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Abstract

The minimum cost flow problem (MCFP) is the most generic variation of the
network flow problem which aims to transfer a commodity throughout the
network to satisfy demands. The problem size (in terms of the number of
nodes and arcs) and the shape of the cost function are the most critical factors
when considering MCFPs. Existing mathematical programming techniques
often assume the cost functions to be linear or convex. Unfortunately, the
linearity and convexity assumptions are too restrictive for modelling many
real-world scenarios. In addition, many real-world MCFPs are large-scale,
with networks having a large number of nodes and arcs. In this paper, we
propose a probabilistic tree-based genetic algorithm (PTbGA) for solving
large-scale minimum cost integer flow problems with nonlinear non-convex
cost functions. We first compare this probabilistic tree-based representation
scheme with the priority-based representation scheme, which is the most
commonly-used representation for solving MCFPs. We then compare the
performance of PTbGA with that of the priority-based genetic algorithm
(PrGA), and two state-of-the-art mathematical solvers on a set of MCFP in-
stances. Our experimental results demonstrate the superiority and efficiency
of PTbGA in dealing with large-sized MCFPs, as compared to the PrGA
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method and the mathematical solvers.

Keywords:
Minimum cost flow problem, genetic algorithm, representation scheme,
mixed integer nonlinear programming, Taguchi experimental design

1. Introduction

Network flow problems have many real-world applications such as electri-
cal and power networks, telecommunications, road and rail networks, airline
services networks [1]. The shortest path problem, the maximum flow prob-
lem, the assignment problem, the transportation problem, and the minimum
cost flow problem (MCFP) are different variations of the network flow prob-
lem. Among these, MCFP is the most generic network flow problem with
numerous applications such as distribution problems, scheduling, optimal
loading of a hopping aeroplane, and racial balancing of schools [1].

The shape of cost function (linear, nonlinear, convex, concave and non-
convex) on each arc, is one of the main factors contributing to the complexity
of network flow problems and more specifically MCFPs [2]. The linear MCFP
is polynomially solvable [3] by using a strong polynomial algorithm [4]. Two
recent surveys for solving MCFPs using linear cost functions are presented
in [5, 6].

However, in many real-world problems, linearity assumption as well as lin-
ear approximation of the nonlinear functions cannot capture the real-world
situations adequately. In such cases, ideally the nonlinear cost functions
should be directly employed in order to accurately model the real-world sce-
narios [7]. The non-linearity of cost function occurs due to economies of
scale, and it happens when the cost per unit of flow decreases by increasing
flow or when there is a fixed charge for sending a flow through a new arc in
the network [2]. Many studies in the literature suggest the appropriateness
of employing nonlinear cost functions in the network flow problems [8, 9] and
the power flow and power systems problems [10, 11, 12].

MCFP considering a concave cost function and its special case called
single-source uncapacitated (SSU) MCFP with fixed-charge costs are known
to be NP-hard [13]. The complexity of the concave MCFP arises because
during minimisation of a concave function over a convex feasible region (de-
fined by the network constraints) a local optimum is not necessarily a global
optimum [3]. There are several studies in the literature which solved SSU
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MCFP with a concave cost function in order to find a global optimum or an
approximate optimum which serves as a bound on the global optimum. A
dynamic programming approach, branch-and-bound method, and a linear ap-
proximation of a concave cost function were introduced to solve SSU MCFP
using concave cost functions [14, 15, 16]. However, the above-mentioned al-
gorithms are not capable of handling large-scale networks, neither efficiently.
For instance, Fontes et al. [14] solved network instances only up to 19 nodes
in 5 hours, and Burkard et al. [16] considered networks up to 21 nodes, but
it took 13 hours.

Metaheuristic methods are another popular approach for solving the non-
linear network flow problems and more specifically MCFPs. Among these,
ant colony optimisation (ACO) and genetic algorithm (GA) are most commonly-
used. For example, an ACO algorithm and a hybrid ACO with local search
were proposed in [3, 17] for tackling the SSU MCFPs. Both methods were
able to solve the uncapacitated network instances, with the largest network
instances considered being networks with just 50 nodes.

Representation plays an important role in the success of an GA. In order
to deal with network flow problems, several representation schemes have been
proposed such as variable-length encoding [18], fixed-length encoding [19],
priority-based representation (PbR) [20], improved priority-based represen-
tation [21], and random key representation [2]. Additionally, several studies
have been conducted to solve the unit commitment problems in power sys-
tems using priority list representation [10, 22, 23]. Among these, the variable-
length [24] and the fixed-length [25] encoding schemes are not equipped for
solving MCFP since they produce infeasible solutions.

Random key representation and PbR are frequently used for combinato-
rial optimisation. For instance, two genetic algorithm methods using priority-
based representation were proposed to solve transportation problems in [26]
and [20]. A random key representation was applied for solving resource con-
strained project scheduling problem [27] as well as a multi-mode resource-
constrained project scheduling problem [28]. In order to deal with MCFPs,
Gen et al. [29] shows that PbR can be applied for solving small-sized bi-
criteria MCFPs (i.e. network with 25 nodes and 56 arcs). Whereas Fontes
et al. [2] show that the random key representation can be effectively used in
a hybrid GA for solving MCFPs with concave cost functions. In this case,
uncapacitated networks with medium-sized instances (up to 50 nodes) were
considered.

The aforementioned studies [2, 27, 26, 20, 30] have focused on the unca-
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pacitated MCFPs, however, it would be desirable to solve the capacitated
MCFPs directly. Although the capacitated networks can be transformed into
uncapacitated ones, the transformation procedure introduces a large number
of new arcs and nodes. As a result, it significantly increases the number of
decision variables especially when dealing with large-scale problems [1]. Very
few attempts have been made to directly handle the capacitated MCFP, with
an exception in [31], where a deterministic annealing algorithm was devel-
oped for solving the capacitated MCFPs with a dense network (up to 130
variables).

In this paper we propose a probabilistic tree-based genetic algorithm (PT-
bGA) for solving the large-scale MCFP using nonlinear non-convex cost func-
tions, to tackle the following issues in MCFPs: 1) networks with a large num-
ber of arcs and integer flows; 2) various shapes of the cost function; 3) dealing
with a capacitated network directly. The proposed PTbGA method allows us
to consider the capacitated MCFPs directly without the need of transform-
ing a capacitated network into an uncapacitated one. As a result, PTbGA’s
capability to solve the large-scale problem instances is much enhanced.

Building on our preliminary work [32], where only single-source and single-
sink network instances were considered, this paper provides a more detailed
account of the probabilistic tree-based representation (PTbR) scheme, which
provides the key ingredients allowing us to search the entire feasible search
space more effectively, as compared with the conventional priority-based
representation (PbR) scheme. Furthermore, we introduce an improved de-
coding procedure that allows more thorough sampling of the search space.
Finally, we conduct systematic and extensive experiments to compare the
performance of the PTbR-based GA (PTbGA) variant with the PbR-based
GA (PrGA) for solving multi-source and multi-sink MCFP instances (up to
48,000 arcs), using nonlinear non-convex cost functions. We use the Taguchi
method to identify the optimal parameter settings for both PTbGA and
PrGA. The performances of these two GA variants are compared with those
of the-state-of-the-art mathematical solvers on a set of small, medium, and
large-sized network instances. Our experimental results demonstrate the su-
periority of the PTbGA over the PrGA and the mathematical programming
solvers, especially when handling the large-scale MCFPs, as well as its ro-
bustness when using a variety of nonlinear non-convex cost functions.

The remainder of the paper is organised as follows: the definition of the
MCFP is provided in Section 2. Section 3 presents the proposed PTbR
scheme, and compares it with the commonly-used PbR scheme. The pro-
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posed PTbGA method is presented in Section 4. Section 5 describes the
problem instances used, parameter settings, and experimental results. Sec-
tion 6 provides the conclusion.

Nomenclature and abbreviation

Mathematical symbols
A A set of arcs.
b(i) Amount of supply and demand for node i .
cij Non-negative coefficient in cost function.
fij Cost function on arc (i,j ).
G Directed network.
lij Lower bound of arc (i,j ).
m Number of arcs.
n Number of nodes.
N A set of nodes.
xij An integer flow from node i to node j .
uij Capacity of arc (i,j ).

Notations
Flowp Amount of flow can be sent on Pathp.
h Indicator for the outcome of one-sample t-test.
No. Instance number.
OBJ Cost function value obtained by mathematical solvers.
p Path counter.
std Standard deviation of cost function over 30 runs.
t Average running time in seconds.
t′ Running time for mathematical solvers.
U Capacity of each Path.

Parameters
α Percentage of population members which are initialised randomly.
Itmax Maximum number of iterations.
N Number of decoding procedure for PTbGA.
Pc Crossover rate.
Pm Mutation rate.
pop size Number of individuals in each population for GA-based methods.

Abbreviations
MCFP Minimum cost flow problem.
MINLP Mixed integer nonlinear programming.
NFEs Maximum number of function evaluations.
NLP Nonlinear programming.
OR Operations research.
PbR Priority-based representation scheme.
PrGA Priority-based genetic algorithm.
PTbGA Probabilistic tree-based genetic.
PTbR Probabilistic tree-based representation scheme.
RPD Relative percentage deviation.
S/N Signal-to-noise.
WMX Weight mapping crossover.
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2. Problem definition

Let G = (N , A) be a directed network with a set N which consists of n
nodes and a set A of m arcs. Each arc (i, j) has a capacity of uij and lower
bound of lij which denote the maximum and minimum amount that can be
sent on the arc (i, j), respectively. Each node i ∈ N is associated with an
integer value b(i). If b(i) is positive, it shows that node i is a supply node, if
b(i) is negative, node i is a demand node with demand of | b(i) | and finally
b(i) = 0 shows the transshipment node i. A decision variable in an MCFP is
an integer flow and denoted by xij. The associated cost for each flow (xij)
is denoted by fij(xij). Fig. 1 shows an example of the MCFP with n=5
nodes and m=7 arcs, which has a supplier node (b(1) = 10) and a demand
node (b(5) = −10). Generally in MCFP, we aim to send flows throughout
the network to satisfy all demands by minimising the total cost (i.e., the
objective function value). The formulation of the MCFP is as follows [1]:

Minimise : z(~x) =
∑

(i,j)∈A

fij(xij), (1)

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i) ∀ i ∈ N , (2)

lij ≤ xij ≤ uij ∀ (i, j) ∈ A, (3)

xij ∈ Z ∀ (i, j) ∈ A, (4)

where Eq.1 minimises the total cost within the network. Eq. 2 is a flow
balance constraint and states that the difference between the total outflow
(first term) and the total inflow (second term) is equal to b(i). Eq. 3 ensures
that the flow on each arc is between upper and lower bound, and finally
Eq. 4 ensures that all flow values are integer. In this study we consider the
following assumptions for the MCFP: 1) the lower bounds on all arcs are set
to zero; 2) the network is directed; 3) there are no two or more arcs with
the same tail or head in the network; 4) the total demand and supply in the
network are equal, i.e.

∑n
i=1 b(i) = 0; 5) there are more than one supplier

and one demand node in the network; and 6) the cost function on each arc
(fij) is a nonlinear non-convex function.
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Figure 1: An example of the MCFP (n=5, m=7).

3. Representation schemes

A good representation scheme can often make an optimisation problem
easier to solve. In the following, we first describe the priority-based represen-
tation (PbR) which is the most commonly-used representation method for
handling MCFPs and discuss its drawbacks. Then we present the probabilis-
tic tree based representation (PTbR) scheme for solving the MCFP and we
demonstrate that this representation scheme can help the search in the right
direction in feasible regions of the search space of the MCFP.

3.1. Priority-based representation (PbR)

A chromosome in the GA has two main characteristics: locus, the position
of a gene in a chromosome; and allele, the possible values each gene can
take. To represent a candidate solution for an MCFP, PbR lets the number
of genes to be equal to n and the allele is generated randomly between 1
and n, which represents the priority of each node for constructing a path
among all possible nodes [29]. Fig. 2 illustrates the PbR chromosome and
its corresponding solution for the network presented in Fig. 1.

To obtain a feasible solution for a given PbR chromosome presented, a
two-phase decoding procedure is followed. In phase I, a path is generated
based on the priorities and the maximum possible flow is sent though the
generated path in phase II. The decoding procedure starts from node 1.
Based on the network presented in the Fig. 1, the possible successor nodes
are nodes 2 and 3. Based on Fig. 2a, the priorities of nodes 2 and 3 are
equal to 5 and 2, respectively. Since node 2 has a higher priority, node 2
is selected as the successor. Node 2’s possible successors are nodes 3 and 4.
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(a) An example of a chromosome for the net-
work in Fig. 1.

(b) A feasible solution for the given chro-
mosome.

Figure 2: The PbR chromosome and its corresponding solution.

Since the priority of node 4(3) is higher than node 3(2), node 4 is selected.
Finally from node 4 we can only move to node 5. Hence, the following path
is generated: 1 → 2 → 4 → 5. In phase II, in order to send a feasible
flow on the generated path, the capacity of the generated path is calculated:
U = min{u12 = 10, u24 = 7, u45 = 8} = 7. Consequently, the flow on
the generated path is equal to 7. After sending the flow on the network,
the upper bound (uij), supply and demand should be updated. Since the
supply/demand is not equal to 0, the second path should be generated. The
above procedure repeats until all demands are satisfied. Fig. 2b presents
the feasible solution for the given chromosome in Fig. 2a after executing the
decoding procedure.

Although PbR is commonly used in the network flow problems [29], but
it has some limitations in representing the full extent of the feasible search
space [32]. Fig. 3 shows an example for the network presented in Fig. 1
that PbR is unable to represent. Here the first path is generated as follows:
1 → 2 → 4 → 5. Since in Path1 after node 1, node 2 is selected, it shows
that node 2 has a higher priority than node 3. Hence, if arc (1,2) is not
saturated, PbR will not allow any flow to be sent through arc (1,3), essentially
blocking this possibility completely (see Path2 in Fig. 3). This means that
PbR is unable to represent a potential feasible solution such that the flow
would go through arc (1,3) (as shown in Fig. 3). Another drawback for
PbR is that each time a path is generated, we are supposed to send the
maximum possible amount on the generated path. For instance, for the
network in Fig. 1, if the first generated path is Path1 : 1 → 2 → 4 → 5,
since U = min{u12 = 10, u24 = 7, u45 = 8} = 7, we are not allowed to send
a flow less than 7. These limitations would restrict a search algorithm from
reaching the full extent of the feasible search space.
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Figure 3: An example of the feasible solution that PbR fails to represent (for the network
in Fig. 1).

Figure 4: A tree structure for the network presented in Fig. 1

3.2. Probabilistic tree-based representation (PTbR)

To counteract the above limitations of the PbR, here we propose a prob-
abilistic tree-based representation (PTbR) scheme, where a probability tree
is adopted to represent a potential MCFP solution. Unlike the PbR scheme
which is restricted to a small part of the feasible space, the PTbR is able to
represent all possible feasible solutions. The PTbR can be represented as a
tree structure where the probability of moving from one node to another is
defined on the branches of the tree. Fig. 4 illustrates the probability tree
structure for the network in Fig. 1.

The tree structure can be converted to a chromosome. Fig. 5 shows
an example of a chromosome for the tree structure presented in Fig. 4.
The chromosome has n-1 sub-chromosomes (SCh), m genes, and within each
sub-chromosome the value of each gene (which represents the probability) is
between 0 and 1 and cumulatively increases to one.

Based on Algorithm 1, in order to obtain a feasible solution from the
PTbR (e.g. a chromosome), we follow two phases. In the first phase, a path
is constructed and in the second phase, a feasible flow is sent through the
generated path. This process is repeated until the demand is satisfied. The
inputs for Algorithm 1 are chromosome, supply/demand nodes. To obtain a
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Figure 5: A chromosome for the tree structure in Fig. 4

feasible solution for the chromosome in Fig. 5, we start generating the first
path from node i=1 (SChi=1). First, a random number is generated in [0,1]
(e.g. rand=0.2, line 10). Based on the chromosome in Fig. 5, from node 1
(i.e. SChi=1) we have two outgoing arcs (1,2) and (1,3) which connect us to
nodes 2 and 3 respectively. Since the generated random number is between
0 and 0.6 (i.e 0 ≤ rand = 0.2 ≤ 0.6), we reach node 2 by moving through
arc (1,2) and node 2 will be added to the generated path (line 11). Since we
have not reached to the node n=5 (line 9) yet, from node 2 (SChi=2) another
random number is generated (0.09 ≤ rand = 0.85 ≤ 1) and we move through
arc (2,4) to reach to node 4. From node 4, the only available node is 5 (i.e.
through arc (4,5)). Since we have already reached node n=5, the first phase
is terminated and here is the generated path: 1→ 2→ 4→ 5.

In the Phase II of Algorithm 1, we attempt to send a feasible flow through
the generated path. First the capacity of the generated path is defined (line
15, U = min{u12 = 10, u24 = 7, u45 = 8} = 7). By generating a random
integer number in [1,min{U = 7,b(1) = |b(n)| = 10}] (line 16) a feasible flow
for the constructed path is defined (e.g. Flowp=1 = 6). Since the demand
has not been fully met (i.e., not equal to 0 yet) (line 3), the above procedure
(Phase I and II of Algorithm 1) is repeated. The outputs for Algorithm 1
are the generated paths as well as their feasible flows. For instances, Fig. 6
shows a feasible solution with a second path generated for the chromosome
presented in Fig. 5. This solution would be impossible to generate from the
PbR method (as shown in Fig. 3).

4. Probabilistic tree-based GA (PTbGA)

After showing the advantages of adopting PTbR over PbR in generating
more freely feasible solutions for the MCFP, this section presents PTbGA
(the proposed PTbR-based genetic algorithm), which incorporates PTbR

10



Algorithm 1 Decoding procedure for PTbR scheme

1: Input: (Chromosome, Supply node (b(1)), Demand node (b(n)))
2: p←1 (path counter)
3: while supply 6= 0 and Demand 6= 0 do
4: Flowp ← 0
5: Phase I: Construct a path
6: i←1
7: j←[ ]
8: Pathp ←{i}
9: while j 6= n do

10: Generate a random number in [0,1] and define the successor node (j) based on
probabilities in the sub-chromosome i (SChi)

11: Pathp ← Pathp ∪ {j}
12: i←j
13: end while
14: Phase II: Define a feasible flow
15: U ← min{uij}; where (i,j) are arcs in the constructed path
16: Flowp ← randi ∈ [1,min{U ,b(1),b(n)}]
17: update: Supply/Demand and Network
18: p←p+1
19: end while
20: Output: Path and Flow

(a) Decision variables in the network. (b) Feasible paths and flows.

Figure 6: An example of a feasible solution for the sample chromosome in Fig. 5.

into an GA. Our aim is to evolve a population of probabilistic trees, so that
it will not only allow us to freely produce more feasible MCFP solutions, but
also ultimately better solutions at the end of an optimisation run. Algorithm
2 summarises the procedure of PTbGA.
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Algorithm 2 PTbGA procedure.

1: Input: (MCFP network, PTbGA parameters)
2: Initialise a population of pop size individuals (Subsection 4.1).
3: while stopping condition is not satisfied do
4: Genetic operators are applied (Subsection 4.3).
5: Decoding procedure is performed N times on each chromosome (Algorithm 1).
6: Evaluate all individuals in the population (Subsection 4.4).
7: Select fitted individuals for next iteration (Subsection 4.4).
8: Update the best individual in each iteration (i.e. Best Solution).
9: end while

10: Output: Best Solution is reported (i.e. network contains Path and Flow).

Figure 7: The mapping from the encoding space to the solution space.

4.1. Initialisation

At the start of PTbGA, a population with pop size individuals is gener-
ated. Instead of applying the 100% random initialisation, α % of the pop-
ulation members are generated randomly and (1-α)% members of pop size
are seeded from the outputs of the nonlinear programming (NLP) solver, in
order to give the population some good starting points. In this paper we
utilised fmincon() routine of the Matlab software as the NLP solver and
each of its outputs is mapped to a chromosome.

4.2. Decoding procedure for PTbR

The decoding procedure is invoked on each individual to perform a map-
ping from a chromosome (i.e., the encoding space) to a MCFP network in-
stance (i.e., the solution space). As shown in Fig. 7, there are three different
possible mappings between the encoding space and the solution space. PTbR
follows the 1-to-N mapping, where N can be any number greater than 1. But
PbR has the property of N-to-1 mapping [29].

Since the mapping between chromosome and the solution space is 1-to-N
for PTbR, by applying decoding procedure (Algorithm 1) N times on a given
chromosome, N solution vectors (~x) will be obtained. This characteristic of
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Figure 8: N times decoding procedure within PTbGA for the example chromosome in
Fig. 5.

the PTbR scheme improves the searching capability of PTbGA within the
feasible region and provides an algorithm a better chance to generate the
better quality solutions. Hence, in PTbGA, instead of performing N =1 time
decoding for a given chromosome, the decoding procedure in Algorithm 1 is
applied N times for a given chromosome. The N decoding procedure for the
given chromosome is shown in Fig. 8.

4.3. Crossover and mutation

In GA, search is carried out by applying genetic operators to selected in-
dividuals from the population, e.g., using crossover and mutation operators
to generate new offspring from the selected parents (chromosomes) in each
generation. To perform a crossover operator, two parents are randomly se-
lected from the population and two sub-chromosomes are randomly selected
within each parent (SChA and SChB), as shown in Fig. 9. Then the crossover
operator is applied to swap the sub-chromosomes between the two parents.
To perform mutation on each chromosome, a random parent is selected from
population and a randomly chosen sub-chromosome is regenerated to cre-
ate a new offspring. Note that the crossover and mutation operators always
produce feasible solutions.

13



Figure 9: A two point crossover operator for PTbGA.

4.4. Fitness evaluation and selection criteria

As shown in Fig. 8 and for the given chromosome, the decoding procedure
presented in Algorithm 1 is applied N times which produces N solutions in
the solution space. By evaluating the N solutions using Eq. 1, N objective
values are obtained. To evaluate the fitness value of a given chromosome, we
can either: 1) calculate the average of the objective values (Ave) for the N
solutions; or 2) select the minimum (Best) of the N objective values. Decod-
ing N times should provide more accurate information about the goodness
of the chromosome than just decoding (or sampling) once. In Subsection 5.2,
we demonstrate that the second approach (i.e. choosing the minimum (Best)
objective value) is the most effective way of evaluating the fitness value for
each chromosome. Finally, after obtaining a fitness value for each individual
probabilistic tree, the tournament selection procedure is applied to select the
fitter individuals from the population for the next iteration.

4.5. Stopping criteria

There are two stopping criteria for the PTbGA method: 1) reach the
maximum number of function evaluations (NFEs); 2) no improvement in the
best individual for β successive iterations. Either of these conditions is sat-
isfied first, the algorithm terminates and the best individual (Best Solution)
is reported as the output.

In this paper we compare the proposed PTbGA with the priority-based
GA (PrGA). The PrGA method is obtained from [29] which used priority-
based representation as the encoding scheme for MCFPs. A weight mapping
crossover (WMX) and inversion mutation were applied as genetic operators
and tournament selection was chosen as the selection procedure [29, 33].

A weight mapping crossover (WMX) is proposed as an extension of one-
cut crossover for permutation representation [34]. To apply WMX crossover,
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(a) Select a break
point.

(b) Swap sub-strings
between parents.

(c) Sort and map the
right sub-strings.

(d) Generate off-
spring.

Figure 10: An example of a weight mapping crossover (WMX) for PrGA.

two parents are randomly selected from the population and a random break-
point is chosen, as shown in Fig. 10a. Then the sub-strings on the right
side of the breakpoint are swapped between parents (Fig. 10b). Sub-strings
located on the right side of the break point are sorted and mapping between
those sub-strings is done (Fig. 10c). Finally, the offspring based on the
mapping is generated as shown in Fig. 10d. To perform inversion mutation,
a parent, as well as two break points within the chromosome are randomly
selected. Then the sub-string between two selected break points is inverted
and an offspring is generated.

5. Experimental Studies

In this section, we first describe the MCFP instances and cost functions
that have been adopted, followed by some discussion about the mathematical
solver packages used in our experiments. We then present the parameter
setting, experimental result analysis on the performances of PrGA, PTbGA,
and mathematical solvers in solving the MCFP instances.

Since we want to solve the MCFP instances using nonlinear non-convex
functions, a set of nonlinear non-convex functions commonly-used in the lit-
erature has been adopted [35, 36, 37]. Michalewicz et al. [37] categorised
these nonlinear cost functions as 1) piece-wise linear cost functions; 2) multi-
modal (nonlinear non-convex) cost functions; 3) smooth cost functions which
are mostly used for Operations Research (OR) problems. In this paper we
chose the nonlinear non-convex and arc-tangent approximation of the piece-
wise linear cost functions to compare the performances the PTbGA, PrGA
and two mathematical solver packages. The formulation of these functions
are as follows [37, 35, 36]:
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Figure 11: Shapes of different cost functions.

F1 : f(xij) = cij
(
arctan(PA(xij − S))/π + 0.5+

arctan(PA(xij − 2S))/π + 0.5+

arctan(PA(xij − 3S))/π + 0.5+

arctan(PA(xij − 4S))/π + 0.5+

arctan(PA(xij − 5S))/π + 0.5
)
.

(5)

F2 : f(xij) = cij
(
(xij/S)(arctan(PBxij)/π + 0.5)+

(1− xij/S)(arctan(PB(xij − S))/π + 0.5)+

(xij/S − 2)(arctan(PB(xij − 2S))/π + 0.5)
)
.

(6)

F3 : f(xij) = 100× cij
(
xij(sin

(5πxwij
4S

)
+ 1.3)

)
. (7)

Note that PA and PB are set to 1000, S is set to 5 and cij is non-negative
coefficient [14, 36]. To examine the robustness of PTbGA, the parameter
w in the cost function F3 is set to 1, 2 and 3, to generate F3a, F3b and F3c

functions, respectively. These cost functions F1 to F3 are illustrated in Fig.
11.

A set of 36 capacitated network instances are randomly generated with
n = {5, 10, 20, 40, 60, 80, 100, 150, 200, 250, 400, 500} nodes and presented
in Table 2, where No. denotes the instance number. Note that for each
node size n, we generate 3 different instances with m arcs. The network
instances are grouped as small-sized instances (5 and 10 nodes), medium-
sized instances (20-60 nodes) and large-sized instances (80-500 nodes). We
are not able to utilise the existing benchmark in the literature, since all
existing instances are uncapacitated networks, and the largest size of the
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Table 2: A set of 36 randomly generated network instances.

small-sized problems medium-sized problems

No. n m No. n m No. n m No. n m No. n m

1
5

7 4
10

35 7
20

85 10
40

263 13
60

717
2 9 5 32 8 104 11 374 14 724
3 7 6 24 9 93 12 336 15 663

large-sized problems

No. n m No. n m No. n m No. n m No. n m

16
80

1306 19
100

1894 22
150

3770 25
200

7704 28
250

12027
17 1278 20 2141 23 4205 26 7546 29 12134
18 1235 21 2063 24 4590 27 7768 30 11771

No. n m No. n m
31

400
30247 34

500
47029

32 30210 35 47554
33 29556 36 48839

networks are 50 nodes, however in this paper we aim to solve the large-scale
capacitated network instances with up to 500 nodes and 48,000 arcs.

5.1. Mathematical programming methods and challenges

The MCFP using nonlinear non-convex cost functions is categorised as
mixed integer nonlinear programming (MINLP) problems. There are lim-
ited mathematical solver packages which are able to solve MINLPs such as
CPLEX, Couenne, Baron, LINDOGlobal and AlphaECP [38, 39, 40]. How-
ever, each of these solvers has some limitations. For instance, CPLEX is
only able to solve quadratic optimisation problems and it is unable to model
and solve general MINLPs. BARON [41] cannot handle the trigonometric
functions sin(x), cos(x), while Couenne is not able to handle the arctangent
function. Among these solvers, AlphaECP and LINDOGlobal are the only
ones which are able to handle general MINLPs [39, 40]. Considering all the
limitations that mathematical programming methods encountered, in this
paper we choose to compare PTbGA and PrGA’s results with those of LIN-
DOGlobal and AlphaECP.

5.2. Parameter settings

In this subsection we study the behaviour of different parameters and op-
erators of the PTbGA and PrGA. One way of doing that is to use a full fac-
torial design to study the behaviour of parameters and operators [42, 43, 44].
When the number of factors increases, the full factorial design becomes inef-
ficient [45]. The most important parameters for PTbGA are: population size
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Table 3: Factors and their levels in the proposed PTbGA.

Factors Symbols Level Factors Symbols Levels Factors Symbols Levels Factors Symbols Levels Factors Symbols Levels

N decoding

A(1) 1

pop size

B(1) 20

Pc

C(1) 0.80

Pm

D(1) 0.10
Fitness

E(1) Ave
A(2) 5 B(2) 40 C(2) 0.85 D(2) 0.15 E(2) Best
A(3) 10 B(3) 60 C(3) 0.90 D(3) 0.20
A(4) 20 B(4) 80 C(4) 0.95 D(4) 0.25

Table 4: Factors and their levels in the PrGA.

Factors Symbols Levels Factors Symbols Levels Factors Symbols Levels

pop size
A(1) 100

Pc

B(1) 0.80
Pm

C(1) 0.10
A(2) 200 B(2) 0.85 C(2) 0.15
A(3) 300 B(3) 0.90 C(3) 0.20

(pop size), N times decoding (or sampling) for each chromosome, crossover
rate (Pc), mutation rate (Pm). One important consideration for PTbGA is
how we evaluate the fitness value of a chromosome, either using the average
of N objective values (Ave) or using the minimum (Best) of the N objec-
tive values (Subsection 4.4). For PrGA, the most important parameters are
pop size, Pc and Pm. These parameters for PTbGA and PrGA and their
levels are presented in Tables 3 and 4. As shown in Table 3, for PTbGA, we
consider four 4-level factors and one 2-level factor with 30 network instances
which runs five times [45]. Hence, the total number of runs for a full factorial
design for PTbGA is 36× 44 × 21 × 5 = 92, 160, and this value for PrGA is
36× 33 × 5 = 4, 860.

Instead of running the full factorial design test, several experimental de-
signs have been suggested to reduce the number of experiments [46]. Among
these, the Taguchi method has been successfully applied for a systematic ap-
proach in optimisation [47]. Using the Taguchi design for our experiments,
we try to evaluate different combinations of parameter values. We also try
to maximise the performance of the signal-to-noise (S/N) ratios by solving
a partial set of experiments (instead of the full set of experiments) utilising
the orthogonal arrays [48]. In our experiments, the desirable value (response
variable) is denoted by signal, and the undesirable (standard deviation) value
is denoted by noise. The S/N ratio of the minimisation objective is as follows
[49]:

S/N ratio = −10 log10(objectivefunction)2. (8)

In Taguchi methods, adopting the proper orthogonal array for the chosen
problem can be a challenging task [50]. For PTbGA, we have four 4-level
factors and one 2-level factor. Hence, the appropriate orthogonal array for
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this method is L16. In L16 (4∧5) orthogonal array, five 4-level factors are
considered. But in our PTbGA we have four 4-level and one 2-level (the last
factor is fitness). To assign the 2-level factor to the 4-level column from the
orthogonal array L16, each of these levels is required to be replicated twice.
It is essential to notice that, after applying these techniques, the obtained
array remains orthogonal and this method is called means of adjustment tech-
niques [51]. For PrGA, since we have three 3-level factors, the appropriate
orthogonal array is L9 (3∧3).

Since we have L16 and L9 orthogonal arrays, there are 16 and 9 different
combinations of control factors for PTbGA and PrGA, respectively. Both
PrGA and PTbGA are implemented in MATLAB on a PC with Intel(R)
Core(TM) i7-6500U 2.50 GHz processor with 8 GB RAM. Each algorithm
is evaluated on a set of 36 instances (Table 2) using cost function F3a for
each combination. In order to have a fair comparison, for both PTbGA and
PrGA, a fixed computational budget for each trial is considered. Since the
scale of an objective function value for each instance may be different, the
relative percentage deviation (RPD) is used for each instance and calculated
by [51]:

RPD =
Algsol −Minsol

Minsol

, (9)

where Algsol and Minsol are the obtained objective value and the best solu-
tion found for each replication of a trial over a given instance, respectively.
First, we calculate the average RPD for each trial. Then, by using Eq. 8,
the S/N ratio is obtained for each trial. Finally, the S/N ratios of trials at
each level of factors are averaged and the results are shown in Figs. 12 and
13 for PTbGA and PrGA, respectively. For instance, as shown in Fig. 13,
to obtain the value of -17.17 for factor A at level 3 (i.e. A(3)), we should
calculate the average of S/N ratios for all trials in which factor A at level 3.
As shown in Fig. 12 and based on Table 3, the best values for factors A, B,
C, D, and E are 2, 3, 1, 1, and 2 respectively. These results demonstrate that
the N=5 times decoding, pop size=60, Pc=0.8, Pm=0.1, and assigning the
Best (i.e., the minimum) objective value among N objective values have the
highest performance for PTbGA. As shown in Fig. 13 and based on Table 4
for PrGA, the best values for A, B, and C are 3, 2, and 1 respectively (i.e.
pop size=300, Pc=0.85 and Pm=0.1).

The other parameters for PTbGA and PrGA are set as follows: maximum
number of iterations (Itmax=200) and maximum number of function evalu-
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Figure 12: Mean S/N ratio plot for each level of the factors in PTbGA.

Figure 13: Mean S/N ratio plot for each level of the factors in PrGA.

ations (NFEs=100,000). In order to have an adequate level of randomness
in the initialisation phase, α is set to 95%. If the results are not improved in
β = 30 successive iterations, the algorithm is terminated. The parameter for
mathematical solvers (AlphaECP and LINDOGlobal) is running time which
is set to 3600 seconds (s) for problem instances up to n=100 nodes and 7200s
for larger problem instances.

5.3. Results and analysis

After defining the parameters and operators for PTbGA and PrGA, we
use a set of 36 network instances using cost functions F1, F2, F3a, F3b and
F3c to evaluate PTbGA, PrGA, AlphaECP, and LINDOGlobal. The results
are provided in Tables 5 to 9. std and t (for PTbGA and PrGA) denote the
standard deviation of the results and the average of running time in seconds
respectively, and the mean represents the average of objective function values
over 30 runs. The t′ and OBJ for LINDOGlobal and AlphaECP denote the
running time and the objective value, respectively. “NF” denotes that the
mathematical solver cannot find any feasible solution within the time limit.
For LINDOGlobal and AlphaECP on network instances up to 100 nodes, the
time limit is set to 3600s, and on instances with n={150,200,250,400,500},
it is set to 7200s. In some cases the solvers find the optimal solution be-
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Table 5: Result comparison of PTbGA with other algorithms using cost function F1.

small-sized instances

No. n m
PTbGA PrGA LINDOGlobal AlphaECP

Gap h
t mean std t mean std t’ OBJ t’ OBJ

1
5

7 32 0.0038 0.00E+00 26 4.0018 0.00E+00 1 0.0038 2 4.0017 0.0% 0
2 9 28 1.0033 2.28E-16 27 4.0015 9.11E-16 2 1.0033 4 4.0015 0.0% 0
3 7 35 1.0027 2.28E-16 30 4.0012 0.00E+00 1 1.0027 1 3.0016 0.0% 0
4

10
35 57 0.0098 1.26E-05 65 4.0083 5.32E-05 6 0.0098 55 2.0097 0.0% 0

5 32 73 0.0092 1.47E-05 65 2.5085 2.14E-04 10 0.0092 17 3.0080 0.0% 0
6 24 60 1.0071 4.56E-16 66 3.5065 4.56E-16 112 1.0071 250 2.5073 0.0% 0

medium-sized instances
7

20
85 120 0.0244 1.30E-05 116 2.0245 2.69E-05 3600 0.0243 150 0.0254 -0.4% -1

8 104 130 0.0307 2.93E-06 128 0.0311 0.00E+00 575 0.0307 162 0.0308 0.0% 0
9 93 95 1.5270 1.19E-05 99 2.5276 2.40E-04 3600 1.5270 135 6.5256 0.0% 0
10

40
263 168 0.0705 3.16E-06 165 0.2474 2.44E-01 3600 0.0704 3600 0.0707 -0.1% -1

11 374 195 0.1036 4.27E-17 195 0.1043 2.07E-05 3600 0.1036 3600 0.1037 0.0% 0
12 336 207 0.0913 2.85E-17 197 0.0938 1.56E-04 3600 0.0913 3600 0.0926 0.0% 0
13

60
717 261 0.2065 4.26E-06 262 3.7306 1.12E-01 3600 0.2065 3600 0.2079 0.0% 0

14 724 273 0.1893 2.01E-05 266 0.4662 4.43E-01 3600 0.1893 3600 0.1908 0.0% 0
15 663 262 0.1874 5.70E-17 261 0.214 1.12E-01 3600 0.1874 3600 0.1881 0.0% 0

large-sized instances
16

80
1306 466 0.3469 1.69E-05 439 5.2462 2.61E-01 3600 0.3469 3600 0.8494 0.0% 0

17 1278 450 0.3334 1.37E-05 436 1.5602 3.02E-01 3600 0.3333 3600 0.3343 0.0% -1
18 1235 485 0.3359 9.48E-06 462 1.3374 2.28E-04 3600 0.3359 3600 2.3361 0.0% 0
19

100
1894 629 0.4970 1.39E-05 620 0.5486 1.54E-01 3600 0.4971 3600 0.4973 0.0% 1

20 2141 641 6.0648 6.08E-06 645 6.5654 3.08E-05 3600 6.0648 3600 6.0649 0.0% 0
21 2063 580 0.5561 1.57E-05 585 2.5568 1.51E-04 3600 0.55610 3600 0.5574 0.0% 0
22

150
3770 1067 0.9845 2.37E-05 1061 1.8852 3.08E-01 7200 NF 7200 0.9851 0.1% 1

23 4205 1679 1.112 1.49E-04 1670 9.158 1.54E-01 7200 NF 7200 1.6131 45.1% 1
24 4590 1160 1.1731 2.28E-16 1136 1.1738 1.20E-04 7200 1.1731 7200 2.6729 0.0% 0
25

200
7704 1703 2.0237 1.91E-05 1698 2.0253 1.64E-04 7200 NF 7200 2.0242 0.0% 1

26 7546 1683 1.9875 2.20E-04 1657 6.8599 7.93E-01 7200 NF 7200 3.4853 75.4% 1
27 7768 1781 1.9900 6.68E-05 1770 9.8616 2.75E-01 7200 NF 7200 3.9902 100.5% 1
28

250
12027 2680 3.2414 1.24E-04 2666 3.2418 1.64E-04 7200 NF 7200 3.2417 0.0% 1

29 12134 2632 3.1387 5.52E-04 2617 7.1371 1.03E-04 7200 NF 7200 4.1395 31.9% 1
30 11771 2419 3.0327 4.68E-16 2391 3.5352 5.29E-04 7200 NF 7200 3.0327 0.0% 0
31

400
30247 3048 11.2415 1.29E-01 2959 23.7160 2.86E+00 7200 NF 7200 26.7962 138.4% 1

32 30210 3062 7.8540 6.99E-13 3035 13.1003 3.53E-01 7200 NF 7200 13.8495 76.3% 1
33 29556 2969 7.6520 9.11E-16 3037 9.6828 1.29E-01 7200 NF 7200 10.1493 32.6% 1
34

500
47029 3512 12.1615 1.12E-04 3485 14.6596 2.55E-04 7200 NF 7200 14.6602 20.5% 1

35 47554 3561 12.5239 2.62E-04 3588 12.5242 7.15E-05 7200 NF 7200 32.5245 159.7% 1
36 48839 3471 12.8661 1.30E-04 3479 14.6661 3.16E-01 7200 NF 7200 15.3649 19.4% 1

fore reaching the time limit or other stopping criterion is met (e.g., on NLP
sub-problems it stops improving), and consequently the algorithms are ter-
minated.

In order to compare the performance of PTbGA with PrGA (two GA
variants method), the t-test with the significance level of 0.05 is performed.
The PTbGA outperforms PrGA in all instances using different cost functions
(F1-F3c). It is clearly evident that the superior performance of the PTbGA
comes from utilising PTbR in its procedure, instead of using PbR in PrGA.
For instance, in Table 5, PrGA cannot find optimal solutions for all small
instances (No.1-6) using function F1. It is apparent that PbR is restricted
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Table 6: Result comparison of PTbGA with other algorithms using cost function F2.

small-sized instances

No. n m
PTbGA PrGA LINDOGlobal AlphaECP

Gap h
t mean std t mean std t’ OBJ t’ OBJ

1
5

7 24 3.9997 4.56E-16 25 3.9997 9.11E-16 1 3.9997 2 3.9997 0.0% 0
2 9 31 3.9997 0.00E+00 33 3.9997 9.11E-16 9 3.9997 2 3.9997 0.0% 0
3 7 31 3.9996 4.56E-16 28 3.9997 0.00E+00 2 3.9996 1 3.9996 0.0% 0
4

10
35 80 5.9992 1.82E-15 82 6.1994 2.73E-15 631 5.9992 39 7.1996 0.0% 0

5 32 56 6.7994 9.11E-16 61 6.7994 9.11E-16 325 6.7994 28 8.9991 0.0% 0
6 24 69 7.7994 4.56E-15 65 7.7995 9.11E-16 246 7.7994 21 7.7995 0.0% 0

medium-sized instances
7

20
85 127 9.1987 3.65E-15 124 9.399 3.65E-15 3600 9.1987 85 12.7981 0.0% 0

8 104 106 8.5986 3.65E-15 115 8.5989 2.85E-05 3600 8.5986 142 8.5986 0.0% 0
9 93 252 10.7987 1.82E-15 251 11.8288 7.32E-02 3600 10.7987 123 13.5980 0.0% 0
10

40
263 170 9.7988 1.15E-04 163 9.9389 1.31E-01 3600 10.1988 3600 10.5986 4.1% 1

11 374 199 6.5987 9.11E-16 208 7.7488 4.89E-01 3600 6.5987 3600 6.7990 0.0% 0
12 336 183 8.9993 0.00E+00 181 10.009 2.86E-01 3600 8.9993 3600 10.3982 0.0% 0
13

60
717 274 9.7990 3.07E-13 270 10.7987 5.99E-05 3600 9.7990 3600 20.9981 0.0% 0

14 724 254 10.8687 1.40E-02 258 10.8687 3.13E-01 3600 11.1985 3600 14.3985 3.0% 1
15 663 244 5.8390 1.39E-01 242 5.9992 3.84E-01 3600 6.5988 3600 9.7985 13.0% 1

large-sized instances
16

80
1306 414 10.5985 0.00E+00 411 11.9187 7.69E-01 3600 12.5983 3600 10.5976 0.0% -1

17 1278 413 12.398 1.82E-15 422 12.6084 2.94E-01 3600 12.3980 3600 12.5981 0.0% 0
18 1235 413 12.6084 5.21E-01 413 13.0787 2.93E-01 3600 13.3985 3600 13.1984 4.7% 1
19

100
1894 783 8.1987 4.27E-05 527 9.4386 3.59E-01 3600 9.1983 3600 9.1984 12.2% 1

20 2141 679 17.9483 7.85E-03 552 17.9483 8.89E-02 3600 17.9979 3600 19.3974 0.3% 1
21 2063 677 15.4181 6.33E-02 536 15.4385 3.08E-01 3600 15.7970 3600 17.5980 2.5% 1
22

150
3770 1033 9.3986 7.18E-05 982 10.1088 3.92E-01 3600 9.3987 7200 13.3987 0.0% 1

23 4205 1124 15.1481 2.23E-01 937 15.3981 6.09E-01 3600 16.7982 7200 15.1981 0.3% 0
24 4590 1088 7.6291 4.37E-01 1314 8.3985 3.12E-05 3600 8.3985 7200 8.3983 10.1% 1
25

200
7704 1415 10.3988 5.47E-15 1585 10.8088 6.31E-01 7200 10.3988 7200 10.9985 0.0% 0

26 7546 1821 13.7981 8.54E-05 1487 15.2389 1.26E+00 7200 NF 7200 13.9978 1.4% 1
27 7768 1439 15.7282 2.62E-01 1587 17.4483 5.65E-01 7200 NF 7200 17.1976 9.3% 1
28

250
12027 2394 13.0486 5.06E-01 2543 13.1978 1.54E-04 7200 NF 7200 13.5966 4.2% 1

29 12134 2292 15.7986 5.03E-01 2294 16.3182 1.93E-01 7200 NF 7200 17.5968 11.4% 1
30 11771 2861 9.3980 6.23E-05 3083 10.2088 6.27E-01 7200 NF 7200 9.5979 2.1% 1
31

400
30247 3105 11.5452 3.58E-01 3197 24.9752 4.37E+00 7200 NF 7200 26.39478 128.6% 1

32 30210 3097 17.4518 1.37E+00 2998 34.054 5.06E+00 7200 NF 7200 37.792297 116.6% 1
33 29556 3096 11.0387 8.18E-01 3146 21.0264 4.40E+00 7200 NF 7200 23.596053 113.8% 1
34

500
47029 3573 14.0783 4.59E-01 3513 23.5957 3.65E-15 7200 NF 7200 23.595671 67.6% 1

35 47554 3418 8.7857 8.19E-01 3475 22.5954 8.29E-10 7200 NF 7200 22.595416 157.2% 1
36 48839 3493 12.025 4.46E-01 3577 22.5954 1.84E-08 7200 NF 7200 22.595416 87.9% 1

to a limited subset of the feasible region. As a result PrGA could not find
optimal solutions for the small-sized instances.

We also compare the performance of PTbGA with LINDOGlobal and
AlphaECP by performing a one-sample t-test with the significance level set
to 0.05. If PTbGA has statistically better or worse performance than that
of the mathematical solvers, the parameter h is set to 1 and -1 respectively,
otherwise h is set to 0. To calculate the value of Gap between PTbGA and
other mathematical solvers’ results, the following equation is used: Gap =(
(min{OBJAlphaECP , OBJLINDOGlobal}−meanPTbGA)/meanPTbGA

)
×100. In

Tables 5-9, the best objective values among LINDOGlobal, AlphaECP and
the average of 30 runs for the PTbGA and PrGA are presented in boldface.
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Table 7: Result comparison of PTbGA with other algorithms using cost function F3a.

small-sized instances

No. n m
PTbGA PrGA LINDOGlobal AlphaECP

Gap h
t mean std t mean std t’ OBJ t’ OBJ

1
5

7 24 12.4142 3.65E-15 25 12.4142 3.65E-15 1 12.4142 1 17.7868 0.0% 0
2 9 31 12.4142 3.65E-15 30 16.6142 0.00E+00 1 12.4142 2 17.7868 0.0% 0
3 7 32 12.4142 3.65E-15 27 12.4142 3.65E-15 1 12.4142 1 12.4142 0.0% 0
4

10
35 62 23.3427 3.74E-01 60 23.7017 3.23E-01 578 22.6355 112 29.5655 -3.0% -1

5 32 63 33.7005 1.46E-14 62 39.0863 0.00E+00 498 33.2152 119 48.0589 1.4% -1
6 24 56 24.5503 7.29E-15 59 52.865 1.46E-14 147 24.5503 134 49.9939 0.0% 0

medium-sized instances
7

20
85 173 49.9574 0.00E+00 105 56.8499 4.43E-01 3600 49.9574 3600 96.5076 0.0% 0

8 104 81 50.0995 0.00E+00 101 51.0446 1.46E+00 3600 50.0995 3600 69.2579 0.0% 0
9 93 104 53.8000 2.19E-14 117 54.2162 0.00E+00 3600 53.8000 3600 55.5370 0.0% 0
10

40
263 165 43.9655 7.29E-15 149 51.2448 6.86E-01 3600 43.9655 3600 85.9451 0.0% 0

11 374 191 40.1289 7.29E-15 175 44.2344 5.34E-01 3600 40.1289 3600 126.8589 0.0% 0
12 336 108 48.0355 1.50E-14 161 61.9575 2.58E+00 3600 48.0360 3600 75.4873 0.0% 1
13

60
717 251 54.0853 1.46E-14 245 61.9999 4.62E-01 3600 54.0853 3600 128.8355 0.0% 0

14 724 203 50.5289 1.46E-14 242 71.3269 4.62E+00 3600 50.5289 3600 84.7289 0.0% 0
15 663 265 40.3431 1.46E-14 232 52.5299 2.40E+00 3600 40.3432 3600 62.9218 0.0% 1

large-sized instances
16

80
1306 404 53.9005 7.29E-15 405 70.2128 3.93E+00 3600 53.9005 3600 116.4883 0.0% 0

17 1278 397 59.5147 1.46E-14 359 68.4995 4.48E+00 3600 59.5147 3600 115.0995 0.0% 0
18 1235 362 61.0782 7.29E-15 385 71.9623 3.83E+00 3600 64.6284 3600 66.8711 5.8% 1
19

100
1894 584 54.0711 2.92E-14 501 70.6492 2.74E+00 3600 54.0711 3600 163.9421 0.0% 0

20 2141 626 81.2045 3.43E-01 531 85.2692 2.71E+00 3600 79.5005 3600 137.5025 -2.1% -1
21 2063 534 81.1964 3.38E-01 541 84.3428 4.36E+00 3600 81.2721 3600 114.8010 1.0% 0
22

150
3770 985 59.2212 4.50E+00 1019 87.8434 3.30E+00 7200 91.0721 7200 112.6650 53.8% 1

23 4205 948 59.9465 2.40E+00 1071 91.9019 3.66E+00 7200 148.8142 7200 95.3878 59.1% 1
24 4590 1036 69.7926 2.52E+00 994 87.3404 1.75E+00 7200 96.7432 7200 91.5421 31.2% 1
25

200
7704 1505 74.7676 3.49E+00 1407 104.8014 2.65E+00 7200 178.8802 7200 110.0944 47.2% 1

26 7546 1418 86.943 9.33E+00 1533 120.7734 1.33E+01 7200 NF 7200 251.8740 189.7% 1
27 7768 1513 78.9748 3.50E+00 1648 86.3431 1.46E-14 7200 86.3432 7200 151.3330 9.3% 1
28

250
12027 2361 97.4219 6.13E+00 2119 118.1286 6.66E+00 7200 NF 7200 318.8519 227.3% 1

29 12134 2064 88.5444 5.63E+00 2015 107.5992 1.54E+00 7200 NF 7200 110.4081 24.7% 1
30 11771 2096 71.4761 5.99E+00 2054 78.0109 2.61E+00 7200 104.9594 7200 86.1289 20.5% 1
31

400
30247 3058 65.5005 4.88E+00 3112 158.7264 4.51E+01 7200 NF 7200 181.95736 177.8% 1

32 30210 2950 105.9835 6.95E+00 3022 282.7109 8.75E+01 7200 NF 7200 327.53503 209.0% 1
33 29556 3026 59.4162 4.60E+00 3110 160.9017 5.79E+01 7200 NF 7200 203.03755 241.7% 1
34

500
47029 3597 72.6626 4.29E+00 3543 186.7592 6.21E+00 7200 NF 7200 189.78478 161.2% 1

35 47554 3528 63.7279 5.24E+00 3592 163.8156 4.65E+00 7200 NF 7200 166.08019 160.6% 1
36 48839 3415 61.8586 3.07E+00 3432 144.5961 6.73E+00 7200 NF 7200 147.87511 139.1% 1

Table 10 summarises the results of PTbGA, LINDOGlobal and AlphaECP
for solving all instances of different sizes using all nonlinear non-convex cost
functions. We count the number of “win-draw-lose”(W-D-L) among these
methods. For each instance in the table (i.e., each row), if the value of h is
1, 0 or -1, we add the number of wins, draws and loses, respectively. For
instance, as shown in Table 5 and for large-sized problems, the W-D-L score
is 14-6-1, meaning that PTbGA wins 14 times, draws 6 times, and loses 1
time for solving the large-sized instances using cost function F1 as compared
with the minimum of the LINDOGlobal and AlphaECP objective values.
The aforementioned calculation is considered for all the results in Tables 5-9,
and summarised in Table 10.
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Table 8: Result comparison of PTbGA with other algorithms using cost function F3b.

small-sized instances

No. n m
PTbGA PrGA LINDOGlobal AlphaECP

Gap h
t mean std t mean std t’ OBJ t’ OBJ

1
5

7 36 40.4142 0.00E+00 25 40.4142 0.00E+00 84 40.4142 156 49.2639 0.0% 0
2 9 23 40.4142 0.00E+00 26 43.2426 1.46E-14 480 40.4142 395 57.7492 0.0% 0
3 7 24 40.4142 0.00E+00 26 40.4142 0.00E+00 106 40.4142 85 40.4142 0.0% 0
4

10
35 50 58.0213 1.31E-14 59 63.7826 8.80E-01 3600 58.0213 3600 78.2284 0.0% 0

5 32 63 63.8142 7.29E-15 60 71.3596 5.09E+00 3600 63.8142 3600 96.7056 0.0% 0
6 24 43 69.8355 1.56E-14 55 85.7563 0.00E+00 3600 69.8355 3600 72.6640 0.0% 0

medium-sized instances
7

20
85 126 75.8569 2.44E-14 112 90.135 2.92E-14 3600 75.6284 3600 110.1137 -0.3% -1

8 104 151 67.2292 1.52E+00 102 67.9208 0.00E+00 3600 65.4569 3600 83.3848 -2.6% -1
9 93 97 97.1268 1.48E+00 119 114.9492 1.84E-14 3600 96.0640 3600 174.0639 -1.1% -1
10

40
263 243 77.0225 5.20E-01 174 87.7858 1.48E+00 3600 74.4426 3600 132.6487 -3.3% -1

11 374 223 47.0695 1.84E-01 188 59.9811 1.64E+00 3600 49.0355 3600 74.5350 4.2% 1
12 336 201 74.917 1.35E+00 180 84.4553 4.95E+00 3600 75.6284 3600 211.2853 0.9% 1
13

60
717 328 86.9664 2.76E-01 256 104.2283 1.06E+00 3600 88.7208 3600 120.3770 2.0% 1

14 724 326 81.6177 1.41E+00 288 90.2898 2.19E+00 3600 84.4782 3600 125.9317 3.5% 1
15 663 232 48.3425 4.13E-01 266 55.9722 2.97E+00 3600 53.2782 3600 106.5564 10.2% 1

large-sized instances
16

80
1306 407 107.0965 2.29E+00 420 118.6993 1.86E+00 3600 112.1208 3600 188.2985 4.7% 1

17 1278 433 95.9933 1.20E+00 411 102.5468 1.84E+00 3600 198.8833 3600 137.1635 42.9% 1
18 1235 472 114.1646 1.78E+00 408 123.9676 2.72E+00 3600 112.9421 3600 147.0629 -1.1% -1
19

100
1894 610 65.904 5.36E-01 549 72.3289 2.85E+00 3600 126.8558 3600 128.1777 92.5% 1

20 2141 560 157.3409 6.74E+00 556 168.0308 7.53E+00 3600 242.7624 3600 199.8843 27.0% 1
21 2063 525 120.9239 4.75E-01 514 131.5095 3.48E+00 3600 244.6335 3600 204.1837 68.9% 1
22

150
3770 937 86.9786 7.16E+00 951 151.0684 6.39E+00 7200 285.0914 7200 154.1776 77.3% 1

23 4205 943 158.4398 2.99E+00 1175 221.2248 1.15E+01 7200 297.4548 7200 344.0700 87.7% 1
24 4590 975 67.1359 3.33E+00 1059 101.6343 5.11E+00 7200 202.2122 7200 160.5198 139.1% 1
25

200
7704 1448 91.0785 4.16E+00 1456 179.9828 1.14E+01 7200 NF 7200 154.1777 69.3% 1

26 7546 1427 165.536 1.32E+01 1355 338.5548 1.81E+01 7200 NF 7200 211.1056 27.5% 1
27 7768 1502 175.6161 6.11E+00 1489 289.4556 5.94E+00 7200 NF 7200 300.0548 70.9% 1
28

250
12027 2331 102.806 4.41E+00 2076 208.2315 9.57E+00 7200 NF 7200 453.7210 341.3% 1

29 12134 2283 149.8248 3.72E+00 2106 227.9566 8.40E+00 7200 NF 7200 195.5056 30.5% 1
30 11771 1973 99.6941 9.16E+00 2055 189.4755 1.22E+01 7200 NF 7200 161.6132 62.1% 1
31

400
30247 3030 110.9487 3.60E+00 3049 214.449 4.23E+01 7200 NF 7200 234.69037 111.5% 1

32 30210 2984 170.0742 7.53E+00 3043 284.6509 7.73E+01 7200 NF 7200 345.98478 103.4% 1
33 29556 3020 97.5071 6.73E+00 3105 220.0146 4.04E+01 7200 NF 7200 234.14113 140.1% 1
34

500
47029 3542 121.0351 6.15E+00 3507 208.8335 6.22E+00 7200 NF 7200 215.21219 77.8% 1

35 47554 3345 70.5963 4.38E+00 3371 176.6044 3.82E+00 7200 NF 7200 179.04062 153.6% 1
36 48839 3437 109.0453 1.56E+00 3498 188.5628 6.22E+00 7200 NF 7200 215.21219 97.4% 1

As shown in Table 5, LINDOGlobal could not find any feasible solutions
for problems instances with n=150, 200, 250, 400 and 500 (except No. 24). In
terms of solution quality, PTbGA is better than or equal to AlphaECP on all
large-sized instances except instance No.17. The performance Gap between
PTbGA and AlphaECP becomes significantly greater for the instances with
n=400 and 500. AlphaECP got stuck in local optima for small instances
No.1-6, and could not find the optimal solutions. For function F2 and when a
size of the problem is increased, LINDOGlobal is not able to find any feasible
solution even after 7200s. PTbGA has better quality and efficiency than
AlphaECP on all large-sized instances except No.16. Also worth noting that,
PTbGA is superior than PrGA on all instances using F1 and F2 functions.
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Table 9: Result comparison of PTbGA with other algorithms using cost function F3c.

small-sized instances

No. n m
PTbGA PrGA LINDOGlobal AlphaECP

Gap h
t mean std t mean std t’ OBJ t’ OBJ

1
5

7 21 17.7868 3.65E-15 19 17.7868 3.65E-15 13 17.7868 5 17.7868 0.0% 0
2 9 23 17.7868 3.65E-15 21 17.7868 3.65E-15 104 17.7868 36 17.7868 0.0% 0
3 7 21 17.7868 3.65E-15 20 17.7868 3.65E-15 14 17.7868 15 17.7868 0.0% 0
4

10
35 45 33.6934 7.64E-01 56 35.4376 1.46E-14 3600 32.9299 3600 45.5650 -2.3% -1

5 32 70 36.3853 7.03E-01 66 42.9655 1.46E-14 3600 35.5299 3600 44.0590 -2.4% -1
6 24 59 41.3595 4.68E-01 60 52.865 0.00E+00 3600 41.5513 3600 58.5221 0.5% 0

medium-sized instances
7

20
85 161 55.8904 1.60E+00 111 57.0152 0.00E+00 3600 50.1726 3600 75.5723 -10.2% -1

8 104 116 44.6081 0.00E+00 103 45.6321 1.93E+00 3600 48.4365 3600 53.2294 8.6% 1
9 93 126 50.2162 0.00E+00 115 50.2162 0.00E+00 3600 50.2162 3600 67.5513 0.0% 0
10

40
263 124 49.3124 1.95E+00 151 49.4919 1.23E+00 3600 55.2365 3600 89.5320 12.2% 1

11 374 174 40.4579 7.29E-15 183 46.1681 1.15E+00 3600 47.0284 3600 75.0300 16.2% 1
12 336 133 55.0127 1.31E+00 170 58.6588 3.22E+00 3600 51.2223 3600 97.5218 -9.6% -1
13

60
717 214 54.9165 6.67E-01 242 56.4198 5.61E-01 3600 54.7797 3600 241.5177 -0.2% 0

14 724 255 65.2548 4.44E+00 259 67.4152 1.88E+00 3600 67.5076 3600 138.8497 3.5% 1
15 663 259 37.5143 1.55E+00 219 51.2203 1.74E+00 3600 38.7716 3600 83.2873 3.4% 1

large-sized instances
16

80
1306 459 70.4999 1.95E+00 430 86.2443 1.91E+00 3600 254.2510 3600 130.8650 85.6% 1

17 1278 467 75.448 3.29E+00 463 81.3351 1.59E+00 3600 99.9421 3600 137.2071 32.5% 1
18 1235 448 79.1008 4.28E+00 470 90.531 3.70E+00 3600 106.2355 3600 144.4630 34.3% 1
19

100
1894 554 53.8924 9.74E-01 577 59.1795 3.43E+00 3600 90.2711 3600 169.4852 67.5% 1

20 2141 584 83.1025 0.00E+00 628 83.9481 2.16E+00 3600 190.7137 3600 129.8974 56.3% 1
21 2063 530 84.5746 1.92E+00 544 95.6089 3.90E+00 3600 221.1848 3600 140.2101 65.8% 1
22

150
3770 1142 60.9084 3.19E+00 1091 106.6349 1.02E+01 7200 195.9086 7200 71.9787 18.2% 1

23 4205 996 70.7362 2.61E+00 1045 147.9236 6.35E+00 7200 NF 7200 158.7746 124.5% 1
24 4590 1043 50.1445 1.04E+00 1168 83.7778 3.70E+00 7200 NF 7200 128.9888 157.2% 1
25

200
7704 1503 70.6881 4.17E+00 1609 147.6372 5.86E+00 7200 NF 7200 134.6457 90.5% 1

26 7546 1538 99.5808 4.39E+00 1423 260.8419 1.44E+01 7200 NF 7200 336.5219 237.9% 1
27 7768 1576 96.6772 4.90E+00 1508 218.5723 8.10E+00 7200 NF 7200 171.0406 76.9% 1
28

250
12027 2355 90.4287 3.96E+00 2375 185.9695 1.53E+01 7200 NF 7200 132.9645 47.0% 1

29 12134 2378 94.4638 4.46E+00 2280 179.9448 1.17E+01 7200 NF 7200 182.2233 92.9% 1
30 11771 2058 67.5253 4.79E+00 2208 160.9879 5.34E+00 7200 NF 7200 165.0782 144.5% 1
31

400
30247 3057 62.2175 4.12E+00 3094 144.0554 5.24E+01 7200 NF 7200 177.57258 185.4% 1

32 30210 3080 109.1538 8.18E+00 3175 245.5707 7.20E+01 7200 NF 7200 305.65278 180.0% 1
33 29556 3042 55.0122 5.12E+00 3114 137.442 5.14E+01 7200 NF 7200 170.58882 210.1% 1
34

500
47029 3554 77.4947 4.84E+00 3585 164.1868 1.00E+01 7200 NF 7200 171.37157 121.1% 1

35 47554 3515 57.7303 5.27E+00 3529 136.1355 1.57E+00 7200 NF 7200 137.66396 138.5% 1
36 48839 3495 61.6489 2.07E+00 3537 136.921 2.94E+00 7200 NF 7200 138.79592 125.1% 1

Table 10: Comparing PTbGA’s performances with LINDOGlobal and AlphaECP on
F1, F2, F3a, F3b, F3c.

Small-sized medium-sized Large-sized Total score
Functions W-D-L W-D-L W-D-L W-D-L
F1 0-6-0 0-7-2 14-6-1 14-19-3
F2 0-6-0 3-6-0 17-3-1 20-15-1
F3a 0-4-2 2-7-0 16-4-1 18-15-3
F3b 0-6-0 5-0-4 20-0-1 25-6-5
F3c 0-4-2 5-2-2 21-0-0 26-6-4

5.4. Robustness

To examine if PTbGA is robust to the different shapes of a cost func-
tion, we use cost function F3 (Eq. 7), choosing three different values for the
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parameter w in Eq. 7. As shown in Fig. 11c, by increasing the parameter
w from 1, to 2 and 3, the number of peaks and valleys (local optima) are
increased gradually in functions F3b, F3c. Dealing with these cost functions
will be a challenging task. A robust optimisation algorithm should be able to
handle this sort of highly non-convex shaped cost functions, without degrad-
ing their performances. As can be seen from Tables 7, 8, 9, LINDOGlobal has
increasing difficulty in finding feasible solutions on instances with 150, 200,
250, 400 and 500 nodes. Furthermore, on all large-sized instances PTbGA
outperforms AlphaECP using functions F3a, F3b and F3c. It is evident that
the mathematical solvers are sensitive to the non-convex shapes introduced
in the cost functions F3a, F3b, and F3c. In contrast, PTbGA’s performance
is much more robust with respect to these cost functions.

(a) F2 on instance No.25. (b) F3a on instance No.27. (c) F3b on instance No.21.

Figure 14: Convergence graphs for PTbGA, PrGA, LINDOGlobal and AlphaECP.

5.5. Efficiency

The convergence speeds of PTbGA on large-sized problem instances as
compared to that by PrGA and mathematical solvers are presented in Fig.
14. As shown in Fig. 14a, LINDOGlobal cannot find any feasible solution
until about 1200s. Once a feasible solution is found by LINDOGlobal, it
cannot be further improved and the convergence curve becomes a straight
line (Figs. 14a). Similar results are observed for LINDOGlobal considering
functions F3a and F3b (Figs. 14b,c). Although AlphaECP can find a feasible
solution faster than LINDOGlobal, the found solution cannot be improved
dramatically within the time limit. Unlike the mathematical approach, PT-
bGA and PrGA are able to converge faster. In particular, PTbGA is able to
find better quality solutions than that of PrGA (Fig. 14).
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6. Conclusion

In this paper, we have proposed a probabilistic tree-based representation
(PTbR) and incorporated it into a genetic algorithm (PTbGA) for solving
large-scale MCFP using nonlinear non-convex cost functions. After identi-
fying the drawbacks of the well-known priority-based representation scheme,
we have proposed the PTbR by introducing an improved decoding procedure
that allows a more thorough sampling of the search space. This new repre-
sentation scheme PTbR can be executed N times (i.e., decoding N times)
to allow for better exploration of the feasible search space of an MCFP.
This is in sharp contrast to the limitations imposed by the priority-based
representation scheme (PbR). We have conducted systematic and extensive
experiments to compare the performance of the PTbR-based GA (PTbGA)
variant, the PbR-based GA (PrGA) and two mathematical solver packages
for solving MCFP using nonlinear cost functions. In order to identify the op-
timal parameter settings for both PTbGA and PrGA, the Taguchi method
has been applied. PTbGA, PrGA, LINDOGlobal, and AlphaECP have been
evaluated on a set of 36 randomly generated MCFP instances considering
various nonlinear non-convex cost functions. Our results demonstrate that
PTbGA outperforms PrGA on all instances using different cost functions.
Unlike mathematical solvers that either got stuck in local optima or cannot
find any feasible solutions after 2 hours for large-scale instances, PTbGA can
still find high-quality solutions without sacrificing on efficiency. As shown
in convergence graphs (Fig. 14), PTbGA converges to a better solution ex-
tremely faster than PrGA and mathematical solver packages. Furthermore,
PTbGA is more robust to the different shapes of a cost function, as compared
to LINDOGlobal and AlphaECP.
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[12] K. Ayan, U. Kılıç, Artificial bee colony algorithm solution for optimal
reactive power flow, Applied soft computing 12 (5) (2012) 1477–1482
(2012).

[13] G. M. Guisewite, P. M. Pardalos, Algorithms for the single-source un-
capacitated minimum concave-cost network flow problem, Journal of
Global Optimization 1 (3) (1991) 245–265 (1991).

28



[14] D. B. Fontes, E. Hadjiconstantinou, N. Christofides, A dynamic pro-
gramming approach for solving single-source uncapacitated concave min-
imum cost network flow problems, European Journal of Operational Re-
search 174 (2) (2006) 1205–1219 (2006).

[15] D. B. Fontes, E. Hadji constantinou, N. Christofides, A branch-and-
bound algorithm for concave network flow problems, Journal of Global
Optimization 34 (1) (2006) 127–155 (2006).

[16] R. E. Burkard, H. Dollani, P. T. Thach, Linear approximations in a dy-
namic programming approach for the uncapacitated single-source mini-
mum concave cost network flow problem in acyclic networks, Journal of
Global Optimization 19 (2) (2001) 121–139 (2001).

[17] M. S. Monteiro, D. B. Fontes, F. A. Fontes, An ant colony optimization
algorithm to solve the minimum cost network flow problem with concave
cost functions, in: Proceedings of the 13th annual conference on Genetic
and evolutionary computation, ACM, 2011, pp. 139–146 (2011).

[18] Y.-H. Zhang, Y.-J. Gong, T.-L. Gu, Y. Li, J. Zhang, Flexible genetic
algorithm: A simple and generic approach to node placement problems,
Applied Soft Computing 52 (2017) 457–470 (2017).

[19] G. Aiello, G. La Scalia, M. Enea, A multi objective genetic algorithm
for the facility layout problem based upon slicing structure encoding,
Expert Systems with Applications 39 (12) (2012) 10352–10358 (2012).

[20] F. G. Tari, Z. Hashemi, A priority based genetic algorithm for nonlinear
transportation costs problems, Computers & Industrial Engineering 96
(2016) 86–95 (2016).

[21] B. Ghasemishabankareh, M. Ozlen, X. Li, K. Deb, A genetic algo-
rithm with local search for solving single-source single-sink nonlinear
non-convex minimum cost flow problems, Soft Computing (2019) 1–17
(2019).

[22] T. Senjyu, K. Shimabukuro, K. Uezato, T. Funabashi, A fast technique
for unit commitment problem by extended priority list, IEEE Transac-
tions on Power Systems 18 (2) (2003) 882–888 (2003).

29



[23] C. Chung, H. Yu, K. P. Wong, An advanced quantum-inspired evolu-
tionary algorithm for unit commitment, IEEE Transactions on Power
Systems 26 (2) (2011) 847–854 (2011).

[24] C. W. Ahn, R. S. Ramakrishna, A genetic algorithm for shortest path
routing problem and the sizing of populations, IEEE transactions on
evolutionary computation 6 (6) (2002) 566–579 (2002).

[25] N. Shimamoto, A. Hiramatsu, K. Yamasaki, A dynamic routing control
based on a genetic algorithm, in: IEEE International conference on
neural networks, IEEE, 1993, pp. 1123–1128 (1993).

[26] M. Lotfi, R. Tavakkoli-Moghaddam, A genetic algorithm using priority-
based encoding with new operators for fixed charge transportation prob-
lems, Applied Soft Computing 13 (5) (2013) 2711–2726 (2013).

[27] J. J. d. M. Mendes, J. F. Gonçalves, M. G. Resende, A random key
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