low-speed zone, the driver will recover
the speed to more than 20 mph. Then, the vehicle operation system will make a
second state transition from low-speed to cruising. As a result, ECU A will have
an inactive duration (Tsleep) for 2 seconds between the two transitions. If Tsleep
is less than the breakeven time (Tbe), energy dissipation with the two transitions
could be higher than energy consumption without the transitions. Namely, the
operational overhead could be higher than the energy saved by the transitions.
To avoid an energy-inefficient state transition where Tsleep is smaller than Tbe,
we define such a transition as an unacceptable state transition. Table 1 also
shows that the ECU energy consumption with an unacceptable state transition
is larger than the ECU energy dissipation without the state transition when the
Figure 6 scenario is applied to an electronic control system model. In particular,
consecutive unacceptable transitions can momently consume a large amount of
energy overheads. As a result, these successive transitions can suddenly drop
energy efficiency. The current state-based power management system cannot
detect any unacceptable transitions and prevent them. This is because the
power management system is not able to perceive Tsleep and Tbe.

To prevent wasting energy overheads from unacceptable state transitions,
our proposed algorithm determines whether the current state transition is ac-
ceptable or not based on comparing the forecasted inactive duration (Tsleep)
with the breakeven time (Tbe). Thus, if an unacceptable transition is predicted,
the present operation state is retained without making a state transition. As
shown in both Figure 6 and Table 1, by maintaining the current operation state,
the state-based power management system with the proposed algorithm does
not consume energy overhead.
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Figure 6: Example of an unacceptable state transition
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state-based power management
state-based power management
with the proposed algorithm

ECU
energy
consump.

[cruising]
40W*2EA*8s
[low-speed]
40W*1EA*2s
[common]
40W*5EA*10s +
5.6W*2EA*10s +
0.9W*2EA*10s +
0.3W*25EA*10s
= 2.9kJ

[cruising]
40W*7EA*10s +
5.6W*2EA*10s +
0.9W*2EA*10s +
0.3W*25EA*10s
= 3kJ

Overhead
[3 ECU mode changes]
0.2kJ*3EA = 0.6kJ

Total 3.5kJ 3kJ

Table 1: comparison of energy consumption by two different solutions (EA: each) [23, 24, 26]

3. Problem Formulation

The research objective is to overcome the limitation of electric vehicle (EV)
batteries by minimizing the energy consumption of non-safety-critical Electronic
Control Unit (ECU) applications1 in the vehicle’s electronic control system. To
be specific, the power management system in the automotive operating system
can make unacceptable state transitions that consume more overheads used for
the ECU operations than the energy saved by turning off the ECUs in the
electronic control system. Our proposed algorithm forecasts these unacceptable
transitions and prevents them. Consequently, by saving energy overheads used
for the unacceptable transitions2, the algorithm improves EVs’ energy efficiency.

To evaluate the actual energy cost of operation state transitions in the elec-
tronic control system, we formulate a model of the electronic control system.

1We bound our research scope to automotive applications in non-safety-critical ECUs be-
cause the proposed algorithm cannot accurately predict all state transitions and some mispre-
dictions can be fatal to safety-critical ECU applications. More specifically, if the algorithm
forecasts an unacceptable state transition as an acceptable transition, it is not a big problem
because the automotive systems have this problem before the algorithm runs. However, we
take account of the case when the algorithm predicts an acceptable state transition as an
unacceptable transition. Because our prediction algorithm creates this problem and cannot
avoid 100% of mispredictions regarding acceptable state transitions, we apply the proposed
algorithm only to non-safety-critical ECU applications.

2Based on the parameters of ECUs[26, 27, 28, 29], the proposed algorithm can conserve the
energy overhead (185J) per ECU by preventing an unacceptable transition with consuming
about 0.1s and 0.01J as time and energy overheads for the algorithm execution[45]. Especially,
since our vehicle model requires at most 0.4s for both ECU operations and data communica-
tions per instruction cycle (0.5s), the algorithm must complete the prediction within the time
constraint (0.1s).
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Figure 7: Energy consumption flow of an electric vehicle

Our model estimates the total energy consumption of all ECUs per state tran-
sition. In the model, the energy cost function h* evaluates energy consumption
of ECUs according to existing operation conditions. The other cost function c*
assesses energy dissipation of ECUs based on the breakeven time (Tbe) as well
as the existing conditions. Notably, at an unacceptable transition, c* is smaller
than h*. This is because c* does not consider the overheads used for the state
transition when the predicted state duration (Tstate) is less than Tbe. By select-
ing the minimum cost between c* and h* per state transition, our model can
avoid unacceptable state transitions. As a result, the model minimizes energy
consumption of the electronic control system by saving overheads used for the
unacceptable transitions.

3.1. Automotive Energy Consumption Model

The energy consumption model of EV batteries consists of two main parts:
(A) the vehicle powertrain model, and (B) the electronic control system model.
The primary energy flows from the EV batteries to each wheel through the
vehicle powertrain as shown in Figure 7. The powertrain delivers about 70%
of total battery energy to the driving with about 20% energy losses [46]. The
electronic control system consumes the next most significant amount of vehicle
battery energy. With high-end driving systems such as advanced driving assis-
tance functions, the automotive’s electronic control system can consume up to
about 10%3 of the vehicle battery energy[47].

3.2. Electronic Control System Model

To minimize the energy consumption of ECU operations in the electronic
control system, we model the system by using the concept of the sequential
decision process (SDP) [48]. Our SDP D estimates the energy cost of state-
based ECU operations with and without consideration of condition A (Tstate ≥

3 In consideration of different electric cars, vehicle speed, and vehicle battery temperature
except energy regenerated from braking, the total power consumption of vehicle electrical
control units is about 2kW out of 20kW (total battery capacity of typical electrical vehicles).
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Tbe), and selects the better energy cost for energy-efficient state transitions.
D is a finite automaton M with the cost functions c∗ and h* associated with
state transitions in the electronic control system. M is described as M =
(Q,Σ, δ, q0, QF ), where

• Q is a finite nonempty set of vehicle operation states;

• Σ is a finite input alphabet;

• δ : Q× Σ → Q is a state transition function;

• q0 ∈ Q is the initial state;

• QF ⊂ Q is a set of final states.

A finite sequence of input alphabets is called an input string. Let Σ* denote
the set of all strings generated by Σ. δ is extended to δ*: Q × Σ* → Q by
using δ*(q0, ab) = δ(δ(q0, a), b) for ab ∈ Σ* and a & b ∈ Σ. F (M) = {x ∈
Σ∗ | δ∗(q0, x) ∈ QF } is the set of input strings accepted by the M .

According to the input string in F (M), the sequential decision process D can
evaluate the energy dissipation of a state transition. D is a system (M,h, ζ0, c),
where

• M is a finite automaton;

• h : R×Q×Σ→ R, where R denotes the set of real numbers, is an energy
cost function without condition A;

• ζ0 ∈ R is the initial energy cost of q0;

• c : R×Q× Σ→ R, is an energy cost function with condition A.

Based on the extended transition function Σ*, h can be expanded to h* :
R × Q × Σ* → R by using h*(ζ0, q0, ab) = h(h(ζ0, q0, a), δ*(q0, a), b) for
ab ∈ Σ* and a & b ∈ Σ. c can also be extended to c* : R × Q × Σ* → R
by using c*(ζ0, q0, ab) = c(c(ζ0, q0, a), δ*(q0, a), b) for ab ∈ Σ* and a & b
∈ Σ. Because F (M) is the set of accepted input strings, h∗(ζ0, δ∗(q0, F (M)) ≡
h∗(ζ0, q0, F (M)), and c∗(ζ0, δ∗(q0, F (M)) ≡ c∗(ζ0, q0, F (M)) are used for conve-
nience. G(D) = {δ∗(q0, x) ∈ QF | c∗(ζ0, δ∗(q0, x)) = h∗(ζ0, δ∗(q0, x))} represents
the set of vehicle state transitions accepted by D.

G(D) determines whether the current state transition is acceptable or not
based on the SDP D. D evaluates the energy costs c* and h* regarding the
present operation state transition according to received sensor data, Table 3,
and condition A. Then, D makes the state transition by comparing the cost
c* with the cost h*. More specifically, the finite automaton M in D has three
modules: an input interface, a read head, and a state controller. In one state
transition, M reads the input symbol i1, moves the read head one symbol to the
right, and changes the current state q0 to δ(q0, i1). When the read head moves
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Table 2: list of inputs, operation states, and active ECUs [24]

input Σ* final operation state QF active ECUs
i0 QF0 (Parked)
s0g0i1 QF1 (Stand-by) ECU 1, 2, 5, 6
s1g0i1 QF2 (Low-speed) ECU 1, 2, 5-8
s2g0i1 QF3 (Cruising) ECU 1-4, 6-8
s0g1i1 QF4 (Reverse stand-by) ECU 5, 6
s1g1i1 QF5 (Reverse low-speed) ECU 5

(i0 : ignition off, i1 : ignition on, g0 : not reverse, g1 : reverse

s0 : 0 m/h, s1 : (0, 20 m/h], s2 : (20m/h, +∞))

off the end of the input string, the accepted input string set F (M) can give an
input string to D. Then D estimates the final energy costs c*(ζ0, q0, s2g0i1)
and h*(ζ0, q0, s2g0i1). Because the accepted transition set G(D) requires that
c* is equal to h* in the case of an acceptable state transition, only if c* = h*,
M will change the operation state from q0 to QF3 based on Table 2.

3.3. Energy Cost Functions h* and c*

The energy cost functions h* and c* evaluate the energy dissipation of each
ECU operation in the electronic control system per vehicle operation state. h*
represents the ECU energy consumption of the electronic control system accord-
ing to the collected sensor data and the predefined ECU activation conditions
(Table 3). Based on ECU power modes in [25], we model that h* has three
values: Esleep, Eactive, and Etran. Esleep indicates the energy consumption of
an inactive ECU for the predicted inactive duration (Tstate). Eactive denotes
the energy dissipated by an active ECU during Tstate. Etran is energy overhead
used to switch off an active ECU or turn on an inactive ECU.

To consider unacceptable state transitions in modeling energy cost, we de-
velop c* from h* with condition A (Tstate ≥ Tbe). More specifically, c* estimates
the energy consumption based on the sensor data, the ECU activation condi-
tions, and condition A. Due to condition A, c* has different values from h* at
unacceptable state transitions. For example, if sth state transition is predicted
as an unacceptable transition, our model for electronic control system provides
h∗s and c∗s for estimating energy consumption of all ECUs in the model at the
sth state transition.

For ith ECU, when the given sensor data does not satisfy activation condi-
tions, h∗is shows Etran for deactivating and reactivating the ith ECU. On the
other hand, c∗is displays Eactive for the ith ECU at the sth state transition.
Since Tstate

s does not meet condition A, the sth state transition is forecasted as
an unacceptable transition. Namely, c∗is does not consider the sth state transi-
tion as acceptable and energy overheads (Etran) used for the sth state transition.
For all the ECUs in the model at the sth state transition, h∗s evaluates the total
ECU consumption based on Eactive, Esleep, and Etran. However, c* estimates
the total energy dissipation by using Eactive and Esleep without Etran. This is
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Table 3: ECU symbols, applications, and activation input conditions [24]

symbol application input conditions
ECU1 Adaptive Cruise Control i1, g0, {s0, s1, s2}
ECU2 Automatic Emergency Braking i1, g0, {s0, s1, s2}
ECU3 Lane Change Assistance i1, g0, s2
ECU4 High Beam Assistance i1, g0, s2
ECU5 Parking Assistance i1, {s0, s1}
ECU6 Tire Pressure Monitoring

a) i1, g0
b) i1, g1, s0

ECU7 Traffic Light Recognition i1, g0, {s1, s2}
ECU8 Electronic Stability Program i1, g0, {s1, s2}

(The automotive electronic control model consists of 48 ECUs.

The other 40 ECUs are turned on when the vehicle ignites.)

because c∗s verifies that the sth state transition is unacceptable based on the
Tstate

s and condition A. In other words, c∗s does not take account of any ECU
mode changes at the sth state transition.

3.4. Total Energy Consumption Minimization

The following descriptions and Table 4 show how our electronic control
system model minimizes energy consumption. Based on the hypothesis, the
breakeven time (Tbe) derives from the the state duration (Tstate) when the ECU
energy consumption without the power mode changes becomes equal to the
energy dissipation with the power mode changes. According to the predicted
Tstate, the calculated Tbe, and the ECU parameters, our model estimates two
kinds of total energy consumption (c* and h*) of the electronic control system
per vehicle operation state. Generally, c* and h* have the same value. However,
c* is smaller than h* when the model evaluates the energy dissipation of unac-
ceptable state transitions. In the case of an unacceptable state transition, Tstate
does not satisfy condition A. Based on the hypothesis regarding Tbe, such Tstate
is not long enough to compensate for the sizeable operational overhead (Etran)
with the energy savings by deactivating the ECU. Because c* uses condition
A for energy estimation, c* does not consider the unacceptable transition and
becomes smaller than h* due to the absence of Etran.

Hypothesis:

Pactive ∗ Tstate = Etran + Psleep ∗ (Tstate − Ttran) if Tstate = Tbe

Parameters:
Pactive, Psleep, Etran, Tbe, Ttran
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Cost function h*:

h∗is =





Eactive
i if ith ECU is active and the given inputs satisfy Table 3.

Etran
i if ith ECU is active and the given inputs do not satisfy Table 3.

if ith ECU is inactive and the given inputs satisfy Table 3.

Esleep
i if ith ECU is inactive and the given inputs do not satisfy Table 3.

Eactive
i = Pactive

i ∗ Tstates

Esleep
i = Psleep

i ∗ Tstates, for i ∈ I, s ∈ S

Cost function c*:

c∗is =





Eactive
i if ith ECU is active and the given inputs satisfy Table 3.

if ith ECU is active and the given inputs do not satisfy Table 3.

Tstate
s does not meet condition A.

Etran
i if ith ECU is active and the given inputs do not satisfy Table 3.

Tstate
s meets condition A.

if ith ECU is inactive and the given inputs satisfy Table 3.

Tstate
s meets condition A.

Esleep
i if ith ECU is inactive and the given inputs satisfy Table 3.

Tstate
s does not meet condition A.

if ith ECU is inactive and the given inputs do not satisfy Table 3.

Eactive
i = Pactive

i ∗ Tstates

Esleep
i = Psleep

i ∗ Tstates, for i ∈ I, s ∈ S

Condition A: Tstate
s ≥ Tbe

Tbe = max
∀i∈I

Tbe
i

Tbe
i =

Etran
i − Psleepi ∗ Ttrani

Pactive
i − Psleepi

if ith ECU is active at (s− 1)thstate.

i ∈ I, s ∈ S, s 6= 1.

Goal:

minimize
Tstate

I∑

i

S∑

s

c∗is

subject to

I∑

i

c∗is ≤
I∑

i

his, for i ∈ I, s ∈ S
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Table 4: Symbols and Meanings

symbol meaning
ECU Electronic Control Unit
active ECU power mode that all elements inside ECU are fully functional
inactive ECU power mode that all elements except memory are turned off
shut-down power mode change from active to inactive
wake-up power mode change from inactive to active

h∗is model 1: energy consumption of ith ECU at sth state (transition)
c∗is model 2: energy consumption of ith ECU at sth state (transition)

Eactive
i energy consumption of ith active ECU

Esleep
i energy consumption of ith inactive ECU (sleep mode)

Esd
i energy consumption to shut down ith ECU

Ewu
i energy consumption to wake up ith ECU

Etran
i total ith ECU transition energy, i.e. Etran

i = Esd
i+Ewu

i

Tstate
s duration from sth state transition to the predicted next transition

Tbe
i breakeven time for ith ECU

Tsd
i transition time to shut down ith ECU

Twu
i transition time to wake up ith ECU

Ttran
i total ith ECU transition time, i.e. Ttran

i = Tsd
i+Twu

i

Pactive
i power consumption of ith active ECU

Psleep
i power consumption of ith inactive ECU

I the set of all the electronic control units in the vehicle energy model
S the set of all the state transitions in a single driving cycle

For condition A, the electronic control system model takes advantage of the
largest Tbe. When the automotive operating system selects the current opera-
tion state, all ECUs are active or inactive. Since the energy savings depend on
the deactivated duration of active ECUs, the energy model computes the energy
breakeven point (Tbe) for the active ECUs in an operation state. More specif-
ically, to make an energy-efficient state transition, the energy model requires
verification that the predicted state duration (Tstate) is longer than each Tbe of
all the active ECUs before making the state transition. Hence, the biggest Tbe
among the ECUs represents Tbe in condition A.

Our energy model minimizes the energy dissipation of the electronic control
system by avoiding the consumption of operational overheads used for unaccept-
able state transitions. Namely, for an unacceptable state transition, total energy
consumption of ECUs in the electronic control system without making the unac-
ceptable state transition is less than total energy dissipation of overheads used
for the ECU mode changes in the unacceptable transition. Therefore, by se-
lecting the smaller energy estimation between the two cost functions c* and h*
per vehicle operation state, the energy model accumulates the energy savings
by avoiding unacceptable state transitions.
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Figure 8: Diagram of the proposed algorithm for one event prediction (St and P1t: the speed
and the first preprocessed value at t-sec, Ss1 and P1s1: a sample set of time-series feature
data regarding St and P1t.)

4. Proposed Event Prediction Algorithm using Neural Networks

We propose to address unacceptable state transitions where the state period
(Tstate) does not meet condition A by developing a prediction algorithm. The
proposed prediction algorithm forecasts an unacceptable state transition based
on vehicle sensor data. Before making a state transition, the present sensor data
provide crucial clues to determine whether Tstate satisfies condition A or not. As
shown in Figure 8, when the vehicle operating system receives data from multiple
sensors per 0.5 seconds, the algorithm extracts features from the recorded data.
The proposed algorithm searches past state transitions in the data and regards
each previous transition as an event. If Tstate is smaller than Tbe, the algorithm
defines the transition as an unacceptable event. As a result, there are features
from both unacceptable and acceptable event sets. The algorithm (re)trains the
neural networks for the event features. Especially, by adjusting the network
parameters in the neural networks based on the training history, our algorithm
can complete the network training within the given in-vehicle time constraint
(0.1s). Then, the neural networks scan the event features associated with the
current sensor data. According to the correlation between the present data and
the past event features, the algorithm can predict the coming state transition.
The proposed algorithm iterates from the feature extraction to the prediction
per 0.5 seconds.
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4.1. Features

The proposed algorithm takes advantage of time-varying indexes [49, 50]
because the indexes are widely used for analysis and prediction of time-series
data such as vehicle sensor data and stock price. As shown in Table 5, three
preprocessed features (weighted moving average, stochastic D%, and relative
strength index) are used as input values for the neural networks.

Table 5: Selected technical indexes and the formulas [49, 50]

Index Formulas

P1. weighted 5-sec moving average 5∗S0+...0.5∗S−4.5

(5+...+0.5)

P2. 12-sec stochastic D%
∑

(K0+K1+K2)
3

P3. 8-sec relative strength index AU
AU+AD ∗ 100

(St: speed at t-sec, Ka: 4-sec stochastic K% about the ath sample in last 12-sec speed data,

Ka=
S−4a−SL4

SH4−SL4
*100 regarding the ath sample ({ S(−4a+0), S(−4a−0.5), ..., S(−4a−3.5)}),

SL4: lowest speed in the sample, SH4: highest speed in the sample. For t={0, -0.5, ..., -7.5},
if S(t−0.5) > St → Down = (S(t−0.5) − St), Average Down (AD) =

∑
Down
n

,

if St > S(t−0.5) → Up = (St − S(t−0.5)), Average Up (AU) =
∑
Up
n

.)

4.2. Feature extraction

As shown in Figure 8, when the vehicle operating system receives a sensor
value (S0) per 0.5 seconds, the proposed algorithm generates the three features
(P10, P20, P30) based on the previous sensor data. Our past data window stores
the feature data including the sensor value and the generated features for last 50
seconds. The algorithm searches the data window for both previous state tran-
sitions and the feature data that were recorded before the transitions occurred
because the algorithm assumes that the feature data can represent particular
characteristics of past state transitions. For example, if the algorithm finds two
serial state transitions in the past data window and if the duration between
the transitions is less than the breakeven time (Tbe), the algorithm regards the
first transition as an unacceptable event. Based on when the event occurred,
a set of time-series feature data for the last three seconds4 becomes features of
the unacceptable event as the event sample 1 in Figure 8. Consequently, the
feature extraction produces the elements of both unacceptable and acceptable
event sets to train the neural networks and to check the validity of the neural
networks as shown in Figure 9.

4When the proposed algorithm trained the neural networks for the input-output relation-
ship from the relationship between feature data and previous state transitions, we gradually
reduced the size of time-series feature data from Tbe to three seconds. The three-second was
the longest size of feature data. Based on the sum of the training errors between the network
outputs and the target outcomes for a certain period of time-series feature data, the algo-
rithm adjusted the weight parameters in the neural network training. From three-second, the
training errors could be stably reduced by performing the weight parameter adjustments.
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Figure 9: Data processing flow for training, validation, and prediction.

4.3. Shuffle the event element sequence5

To effectively train the neural networks in the proposed algorithm, the algo-
rithm shuffles the element sequence of both the unacceptable and the acceptable
event sets and trains the neural networks according to the rearranged element
order. First, mixing the elements between old events and recent events provides
fair learning opportunities to the algorithm. Because the newly created event
elements are located at the end of the element sequence and have relatively
less learning opportunities than the others, it can be more advantageous for
the algorithm to minimize the training errors on the neural network training.
Second, blending the elements between troublesome events and normal events
can successfully save the training time. For example, when the vehicle speed is
mostly zero during a long period of traffic jams, the features of collected events
are also zero or very small. Namely, the network inputs are mostly zero. How-
ever, the target outputs are not zero. It is challenging for the algorithm to train
the neural networks to make non-zero outputs by using the event element with
zero network inputs. Consequently, the network training time for serial difficult
elements is relatively longer than the training time for normal elements. Hence,
we randomly rearrange the elements between laborious and general events and
give more training time to the elements of general events.

4.4. Neural Network Training

Based on the reordered sequence of event elements, the proposed algorithm
starts to train the neural networks. When the algorithm provides one event
element to the neural networks, each element consists of time-series inputs and
outputs. Figure 8 shows the inputs of an event element sample. The outputs
are an operation state of Table 2 selected by the given inputs. However, the
last output at the state transition is determined by whether the transition is

5The difference between the proposed algorithm and stochastic gradient descent is select-
ing event elements randomly without and with the replacement when an algorithm trains
the neural networks. The difference is similar to the difference between permutation and
combination.
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unacceptable or not. More specifically, in the case of an unacceptable transition,
the last output is the same as the previous output(s) because the unacceptable
state transition should not occur.

Figure 10 illustrates the inputs and the output of two neural network mod-
els6. Both models have four network inputs (x1t, x2t, x3t, x4t) and one network
output (ŷ1t). When the proposed algorithm offers an event element to both
the inputs and the output of the Artificial Neural Networks (ANNs) in Figure
10-1, the neural network training starts. Each event element has four types of
time-series inputs including one sensor value (St) and three preprocessed val-
ues (P1t, P2t, P3t), and one kind of time-series target outcomes (y1t). After
the algorithm maps from the inputs to the network inputs, the neural networks
produce time-series network outputs (ŷ1t). To be specific, the feature extraction
generates St, P1t, P2t, P3t, and y1t for three seconds. The vehicle collects St
per 0.5 seconds. As a result, one event element consists of four sets of six inputs
(St, P1t, P2t, P3t for t={1,2, ..., 6}) and one set of six outputs (y1t for t={1,2,
..., 6}). Hence, when the neural networks produce six network outputs (ŷ1t for
t={1,2, ..., 6}) based on the event element, the algorithm has six errors between
the network outputs and the target outcomes. Based on the sum of the six er-
rors, the algorithm adjusts the network parameters for the neural networks to
learn event features regarding the given event element.

The network parameter adjustment begins to modify the output parame-
ters7 where they are located between the network output (ŷ1t) and the hidden
neurons (h1t, h2t, ..., h8t) by using algorithm 1 (discussed in Section 4.5) and the
backpropagation algorithm. Then, the input parameters between the network
inputs (x1t, x2t, x3t, x4t) and the hidden neurons are adjusted. After updating
all the network parameters, the algorithm retrains the ANNs for the given in-
puts and recalculates the sum of the training errors between the network outputs
and the target outcomes. Until the error sum reaches the threshold within the
predefined training constraints8, the neural network training is iterated. After

6To study the most suitable model of neural networks, the proposed algorithm trains
artificial or recurrent neural networks with a single hidden layer because of limited execution
time. More specifically, the algorithm needs to provide an event prediction per 0.5s and the
neural network training takes the most algorithm execution in the proposed algorithm. Due to
large execution times, our research cannot consider multiple hidden layers or complex neural
networks such as Long Short-Term Memory.

7The range for initial output parameters is (-0.2, 0.2). Input and hidden parameters have
their initial value between -0.1 and 0.1. Initial weight parameters in neural networks are
randomly selected by using random number generators. As a result, the network training can
begin with bad values. Because of the poor values, the algorithm could not pass a validation
test and make an event prediction. However, the initial network training can improve the
bad parameters for the next network training and even prediction. For example, as shown
in Figure 13, adaptive training speed has the average training error lower than the threshold
(1.5). Namely, the algorithm decreases training errors gradually on the network training.

8The maximum execution time and the maximum training number for (re)training the
neural networks about one event element are 0.1s and 250. The threshold is 1.5.
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Figure 10: Models of Neural Networks (x: input neuron, h: hidden neuron, ŷ: output neuron)

completing the network training about the given event element, the algorithm
provides the next event element to the ANNs according to the shuffled element
order. The ANNs generate the network outputs based on the received event
element. The algorithm repeats the network parameter adjustment according
to the produced network outputs. In this way, once the parameter adjustment
for the remaining elements is finished, the neural network training is completed.

To train Recurrent Neural Networks (RNNs), we take the network inputs
of the hidden neurons (h1t, h2t, ..., h8t) into account. As shown in Figure
10-2, each hidden neuron has one more input than artificial neural networks.
Because RNNs assume that the previous output can become the present input,
the hidden neurons send their output to both the network output (ŷ1t) and
themselves. For instance, when the algorithm delivers the third input data
(S3, P13, P23, P33) of an event element from training data set to the network
inputs, the first hidden neuron (h13) in the networks makes the third output
based on the third network inputs (x13, x23, x33, x43) and the previous output
of h12. Then, the first hidden neuron (h14) receives the fourth network inputs
(x14, x24, x34, x44) and the third output of the first hidden neuron (h13). After
the RNNs generate the network outputs (ŷ11, ŷ12, ..., ŷ16) regarding the given
event element, the proposed algorithm computes the training errors between the
network outputs and the target outcomes (y11, y12, ..., y16).

To minimize the training errors in the neural network training, the proposed
algorithm modifies the weight parameters of the RNNs. By repeating the process
of adjusting the parameters and reducing the errors, the algorithm (re)trains
the RNNs to learn the event features about the given event element. More
specifically, based on the sum of training errors, the algorithm adjusts from the
output parameters between the network output (ŷ1t) and the hidden neurons
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Algorithm 1 Adaptive Training Speed

Input: Initial parameter α, β, µ, k=0.
Input: Learning rate l, error history h, weight parameter w

while stopping criteria not met do
Compute the error by kth element (xk, yk) of event set:
Lk ← +L(ŷk(xk;wk), yk)
Update the minimum training error:
if Lk < µ, µ← Lk
Update the learning rate:
lk ← αlk−1 + (1− α)Lk
Update the error history:
hk ← βhk−1 + (1− β)Lk
Compute gradient estimate:
ĝk ← +∇wL(ŷk(xk;wk), yk)
Update weight parameter: wk ← wk − lk(hk/ĝk)

end while
Update element number: k ← k + 1

x: training input, y: target output, ŷ: training outcome,

L: error function, α = threshold/µ, µ: min. training error, β = 0.1

(h1t, h2t, ..., h8t) to the weight parameters of the hidden neurons and the input
parameters in order by using algorithm 1 and the backpropagation algorithm.
For all the event elements, our algorithm iterates the parameter modification
regarding one event element until the sum of training errors meets the minimum
values within the training constraints9.

4.5. Adaptive training speed

In the network parameter adjustment, the proposed algorithm considers the
in-vehicle communication protocols. In particular, the vehicle operating system
(OS) in our automotive research model selects the current operation state per
0.5 seconds according to real-time sensor data. Before the next sensor data
are updated, the algorithm has to complete the training in 0.1 seconds. Based
on the in-vehicle network protocols, the OS requires the maximum 0.4 seconds
for ECU operations when the OS turns on an inactive ECU from the wake-up
command to the ECU activation with consideration of the end-to-end commu-
nication delay10. To meet the limited training constraint (0.1s), our algorithm
modifies the training speed by using the adaptive training speed when the pro-
posed algorithm adjusts the weight parameters in the neural network training.

9The training constraints are the same as the ANN training, i.e. the maximum execution
time (0.1s), the maximum training number (250), and the threshold (1.5s).

10In a worst case, the 0.4s derives from the wake-up control command (0.1s)[32], the ECU
wake-up time (0.2s)[33], and the bus communication delay (0.1s)[31, 34, 35]
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The main idea of the adaptive training speed is to accelerate the training
speed based on training history. By applying previous results to the next train-
ing in the neural network training, the adaptive training speed could effectively
escape the training errors from diverged or fluctuated situations in the network
training and easily converge the errors to the threshold (1.5). To be specific, as
shown in algorithm 1, the adaptive training speed begins with initial parameter
α, β, µ, and k. α refers to a parameter used for updating the learning rate.
α is computed by the ratio of the threshold to µ. µ is the minimum value of
training errors in network training. As training errors are close to the threshold,
α converges to 1. As a result, the learning rate is not changed. β is a constant
used for updating the error history. Since the previous error history is getting
less effective when the error history is exponential calculated, we set β for the
previous error history as 0.1. k indicates the number of event element which
algorithm 1 is currently used.

Next, each weight parameter11 is updated by the three main parts: (A) the
gradient of the training error, (B) the error history, and (C) the learning rate.
For kth event element (xk, yk), the gradient of the training error (∇wL(xk, yk))
provides the direction of the weight parameter adjustment. The ratio of error
history (hk) to ∇wL(xk, yk) determines the amount that the weight parameter
(wk) is modified. The learning rate (lk) controls how fast the weight parameter
is changed based on the ratio. Both hk and lk are updated by the exponen-
tial moving average of training errors. Consequently, when the training errors
regarding the kth event element are not stabilized in series, the accumulated
errors will rapidly increase hk and lk. The increased hk and lk, and ∇wL could
drastically reduce the next training errors to the threshold by adjusting the
weight parameters in the networks.

4.6. Event Prediction

After the neural network training, the proposed algorithm verifies the va-
lidity of the neural networks for final event predictions. To be specific, when
the event elements are shuffled, 70% of the rearranged elements are used for the
network training. The remaining elements are utilized for the validation check.
If the neural networks correctly output more than half of the events in the vali-
dation test, the algorithm applies the current sensor data to the neural networks
for obtaining a final prediction. Especially, to prevent event predictions made
by the discrepancy between past and current data sets, the algorithm iterates
an event prediction several times as shown in Figure 8. Each prediction itera-
tion including the network training and the validation test is executed by using
different training and validation datasets after shuffling the previous datasets.

11Initial parameters are randomly selected by using random number generators. The range
for initial output parameters and for both initial input and hidden parameters are (-0.2, 0.2)
and (-0.1, 0.1) respectively.
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Table 6: Descriptions of Training Algorithms in the Feasibility Study

Step 1 Step 2

Adaptive Training Speed
lt ← αlt−1 + (1− α)Lt
ht ← βht−1 + (1− β)Lt

wt+1 ← wt − lt ht
∇wLt

Adaptive Moment[51]
mt ← β1mt−1 + (1− β1)∇wLt
vt ← β2vt−1 + (1− β2)(∇wLt)2 wt+1 ← wt − η√

(
vt

1−βt2
)+ε

( mt
1−βt1

)

RMSProp[52] Gt ← γGt−1 + (1− γ)(∇wLt)2 wt+1 ← wt − η√
Gt+ε

∇wLt
Adaptive Gradient[53] Gt ← Gt−1 + (∇wLt)2 wt+1 ← wt − η√

Gt+ε
∇wLt

Gradient Descent wt+1 ← wt − η∇wLt
Momentum[55] mt ← γmt−1 + η(∇wLt) wt+1 ← wt −mt

Adaptive Delta[54] Gt ← γGt−1 + (1− γ)(∇wLt)2 wt+1 ← wt −
√
st+ε√
Gt+ε

∇wLt
(Note that Adaptive Delta updates st+1 by using st+1 ← γst + (1− γ)(

√
st+ε√
Gt+ε

∇wLt)2.

For tth training, lt: learning rate, ht: error history, wt: network weight parameter, Lt: training error,

mt: moment term, vt: 2nd moment term, Gt: gradient history. Parameter α, β, β1, β2, γ, η ∈ (0, 1))

The algorithm collects these predictions and makes a final event prediction ac-
cording to the event that more than half of the collected predictions indicate.
Namely, if the predictions do not show a certain event, the algorithm will not
make a final prediction.

4.7. Feasibility study

To assess the practical performance of algorithm 1, we conduct a feasibility
study about algorithm 1 from four perspectives: (A) correct prediction rate,
(B) average execution time, (C) average training errors, and (D) convergence
rate. Based on these four perspectives, we verify that algorithm 1 meets the
requirements for a solution to the research problem. Next, by comparing the
four types of performance evaluation between algorithm 1 and alternatives, we
study the advantages and the disadvantages of algorithm 1.

For the alternatives, we use a prediction algorithm using neural networks
with first derivative-based methods as shown in Table 6: adaptive momentum[51],
RMSprop[52], adaptive gradient[53], gradient descent, adaptive delta[54], and
momentum[55]. Since driving conditions are dynamically changed, the current
event is not always correlated with past events. Thus, the prediction algorithm
using neural networks can forecast unacceptable state transitions only if the
algorithm discovers strong relevance between past and current event data. Ac-
cordingly, algorithms that forecast events by generalizing past events such as
clustering, decision boundary, and regression analysis cannot effectively pre-
dict unacceptable transitions. For example, in this study, a logistic regres-
sion method provides inconsistent event predictions per performance evaluation.
Next, due to limited execution times, we do not consider multiple hidden layers
and high-order methods such as conjugate gradient and Levenberg-Marquardt
algorithms in the feasibility study.
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Figure 11: Benchmark test of correct prediction rates

For evaluating correct prediction rates, we define the rates based on the
percentage of unacceptable transitions that each algorithm predicts from the
evaluation driving cycle (EU in Table 8). Figure 11 shows that the gradient
descent has the highest predictability among the training algorithms in the fea-
sibility study. Algorithm 1 (adaptive training speed) comes in the second12. To
check these algorithms’ availability for vehicle ECU operations with in-vehicle
time constraints, we consider the average execution time. To be specific, if
these algorithms consume more execution time than the system’s instruction
cycle (0.5s), the predicted events have already occurred when the algorithms
forecast events. Consequently, the system cannot use the algorithms for pre-
dicting events. To check this validity for these algorithms as well as the others
in the feasibility study, we measure the average execution time.

For the average execution time in Figure 12, we measure each execution
time when algorithms predict a state transition. As shown in Figure 8, to
make a final prediction, an algorithm takes steps from the feature extraction
to the final prediction when our vehicle model collects new data. We measure
the algorithm’s execution times for this duration and average them. Based on
the average execution time with the instruction cycle (0.5s) and the system

12Because unacceptable state transitions is closely related to the energy savings in vehi-
cle ECU operations, we consider the unacceptable transitions when we define the correction
prediction rates. In the case of the correct prediction rate for acceptable state transitions,
the results are as the following: Adaptive Training Speed (75%), Adaptive Moment (89%),
RMSPRop (82%), Adaptive Gradient (75%), Gradient Descent (71%), Adaptive Delta (75%),
and Momentum (75%). In the driving cycle, both unacceptable and acceptable transitions
are randomly distributed. The total number of unacceptable and acceptable transitions in the
benchmark test are 40 and 28.
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Figure 12: Benchmark test of average execution times

(execution time: total time from the feature extraction to the final prediction)

overheads (0.4s)13, we can check the validity of algorithms. As shown in Figure
12, both algorithm 1 (adaptive training speed) and adaptive moment can be used
for providing valid predictions to vehicle ECU operations. Since the vehicle OS
requires at most 0.4s for ECU operations per the instruction cycle, algorithms
have the maximum 0.1s for predicting a state transition. In Figure 12, all
algorithms except adaptive training speed and adaptive moment consume more
than 0.1s used for predicting an event. Thus, because of their large execution
times, our model can use predictions made only by both adaptive training speed
and adaptive moment.

To verify a training performance of algorithms with the average execution
time in Figure 13, we collect values of training error. When an algorithm trains
neural networks for a given element, the algorithm will reduce the training errors
between the network outputs and the target values. If the algorithm effectively
competes the neural network training, the training errors will be gradually de-
creased. For example, algorithm 1 (adaptive training speed), adaptive moment,
RMSPRop, and adaptive gradient in Figure 13 have relatively smaller varia-
tions of training error than the others. Namely, when these algorithms train
neural networks, their training errors have continuously reduced. Besides, with
consideration of the average execution times in Figure 12, we can verify the
algorithms’ training performance. For example, algorithm 1 has the minimum

13It is the worst case’s delay from the wake-up control command (0.1s)[32], the ECU wake-
up time (0.2s)[33], and the bus communication delay (0.1s)[31, 34, 35].
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Figure 13: Benchmark test of average training errors

Table 7: Types of the Algorithm convergence rate

convergence rate type
Adaptive Training Speed linear
Adaptive Moment linear[58]
RMSProp linear[58]
Adaptive Gradient linear [56]
Gradient Descent sublinear [57]
Momentum linear, sublinear [57]
Adaptive Delta linear [59]

execution time and the second smallest average of training error. These val-
ues indicate that algorithm 1 takes the fewest steps for neural network training
without big fluctuating or diverging cases.

Lastly, to evaluate the training speed of algorithms when the error function
L is convex, we study the algorithm’s convergence rate. To be specific, when the
kth training error Lk is defined by the difference (xk-x*) between the network
output xk and the target outcome x*, the convergence rate comes from the ratio
of Lk+1 to Lk by increasing the k to the infinity. Based on the reference papers
[56, 57, 58, 59], Table 7 shows the convergence rate type of each algorithm.
Most algorithms including algorithm 1 (adaptive training speed) have a linear
convergence rate.
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Table 8: Descriptions of Actual Driving Data used in the Evaluation

Symbol EU[10] US1[8] US2[9] OZ[11]

Data subject
Urban driving cycle,
European Artemis

New York
City Cycle (NYCC)

EPA Urban Dynamometer
Driving Schedule (UDDS)

Light duty petrol vehicle
emissions testing

Duration 16 min. 10 min. 23 min. 30min.
Distance 3 mile 1.2 mile 7.45 mile 12 mile

Average speed 28.3 m/h 7.1 m/h 19.6 m/h 60.6 m/h
No. of unacceptable

state transitions
40 27 36 24

No. of acceptable
state transitions

28 21 36 23

5. Evaluation

The primary evaluation purpose is to determine how much the proposed
algorithm with algorithm 1 (adaptive training speed) can improve the energy
consumption of the electronic control system with consideration of time over-
heads and the algorithm side-effects. First, since the total energy consumption
is enhanced by predicting unacceptable transitions and preventing them, we
start to evaluate how many unacceptable transitions the proposed algorithm
forecasts. Second, since our research model cannot use predictions that the pro-
posed algorithm executes for more than 0.1s, we measure each execution time
to check the validity for the algorithm’s predictions and average them. Third,
we calculate energy improvement by using two types of energy consumption.
When we apply an evaluation scenario to our research model, we measure the
total energy consumption of the model without and with using the proposed
algorithm. Based on the difference between the two energy consumptions, we
estimate how much energy the algorithm improves.

When we evaluate the performance of the proposed algorithm with algo-
rithm 1 from the three perspectives, we compare the results to the performance
of the algorithm with gradience descent. Based on the feasibility study, only
gradient decent had better prediction performance than algorithm 1. To further
performance comparison between algorithm 1 and gradient descent, we evaluate
these algorithms from the three perspectives with two neural network models
(artificial and current neural networks in Figure 10) and different evaluation
datasets. For the evaluation datasets, we use four actual driving scenarios that
Europe, America, and Australia utilize for the automotive performance tests.
Table 8 gives the particular information about the four scenarios.

5.1. Correct prediction rate

The proposed algorithm predicts unacceptable or acceptable state transi-
tions. Since the algorithm cannot correctly predict all the vehicle state transi-
tions, we evaluate two types of correct prediction rate in the evaluation. First,
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we estimate the correct prediction rate about unacceptable state transitions
based on the ratio of the forecasted unacceptable transitions to the total num-
ber of unacceptable transitions. By predicting unacceptable transitions and
preventing them, the algorithm saves the energy consumption of our system
model. Namely, the correct prediction rate about unacceptable transitions di-
rectly relates to the amount of energy consumption saved by the algorithm.

Second, we evaluate the correct prediction rate about acceptable state tran-
sitions. If the algorithm mispredicts an acceptable state transition as an un-
acceptable state transition, the algorithm creates a side effect. Because our
system does not make the mispredicted unacceptable transition (actually ac-
ceptable transition), the energy consumption without the state transition con-
sumes more energy than the energy dissipation with the state transition. As
seen in Figure 4, since the state duration (Tsleep) for the acceptable transition
is longer than the breakeven time (Tbe), the energy saved by the state transition
is larger than the operational energy used for the state transition. To estimate
the adverse effect of these mispredictions about acceptable state transitions,
we estimate the correct prediction rate based on the number of the predicted
acceptable transitions.

As shown in Figure 14, there are 16 test cases according to two training
algorithms, two neural network models, and four driving scenarios. Each test
case has two types of correct prediction rate: (A) the acceptable state transitions
and (B) the unacceptable state transitions. Notably, the correct prediction rates
about the acceptable transitions are mostly higher than the correct prediction
rates regarding the unacceptable transitions. When the proposed algorithm
cannot forecast a state transition based on given vehicle data, the algorithm
predicts an acceptable state transition as a default prediction. Consequently,
the prediction results about the unacceptable state transitions are relatively
fewer. That is, the correct prediction rates of the unacceptable transitions are
less than the other.

For the correct prediction rates about acceptable transitions, most rates are
more than 70% as shown in Figure 14. Namely, the misprediction rates about
the acceptable transitions are less than 30%. Based on the misprediction rates,
we conclude that the given algorithm cases do not produce significant side-
effects to our system model. For further verification, we check practical effects
of the mispredictions about acceptable transitions when we evaluate the energy
improvement rates in Figure 16.

For the correct prediction rates about unacceptable transitions, the rates
in Figure 14 are generally between 30% and 60%. Since an algorithm with
artificial neural networks (ANNs) has a higher prediction rate than the same
algorithm with recurrent neural networks (RNNs), ANNs is more effective for
predicting unacceptable transitions than RNNs. Especially, the gradient descent
with ANN has the highest predictability for all driving scenarios. Adaptive
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Figure 14: Comparison of correction prediction rates of acceptable (left) and unacceptable (right) transitions
(EU: Europe, OZ: Australia, GD: gradient descent, AT: Adaptive Training Speed,

ANN: Artificial Neural Networks, RNN: Recurrent Neural Networks )

speed training with ANNs produces the second highest performance. Namely,
like the feasibility study, gradient descent shows better prediction performance
than adaptive training speed. To further the performance comparison between
the gradient descent and the adaptive training speed with the time constraint,
we measure the algorithms’ execution times in Figure 15.

In this study, the following issues limit the proposed algorithm to achieve
high prediction rates. First, dynamic driving environments make the goal more
difficult. The proposed algorithm predicts events based on the events that the
algorithm previously experienced. That is, if the algorithm meets a new event
that is not relevant to the experienced events, the algorithm cannot predict the
event. The second constraint for the high prediction rates is the randomness
of events. According to the analysis of our prediction results, even though the
algorithm predicts an event based on high probabilistic relevance between the
present event and the previous events, the same past event does not always
occur due to event randomness14.

14Based on the analysis of Student’s t-test regarding the evaluation data, about 20% of
both acceptable and unacceptable transitions have similar prediction clues. As a result, a
prediction can be wrong even though the prediction is made by deterministic clues.
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5.2. Average execution time

To check the validity of an algorithm with in-vehicle communication pro-
tocols, we measure each execution time when the algorithm predicts an event
based on newly-collected sensor data and average them. In our research model,
the vehicle OS selects an operation state per 0.5s according to the new sen-
sor data. In the instruction cycle (0.5s), since the vehicle OS requires at most
0.4s15 for completing ECU operations, the proposed algorithm can have at most
0.1s for predicting a state transition. Thus, based on comparing the average of
collected execution times with this 0.1s, we can verify whether an algorithm is
applicable for vehicle ECU operations in our research model.

Figure 15 displays each case’s average execution time used for predicting a
state transition. All the cases except the adaptive training speed with ANNs
consume more than the time constraint (0.1s). Consequently, these cases cannot
save energy consumption because their predictions are expired when the pre-
dictions are applied for ECU operations. Thus, we conclude that the adaptive
training speed can produce the most energy savings among the given cases even
though the gradient descent with ANNs marks the highest prediction perfor-
mance. To check this assumption, we estimate the energy improvement rates
with consideration of the two kinds of the correct prediction rates in Figure 14
and the average execution times in Figure 15.

5.3. Energy improvement rate

Figure 16 shows energy improvement rates for each case. The rates derive
from two kinds of energy consumption. To be specific, when we simulate our
system model by using a driving scenario in Table 8, we measure the total energy
consumption of our system model without and with using an algorithm case in
Figure 16. Based on the difference between the two energy consumptions, we
evaluate how much energy consumption is improved by this case in the selected
driving scenario. Especially, in evaluating energy improvement rates, we take
account of two main examples. First, if an algorithm correctly predicts an
unacceptable transition but its execution time exceeds the time constraint, we do
not include the energy saved by the prediction in the energy improvement rate.
Second, if an algorithm mispredicts an acceptable transition within the time
constraint, the energy improvement rate for the algorithm will be degraded16.

15The vehicle OS sends commands to ECU transceivers for activating/deactivating ECUs
over the in-vehicle networks. After the ECU transceivers receive these commands, the
transceivers will turn on/off ECUs. In this paper, we estimate that the maximum time
overheads from the OS command to the ECU operation is 0.4s. The 0.4s derives from the
communication service rate (0.1s)[32], the maximum communication delay (0.1s)[31, 34, 35],
the maximum time for ECU activation (0.2s)[33].

16Because of an misprediction for an acceptable transition, our system model does not make
the state transition. Since the mispredicted transition is actually an acceptable transition,
the state duration (Tsleep) is larger than the breakeven time (Tbe). Namely, based on the
descriptions in Figure 4, energy consumption without the mispredicted transition is larger
than energy dissipation with the mispredicted transition.
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Figure 15: Comparison of average execution times
(EU: Europe, OZ: Australia, GD: gradient descent, AT: Adaptive Training Speed,

ANN: Artificial Neural Networks, RNN: Recurrent Neural Networks)

With consideration of these examples, Figure 16 shows energy improve rate
for each algorithm case. The adaptive training speed with artificial neural net-
works achieves the most energy improvement (5%-7%) among the algorithm
cases. Because the adaptive training speed provides the second highest perfor-
mance in the correct prediction rate and the average execution time does not
exceed the time constraint (0.1s) for the most driving scenarios, its predicted
transitions are used for most energy savings in the electronic control system.

6. Conclusion

Based on the feasibility study and the evaluation, the proposed algorithm
with the adaptive training speed using artificial neural networks (ANNs) is the
best solution to avoid energy-inefficient ECU operations for the automotive’s
electronic control system. Even though the adaptive training speed marked less
problem-solving performance (correct prediction rate for unacceptable events)
than the gradient descent, the adaptive training speed enhanced more energy
of the electronic control system. The adaptive training speed completed the
neural network training without violating the time constraint. Namely, the
trained ANNs produced many valid forecasts. On the other side, the gradient
descent generated numerous expired predictions because the gradient descent
was exhaustive for training the ANNs and the comprehensive training consumed
more execution time than the time constraint. Besides, the adaptive training
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Figure 16: Comparison of energy improvement rates
(EU: Europe, OZ: Australia, GD: gradient descent, AT: Adaptive Training Speed,

ANN: Artificial Neural Networks, RNN: Recurrent Neural Networks )

speed created the minimum side-effects (incorrect prediction rate for accept-
able events) in the evaluation. Consequently, by preventing energy-inefficient
vehicle events from the valid predictions without critical side-effects, the pro-
posed algorithm with the adaptive speed training using ANNs provides the most
substantial energy improvement rates to the vehicle’s electronic control system
without any operational problems.

For further research work, we consider two directions: (A) performance eval-
uation with datasets that have numerous event instances and long-term driving,
(B) prototype-based research. In the feasibility study and the evaluation, we
use real driving data that have at most 72 instances and 12-mile driving dis-
tance. For in-depth performance verification regarding the proposed algorithm,
we plan to evaluate the algorithm by using real data with a large number of
event elements and several-hour driving distance. In addition, we study for
the given research problem by using our system model. However, there can be
discrepancies between the system model and electric vehicles’ real operations.
Hence, we plan to apply the proposed algorithm to a prototype electric vehicle
for developing the algorithm with consideration of substantial vehicle conditions.
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