
ar
X

iv
:2

10
1.

05
79

5v
1

 [
cs

.L
G

]
 1

4
Ja

n
20

21

A Metaheuristic-Driven Approach to Fine-Tune Deep

Boltzmann Machines

Leandro Aparecido Passosa, João Paulo Papab

aDepartment of Computing, Federal University of São Carlos

Rod. Washington Lúıs, Km 235, São Carlos, 13565-905, Brazil

leandro.passosjr@dc.ufscar.br
bDepartment of Computing, São Paulo State University

Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil

joao.papa@unesp.br

Abstract

Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have re-

ceived considerable attention over the past years due to the outstanding results

concerning a variable range of domains. One of the main shortcomings of these

techniques involves the choice of their hyperparameters, since they have a sig-

nificant impact on the final results. This work addresses the issue of fine-tuning

hyperparameters of Deep Boltzmann Machines using metaheuristic optimization

techniques with different backgrounds, such as swarm intelligence, memory- and

evolutionary-based approaches. Experiments conducted in three public datasets

for binary image reconstruction showed that metaheuristic techniques can ob-

tain reasonable results.

Keywords: Deep Boltzmann Machine, Meta-Heuristic Optimization, Machine

Learning

1. Introduction

Restricted Boltzmann Machines (RBMs) [1, 2] are probabilistic models that

employ a layer of hidden binary units, also known as latent units, to model the

distribution of the input data (visible layer). Such models have been applied

to deal with problems involving images [3], text [4], detection of malicious con-

tent [5, 6], and several diseases diagnosis [7, 8, 9], just to cite a few. Moreover,

Preprint submitted to Journal of LATEX Templates January 15, 2021

http://arxiv.org/abs/2101.05795v1

RBMs are also used for building deep learning architectures, such as Deep Belief

Networks (DBNs) [10] and Deep Boltzmann Machine (DBM) [11, 12], where the

main difference is related to the interaction among layers of RBMs.

Deep Learning techniques have been extensively used to deal with tasks re-

lated to signal processing and computer vision, such as feature selection [13] [14],

face [15] [16] and image reconstruction [17], multimodal learning [18], and topic

modeling [19], among others. Despite the outstanding results obtained by these

models, an intrinsic constraint associated with deep architectures is related to

their complexity, which can become an insurmountable problem due to the high

number of hyperparameters one must deal with. The present work focuses on

this problem.

Some works have recently modeled the issue of hyperparameter fine-tuning

as a metaheuristic optimization task. Such techniques show up as an inter-

esting alternative for such a task since they do not require computing deriva-

tives of hundreds of parameters as usually happen with standard optimization

techniques, which is not recommended for high-dimensional spaces. Papa et.

al. [20], Rosa et al. [21], and Passos et al. [22] are among the first to intro-

duce metaheuristic-driven optimization in the context of RBMs, DBNs, and

Infinity Restricted Boltzmann Machines (iRBMs) hyperparameter fine-tuning,

obtaining more precise results than the ones achieved using some well-known

optimization libraries in the literature 1.

Recently, Passos et al. [23] proposed to employ metaheuristic approaches in

the context of DBM hyperparameter optimization. However, the work deals

only with Harmony Search [24] and Particle Swarm Optimization [25] tech-

niques. Moreover, the paper presents a shallow discussion regarding the exper-

imental results. Therefore, in this work, we considered DBM hyperparameter

fine-tuning in the context of music-inspired, swarm-based and differential evo-

1Notice the context of hyperparameter fine-tuning stands for a proper selection of the

network’s input values, such as the number of hidden units and the learning rate, among

others, rather than optimizing the bias and weights of the model.

2

lution algorithms, employing seven different techniques: Improved Harmonic-

Search (IHS) [26], Adaptive Inertia Weight Particle Swarm Optimization (AI-

WPSO) [27], Cuckoo Search (CS) [28], Firefly Algorithm (FA) [29], Backtrack-

ing Search Optimization Algorithm (BSA) [30], Adaptive Differential Evolution

(JADE) [31], and the Differential Evolution Based on Covariance Matrix Learn-

ing and Bimodal Distribution Parameter Setting Algorithm (CoBiDE) [32]. Fur-

thermore, all techniques are compared with a random search for experimental

purposes. Additionally, this work provides a more detailed experimental section,

considering a statistical similarity and time consumption comparison. Finally,

the application addressed in this paper concerns the task of binary image re-

construction, and for that purpose, we considered three public datasets.

In a nutshell, the main contribution of this paper is to introduce a detailed

analysis considering metaheuristic optimization to the context of DBM hyper-

parameter fine-tuning, as well as to foster the research towards such area. Addi-

tionally, we provided an extensive experimental evaluation with distinct learning

algorithms over a different number of layers. As far as we are concerned, we have

not observed any study with such level of details. The remainder of this paper

is presented as follows. Section 2 presents the theoretical background related to

RBMs, DBNs, and DBMs. Section 3 introduces the main foundations related

to the metaheuristic optimization techniques employed in this work. Sections 4

and 5 present the methodology and experiments, respectively, and Section 6

states conclusions and future works.

2. Theoretical Background

2.1. Restricted Boltzmann Machines

Restricted Boltzmann Machines are stochastic models composed a visible

and a hidden layer of neurons, whose learning procedure is based on the mini-

mization of an energy function. A vanilla architecture of a Restricted Boltzmann

Machine is depicted in Figure 1, which comprises a visible layer v with m units

and a hidden layer h with n units. Furthermore, Wm×n stand for a real-valued

3

matrix that models the weights between both layers, as well as wij stands for

the weight between the visible unit vi and the hidden unit hj .

Figure 1: The RBM architecture.

Assuming both v and h as binary-valued units, i.e., v ∈ {0, 1}m e h ∈

{0, 1}n, the energy function of models is given by:

E(v,h) = −

m∑

i=1

aivi −

n∑

j=1

bjhj −

m∑

i=1

n∑

j=1

vihjwij , (1)

where a e b stand for the biases of visible and hidden units, respectively.

Since the RBM is a bipartite graph, the activations of both visible and

hidden units are mutually independent, thus leading to the following conditional

probabilities:

P (v|h) =

m∏

i=1

P (vi|h), (2)

and

P (h|v) =
n∏

j=1

P (hj |v), (3)

where

P (vi = 1|h) = φ

n∑

j=1

wijhj + ai

 , (4)

4

and

P (hj = 1|v) = φ

(
m∑

i=1

wijvi + bj

)

. (5)

Where φ(·) represents the sigmoid function.

Suppose the set of RBM parameters θ = (W,a, b) can be learned through a

training algorithm that aims at maximizing the product of probabilities given

all the available training data V , as follows:

argmax
Θ

∏

v∈V

P (v). (6)

The aforementioned equation can be solved using the following derivatives over

the matrix of weights W, and biases a and b at iteration t as follows:

Wt+1 = Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT) + Φ
︸ ︷︷ ︸

=∆Wt

, (7)

at+1 = at + η(v− ṽ) + α∆at−1

︸ ︷︷ ︸

=∆at

(8)

and

bt+1 = bt + η(P (h|v)− P (h̃|ṽ)) + α∆bt−1

︸ ︷︷ ︸

=∆bt

, (9)

where α denotes the momentum and η stands for the learning rate. To obtain the

terms P (h̃|ṽ) and ṽ, one can perform the Contrastive Divergence [1] technique,

which basically ends up performing Gibbs sampling using the training data as

the visible units. In short, Equations 7, 8 and 9 employ the well-known Gradient

Descent as the optimization algorithm. The additional term Φ in Equation 7 is

used to control the values of matrix W during the convergence process, and it

is formulated as follows:

Φ = −λWt + α∆Wt−1, (10)

where λ stands for the weight decay.

5

2.2. Deep Belief Networks

In a nutshell, DBNs are deep archtectures composed of a set of stacked

RBMs, whose are trained in a greedy fashion using the learning algorithm pre-

sented in Section 2.1, i.e., CD and PCD. In other words, an RBM does not

consider the other layers’ units states while training the model at a certain

layer, except that the hidden units at layer i become the input units to the

layer i+1. Suppose we have a DBN composed of L layers, being Wi the weight

matrix of RBM at layer i.

Hinton [33] proposed to consider a fine-tuning as the final step for training

a DBN, aiming to adjust the matrices Wi, i = 1, 2, . . . , L. The procedure is

performed using Backpropagation or the Gradient descent algorithm. The idea

is to minimize some error measure considering the output of an additional layer

placed at the top of the DBN after the training procedure. The aforementioned

layer is often composed of logistic units, a softmax, or even some supervised

technique.

2.3. Deep Boltzmann Machines

As well as DBNs, DBMs are deep architectures able to learn more complex

and intrinsic representations of the input data employing stacked RBMs. Fig-

ure 2 depicts the architecture of a standard DBM, which formulation has mild

differences from the DBN 2.

The energy of a DBM with two layers, where h1 stands for the hidden units

and h2 stands for the visible ones in the first and second layers, can be computed

as follows:

E(v,h1,h2) = −

m1

∑

i=1

n1

∑

j=1

vih
1
jw

1
ij −

m2

∑

i=1

n2

∑

j=1

h1
ih

2
jw

2
ij , (11)

2The main difference stands in the top-down feedback used to approximate the inference

procedure. Moreover, the DBM has entirely undirected connections, while the DBN has

undirected connections in the top two layers only, as well as directed connections at the lower

layers.

6

Figure 2: The DBM architecture with two hidden layers. Notice the double-sided arrows

stand for the top-down feedback in addition to the usual bottom-up pass employed in the

DBM approximate inference procedure.

where m1 and m2 stand for the number of visible units in the first and second

layers, respectively, and n1 and n2 stand for the number of hidden units in the

first and second layers, respectively. Furthermore, the weight matrices W1
m1×n1

and W2
m2×n2 encodes the weights of the connections between vectors v and

h1, and vectors h1 and h2, respectively. The bias terms are dropped out for

simplification purposes.

Due to its complexity, calculating the derivatives of RBM-based models be-

comes a prohibitive task. To deal with such a constraint, one can employ the

Contrastive Divergence algorithm and sample an estimated state of the visible

and hidden units. Thus, the conditional probabilities over the visible and the

two hidden units are given as follows:

P (vi = 1|h1) = φ

n1

∑

j=1

w1
ijh

1
j

 , (12)

7

P (h2
z = 1|h1) = φ

m2

∑

i=1

w2
izh

1
i

 , (13)

and

P (h1
j = 1|v,h2) = φ

m1

∑

i=1

w1
ijvi +

n2

∑

z=1

w2
jzh

2
z

 , (14)

Finally, the generative model can be written as follows:

P (v) =
∑

h1

P (h1)P (v|h1), (15)

where P (h1) =
∑

v
P (h1,v). Further, we shall proceed with the learning pro-

cess of the second RBM, which then replaces P (h1) by P (h1) =
∑

h2 P (h1,h2).

Roughly speaking, using such procedure, the conditional probabilities given by

Equations 12-14, and Contrastive Divergence, one can learn DBM parameters

one layer at a time [34]. Later, one can apply mean-field-based learning to

obtain a more accurate model.

3. DBM Fine-Tuning as an Optimization Problem

In general, Restricted Boltzmann Machines demands a proper selection of

four main parameters: number of hidden units n, the learning rate η, the weight

decay λ, and the momentum ϕ. Since Deep Boltzmann Machines stack RBMs

on top of each other, if one has L layers, then each optimization encodes 4L

variables to be optimized. However, as the training procedure of DBMs are

greedy-wise (we are not considering mean-field-based learning in this work),

which means each layer is trained independently, only 4 variables are optimized

per layer.

In short, the idea is to initialize all optimization techniques at random,

and them the algorithm takes place. The following ranges were considered in

8

this work parameters3: η ∈ [0.1, 0.9], n ∈ [5, 100], ϕ ∈ [0.00001, 0.01] and

λ ∈ [0.1, 0.9]. Aiming to fulfill the requirements of any optimization technique,

one shall design a fitness function to guide the search into the best solutions. For

such purpose, the mean squared error (MSE) over the training set was considered

for the task of binary image reconstruction as the fitness function. Therefore,

we adopted the very same methodology used by [37] to allow a fair comparison

against the works. Figure 3 depicts the optimization model employed in this

paper. In short, the approach proposed in this paper models the whole set of

4L decision variables as being an optimization agent.

Figure 3: Proposed approach to encode the decision variables of each optimization agent.

Figure 4 presents an overall idea of the pipeline used in this work to per-

form DBM hyperparameter fine-tuning. Roughly speaking, the optimization

technique selects the set of hyperparameters that minimize the MSE over the

training set considering a dataset of binary images as an input to the model.

After learning the hyperparameters, one can proceed to the reconstruction step

concerning the testing images, whose MSE is the one used to finally evaluate

3The ranges used for each parameter were empirically selected based on values commonly

adopted in the literature [35, 21, 20, 36, 22]

9

the metaheuristic techniques considered in this work.

Training set

 DBM

 learning

hyperparameters

Learned model

 Testing set

reconstructed images

Figure 4: Proposed approach to encode the decision variables of each optimization agent.

3.1. Optimization Techniques

Below, we present a brief description of the metaheuristic techniques em-

ployed in this paper:

• IHS: a variant of the HS, which models the problem of function minimiza-

tion based on way musicians create their songs with optimal harmonies.

This approach uses dynamic values for both the Harmony Memory Con-

sidering Rate (HMRC), which is responsible for creating new solutions

based on previous experience of the music player, and the Pitch Adjust-

ing Rate (PAR), which is in charge of applying some disruption to the

solution created with HMRC in order to avoid the pitfalls of local optima.

Both parameters are updated at each iteration with the new values within

10

the range [HMCRmin,HMCRmax] e [PARmin,PARmax], respectively. Con-

cerning PAR calculation, the bandwidth variable (bandwidth) ̺ is used,

and its values must be between [̺min, ̺max].

• AIWPSO: a variant of the PSO, which considers any possible solution as

a particle (agent) in a swarm. Each agent has a position and velocity

vector in the search space, as well as two acceleration constants c1 and c2.

A fitness value is associated with each position, and after some iterations

the global best position is selected as the best solution to the problem.

The AIWPSO is proposed to balance the global exploration and local

exploitation abilities for PSO. For each iteration, every particle chooses an

appropriate inertia weight along the search space by dynamically adjusting

the inertia weight w.

• CS: Cuckoo Search [28, 38] employs a combination of the Lévy flight,

which may be defined as a bird flight-inspired random walk with step τ

over a Markov chain, together with a parasitic behavior of some cuckoo

species. The model follows three basic ideas: i) each cuckoo lays one egg

at a time in randomly chosen nests, ii) the host bird discover the cuckoo’s

egg with a probability pa ∈ [0, 1] and either discard the egg or abandon

the chest and build a new one (a new solution is created), and iii) the

nests with best eggs will carry over to the next generations.

• FA: is derived from the fireflies’ flash attractiveness when mating partners

and attracting potential preys. Basically, the attractiveness β of a firefly

is computed by its position related to other fireflies in the swarm, as well

as its brightness is determined by the value of the objective function at

that position. Furthermore, the attractiveness depends on each firefly

light absorption coefficient γ. In order to avoid local optima, the system

is exposed to a random perturbation α, and the best firefly performs a

random walk across the search space.

• BSA: it is a simple, effective and fast evolutionary algorithm developed to

11

deal with problems characterized by slow computation and excessive sen-

sitivity to control parameters. In a nutshell, it employs crossover and mu-

tation operations together with a random selection of stored memories to

generate a new population of individuals based on past experiences. BSA

requires a proper selection of two parameters: the mixing rate (mix rate),

which controls the number of elements of individuals that will mutate in

the population, as well as the F parameter, which controls the amplitude

of the search-direction matrix.

• JADE: a differential evolution-based algorithm that implements the

“DE/current-to-p-best” mutation strategy, which employs only the p-best

agents in the mutation process. Additionally, JADE uses an optional

archive for historical information, as well as an adaptive updating in the

control parameter. JADE requires the selection of the parameter c, which

stands for the rate of parameter adaptation, and g (greedness), that de-

termines the greediness of the mutation strategy.

• CoBiDE: it also a differential evolution-based technique that employs a

covariance matrix for a better representation of the system’s coordinates

during the crossover process. Additionally, mutation and crossover are

controlled using a bimodal distribution to achieve a good trade-off between

exploration and exploitation. The probability to execute the differential

evolution according to the covariance matrix is defined by the parame-

ter pb, as well as the proportion of individuals chosen from the current

population to calculate the covariance matrix is denoted by ps.

4. Methodology

This section provides a brief introduction to the concept of data reconstruc-

tion, as well as the description of the datasets and the experimental setup em-

ployed in this work.

12

4.1. Data reconstruction

Although the literature is fulfilled with methods that employ image recon-

struction for specific tasks, such as super-resolution image reconstruction [39,

17], tomographies [40], and denoising and debluring [41], including RBM [42]

and DBM [43] approaches, data reconstruction in the context of this paper

stands for RBM-based models as an intrinsic process of the learning step, whose

error is monitored for optimization purpose [44], instead of a practical appli-

cation itself. In other words, such models try to represent the input data in

the hidden layers given their probability distribution. Such representation is

supposedly capable of reconstructing a similar input given a stochastic Gibbs

sampling. Afterward, the representation mentioned above is employed for a vast

range of applications, such as classification [45], dimensionality reduction [46],

modeling human motion [47], among others.

4.2. Datasets

We validate DBM fine-tuning in the task of binary image reconstruction over

three public datasets, as described below:

• MNIST dataset4: it is composed by images of handwritten digits. The

original version contains a training set with 60, 000 images from digits ‘0’-

‘9’, as well as a test set with 10, 000 images. Due to the high computational

burden for RBM model selection, we decided to employ the original test

set together with a reduced version of the training set5.

• Semeion Handwritten Digit Data Set6: composed of binary images of

manuscript digits, this dataset contains 1,593 images with the resolution

of 16 × 16 from around 80 persons. The whole dataset was employed in

4http://yann.lecun.com/exdb/mnist/
5The original training set was reduced to 2% of its former size, which corresponds to 1, 200

images.
6https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

13

http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

the experimental section, being 2% used for training purposes, as well as

the remaining 98% for testing.

• CalTech 101 Silhouettes Data Set7: it is based on the former Caltech

101 dataset, and it comprises silhouettes of images from 101 classes with

resolution of 28×28. We have used only the training and test sets, since our

optimization model aims at minimizing the MSE error over the training

set.

Figure 5 displays some training examples from both datasets, which were par-

titioned in 2% for the training set and 98% to compose the test set.

(a) (b) (c)

Figure 5: Some training examples from (a) MNIST, (b) CalTech 101 Silhouettes and (c)

Semeion datasets.

4.3. Parameter Setting-up

One of the main shortcoming in using RBM-based models, such as DBM and

DBN, concerns their fine-tuning hyperparameter task, which aims at selecting

a suitable set of parameters in such a way that the reconstruction error is min-

imized. In this work, we considered IHS, FA, CS, AIWPSO, BSA, JADE, and

the CoBiDE against RS for DBM hyperparameter fine-tuning. We also eval-

uated the robustness of the proposed approach using three distinct DBN and

DBM models: one layer (1L), two layers (2L) and three layers (3L). Finally,

7https://people.cs.umass.edu/~marlin/data.shtml

14

https://people.cs.umass.edu/~marlin/data.shtml

Table 1 presents the parameters used for each optimization technique8, where

5 agents (initial solutions) were used for all optimization techniques during 50

iterations for convergence 9..

Table 1: Parameter configuration.

Technique Parameters

IHS HMCR = 0.7, PARMIN = 0.1

PARMAX = 0.7, ̺MIN = 1

̺MAX = 10

AIWPSO c1 = 1.7, c2 = 1.7

w = 0.7, wMIN = 0.5, wMAX = 1.5

CS τ = 0.1, τMIN = 0.5, τMAX = 1

p = 0.25, pMIN = 0.05, pMAX = 0.5

FA γ = 1, β = 1, α = 0.2

BSA mix rate = 1.0, F = 3

JADE c = 0.1, g = 0.05

CoBiDE pb = 0.4, ps = 0.5

We conducted a cross-validation approach with 20 runnings, 10 iterations for

the learning procedure of each RBM, and mini-batches of size 20. In addition, we

also considered two learning algorithms: Contrastive Divergence (CD) [1] and

Persistent Contrastive Divergence (PCD) [48]. Finally, the Wilcoxon signed-

rank test [49] with significance of 0.05 was used for statistical validation pur-

poses.

Finally, the codes used to reproduce the experiments of the paper are avail-

8Parameters were empirically selected based on each technique author’s suggestions, as

well as the values commonly adopted in the literature [35, 21, 20, 36, 22]
9The selected number of agents and iterations for convergence were empirically chosen

based on values commonly adopted in the literature [35, 21, 20]

15

able on GitHub10111213. The experiments were conducted using an Ubuntu

16.04 Linux machine with 64Gb of RAM running an 2x Intel Xeon Bronze 3106

with a frequency of 1.70 GHz. All the coding was built in C.

5. Experiments

In this section, we present the experimental results concerning DBM and

DBN hyperparameter optimization on the task of binary image reconstruction.

Both techniques were compared using two different learning algorithms, i.e.

Contrastive Divergence and Persistent Contrastive Divergence. Also, seven op-

timization methods were employed. Additionally, three distinct models used for

comparison purposes: one layer (1L), two layers (2L), and three (3L) layers.

5.1. Experimental Results

Tables 2 presents the average values of the minimum squared error over

the MNIST dataset, being the values in bold the best results considering the

Wilcoxon signed-rank test. One can observe the metaheuristic techniques ob-

tained the best results, with special attention to IHS, JADE, and CoBiDE for

both DBN and DBM models. Also, one can not figure a considerable difference

between shallow and deep models, since we limited the number of iterations for

convergence to 10, as well as we did not employ fine-tuning as a final step for

DBN and DBM connection weights. The main reasons for limiting the number

of iterations are related to time constraints, as well as the convergence process

itself. As a matter of fact, if one has unlimited resources in terms of com-

putational load, a standard random search may obtain results as good as the

ones obtained by metaheuristic techniques, since they will have enough time for

convergence. However, we would like to emphasize that DBM hyperparameter

fine-tuning is quite useful when time is limited and a serious constraint.

10LibOPF: https://github.com/jppbsi/LibOPF
11LibDEEP: https://github.com/jppbsi/LibDEEP
12LibDEV: https://github.com/jppbsi/LibDEV
13LibOPT [50]: https://github.com/jppbsi/LibOPT

16

Table 2: Average MSE values and standard deviation considering MNIST dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

Technique Statistics CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS
Mean 0.08758 0.08762 0.08744 0.08766 0.08762 0.08762 0.08761 0.08761 0.08762 0.08762 0.08760 0.08761

Std. 8.102e-05 7.581e-05 3.702e-04 4.686e-04 5.203e-05 6.018e-05 5.063e-05 3.834e-05 6.971e-05 5.941e-05 5.845e-05 5.885e-05

AIWPSO
Mean 0.08764 0.08761 0.08765 0.08771 0.08763 0.08762 0.08762 0.08761 0.08762 0.08762 0.08759 0.08760

Std. 5.694e-05 4.728e-05 4.793e-04 3.744e-04 5.965e-05 4.879e-05 5.207e-05 5.250e-05 4.299e-05 4.643e-05 5.280e-05 5.505e-05

CS
Mean 0.08763 0.08764 0.08767 0.08770 0.08764 0.08765 0.08760 0.08760 0.08764 0.08765 0.08762 0.08761

Std. 5.393e-05 6.722e-05 7.988e-05 2.713e-04 6.906e-05 5.766e-05 5.771e-05 6.122e-05 6.611e-05 8.424e-05 5.541e-05 5.356e-05

FA
Mean 0.08763 0.08764 0.08766 0.08762 0.08763 0.08763 0.08761 0.08763 0.08763 0.08763 0.08761 0.08761

Std. 6.749e-05 6.271e-05 1.113e-04 2.673e-04 5.923e-05 6.488e-05 4.780e-05 8.191e-05 6.342e-05 5.658e-05 3.951e-05 6.131e-05

BSA
Mean 0.08762 0.08762 0.08774 0.08766 0.08762 0.08763 0.08761 0.08762 0.08763 0.08762 0.08762 0.08762

Std. 5.231e-05 6.697e-05 4.135e-04 3.242e-04 6.697e-05 6.555e-05 4.072e-05 5.870e-05 6.176e-05 6.785e-05 5.416e-05 5.175e-05

JADE
Mean 0.08760 0.08763 0.08754 0.08749 0.08763 0.08764 0.08761 0.08761 0.08763 0.08763 0.08761 0.08761

Std. 6.780e-05 5.644e-05 4.131e-04 3.256e-04 6.264e-05 5.967e-05 6.284e-05 5.491e-05 6.546e-05 6.696e-05 5.662e-05 5.356e-05

CoBiDE
Mean 0.08763 0.08762 0.08757 0.08765 0.08763 0.08764 0.08762 0.08760 0.08763 0.08762 0.08761 0.08760

Std. 6.249e-05 7.203e-05 4.104e-04 3.460e-04 6.053e-05 5.312e-05 6.786e-05 5.359e-05 6.022e-05 6.219e-05 5.222e-05 4.868e-05

RS
Mean 0.08762 0.08763 0.08780 0.08782 0.08762 0.08763 0.08761 0.08760 0.08763 0.08763 0.08761 0.08761

Std. 5.699e-05 5.495e-05 3.965e-04 5.091e-04 4.355e-05 4.765e-05 4.657e-05 5.008e-05 6.911e-05 5.740e-05 5.125e-05 5.979e-05

Table 3 presents the results concerning CalTech 101 Silhouettes dataset. In

this case, the best results were achieved by DBN with one layer only. Caltech

poses a greater challenge, since it has more classes than MNIST, which should us

to believe more iterations for convergence would be required for DBM learning,

since it a more complex model than DBN. Also, the best results were obtained

by means of Improved Harmony Search, BSA, JADE, and CoBiDE.

Table 4 presents the results obtained over Semeion Handwritten Digit

dataset, being IHS and JADE the most accurate techniques. The best results

concerning MNIST and Semeion Handwritten Digits datasets, as can be clearly

seen on Tables 2 and 4, was acquired using the DBM. DBN, however, had the

best results considering CalTech 101 Silhouettes dataset, as presented in Ta-

ble 3. Some interesting conclusions can be extracted from a closer look at these

results: (i) meta-heuristic-based optimization allows more accurate results than

a random search, as argued by the works of Papa et al. [20, 51, 37] already; (ii)

DBMs seem to produce more accurate results than DBNs; (iii) the number of

layers do not seem to influence the results when one fine-tune parameters; (iv)

IHS achieved the best results in all datasets (concerning both DBN and DBN),

17

Table 3: Average MSE values and standard deviation considering CalTech 101 Silhouettes

dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

Technique Statistics CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS
Mean 0.15554 0.15731 0.15983 0.15980 0.16057 0.16054 0.16055 0.16055 0.16059 0.16058 0.16057 0.16056

Std. 2.107e-03 1.584e-03 1.064e-03 7.218e-04 1.980e-04 2.922e-04 1.958e-04 1.852e-04 2.162e-04 2.078-04 2.041e-04 2.150e-04

AIWPSO
Mean 0.15641 0.15825 0.16006 0.16014 0.16056 0.16060 0.16056 0.16061 0.16058 0.16057 0.16057 0.16057

Std. 2.414e-03 2.310e-03 8.199e-04 7.570e-04 2.010e-04 2.224e-04 1.914e-04 2.291e-04 2.192e-04 2.129e-04 1.890e-04 2.124e-04

CS
Mean 0.15923 0.15992 0.16023 0.16024 0.16057 0.16062 0.16057 0.16056 0.16059 0.16061 0.16055 0.16057

Std. 1.707e-03 1.030e-03 4.329e-04 3.538e-04 1.855e-04 2.275e-04 2.071e-04 2.107e-04 2.123e-04 2.034e-04 1.941e-04 2.123e-04

FA
Mean 0.16002 0.15956 0.16051 0.16034 0.16060 0.16058 0.16069 0.16056 0.16060 0.16058 0.16055 0.16055

Std. 1.555e-03 1.176e-03 5.541e-04 6.887e-04 2.120e-04 2.130e-04 6.536e-04 2.147e-04 2.327e-04 2.098e-04 2.174e-04 2.029e-04

BSA
Mean 0.15599 0.15775 0.15992 0.15983 0.16056 0.16056 0.16052 0.16054 0.16057 0.16058 0.16057 0.16055

Std. 1.542e-03 1.511e-03 8.302e-03 6.978e-04 2.016e-04 2.174e-04 1.770e-04 1.985e-04 2.063e-04 1.981e-04 1.878e-04 2.004e-04

JADE
Mean 0.15608 0.15790 0.15945 0.15988 0.16058 0.16057 0.16055 0.16058 0.16059 0.16057 0.16058 0.16054

Std. 1.835e-03 1.351e-03 6.426e-04 6.015e-04 2.037e-04 2.001e-04 1.876e-04 1.784e-04 1.933e-04 2.131e-04 2.126e-04 2.000e-04

CoBiDE
Mean 0.15638 0.15800 0.15982 0.15982 0.16059 0.16057 0.16059 0.16056 0.16060 0.16059 0.16056 0.16054

Std. 1.912e-03 1.209e-03 6.181e-04 8.848e-04 2.298e-04 2.204e-04 3.093e-04 1.652e-04 2.090e-04 2.023e-04 1.739e-04 2.060e-04

RS
Mean 0.15676 0.15845 0.15967 0.15976 0.16060 0.16062 0.16059 0.16057 0.16057 0.16056 0.16056 0.16056

Std. 1.623e-03 1.220e-03 7.164e-04 7.133e-04 1.998e-04 1.915e-04 1.974e-04 1.993e-04 1.998e-04 2.173e-04 1.853e-04 1.868e-04

but with results statistically similar to other meta-heuristic techniques as well;

and (v) we could not realize a significant difference between CD and PCD, since

we employed 10 iterations for learning only. Actually, PCD is expected to work

better, but at the price of a longer convergence process.

Figures 6 and 7 display the convergence process regarding the mean squared

error (MSM) and logarithm of the pseudo-likelihood (PL) values obtained dur-

ing the learning step for DBM and DBN, respectively, trained with CD over

MNIST dataset. We used the mean values of the first layer for all optimization

algorithms. One can observe DBM obtained the better approximation of the

model during all iterations, and both ended up with similar log PL values (iter-

ation #10). However, it is important to shed light over the main contribution

of this paper is not to show DBM may learn better models than DBNs, but to

stress meta-heuristic techniques are suitable to fine-tune DBM parameters as

well.

Although one can realize an oscillating behavior of the optimization tech-

niques, all of them obtained better models at the last iteration (i.e. a highest log

PL) than RS, except for the nature-inspired algorithms, that achieved similar

18

Table 4: Average MSE values and standard deviation considering Semeion Handwritten Digit

dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

Technique Statistics CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS
Mean 0.19359 0.20009 0.19025 0.19078 0.20961 0.20961 0.20956 0.20956 0.20961 0.20963 0.20958 0.20958

Std. 1.367e-03 1.965e-03 8.901e-04 1.367e-03 3.669e-04 3.637e-04 3.571e-04 3.438e-04 3.731e-04 3.772e-04 3.609e-04 3.417e-04

AIWPSO
Mean 0.20044 0.20274 0.19679 0.19426 0.20959 0.20961 0.20958 0.20956 0.20964 0.20961 0.20959 0.20959

Std. 6.856-03 3.994 7.995e-03 7.044e-03 3.521e-04 3.853e-04 3.644e-04 3.619e-04 3.773e-04 3.584e-04 3.784e-04 3.664e-04

CS
Mean 0.20528 0.20647 0.20728 0.20651 0.20965 0.20960 0.20957 0.20959 0.20964 0.20963 0.20960 0.20960

Std. 4.948-03 3.556e-03 2.894e-03 2.352e-03 4.034e-04 3.554e-04 3.616e-04 3.722e-04 3 .696e-04 3.572e-04 3.612e-04 3.430e-04

FA
Mean 0.20638 0.20894 0.20649 0.20319 0.20966 0.20965 0.20960 0.20960 0.20964 0.20965 0.20960 0.20928

Std. 4.922-03 2.085e-03 5.630e-03 7.548e-03 4.098e-04 3.855e-04 3.609e-04 3.605e-04 3.499e-04 4.117e-04 3.387e-04 1.555e-03

BSA
Mean 0.19571 0.20002 0.19221 0.19325 0.20961 0.20959 0.20960 0.20958 0.20962 0.20962 0.20960 0.20956

Std. 3.648-03 2.544e-03 2.879e-03 2.419e-03 3.591e-04 3.683e-04 3.783e-04 3.480e-04 3.722e-04 3.847e-04 3.716e-04 3.600e-04

JADE
Mean 0.19893 0.20165 0.19152 0.19170 0.20962 0.20960 0.20957 0.20958 0.20964 0.20959 0.20956 0.20961

Std. 7.890-03 5.316e-03 4.213e-03 4.410e-03 3.554e-04 3.602e-04 3.501e-04 3.755e-04 3.579e-04 3.708e-04 3.524e-04 3.899e-04

CoBiDE
Mean 0.19328 0.19896 0.19190 0.19138 0.20962 0.20961 0.20959 0.20958 0.20960 0.20961 0.20958 0.20959

Std. 1.332-03 1.478e-03 1.821e-03 1.556e-03 3.505e-04 3.631e-04 3.678e-04 3.550e-04 3.579e-04 4.119e-04 3.664e-04 3.593e-04

RS
Mean 0.19710 0.20361 0.19458 0.19463 0.20962 0.20959 0.20960 0.20957 0.20960 0.20960 0.20960 0.20959

Std. 3.133e-03 1.837e-03 3.891e-03 3.909e-03 3.621e-04 3.494e-04 3.864e-04 3.680e-04 3.677e-04 3.563e-04 3.538e-04 3.410e-04

results in most of the experiments, probably due to its demand for more itera-

tions to convergence. The results implies that using meta-heuristic techniques

to fine-tune DBMs seems to be reasonable. DBMs optimized by meta-heuristic-

based techniques obtained the best results considering all datasets used in this

work as well.

5.2. Statistical Analysis

In this section, we detailed the Wilcoxon signed-rank test obtained through

a pairwise comparison among the techniques. For such purpose, we used 5% of

significance to provide the statistical similarity among the best results obtained

by each technique, i.e., considering both number of layers and learning algo-

rithm. Tables 5, 6 and 7 presents the statistical evaluation concerning MNIST,

CalTech 101 Silhouettes, and Semeion datasets.

It is interesting to point out that memory- (IHS) and evolutionary-based

(BSA, JADE, and CoBiDE) techniques obtained the best results for all datasets,

outperforming swarm collective approaches (AIWPSO, FA, and CS). Regarding

evolutionary techniques, mutation and crossover operators may move solutions

19

1 2 3 4 5 6 7 8 9 10
Iterations

0.080

0.085

0.090

0.095

0.100

0.105

0.110

M
S
E

BSA

IHS

JADE

AIWPSO

CoBiDE

CS

FA

RANDOM

1 2 3 4 5 6 7 8 9 10
Iterations

−90

−85

−80

−75

−70

−65

−60

−55

Lo
g
 P
L

BSA

IHS

JADE

AIWPSO

CoBiDE

CS

FA

RANDOM

(a) (b)

Figure 6: MSE and Log PL values during the convergence process considering DBM over

MNIST dataset for (a) and (b), respectively.

Table 5: Statistical analysis considering MNIST dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS

IHS

AIWPSO =

CS 6= =

FA 6= = =

BSA 6= 6= = =

JADE = = = = =

CoBiDE = = = = = =

RS 6= = = = = = =

far apart from each other (i.e., they favor the exploration), which can be inter-

esting in the context of DBM/DBN hyperparameter fine-tuning. Usually, the

hyperparameters we are optimizing (i.e., learning rate, number of hidden units,

weight decay and momentum) do not lead to different reconstruction errors un-

der some small intervals, i.e., the fitness landscape figures some flat zones that

20

1 2 3 4 5 6 7 8 9 10
Iterations

0.080

0.085

0.090

0.095

0.100

0.105

0.110

M
S
E

BSA

IHS

JADE

AIWPSO

CoBiDE

CS

FA

RANDOM

1 2 3 4 5 6 7 8 9 10
Iterations

−90

−85

−80

−75

−70

−65

−60

−55

Lo
g
 P
L

BSA

IHS

JADE

AIWPSO

CoBiDE

CS

FA

RANDOM

(a) (b)

Figure 7: MSE and Log PL values during the convergence process considering DBN over

MNIST dataset for (a) and (b), respectively.

Table 6: Statistical analysis considering CalTech 101 Silhouettes dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS

IHS

AIWPSO 6=

CS 6= 6=

FA 6= 6= =

BSA = = 6= 6=

JADE = = 6= 6= =

CoBiDE = = 6= 6= = =

RS 6= = 6= 6= = = =

can trap optimization techniques.

Regarding the relatively good results obtained using the Random Search,

one may question the contribution of employing metaheuristic techniques for

DBM hyperparameter optimization. Despite the statistical similarity among

optimization techniques, the random search did not obtain the best results for

21

Table 7: Statistical analysis considering Semeion dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS

IHS

AIWPSO 6=

CS 6= 6=

FA 6= 6= =

BSA 6= = 6= 6=

JADE = = 6= 6= =

CoBiDE 6= = 6= 6= = =

RS 6= = 6= 6= = 6= 6=

any dataset.

5.3. Time Analisys

Tables 8, 9, and 10 present an analysis of the computational load required

by the optimization tasks regarding MNINST, CalTech 101 Silhouettes, and Se-

meion datasets, respectively. The results in bold stand for the fastest aproaches

for each model.

One can notice that, in general, IHS has been the fastest technique, followed

by CS, which is somehow expected due to their updating mechanism. IHS

evaluates a single solution each iteration, while CS evaluates a reduced number

of solutions, given by the probability parameter p.

Likewise, one can expect that BSA, JADE, and CoBiDE to behave similarly

regarding the computational load, since they are evolutionary-based techniques

and the number of new solutions (the ones that employ mutation and crossover

operations) to be evaluated depends upon a probability.

One shortcoming of FA and AIWPSO concerns their computational burden

since every agent in the swarm generates a new solution to be evaluated at each

22

Table 8: Computational load (in hours) considering MNIST dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS 0.35 0.25 0.45 0.46 0.60 0.52 0.57 0.55 0.54 0.56 0.82 0.53

AIWPSO 2.21 2.28 2.64 2.41 3.39 2.68 3.89 3.62 4.31 4.73 5.67 4.28

CS 0.30 0.45 0.53 0.56 0.49 0.45 0.44 0.80 0.47 0.29 0.84 0.97

FA 0.75 1.49 1.81 1.06 1.37 1.30 1.95 2.41 2.23 2.22 2.52 1.29

BSA 1.28 1.31 0.98 1.21 1.12 0.71 2.67 1.61 1.48 1.43 2.65 3.74

JADE 1.00 1.63 0.79 0.88 1.93 1.76 2.12 1.81 1.34 1.69 3.17 2.34

CoBiDE 1.25 1.29 1.11 1.11 1.50 1.67 2.13 2.22 2.29 1.60 2.92 2.26

Table 9: Computational load (in hours) considering CalTech 101 Silhouettes dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS 1.64 1.47 1.81 1.62 1.28 1.37 1.84 2.26 1.13 1.06 1.98 1.58

AIWPSO 8.87 9.44 10.54 11.50 9.41 7.79 12.30 12.34 11.17 7.95 13.50 13.82

CS 1.55 1.01 1.86 1.63 0.93 1.76 2.45 2.17 1.46 1.35 2.00 0.80

FA 3.38 5.27 6.03 3.00 6.25 3.27 7.26 2.62 3.58 8.08 6.55 8.83

BSA 6.40 5.08 6.55 8.30 6.04 5.60 9.19 8.42 4.23 4.53 7.95 9.90

JADE 8.24 4.31 9.22 7.90 7.71 4.10 11.15 7.40 8.25 4.57 9.43 8.29

CoBiDE 5.64 5.28 7.48 7.02 5.64 5.36 7.52 7.61 4.47 5.38 6.63 8.70

iteration. In fact, they are expected to present a slower convergence than IHS,

which creates a single solution instead (i.e., it evaluates the fitness function only

once per iteration). Such behavior makes them much faster than swarm-based

techniques, but having a slower convergence as well.

23

Table 10: Computational load (in hours) considering Semeion Handwritten Digit dataset.

1L 2L 3L

DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD

IHS 0.16 0.19 0.22 0.25 0.23 0.20 0.22 0.31 0.28 0.28 0.35 0.38

AIWPSO 1.14 1.00 1.49 1.44 1.61 1.41 2.04 1.98 2.15 1.80 2.51 2.45

CS 0.26 0.18 0.31 0.26 0.26 0.24 0.31 0.20 0.28 0.23 0.40 0.38

FA 0.49 0.74 0.82 0.42 0.62 0.98 0.82 0.53 0.84 1.14 0.90 0.76

BSA 0.68 0.65 0.57 0.88 0.54 0.44 0.57 1.16 0.83 0.92 1.30 1.51

JADE 0.54 0.22 0.92 1.18 0.25 0.80 0.92 1.60 0.37 1.29 1.91 2.09

CoBiDE 0.71 0.58 0.74 0.91 0.49 0.89 0.96 1.03 0.68 1.01 1.52 1.30

6. Conclusions

In this work, we dealt with the problem of fine-tuning Deep Boltzmann Ma-

chines by means of meta-heuristic-driven optimization techniques to reconstruct

binary images. The experimental results over three public datasets showed the

validity in using such techniques to optimize DBMs when compared against a

random search. Also, we showed DBMs can learn more accurate models than

DBNs considering two out of three datasets. Moreover, we provided a detailed

analysis of the similarity among each optimization technique using the Wilcoxon

signed-rank test, as well the trade-off between the computational load demanded

by each metaheuristic and its effectiveness.

Even though all techniques have obtained close results, we observed that

evolutionary- and memory-based approaches might be more suitable for DBM/DBN

fine-tuning hyperparameters. Since we are coping with hyperparameters that,

under small intervals, do not influence the learning step (i.e., the reconstruction

error), evolutionary operators and the process of creating new harmonies seem

to introduce some sort of perturbation that moves possible solutions far apart

from each other. In regard to future works, we aim to validate the proposed

approach to reconstruct and also classify gray-scale images.

24

Acknowledgments

The authors are grateful to FAPESP grants #2013/07375-0, #2014/12236-1,

and #2016/19403-6, and CNPq grants #306166/2014-3, and #307066/2017-7.

This material is based upon work supported in part by funds provided by Intel®

AI Academy program under Fundunesp Grant No.2597.2017. This study was

financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel

Superior - Brasil (CAPES) - Finance Code 001

References

[1] G. E. Hinton, Training products of experts by minimizing contrastive di-

vergence, Neural Computation 14 (8) (2002) 1771–1800.

[2] L. A. Passos, J. P. Papa, On the training algorithms for restricted boltz-

mann machine-based models, Ph.D. thesis, Universidade Federal de São

Carlos (2018).

[3] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, Y. Bengio, An empirical

evaluation of deep architectures on problems with many factors of variation,

in: Proceedings of the 24th international conference on Machine learning,

ACM, 2007, pp. 473–480.

[4] R. Salakhutdinov, G. E. Hinton, Semantic hashing, International Journal

of Approximate Reasoning 50 (7) (2009) 969–978.

[5] U. Fiore, F. Palmieri, A. Castiglione, A. De Santis, Network anomaly detec-

tion with the restricted boltzmann machine, Neurocomputing 122 (2013)

13–23.

[6] L. A. Silva, K. A. P. Costa, P. B. Ribeiro, G. H. Rosa, J. P. Papa, Learning

spam features using restricted boltzmann machines, IADIS International

Journal on Computer Science and Information Systems 11 (1) (2016) 99–

114.

25

[7] C. R. Pereira, L. A. Passos, R. R. Lopes, S. A. Weber, C. Hook, J. P. Papa,

Parkinson’s disease identification using restricted boltzmann machines, in:

International Conference on Computer Analysis of Images and Patterns,

Springer, 2017, pp. 70–80.

[8] P. Khojasteh, L. A. Passos, T. Carvalho, E. Rezende, B. Aliahmad, J. P.

Papa, D. K. Kumar, Exudate detection in fundus images using deeply-

learnable features, Computers in biology and medicine 104 (2019) 62–69.

[9] L. A. Passos, L. A. de Souza Jr, R. Mendel, A. Ebigbo, A. Probst, H. Mess-

mann, C. Palm, J. P. Papa, Barrett’s esophagus analysis using infinity re-

stricted boltzmann machines, Journal of Visual Communication and Image

Representation 59 (2019) 475–485.

[10] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep

belief nets, Neural computation 18 (7) (2006) 1527–1554.

[11] R. Salakhutdinov, G. E. Hinton, Deep boltzmann machines., in: AISTATS,

Vol. 1, 2009, p. 3.

[12] L. A. Passos, J. P. Papa, Temperature-based deep boltzmann machines,

Neural Processing Letters 48 (1) (2018) 95–107.

[13] P. Ruangkanokmas, T. Achalakul, K. Akkarajitsakul, Deep belief networks

with feature selection for sentiment classification, in: 7th International

Conference on Intelligent Systems, Modelling and Simulation, 2016.

[14] K. Sohn, H. Lee, X. Yan, Learning structured output representation using

deep conditional generative models, in: C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information

Processing Systems 28, Curran Associates, Inc., 2015, pp. 3465–3473.

[15] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to

human-level performance in face verification, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–

1708.

26

[16] C.-N. Duong, K. Luu, K. G. Quach, T. D. Bui, 2015 ieee conference on

beyond principal components: Deep boltzmann machines for face modeling,

in: Computer Vision and Pattern Recognition, CVPR ’15, 2015, pp. 4786–

4794.

[17] C. Dong, C. C. Loy, K. He, X. Tang, Learning a deep convolutional network

for image super-resolution, in: European Conference on Computer Vision,

Springer, 2014, pp. 184–199.

[18] N. Srivastava, R. Salakhutdinov, Multimodal learning with deep boltzmann

machines, in: Advances in neural information processing systems, 2012, pp.

2222–2230.

[19] G. E. Hinton, R. Salakhutdinov, Replicated softmax: an undirected topic

model, in: Advances in neural information processing systems, 2009, pp.

1607–1614.

[20] J. P. Papa, G. H. Rosa, K. A. P. Costa, A. N. Marana, W. Scheirer, D. D.

Cox, On the model selection of bernoulli restricted boltzmann machines

through harmony search, in: Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ’15, ACM, New York, USA, 2015, pp.

1449–1450.

[21] G. Rosa, J. P. Papa, K. Costa, L. A. Passos, C. Pereira, X.-S. Yang, Learn-

ing parameters in deep belief networks through firefly algorithm, in: IAPR

Workshop on Artificial Neural Networks in Pattern Recognition, Springer,

2016, pp. 138–149.

[22] L. A. Passos, J. P. Papa, Fine-tuning infinity restricted boltzmann ma-

chines, in: Graphics, Patterns and Images (SIBGRAPI), 2017 30th SIB-

GRAPI Conference on, IEEE, 2017, pp. 63–70.

[23] L. A. Passos, D. R. Rodrigues, J. P. Papa, Fine tuning deep boltzmann

machines through meta-heuristic approaches, in: 2018 IEEE 12th Interna-

27

tional Symposium on Applied Computational Intelligence and Informatics

(SACI), IEEE, 2018, pp. 000419–000424.

[24] Z. W. Geem, Music-Inspired Harmony Search Algorithm: Theory and Ap-

plications, 1st Edition, Springer Publishing Company, Incorporated, 2009.

[25] J. Kennedy, R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann Pub-

lishers Inc., San Francisco, USA, 2001.

[26] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search al-

gorithm for solving optimization problems, Applied mathematics and com-

putation 188 (2) (2007) 1567–1579.

[27] X. Yu, J. Liu, H. Li, An adaptive inertia weight particle swarm optimiza-

tion algorithm for iir digital filter, in: Artificial Intelligence and Compu-

tational Intelligence, 2009. AICI’09. International Conference on, Vol. 1,

IEEE, 2009, pp. 114–118.

[28] X.-S. Yang, S. Deb, Cuckoo search via lévy flights, in: Nature & Biologically

Inspired Computing, 2009. NaBIC 2009. World Congress on, IEEE, 2009,

pp. 210–214.

[29] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimi-

sation, International Journal Bio-Inspired Computing 2 (2) (2010) 78–84.

[30] P. Civicioglu, Backtracking search optimization algorithm for numerical

optimization problems, Applied Mathematics and Computation 219 (15)

(2013) 8121–8144.

[31] J. Zhang, A. C. Sanderson, Jade: adaptive differential evolution with op-

tional external archive, IEEE Transactions on evolutionary computation

13 (5) (2009) 945–958.

[32] Y. Wang, H.-X. Li, T. Huang, L. Li, Differential evolution based on covari-

ance matrix learning and bimodal distribution parameter setting, Applied

Soft Computing 18 (2014) 232–247.

28

[33] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep

belief nets, Neural Computation 18 (7) (2006) 1527–1554.

[34] R. Salakhutdinov, G. E. Hinton, An efficient learning procedure for

deep boltzmann machines, Neural Computation 24 (8) (2012) 1967–2006.

doi:10.1162/NECO_a_00311.

[35] J. P. Papa, G. H. Rosa, D. R. Pereira, X.-S. Yang, Quaternion-based deep

belief networks fine-tuning, Applied Soft Computing 60 (2017) 328–335.

[36] D. Rodrigues, X. S. Yang, J. P. Papa, Fine-tuning deep belief networks

using cuckoo search, in: X. S. Yang, J. P. Papa (Eds.), Bio-Inspired Com-

putation and Applications in Image Processing, Academic Press, 2016, pp.

47–59.

[37] J. P. Papa, W. Scheirer, D. D. Cox, Fine-tuning deep belief networks using

harmony search, Applied Soft Computing 46 (2016) 875–885.

[38] X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, Inter-

national Journal of Mathematical Modelling and Numerical Optimisation

1 (4) (2010) 330–343.

[39] N. Nguyen, P. Milanfar, G. Golub, A computationally efficient superres-

olution image reconstruction algorithm, IEEE transactions on image pro-

cessing 10 (4) (2001) 573–583.

[40] S. Liu, L. Fu, W. Yang, Optimization of an iterative image reconstruction

algorithm for electrical capacitance tomography, Measurement Science and

Technology 10 (7) (1999) L37.

[41] R. Puetter, T. Gosnell, A. Yahil, Digital image reconstruction: Deblurring

and denoising, Annu. Rev. Astron. Astrophys. 43 (2005) 139–194.

[42] R. G. Pires, D. F. S. Santos, L. A. M. Pereira, G. B. De Souza, A. L. M.

Levada, J. P. Papa, A robust restricted boltzmann machine for binary im-

age denoising, in: 2017 30th SIBGRAPI Conference on Graphics, Patterns

and Images (SIBGRAPI), Ieee, 2017, pp. 390–396.

29

http://dx.doi.org/10.1162/NECO_a_00311

[43] R. G. Pires, D. S. Santos, G. B. Souza, A. N. Marana, A. L. Levada,

J. P. Papa, A deep boltzmann machine-based approach for robust image

denoising, in: Iberoamerican Congress on Pattern Recognition, Springer,

2017, pp. 525–533.

[44] G. E. Hinton, A practical guide to training restricted boltzmann machines,

in: Neural networks: Tricks of the trade, Springer, 2012, pp. 599–619.

[45] H. Larochelle, Y. Bengio, Classification using discriminative restricted

boltzmann machines, in: Proceedings of the 25th international conference

on Machine learning, ACM, 2008, pp. 536–543.

[46] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data

with neural networks, science 313 (5786) (2006) 504–507.

[47] G. W. Taylor, G. E. Hinton, S. T. Roweis, Modeling human motion us-

ing binary latent variables, in: Advances in neural information processing

systems, 2007, pp. 1345–1352.

[48] T. Tieleman, Training restricted boltzmann machines using approximations

to the likelihood gradient, in: Proceedings of the 25th International Con-

ference on Machine Learning, ACM, New York, USA, 2008, pp. 1064–1071.

[49] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bul-

letin 1 (6) (1945) 80–83.

[50] J. P. Papa, G. H. Rosa, D. Rodrigues, X.-S. Yang, Libopt: An open-

source platform for fast prototyping soft optimization techniques, ArXiv

e-printsarXiv:1704.05174.

[51] J. P. Papa, G. H. Rosa, A. N. Marana, W. Scheirer, D. D. Cox, Model

selection for discriminative restricted boltzmann machines through meta-

heuristic techniques, Journal of Computational Science 9 (2015) 14–18.

30

http://arxiv.org/abs/1704.05174

	1 Introduction
	2 Theoretical Background
	2.1 Restricted Boltzmann Machines
	2.2 Deep Belief Networks
	2.3 Deep Boltzmann Machines

	3 DBM Fine-Tuning as an Optimization Problem
	3.1 Optimization Techniques

	4 Methodology
	4.1 Data reconstruction
	4.2 Datasets
	4.3 Parameter Setting-up

	5 Experiments
	5.1 Experimental Results
	5.2 Statistical Analysis
	5.3 Time Analisys

	6 Conclusions

