Self-adaptive Parameter and Strategy based Particle
Swarm Optimization for Large-scale Feature Selection
Problems with Multiple Classifiers

Yu Xue*®* Tao Tang?®, Wei Pang®, Alex X. Liu®

¢School of Computer and Software, Nangjing University of Information Science and
Technology, Nanjing 210044, China
bSchool of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB2j 3UE,
UK
¢ Department of Computer Science and Engineering, Michigan State University, East
Lansing 48824, USA

Abstract

Feature selection has been widely used in classification for improving classifi-
cation accuracy and reducing computational complexity. Recently, evolutionary
computation (EC) has become an important approach for solving feature selec-
tion problems. However, firstly, as the datasets processed by classifiers become
increasingly large and complex, more and more irrelevant and redundant fea-
tures may exist and there may be more local optima in the large-scale feature
space. Therefore, traditional EC algorithms which have only one candidate so-
lution generation strategy (CSGS) with fixed parameter values may not perform
well in searching for the optimal feature subsets for large-scale feature selection
problems. Secondly, many existing studies usually use only one classifier to e-
valuate feature subsets. To show the effectiveness of evolutionary algorithms for
feature selection problems, more classifiers should be tested. Thus, in order to
efficiently solve large-scale feature selection problems and to show whether the
EC-based feature selection method is efficient for more classifiers, a self-adaptive
parameter and strategy based particle swarm optimization (SPS-PSO) algorith-
m is proposed in this paper using multiple classifiers. In SPS-PSO, a represen-
tation scheme of solutions and five CSGSs have been used. To automatically
adjust the CSGSs and their parameter values during the evolutionary process,
a strategy self-adaptive mechanism and a parameter self-adaptive mechanism
are employed in the framework of particle swarm optimization (PSO). By using
the self-adaptive mechanisms, the SPS-PSO can adjust both CSGSs and their
parameter values when solving different large-scale feature selection problems.
Therefore, SPS-PSO has good global and local search ability when dealing with
these large-scale problems. Moreover, four classifiers, i.e., k-nearest neighbor

*Corresponding author
Email addresses: xueyu@nuist.edu.cn (Yu Xue), taotang19930163.com (Tao Tang),
pang.wei@abdn.ac.uk (Wei Pang), alexliu@cse.msu.edu (Alex X. Liu)

Preprint submitted to Applied Soft Computing November 14, 2019

20

25

(KNN), linear discriminant analysis (LDA), extreme learning machine (ELM),
and support vector machine (SVM), are individually used as the evaluation
functions for testing the effectiveness of feature subsets generated by SPS-PSO.
Nine datasets from the UCI Machine Learning Repository and Causality Work-
bench are used in the experiments. All the nine datasets have more than 600
dimensions, and two of them have more than 5,000 dimensions. The experimen-
tal results show that the strategy and parameter self-adaptive mechanisms can
improve the performance of the evolutionary algorithms, and that SPS-PSO
can achieve higher classification accuracy and obtain more concise solutions
than those of the other algorithms on the large-scale feature problems selected
in this research. In addition, feature selection can improve the classification
accuracy and reduce computational time for various classifiers. Furthermore,
KNN is a better surrogate model compared with the other classifiers used in
these experiments.

Keywords: Particle Swarm Optimization, Feature Selection, Large-scale
Problems, Self-adaptive, Classification.
2010 MSC: 00-01, 99-00

1. Introduction

Feature selection, as an important technique in machine learning and data
mining, has been widely studied over the last two decades [I]. The fields of
application of feature selection include credit rating [2], cancer diagnosis [3],
image classification [4], intrusion detection [B], medical technology [6], and so
on.

Usually, many irrelevant and redundant features exist in the datasets which
the classifiers deal with. In order to reduce the computational cost and increase
classification accuracy, feature selection is commonly used. Feature selection
can improve the classification accuracy and simplify the classification tasks.
However, with the advent of the Big Data Era, the processing of the large-scale
(high-dimensional) datasets has become unavoidable, and the computational
time increases exponentially with the increase of the number of features. Given
a dataset with n features, if n is small, the total number of feature subsets is also
small. Thus, the optimal feature subset can even be obtained via an exhaustive
search. However, as n becomes larger, it would reach a point where it would no
longer be possible to enumerate all feature subsets. Therefore, it has become
necessary to design efficient algorithms for finding small, high-quality feature
subsets for large-scale problems [7].

Over the past few decades, many heuristic feature selection methods have
been proposed. Among them, sequential forward selection (SFS) [7] and se-
quential backward selection (SBS) [7] are two typical approaches. These two
methods first start from either an empty set or a complete set then continually
add or remove features to optimize the feature subset. The disadvantage of SFS
and SBS is that the features that have already been added or removed can no

30

35

40

45

50

55

60

65

70

longer be removed or added again. Actually, some features are not completely
independent, i.e., they are interrelated with each other. Later on, to overcome
this disadvantage, a plus-1 minus-r selection method (LRS) [8] was proposed.
This approach can mitigate the aforementioned issue with SF'S and SBS, but it
still cannot overcome the issue of the algorithms easily falling into local optima.
Sequential floating forward selection (SFFS) [9] and sequential floating back-
ward selection (SFBS) [10] were then designed based on LRS. Although these
heuristic methods can greatly reduce the time complexity compared to that of
exhaustive search, they tend to be easily trapped into local optima because of
their fixed searching strategies.

Many kinds of evolutionary computation (EC) techniques have been devel-
oped in the past several decades and are widely used in real-world applications
because they can find the best possible solution(s) within acceptable periods
[]. Some of these methods have been employed for solving the feature selec-
tion problems [I] [[3]. For example, the following algorithms have been
used for feature selection problems: binary dragonfly algorithm [14], grasshop-
per optimization approach with evolutionary population dynamics [I5], whale
optimization approach [I6], binary slap swarm algorithm [I7], binary slap swar-
m algorithm with asynchronous updating rules and a new leadership structure
[18], whale optimization algorithm with simulated annealing [19], genetic algo-
rithm (GA) [20, 2] 2], artificial bee colony [22] 23], differential evolution (DE)
[24], ant colony optimization [25], water drop algorithm [26], lion’s algorithm
[27], grey wolf optimizer [2§], shuffled frog leaping algorithm [29], brain storm
optimization [30], particle swarm optimization (PSO) [31], and so on.

Because of the stochastic nature of EC techniques, they can more easily es-
cape from local optima compared with heuristic methods. Therefore, they can
more easily obtain the global optimal solutions. However, the solution space
of a feature selection problem increases dramatically with the increase of the
number of features; meanwhile, the number of irrelevant and redundant features
may also grow rapidly, and they may generate many local optima in this huge
solution space. These local optima bring big challenges to the EC techniques
in finding the global optimum. Furthermore, most EC techniques can achieve
good performance only on small-scale feature selection problems. For large-
scale feature selection problems, the issue of falling into local optima becomes
more prominent. In addition, different datasets may have different character-
istics. These characteristics require the EC techniques to have the ability to
adaptively adjust their candidate solution generation strategies (CSGSs) and
the parameters associated with these CSGSs.

The self-adaptive mechanism of EC has attracted much attention to re-
searchers over the last decade, and many EC methods with self-adaptive mech-
anisms have been proposed. In general, the EC algorithms with self-adaptive
mechanisms can adjust their CSGS(s) or parameter(s) automatically during the
evolution process. There are several self-adaptive evolutionary algorithms pre-
sented in the literature [32] B3] [34], 35, 36}, 37, B8, B9]. For example, Wang et
al. proposed a self-adaptive learning based particle swarm optimization (SLP-
SO) [33]. In SLPSO, a probability model is designed to simultaneously adopted

75

80

85

90

95

100

105

110

115

four PSO based search strategies. Besides, Li et al. proposed another self-
learning particle swarm optimizer to deal with different complex problems, and
they have proved the superior performance of the self-adaptive evolutionary al-
gorithm by assessing their algorithm on 45 test functions and two real-world
problems [34]. Similarly, Xue et al. [39] proposed a self-adaptive artificial bee
colony with symmetry initialization (SABC-SI). In SABC-SI, a novel popula-
tion initialization method based on half space and symmetry is designed; such
a method can increase the diversity of initial solutions. Furthermore, several
different self-adaptive PSO algorithms have also been proposed and they have
been employed to solve different real-world problems, such as the economic dis-
patch problem [35], multidimensional knapsack problem [30], shop scheduling
problem [37], etc. For all of the algorithms previously mentioned, the self-
adaptive mechanisms have been effectively applied into the EC methods, and
the superiority of the EC algorithms with self-adaptive mechanisms has been
proven in the aforementioned studies. To the best of our knowledge, although
many self-adaptive EC algorithms have been proposed, these algorithms are
rarely used to solve feature selection problems. Recently, a self-adaptive PSO
using the strategy self-adaptive mechanism has been developed for solving fea-
ture selection problems [40]. However, this existing work lacked the use of the
parameter self-adaptive mechanism. Therefore, in this research, the parameter
self-adaptive mechanism is also introduced into EC algorithms for solving the
feature selection problems; t is combined with the strategy self-adaptive method
to further enhance the performance of EC in different evolution stages. A strat-
egy and parameter self-adaptive based EC algorithm is expected to be better
able to avoid falling-into-local-optima when solving feature selection problems,
especially for large-scale problems. PSO, which was proposed by Eberhart and
Kennedy in 1995 [41], is a simple and very powerful optimizer [31]. Recently,
PSO and its variations are being widely employed for solving the feature selec-
tion problems, and many PSO-based approaches have shown promising results
[42] [A3] 441 3] [45]. Thus, within the framework of PSO, a new self-adaptive pa-
rameter and strategy based particle swarm optimization (SPS-PSO) algorithm
is proposed in this research. The algorithm has the parameter and strategy
self-adaptive mechanisms which try to make the algorithm more adaptable to
different feature selection problems. In addition, to investigate whether the
feature selection approach works well for different classifiers, four classifiers, in-
cluding the k-nearest neighbor (KNN) [46], latent dirichlet allocation (LDA)
[47], support vector machine (SVM) [48] 49], and extreme learning machine
(ELM) [50], are employed as evaluation functions, respectively. To assess the
performance of the proposed algorithm on large-scale feature selection problem-
s, nine datasets from the UCI Machine Learning Repository [51] and Causality
Workbench [52] are used, and all these datasets have more than 600 dimensions,
with two of them having more than 5,000 dimensions. The main contributions
of this research are listed as follows:

(1) A self-adaptive parameter and strategy based particle swarm optimization
(SPS-PSO) algorithm is proposed for feature selection problems. This algorithm

120

125

130

135

140

145

150

155

employs the strategy self-adaptive mechanism and the parameter self-adaptive
mechanism at the same time to improve the ability of the algorithm to search
for optimal solutions and to adapt to different feature selection problems.

(2) This study involves feature selection problems with large-scale dimensions,
in contrast with most previous studies, which are performed using small-scale
problems. This research deals with the nine datasets with more than 600 di-
mensions, including two datasets with more than 5,000 dimensions.

(3) Unlike most of the existing approaches which usually use only one clas-
sifier to evaluate feature subsets, in this research, four different classifiers, i.e.,
KNN, LDA, SVM, and ELM, are tested as evaluation functions, respectively.

The rest of the paper is organized as follows: Section 2 introduces the pro-
posed SPS-PSO algorithm, including five CSGSs and the detailed steps of the
strategy self-adaptive method and parameter self-adaptive method. Section 3
presents the information of the datasets and the parameter values used for the al-
gorithms, and it also describes the purpose of the two stages of the experiments.
Section 4 reports the results and analyses them from multiple perspectives. Fi-
nally, Section 5 concludes the paper and proposes future research directions.

2. Self-adaptive Parameter and Strategy based Particle Swarm Op-
timization (SPS-SPO)

In SPS-PSO, multiple CSGSs are self-adaptively used. Similarly, the pa-
rameters of CSGSs are flexible and can be adjusted automatically according
to different problems during the evolution process. This section focuses on de-
scribing the proposed algorithm and the necessary techniques for solving feature
selection problems.

2.1. Representation of Solutions

The goal of feature selection is to select a suitable feature subset from avail-
able features. For each feature, there are two statuses: selected or unselected.
To conveniently represent feature subsets, we transform the feature selection
problem into a combinatorial optimization problem. A D-dimensional vector B
is used to represent a solution, where each value of a dimension in B belongs
to {0,1}. If the value of a dimension in B is 1, it indicates that the corre-
sponding feature is selected, whereas 0 indicates that the corresponding feature
is unselected.

In fact, a D-dimensional vector BI consisting of continuous values is firstly
generated to represent each particle in the initial population of PSO. A threshold
6 (0 < 0 < 1) is then used to map BI to B as in [53]. If the value of a dimension
in BI is greater than 6, the corresponding dimension in B will be set to 1, and
to 0 otherwise.

160

165

170

175

180

185

190

2.2. Initialization and Update Mechanisms

In [53], Xue et al. proposed three new initialization methods for PSO to
solve the feature selection problems, and they have found the most promising
initialization method. In this research, the same initialization method as in [53]
is employed. Furthermore, in [53], four new mechanisms are designed for up-
dating pbest (personal best) and gbest (global best) [A1], where pbest represents
the best solution of a particle, and gbest represents the global best solution so
far within the population. Because the second method has been proven to be
more efficient than the others in [53], the second update strategy is used in this
research.

2.8. Candidate Solution Generation Strategies(CSGSs)

The proposed SPS-PSO algorithm uses the following five CSGSs. These
CSGSs have been proven to be effective in [53] 54, 33| B3].
1) The CSGS in [53] is used, and it is described as follows:
vf:ril =w*vf 441 xrrE (pi,,i - xfd> + o * Tox (Pg,d — xfd> , (1)
v =gt (2)
where ¢ represents the t'" iteration in the evolutionary process. D is the di-
mensionality of the search space and d € D represents the d'” dimension. w
is an inertia weight. x;d represents the d” dimension of the current particle’s
position. vi q € [—VUmax, Umax| Tepresents the velocity of the ith particle in the
current iteration ¢. ¢; and cy are acceleration constants. r; and r9 are random
values uniformly distributed in the range of [0, 1]. p;q and p, 4 represent the
d*" elements of personal best solution and global best solution, respectively.
2) The position update strategy proposed in [54] is used in SPS-PSO as one
CSGS. It is described as follows:
xﬁll =7y * xﬁ,d + 7ok pgq+ 1 * (1‘27(1 — :c};d) , (3)
where xfl 4 and m}; 4 are position vectors of two random particles. The veloc-
ity update method and other variables have the same meaning as described
previously.
3) Estimation-based velocity update strategy from [56] is used in SPS-PSO
as one CSGS. It is described as follows:

C:(D—l)l)N(0,1)+C(g,1) @

2 2 2
t+1 t ot t t t t t
Vig = (mcan,d - mld) + ﬁ\/(lh,d - mcan“l) + (I“l - meanl‘d) + (za.d - meanl‘d) 3 (5)

where N (0,1) and C (0,1) represent two numbers randomly generated by the
Gaussian distribution and Cauchy distribution, respectively. mean; 4 is set to
be the same as in Ref. [57]. The position update method and other variables
have the same meaning as described previously.

195

200

205

210

215

220

225

4) The velocity update strategy from [55] is used in SPS-PSO as one CSGS.
It is described as follows:

Vi =WVl gFerxr (Pbestfi(@ - x?,d), (6)

where f; = [fi (1), fi (2),..., fi (d)] defines which pbest should be used by the
current particle. pbesty,4) can be the corresponding dimensionality of any par-
ticle’s pbest including its own pbest. The position update method and other
variables have the same meaning as described previously.

5) The strategy from [56] is used in SPS-PSO as one CSGS. It is described
as follows:

vle = w % U;’d + 0.5%cy * 7y * (pbestfi(@ - xﬁ’derg,d - $§,d)a (7)

where the position update method and other variables have the same meaning
as described previously.

2.4. Strategy Self-adaptive Mechanism

In the strategy self-adaptive mechanism, each CSGS is assigned a selection
probability. The selection probability of each CSGS is increased or decreased
based on its performance in the evolution process. Two main problems should
be considered here: (1) which CSGS should be selected, and (2) how to update
the selection probabilities according to the performance of the CSGS?

An update cycle is set for all CSGSs, and in each cycle, the selection prob-
ability for each CSGS is fixed. If a CSGS successfully improves a solution, i.e.,
the new solution generated by this CSGS is better than the old one, the strat-
egy selection probability of this CSGS will be increased; otherwise, it will be
decreased. At the beginning of the algorithm, all CSGSs are assigned the same
initial selection probability, which is set to 1/N,, where N, is the number of
CSGSs in the strategy pool. The sum of all probabilities of CSGSs is 1. P,
is then used to represent the selection probability of the ¢! (¢ = 1,2,3, ..., N,)
strategy.

The roulette wheel method [58] is used to select a CSGS based on the se-
lection probabilities. The selected CSGS is then used by the current particle
to generate a new solution. The newly generated solution is then evaluated
by a classifier, and the update mechanism mentioned in Section [2.1]is utilized
to decide whether to update pbest and gbest. Subsequently, this information
(whether the new solution is better than the original one) is recorded by the
elements nsFlag; and nfFlag; (i =1,2,..., Nps,q¢ = 1,2,..., Ny), as shown be-

low:
00 -~ 0 00 -~ 0
00 --- 0 00 -~ 0
nsFlag = o . and nfFlag = o . (8)
00 0/ 00 - 0/y «n,

where N, is the number of particles, and [V, is the number of CSGSs.
For example, at some point, the ¢** strategy is selected for the i* particle.
If the new solution is better than the old one, then nsFlag;, will be set to

230

235

240

245

250

255

1; otherwise, nfFlag; , will be set to 1. If the evolution of the current gener-
ation is completed, the sum of each column from nsFlag; , and nfFlag; is
calculated, respectively. The results are then recorded as two elements, Sy 4
and Fyq,(k=1,2,..,Ng,¢ =1,2,...,Ny), as shown in Formula @D, where N,
represents the number of generations in a cycle, indicating that the selection
probability will be updated once N, generations are completed, and Sy , means
the number of successful evolutions that the ¢ strategy has in the k" gen-
eration. Meanwhile, the matrices nsFlangstq and anlangstq are reset,
according to Formula (8) after the selection probabilities are updated, so that
new information can be recorded in the next cycle.

00 --- 0 0 0 0
00 --- 0 00 --- 0

S = R . and F = L. . (9)
o0 --- 0 NyxN, 0O 0 --- 0 NyxN,

After the process is repeated for N, generations, the total number of suc-
cesses and failures of all CSGSs during the N, generations is calculated, and
the selection probability of each CSGS is updated. First, sum each column from
S and F in Formula (9) is calculated to get the total number of successful in-
stances or failed instances of each CSGS during the whole /N, generations, and
the results are recorded as S;. If the total number of successful evolution of a
CSGS is 0, i.e., the value of S(} is 0, a small enough value ¢ is assigned to Sql.
The small value e=0.01 is used to avoid being divided by zero.

Ng
Sy = kzl Sk.q (10)
2 [e if S;=0
S = { Sy, otherwise (11)

Then, Sg is divided by their total number of times that a strategy was selected,
as shown in Formula (12). This step is designed to obtain the probability that
a given CSGS succeeds in IV, generations of evolution. This probability will
determine the likelihood of the CSGS being selected in the next cycle. At the
same time, to guarantee that the summed probabilities of all CSGS is 1, Sf;’ is
normalized; the calculation process is shown in Formula (13). Finally, p, refers
to the probability of strategy ¢ being selected.

2 Ny
Sf;’ = Sq/(gg + 3 th) (12)
k=

1
3 [Ng
pg =" / 55 (13)
q=1

Algorithm 1: The Self-adaptive Mechanism for SPS-PSO

Input: the number of fitness evaluations (N FE), current number of
fitness evaluations (cF'E), population size (Np,), the number of

strategies (N,), p; = N% (¢=1,2,3,..,N,), N, = 10,
cur_iter =0, flag_iter = 0;
Output: gbest

1 while cFE < NFE do
2 1=0;
3 for i < N,, do
4 Select a CSGS from the strategy pool based on the selection
probabilities using the roulette wheel method to get the new
particle 7" and its fitness;
5 if 27V is better than z, then
6 nsFlag; 4 = 1;
7 if 27V is better than pbest then
8 Replace pbest with x7*¢;
9 if z7°" is better than gbest then
10 Replace gbest with x]¢";
11 end
12 end
13 end
14 else
15 | nfFlagq =1;
16 end
17 cFE =cFE+1;
18 Replace x; with z7°";
19 1=1+1;
20 end
21 cur_ter = cur_iter + 1;
22 Calculate the sum of each column in nsFlag; ; and record it in
SNg XNgs
23 Calculate the sum of each column in nfFlag; , and record it in
Fn, xnNg;
24 Reset nsFlag; 4 and nfFlag; , to zero matrices;
25 if cur_iter — flag-iter = N, then
26 Use Sy, xn, and Fi,xn, to update p, (¢ = 1,2,3, ..., Ny);
27 Reset SNQ x N, and Fn,xn, to zero matrices;
28 flag_iter=cur_iter;
29 end
30 end

260

265

270

275

280

285

290

295

2.5. Parameter Self-adaptive Mechanism

Parameter adaptation has been used in many EC algorithms. Qin et al. [59]
proposed a self-adaptive differential evolution (SaDE) algorithm, in which the
trial vector generation strategies and their related control parameter values are
gradually adapted to a given problem. In addition, Fan et al. [60] proposed a
self-adaptive differential evolution algorithm with zoning evolution of control pa-
rameters and adaptive mutation strategies (ZEPDE). The overall performance
of ZEPDE is better than those of other similar algorithms for solving optimiza-
tion problems, especially when the test function has a higher dimensionality.
In this research, in order to improve PSO for feature selection problems, the
parameter adaptation mechanism is introduced and further developed into the
proposed algorithm.

2.5.1. Parameter Initialization

In the self-adaptive process for parameters, a parameter starts from an ini-
tial value, and after undergoing the process, finally reaches its optimal value,
which can make the corresponding CSGS perform well in the optimization pro-
cess. In [59], a parameter self-adaptive mechanism is employed in a differential
evolution (DE) algorithm, and all the parameters are given the same initial
value. However, in SPS-PSO, it is not suitable for all parameters to have the
same initial value. Because the appropriate range of each parameter may vary
considerably, evolution will take more time if the initial value of a parameter is
far from its optimal values. At the same time, because of the increase in gap
between the initial value and the optimal value, the probability that the param-
eter falls into local optima also greatly increases. In this case, the parameters
have a greater probability of falling into the local optima instead of reaching
their global optimal value(s).

To improve the performance of CSGSs through adjusting their parameters in
SPS-PSQ, it is necessary to make the parameters reach their optimal values more
quickly while reducing their probability of falling into local optima. Although
the specific optimal parameter value is not determined, each parameter can be
given a good enough value that will serve as the initial value. Therefore, the
initial value for each parameter is set individually. More specifically, the initial
value of each parameter is set to a value that is proven to result in a good
performance.

2.5.2. Parameter Update Procedure

The traditional PSO algorithm uses fixed parameter values. A good set of
parameters can improve the performance of the algorithm [59]. For a specific
problem, the parameters can reach the optimal values that can make the CSGSs
perform well. In SPS-PSO, the Gaussian transformation is used to adjust the
parameter values to better values.

In SPS-PSO, to make the parameters more quickly approach the suitable
values that would cause the corresponding CSGSs to generate better solutions
(i.e., with higher classification accuracy and smaller solution sizes), values from

10

300

305

310

315

320

325

330

existing literature were assigned to be the initial values for the parameters.
PVMy, = [P P -+ Pn, }, where N, is the total number of parameters
of all the CSGSs, and P, is the n'* parameter in PV My,. At the beginning of
a generation, all parameter values are set using Formula (14).
P P, - Py,
PV Memory = P P .- Py, (14)
NN,

If a strategy is chosen to generate a particle, its parameter values will be se-
lected from the corresponding elements in PV Memoryn,, xn,. For example,
if the i*" particle selects CSGS 1 to generate a new particle, then the need-
ed parameters are taken out from the i*” row and corresponding columns in
PV Memoryn,,xn,.- The new parameters values are then generated from the
old ones through Gaussian transformation, in which the initial value is used
as the mean value while the standard deviation is 0.3. These newly generated
parameter values will be used to generate a new particle. If the new particle
performs better than the old one, these new parameter values will replace the
corresponding old values in PV Memoryn,, «xn,. After a generation of evolu-
tion, the mean values of all columns of PV Memoryn,, xn, are calculated and
then recorded in T'empPV My, xn,-

TP, TP, --- TPy,
TempPVM = | TP, TP, --- TPy (15)

p

Ny XNy

Ny is set as an evolutionary cycle. After every IV, generations, the new param-
eter values that are used in the next cycle will be generated by counting the
values in all TempPV My, xn,. The counting method is to get the average val-
ue of each generation for every parameter in TempPV My, «n,, i.e., the mean
value of every column in TempPV My, xn, is calculated. These new parameter
values will replace PV My, and will be used in the next evolution cycle. In the
evolution process, each of the related parameter values are gradually adapted
by learning the valid values that they generated before. In this process, the
algorithm can adaptively determine more suitable parameter values according
to different stages of the search process.

3. Experiments

In this section we present the experimental methods. Nine datasets with
more than 600 dimensions were used to perform the experiments. To inves-
tigate whether the evolutionary computation based feature selection method
is effective and to test the performance of SPS-SPO for feature selection, two
groups of experiments were conducted. In the two groups of experiments, four
classifiers and four other evolutionary algorithms were employed. The detailed
descriptions about the datasets, experimental methods, and parameter settings
are given as follows.

11

Algorithm 2: The Parameter Update Procedure

© o N o

10
11
12
13
14

15
16
17

18
19
20
21

Input: The number of fitness evaluations (N FE), current number of fitness
evaluations (cF'E), population size (Nps),
PV My, = [P P, .- Py, |, curdter =0, flag_iter = 0;

while cFE < NFE do

Set PVMNP to PVMemorprs XNy}

1= 0;

for i < Nps do

Get the parameters needed from PV M EMOTYN o x Np and generate a

new parameter value p; by Gaussian transformation;

Generate a new particle with the corresponding CSGS and p;;

if 27'¢Y is better than x; then

‘ PV Memory; »n = pi;

end

i=1+1;

cFE =cFFE +1;
end

cur_tter = cur_iter + 1;
Calculate the mean of each column in PVMemorprszp and record it in
TempPV Mn,xnN,;
Replace PV My, with TempPV M n, (I = cur_iter — flag_iter);
if cur_iter — flag-iter = Ny then
Calculate the mean of each column in TempPV Myn,,xn, and replace
PV Mn,;
Reset TempPV Memoryn,,xn, to zero matrix;
flag_iter=cur_iter;
end

end

12

335

340

345

350

355

360

Table 1: The detailed Information of Datasets

1D Datasets NoE NoF NoC
DS1 isoletb 1559 617 26
DS2 MultipleFeaturesDigit 2000 649 10
DS3 CNAE 1080 856 9
DS4 regedO1 500 999 2
DS5 tied 750 999 4
DS6 marti 500 1024 2
DS7 MicroMass 360 1300 2
DS8 gisette_valid 1000 5000 2
DS9 drivFaceD 606 6400 3

3.1. Datasets

The datasets used in the experiments are chosen from the University of Cali-
fornia Irvine (UCI) Machine Learning Repository [51] and Causality Workbench
[52], as shown in Table 1. Among them, DS 1, DS 2, DS 3, DS 6, DS 7, DS 8,
and DS 9 are from UCI whereas DS 4 and DS 5 are from Causality Workbench.
To assess the performance of SPS-PSO on large-scale feature selection problems,
the dimensions of all datasets are greater than 600. A brief description of all
datasets is shown in Table 1.

In Table 1, “DSn” represents the n'" dataset, NoE means the number of
examples, NoF represents the number of features (dimensions), and NoC is the
number of classes. Furthermore, all the datasets were divided into training
sets and test sets. Among them, the training sets account for 70%, while the
remaining 30% is used as test sets. For the classifiers, 3-fold cross-validation is
used to obtain the classification accuracy.

3.2. Algorithms and Classifiers for Comparison

Two groups of experiments were performed: (1) Different classifiers may
have different levels of performance when being used in feature selection prob-
lems. When different classifiers are used as evaluation functions, the accuracy
and sizes of the solutions obtained by SPS-PSO may also be different, too. To
prove that this proposed method is effective for more classifiers, four different
classifiers, namely KNN [46], LDA [47], SVM [49], and ELM [50], were used as
evaluation functions for SPS-PSO, respectively. To investigate the performance
of different EC algorithms, a relatively suitable classifier was used as the final
evaluation function. (2) To further show the superiority of the SPS-PSO algo-
rithm compared with the other four EC techniques, four EC algorithms, namely
PSO [1], GA [61], DE [62], and SaDE [59], were used as comparison algorithms
for the same classifier, which was KNN.

3.3. Parameter Settings

Detailed information on the parameter settings of SPS-PSO is given in Ta-
ble 2, where 0 is a threshold used to determine whether the feature should be

13

365

370

375

380

385

390

395

400

Table 2: Parameter Values of SPS-PSO
Operating parameters Initial values of parameters
0 NFE Nz Np PV PV, PVy PV, PVs
0.6 100,000 10 100 1.49445 1.49445 1.49618 1.49618 0.7298

selected. INF'E represents the maximum number of fitness evaluations. N, is
the number of the leaning periods, which is the number of generations between
two update cycles. N, represents the number of the particles, and PV, shows
the initial parameter values for CSGSs. At the same time, the parameter values
of the compared algorithms are set to be the same as those used in their orig-
inal references. The parameter values of the four different classifiers are set as
follows: KNN: number of neighbors K=3; LDA: type is diagLinear; ELM: the
number of hidden layer nodes is 100, and the kernel function is sigmoid func-
tion; SVM: the kernel function is RBF, the loss function C=1, and the gamma
function G=0.07.

To compare the performance of different algorithms as fairly as possible,
NFE was used as stop criteria, and the same NFFE = 100,000 was used for
each comparison algorithm. The qualities of the final solutions obtained by the
different algorithms were compared. Meanwhile, to obtain more valuable and
statistical conclusions, each experiment was repeated 26 times.

4. Results and Analysis

The experimental results are shown in Tables 3~8. In these tables, “mean”
represents the average value of the accuracy or the size of the final solution
obtained by each algorithm, and “std” represents the standard deviation. In
Table 5 and Table 8, the %-column lists the proportion of features that is reduced
by an algorithm from the complete feature sets. A statistical significance test
(T-test) with a confidence level of 95% is employed [63]. Therefore, the symbol
“+” means that the benchmark method is better than the corresponding method
with a significant difference, “-” means that the benchmark method is worse
than the corresponding method with a significant difference, and “=" means
that there is no significant difference between the benchmark method and the
corresponding method. The symbols are followed by the p values from the
statistical significance test. Taking Table 4 as an example, “+” indicates that
KNN is better than ELM with a significant difference, and “=" indicates that
there is no significant difference between KNN and ELM.

4.1. Comparison of the Four Classifiers

Table 3 and Table 4 show the classification accuracy of SPS-PSO on the
training sets and test sets with the four types of classifiers: KNN, LDA, SVM,
and ELM. Table 5 shows the solution sizes (the number of finally selected fea-
tures) obtained by SPS-PSO on the training sets when the four classifiers are
used as evaluation functions, respectively.

14

405

410

415

Table 3: CLASSIFICATION ACCURACY OF THE FOUR CLASSIFIERS USING SPS-PSO
ON TRAINING SETS

KNN LDA SVM ELM
Datasets
mean std mean std mean std mean std

DS 1 9.06E-01 7.30E-03 9.41E-01 2.70E-03 9.36E-01 4.10E-03 8.79E-01 1.12E-02
-,<0.001 -,<0.001 +,<0.001

DS 2 9.79E-01 1.10E-03 9.93E-01 1.00E-03 1.17E-01 0 8.04E-01 4.70E-03
-,<0.001 +,<<0.001 +,<0.001

DS 3 9.30E-01 5.20E-03 9.63E-01 2.50E-03 8.04E-01 4.10E-03 9.42E-01 4.60E-03
-,<0.001 +,<0.001 -,<0.001

DS 4 9.94E-01 2.00E-03 9.97E-01 0 8.97E-01 0 9.26E-01 2.80E-03
-,<0.001 +,<0.001 +,<<0.001

DS 5 9.94E-01 5.10E-03 9.99E-01 9.00E-04 1.00E+-00 0 9.51E-01 2.36E-02
-,<0.001 -,<0.001 +,<0.001

DS 6 8.95E-01 2.40E-03 6.33E-01 5.50E-03 8.89E-01 o0 8.88E-01 3.50E-03
+,<0.001 +,<0.001 +,<0.001

DS 7 9.85E-01 5.30E-03 1.00E+00 8.00E-04 5.93E-01 5.17E-02 9.28E-01 1.14E-02
-,<0.001 +,<0.001 +,<0.001

DS 8 9.73E-01 3.50E-03 9.83E-01 5.30E-03 5.09E-01 0 8.51E-01 5.40E-03
-,<0.001 +,<0.001 +,<0.001

DS 9 9.85E-01 1.40E-03 8.86E-01 4.20E-03 9.10E-01 0 9.54E-01 2.30E-03
+,<<0.001 +,<0.001 +,<0.001

Table 4: CLASSIFICATION ACCURACY OF THE FOUR CLASSIFIERS USING SPS-PSO
ON TEST SETS

KNN LDA SVM ELM
Datasets
mean std mean std mean std mean std

DS 1 8.25E-01 1.32E-02 8.76E-01 1.21E-02 7.21E-01 2.22E-02 7.50E-01 1.66E-02
-,<0.001 +,<<0.001 +,<<0.001

DS 2 9.48E-01 5.90E-03 9.78E-01 3.60E-03 1.21E-01 1.60E-03 9.36E-01 6.10E-03
-,<0.001 +,<0.001 +,<<0.001

DS 3 8.13E-01 2.88E-02 8.85E-01 1.86E-02 1.92E-01 2.16E-02 7.25E-01 4.15E-02
-,<0.001 +,<<0.001 —+,<0.001

DS 4 8.94E-01 2.02E-02 9.45E-01 1.70E-02 8.47E-01 0 8.60E-01 1.94E-02
-,<<0.001 +,<0.001 +,<<0.001

DS 5 9.36E-01 1.58E-02 9.74E-01 7.70E-03 9.21E-01 1.56E-02 8.79E-01 2.03E-02
-,<0.001 +,<0.001 +,<0.001

DS 6 8.48E-01 1.04E-02 5.54E-01 4.32E-02 8.67E-01 0 8.50E-01 9.90E-03
+,<0.001 -,<0.001 =,0.45

DS 7 7.89E-01 4.07E-02 8.39E-01 3.15E-02 5.29E-01 3.23E-02 7.04E-01 3.77E-02
-,<0.001 +,<0.001 +,<<0.001

DS 8 8.96E-01 1.36E-02 9.22E-01 1.18E-02 5.20E-01 (0] 8.74E-01 1.54E-02
-,<0.001 +,<<0.001 +,<<0.001

DS 9 9.17E-01 6.90E-03 7.92E-01 4.84E-02 8.79E-01 (0] 9.14E-01 7.60E-03
+,<<0.001 +,<<0.001 =,0.11

It can be seen from Table 3 that KNN is better than SVM on 7 training sets
with significant difference, and that KNN is better than ELM on 8 training sets
with a significant difference. Similarly, it can be seen from Table 4 that KNN
outperforms SVM on 8 test sets with a significant difference, whereas KNN
outperforms ELM on 7 test sets with a significant difference. Table 4 also shows
that KNN outperforms SVM and ELM in terms of classification accuracy on
most training sets and test sets. From Table 3 and Table 4 we can see that KNN
outperforms LDA on only 2 training sets and 2 test sets, respectively, i.e., the
classification accuracy of LDA is higher than that of KNN on most training sets
and test sets. It would therefore seems that LDA is better. However, evaluation
in terms of classification performance is only one of the two objectives of this
study. Thus, it is necessary to further analyze the sizes of the final solutions.

From Table 5 we see that feature selection can reduce most of the features
for all the classifiers. For example, it can reduce 70%-80% features for KINN.

15

420

425

430

435

440

Table 5: The SOLUTION SIZEs OF THE FOUR CLASSIFIERS USING SPS-PSO ON
TRAINING SETS

KNN LDA SVM ELM
Datasets
mean std % mean std % mean std % mean std %
1.56E+02 1.10E+01 74.73 1.55E+02 1.07E+01 74.86 1.46E+02 9.81E+00 76.29 1.04E402 1.65E+01 83.13
DS1
=,0.72 -,<0.001 -,<0.001
1.71E+02 2.16E+01 73.66 1.59E+02 9.47E+00 75.52 1.71E402 252E+01 73.59 2.75E+02 4.06E+01 57.62
DS 2
-,0.008 =1 +,<0.001
DS 3 2.54E+02 3.02E4+01 70.28 3.03E4+02 3.21E+01 64.65 1.33E4-02 8.22E+00 84.48 1.95E+02 1.92E401 77.25
+,<0.001 -,<0.001 -,<0.001
DS 4 1.96E4+02 3.85E4+01 80.41 1.13E+02 2.17E+01 88.72 1.45E401 5.76E+00 98.55 289E+02 4.69E+01 71.05
-,<0.001 -,<0.001 +,<0.001
DS 5 1.89E4+02 2.57E4+01 81.13 2.33E+02 4.56E+01 76.66 1.13E4+02 ©5.82E+00 88.70 1.36E+02 4.20E+01 86.40
+,<0.001 ~,<0.001 -,<0.001
DS 6 3.04E4+02 3.81E+01 70.35 3.47E4+02 4.54E+01 66.15 1.58E401 5.14E+00 98.50 3.46E4+02 5.96E+01 66.23
+,<0.001 ~,<0.001 +,0.002
DS 7 3.21E4+02 287E+01 7531 243E+02 3.41E+01 81.28 7.11E401 1.75E+01 94.53 3.01E+02 4.10E4+01 76.83
-,<0.001 -,<0.001 =,0.033
1.26E+03 1.14E+02 74.87 1.17E+03 T7.00E4+01 76.58 2.49E+402 4.13E401 95.01 1.29E4+03 1.63E+02 74.14
DS 8
-,<0.001 -,<0.001 =041
1.88E+03 2.51E+02 70.67 1.84E+03 243E+02 71.33 3.25E+402 5.07E4+01 9492 1.71E4+03 1.83E4+02 73.33
DS 9
=,0.53 -,<0.001 -,0.004

This indicates that feature selection is an effective method for simplifying the
classification systems. It can be seen from Table 5 that SVM achieves the s-
mallest solution sizes on eight datasets. However, the classification accuracy of
SVM on the training and test sets are too low on DS 2, DS 7, and DS 8. The
accuracy of SVM on training sets DS 2, is only 11.7%, in particular. This re-
sults indicates that SVM is unstable. It seems that KNN, LDA, and ELM have
advantages in terms of the solution size. It can be seen from Table 5 that, LDA
only reduced 64% and 66% of all features on DS 3 and DS 6, respectively, and
ELM only reduced 57% and 66% of all features on DS 2 and DS 6, respectively.
By contrast, KNN can consistently reduce more than 70% of all features on all
training sets. Besides, the standard deviation of KNN is slightly smaller than
those of LDA and ELM. Therefore, although KNN is not the best classifier on
all datasets, its performance is the most stable. The experimental results reveal
that SPS-PSO can achieve good performance for feature selection when differ-
ent classifiers are used as evaluation functions, respectively. In addition, it can
be concluded that feature selection is an effective approach for improving the
performance of classification systems. Nevertheless, some different classification
results are different when different classifiers are employed. In the four classi-
fiers, KNN’s performance is more stable, although the solution size obtained is
not as good as SVM and the classification accuracy is not as good as that of
LDA, KNN performs the most stably among the four classifiers, i.e., KNN can
consistently reduce more than 70% features while ensuring a good classification
accuracy. Thus, KNN is chosen as the final classifier for comparing SPS-PSO
with the other EC algorithms.

4.2. Comparison of SPS-PSO with Other EC Algorithms

Table 6 and Table 7 show classification accuracy of SPS-PSO and the other
EC algorithms on training sets and test sets, respectively. Meanwhile, Table
8 shows the final solution sizes on training sets obtained by SPS-PSO and the
other algorithms.

16

445

450

455

460

465

470

It can be observed from Table 6 that the classification accuracy of SPS-
PSO is higher than that of PSO on 8 training sets with a significant difference.
Similarly, SPS-PSO is better than GA, DE, and SaDE on 7, 9, and 9 datasets,
respectively. On DS 6 and DS 9, GA has a higher classification accuracy than
that of SPS-PSO. However, the difference between them is so small that it can
even be neglected. Besides, considering the significant difference, SPS-PSO is
the same as that of GA on DS 6. All in all, the performance of SPS-PSO in
terms of classification accuracy on the training sets is better than those of the
other EC algorithms. It can be seen from Table 7 that SPS-PSO is obviously
better than the other EC algorithms with a significant difference on the test sets.
It can be observed from Table 8 that the solutions obtained by SPS-PSO are
much smaller than those obtained by the other EC algorithms on all datasets
with a significant difference. On these nine datasets, SPS-PSO removed over
70% of the features. Particularly, SPS-PSO can remove over 80% of features
on DS 3 and DS 4. To sum up, SPS-PSO can remove a significant number of
redundant and irrelevant features. According to Tables 6~8, it can be observed
that SPS-PSO can not only reduce the sizes of the solutions but also obtain
higher classification accuracy compared with other algorithms. Therefore, the
strategy and parameter self-adaptive mechanisms are very effective techniques
for improving the performance of evolutionary algorithms on large-scale feature
selection problems.

4.8. Convergence Performance of the EC Methods on the Training Sets

Fig.1 and Fig.2 illustrate the convergence performance of SPS-PSO and the
other EC algorithms on the nine training sets in terms of classification accura-
cy and solution sizes (it is noted that the scales along Y axis are different for
different graphs).To produce graphs that can be read more clearly, the conver-
gence performance curves on the nine datasets are provided in Fig.1 and Fig.2
separately.

Table 6: CLASSIFICATION ACCURACY OF METHODS ON TRAINING SETS(KNN)

PSO GA DE SaDE SPS-PSO

Data sets
mean std mean std mean std mean std mean std

DS 1 8.52E-01 8.00E-03 8.32E-01 6.70E-03 8.04E-01 3.70E-03 8.11E-01 4.20E-03 9.06E-01 7.30E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 2 9.75E-01 1.30E-03 9.71E-01 1.90E-03 9.67E-01 1.10E-03 9.68E-01 1.10E-03 9.79E-01 1.10E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 3 8.71E-01 1.71E-02 8.78E-01 1.40E-02 8.19E-01 9.40E-03 8.17E-01 9.10E-03 9.30E-01 5.20E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 4 9.71E-01 7.20E-03 9.49E-01 8.90E-03 9.39E-01 2.20E-03 9.44E-01 2.80E-03 9.94E-01 2.00E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 5 9.53E-01 1.14E-02 9.39E-01 8.00E-03 9.07E-01 3.70E-03 9.16E-01 3.00E-03 9.94E-01 5.10E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 6 8.95E-01 1.40E-03 8.95E-01 3.20E-03 8.92E-01 1.40E-03 8.92E-01 2.10E-03 8.95E-01 2.40E-03
=1 =1 +,<0.001 +,<0.001

DS 7 9.72E-01 1.40E-03 9.54E-01 1.09E-02 9.33E-01 4.80E-03 9.39E-01 6.70E-03 9.85E-01 5.30E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 8 9.57TE-01 6.40E-03 9.54E-01 3.00E-03 9.47E-01 1.60E-03 9.49E-01 1.70E-03 9.73E-01 3.50E-03
+,<0.001 +,<0.001 +,<0.001 +,<0.001

DS 9 9.84E-01 1.20E-03 9.85E-01 1.80E-03 9.83E-01 1.10E-03 9.83E-01 1.10E-03 9.85E-01 1.40E-03
+,0.004 =1 +,<0.001 +,<0.001

17

475

480

485

Table 7: CLASSIFICATION ACCURACY OF METHODS ON TEST SETS(KNN)

Data sots PSO GA DE SaDE SPS-PSO
mean std mean std mean std mean std mean std
DS 1 7.83E-01 1.98E-02 7.59E-01 2.03E-02 7.53E-01 1.38E-02 7.50E-01 1.66E-02 8.25E-01 1.32E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 2 9.44E-01 8.00E-03 9.38E-01 6.00E-03 9.38E-01 8.00E-03 9.36E-01 6.10E-03 9.48E-01 5.90E-03
+,0.031 +,<0.001 +,<0.001 +,<0.001
DS 3 7.60E-01 4.74E-02 7.85E-01 2.86E-02 T7.43E-01 3.27E-02 7.25E-01 4.15E-02 8.13E-01 2.88E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 4 8.66E-01 1.92E-02 8.58E-01 1.26E-02 8.64E-01 2.02E-02 8.60E-01 1.94E-02 8.94E-01 2.02E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 5 8.86E-01 1.51E-02 8.90E-01 1.54E-02 8.74E-01 1.31E-02 8.79E-01 2.03E-02 9.36E-01 1.58E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 6 8.57E-01 1.15E-02 8.47E-01 9.50E-03 848E-01 1.16E-02 8.50E-01 9.90E-03 848E-01 1.04E-02
-,0.002 =,0.7 =1 =,0.45
DS 7 6.88E-01 4.86E-02 6.93E-01 3.78E-02 6.86E-01 5.03E-02 7.04E-01 3.77E-02 7.89E-01 4.07E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 8 8.83E-01 9.80E-03 8.82E-01 1.45E-02 8.79E-01 1.44E-02 8.74E-01 1.54E-02 8.96E-01 1.36E-02
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 9 9.12E-01 1.04E-02 9.16E-01 1.00E-02 9.18E-01 1.00E-02 9.14E-01 7.60E-03 9.17E-01 6.90E-03
+.,0.032 =.0.65 =,0.65 =0.11
Table 8: SOLUTION SIZE OF METHODS ON TRAINING SETS (KNN)
Datasets PSO GA DE SaDE SPS-PSO
mean std % mean std % mean std % mean std % mean std %
DS 1 L72E402 187E401 7220 3.48E+02 3.34E4+01 43.67 251E+02 141E+01 59.32 233E4+02 1.36E4+01 6227 1.56E402 1.10E+01 7473
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 2 1.98E+02 180E+01 6945 3.38E4+02 541E+01 4786 2.64E+02 1.25E+01 59.34 256E+02 1.22E401 60.54 1.71E402 2.16E+01 73.66
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 3 3.91E+02 6.21E4+01 5435 6.79E+02 3.73E+01 20.64 6.70E+02 9.74E+01 21.71 4.76E+02 173E402 4441 2.54E402 3.02E4+01 70.28
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 4 291E4+02 3.94E4+01 7090 4.84E+02 846E+01 51.59 4.01E4+02 1.46E+01 59.82 3.79E4+02 1.99E4+01 62.10 1.96E+02 3.85E+01 80.41
+,<0.001 +.<0.001 +,<0.001 +,<0.001
DS 5 3.31E4+02 6.95E+01 66.86 4.83E+02 T7.03E+01 51.64 4.03E+02 1.66E+01 59.66 3.87E+02 1.65E+01 6127 1.89E402 2.57E+01 81.13
+,<0.001 +.<0.001 +,<0.001 +.<0.001
DS 6 3.14E+02 4.78E+01 69.36 5.23E+02 9.67E+01 4888 4.13E+02 521E+01 59.67 3.95E+02 2.25E+01 6140 3.04E402 38I1E+01 7035
=037 +.<0.001 +,<0.001 +.<0.001
DS 7 412402 2.73E+02 68.31 7.34E402 1.65E4+02 4357 5.21E+02 189E+01 59.92 5.02E4+02 2.10E4+01 6137 3.21E402 287E+01 75.31
=008 +.<0.001 +,<0.001 +.<0.001
DS8 1.69E+03 1.24E+02 66.27 2.71E+03 4.50E4+02 45.88 2.01E+03 5.30E+01 59.80 1.95E+03 5.23E4+01 60.96 1.26E403 1.14E+02 7487
+,<0.001 +,<0.001 +,<0.001 +,<0.001
DS 9 191E403 9.42E401 70.11 3.23E+03 5.30E+02 4947 257E+03 7.26E+01 59.82 248E+03 6.59E+01 61.23 1.88E403 251E+02 70.67
+,0.54 +,<0.001 +,<0.001 +,<0.001

Through a comparison of the convergence curves of these algorithms, it is
found that the performance levels of the four algorithms are relatively close at
the beginning, because all the algorithms use the same initialization method.
At the early stages of the algorithms, SPS-PSO converges significantly faster
than PSO, GA, DE, and SaDE. At the later stages, the convergence of the five
algorithms is significantly reduced. Through observations on the convergence
curves in terms of the classification accuracy and solution sizes, SPS-PSO out-
performs the other four algorithms on all the datasets except DS 6 and DS 9.
On DS 6 and DS 9, although the classification performance levels of SPS-PSO
and GA are similar, the solution size curves of GA converged very early and
quickly stopped. Similarly, although the convergence curve of PSO is relatively
close to that of SPS-PSO, it does not perform as well as SPS-PSO in terms
of the final classification accuracy and solution sizes. Feature selection can be
seen as an optimization problem that requires both high classification accuracy
and small solution size. When compared with SPS-PSO, the other four EC

18

0.91 T T T T T T T e — 0.98
s 5588855 e-5-588-8558
.. 0.894 e T {5703 5 0975 601.1
o (73
1] ot
£ 0878 15236 T 097 553.2
5 3 g
j=
Zosez| {4769 £ 0.965 505.3
Z0846 | 4302 § £ 096 457.4
5 | / ‘@ °
g 0.83 \ / 2 x AR F A AR HHH KKK KKK 393 5 _§ ‘S‘o_gss 409.5
3 « =)
3 =2 Q
S 0814) N 13368 3 ® 095 361.6
c . al a o] <
S S
5 0798 42901 %= 0945 313.7
= =
2 0.782 -243.4 2 094 265.8
© ©
e o
© o.766% | 4 196.7 0.935 4217.9
0.75 AN ——— 1= — ' - I — . - T — . 150 0.93 1 L 1 N 1 - = TR L L 170
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of Fitness Evaluation x10% Number of Fitness Evaluation x10%
0.94 856 999
~ 0.92 795.8 - 918.6
2 2
£ o9 7356 £ 8382
el
> o
£0.88 5 675.4 2 757.8
£ <
® T iy
S 086 6152 § = 6774
S > s
Zos84 555 5 2o 597
3 23
S 0.82 4948 3 S 516.6
5 5
= 08 4346 = , 436.2
S @
£ e i B — S—
2078 {3744 2 1355.8
© ©
8 - .
0.76 3142 © H275.4
0.74 I 1 1 - = T S—— 254 0.85 L L I n s —t 1 195
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 9 10
Number of Fitness Evaluation x10% Number of Fitness Evaluation x10%
1 T T T T T T T T T 999 0.9 T T . T T T T T - 1024
& 558555
0.987 R A 1917.9 0.894 e &5 9516
E E *w/g—/gw e ird
77
£ o974 836.8 & 0.888 +879.2
o ©
o961 755.7 Losez) - 806.8
5 5
< 0.948 6746 § 20 876Y 17344
S ~ @ S
il o ~ SO |
20935 | 0T spert AR {5935 & Z os7 {662
a T § a
S 0922 15124 @ S 0864 15896
S | " S T S
7§ 0909 Sy TTTreyey 4313 7 0.858 45172
20896 oL +350.2] - 4448
S < —— —
[8) &)
0.883 1269.1 {3724
0.87 — e - 188 : 300
0 1 2 3 4 5 6 7 8 9 10 3 5 10
Number of Fitness Evaluation x10* Number of Fitness Evaluation x10%
--+--GA-Classification Accuracy —— GA-Solution Size --¥-—DE-Classification Accuracy ~DE-Solution Size —=—SPS-PSO-Classification Accuracy

----- SPS-PSO-Solution Size ——SaDE-Classification Accuracy

SaDE-Solution Size —=—PSO0-Classification Accuracy

Figure 1: The classification accuracy and solution sizes of different algorithms on training sets

(DS 1- DS 6).

19

PSO-Solution Size

Solution size

Solution size

Solution size

099 P e T - 0000 1300
©)
§ 0.96 kNN KK KK 1201.8
@ NN
© 093 1103.6
©
o
£ 0.9 - 1005.4
c
©
= 087 q907.2 §
S [z
Z 084 1809 S
S El
8 3
S 0.81 17108 0
S
£ 078 H6126
8 S
= T S —
@ 075 - e — 5144
©
O o072 416.2
0.69 : . — L —L— — 318
0 1 2 3 4 5 6 7 8 9 10
Number of Fitness Evaluation x10*
0.98 T T T T T T T 5000
0960 7 1 46255
2
& 0.958 - ° 4251
hel
2 0.047 & 7 -4 3876.5
= T '
= 0.936, 43502 §
5 @
20925 - {3127.5 §
3 | 3
] 3
S o914 12753 @
c
o
£ 0.903 23785
o
= S
g 0892 = ————| 2004
6 - —
0.881 16205
S 1258
0 1 2 3 4 5 6 7 8 0
Number of Fitness Evaluation x10%
0.99 6400
.. 0.982 ¥ 5946.6
2 ,
£ 0.9745 5493.2
hel
o
£ 0,966 5039.8
s
= 0.958 45864 §
c -
5 (7]
2 095 4133 §
g =1
8 3
S 0.942 3679.6 &
5
= 0.934 3226.2
P
2 2772.8
©
o
0.918 2319.4
0.91 1866
0 1 2 3 4 5 6 7 8 9 10
Number of Fitness Evaluation x10*
—+-GA-Cl i Accuracy — lution Size --¥-- DE-CI ification Accuracy DE-Solution Size —=— SPS-PSO-Classification Accuracy

-~ ~8PS-PSO-Solution Size —* SaDE-Classification Accuracy SaDE-Solution Size —e—PSO-Classification Accuracy -~~~ PSO-Solution Size

Figure 2: The classification accuracy and solution sizes of different algorithms on training sets
(DS 7- DS 9). 20

490

495

500

505

510

515

520

525

algorithms cannot optimize the classification accuracy and the solution size as
well for large-scale feature selection problems at the same time. The other EC
algorithms fall into local optima more easily. In addition, if NFFE is set to a
small number, a solution with lower quality will be obtained. If NFFE is set
to a big number, a better solution, or even the best solution, can be obtained.
Therefore, there is a trade-off between computation time and performance. This
trade-off can be made by adjusting the value of NFFE.

5. Conclusions and Future Work

In this research, in order to effectively solve large-scale feature selection
problems, the strategy and parameter self-adaptive mechanisms were introduced
into PSO, and a new algorithm named SPS-PSO was designed. Furthermore,
in order to investigate the effect of feature selection for different classifiers, four
classifiers, i.e., KNN, LDA, SVM, and ELM, are used as evaluation functions for
SPS-PSO. Experimental results on nine datasets show that the feature selection
technique is effective for improving the classification accuracy and reducing the
calculation time when different classifiers are used as evaluation functions. It is
also demonstrated that SPS-PSO can achieve higher classification accuracy and
smaller solution sizes than those of the other four EC methods on large-scale
feature selection problems. This result indicates that the adaptive mechanisms
can significantly improve the performance of EC methods on feature selection
problems. In future work, we will try to further improve the efficiency of SPS-
PSO, and more classifiers will be used as evaluation functions for SPS-PSO to
further assess its application potential.

Acknowledgments

This work was partially supported by the National Natural Science Foun-
dation of China (61403206, 61876089,61876185), the Natural Science Founda-
tion of Jiangsu Province (BK20141005), the Natural Science Foundation of the
Jiangsu Higher Education Institutions of China (14KJB520025), the Engineer-
ing Research Center of Digital Forensics, Ministry of Education, and the Priority
Academic Program Development of Jiangsu Higher Education Institutions.

References

[1] B. Xue, M. J. Zhang, W. N. Browne, X. Yao, A survey on evolutionary
computation approaches to feature selection, IEEE Trans. Evolut. Comput.
20 (4) (2016) 606—626.

[2] S. Jadhav, H. He, K. Jenkins, Information gain directed genetic algorithm
wrapper feature selection for credit rating, Appl. Soft Comput. 69 (2018)
541-553.

21

530

535

540

545

550

555

560

3]

[13]

[14]

I. Jain, V. K. Jain, R. Jain, Correlation feature selection based improved-
binary particle swarm optimization for gene selection and cancer classifica-
tion, Appl. Soft Comput. 62 (2018) 203-215.

G. Jothi, H. H. Inbarani, Hybrid tolerance rough set-firefly based super-
vised feature selection for mri brain tumor image classification, Appl. Soft
Comput. 46 (2016) 639-651.

M. A. Ambusaidi, X. He, P. Nanda, Z. Tan, Building an intrusion detec-
tion system using a filter-based feature selection algorithm, IEEE Trans.
Comput. 65 (10) (2016) 2986-2998.

P. Mohapatra, S. Chakravarty, P. K. Dash, Microarray medical data classi-
fication using kernel ridge regression and modified cat swarm optimization
based gene selection system, Swarm Evol. Comput. 28 (2016) 144-160.

S. Nakariyakul, D. P. Casasent, Improved forward floating selection algo-
rithm for feature subset selection, in: Int. Conf. Wav. Anal. and Pattern
Recog., Vol. 2, 2008, pp. 793-798.

S. D. Strearns, On selecting features for pattern classifiers, in: Int. Conf.
Pattern Recog., 1976, pp. 71-75.

D. Ververidis, C. Kotropoulos, Fast sequential floating forward selection
applied to emotional speech features estimated on des and susas data col-
lections, in: 14th Eur. Sig. Proc. Conf., 2006, pp. 1-5.

R. Leardi, L. Ngaard, Sequential application of backward interval partial
least squares and genetic algorithms for the selection of relevant spectral
regions, J. Chemometr. 18 (11) (2004) 486-497.

C. Dudeja, Fuzzy-based modified particle swarm optimization algorithm
for shortest path problems, Soft Comput. 23 (17) (2019) 1-11.

Y. Zhang, D. Gong, Y. Hu, W. Zhang, Feature selection algorithm based
on bare bones particle swarm optimization, Neurocomputing 148 (2015)
150-157.

Y. Zhang, X. F. Song, D. W. Gong, A return-cost-based binary firefly
algorithm for feature selection, Inform. Sci. 418 (2017) 561-574.

M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li,
S. Mirjalili, Binary dragonfly optimization for feature selection using time-
varying transfer functions, Knowl-Based Syst. 161 (2018) 185-204.

M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris, A. M.
Al-Zoubi, S. Mirjalili, Evolutionary population dynamics and grasshopper
optimization approaches for feature selection problems, Knowl-Based Syst.
145 (2018) 25-45.

22

565

570

575

580

585

590

595

[16]

[17]

[18]

[19]

[20]

[23]

[24]

[27]

[28]

M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper fea-
ture selection, Appl. Soft Comput. 62 (2018) 441-453.

H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A.-Z. AlaM, S. Mirjalili,
H. Fujita, An efficient binary salp swarm algorithm with crossover scheme
for feature selection problems, Knowl-Based Syst. 154 (2018) 43-67.

I. Aljarah, M. Mafarja, A. A. Heidari, H. Faris, Y. Zhang, S. Mirjalili,
Asynchronous accelerating multi-leader salp chains for feature selection,
Appl. Soft Comput. 71 (2018) 964-979.

M. M. Mafarja, S. Mirjalili, Hybrid whale optimization algorithm with
simulated annealing for feature selection, Neurocomputing 260 (2017) 302
312.

A. K. Das, S. Sengupta, S. Bhattacharyya, A group incremental feature
selection for classification using rough set theory based genetic algorithm,
Appl. Soft Comput. 65 (2018) 400—411.

H. Dong, T. Li, R. Ding, J. Sun, A novel hybrid genetic algorithm with
granular information for feature selection and optimization, Appl. Soft
Comput. 65 (2018) 33-46.

E. Hancer, B. Xue, M. Zhang, D. Karaboga, B. Akay, Pareto front feature
selection based on artificial bee colony optimization, Inform. Sci. 422 (2018)
462-479.

S. Arslan, C. Ozturk, Multi hive artificial bee colony programming for high
dimensional symbolic regression with feature selection, Appl. Soft Comput.
78 (2019) 515-527.

Y. Zhang, D.-W. Gong, X.-Z. Gao, T. Tian, X.-Y. Sun, Binary differential
evolution with self-learning for multi-objective feature selection, Inform.
Sci. 507 (2020) 67-85.

U. Singh, S. N. Singh, A new optimal feature selection scheme for classifi-
cation of power quality disturbances based on ant colony framework, Appl.
Soft Comput. 74 (2019) 216-225.

B. O. Aljjla, C. P. Lim, L.-P. Wong, A. T. Khader, M. A. Al-Betar, An en-
semble of intelligent water drop algorithm for feature selection optimization
problem, Appl. Soft Comput. 65 (2018) 531-541.

K.-C. Lin, J. C. Hung, J.-t. Wei, Feature selection with modified lion’s
algorithms and support vector machine for high-dimensional data, Appl.
Soft Comput. 68 (2018) 669-676.

Q. Tu, X. Chen, X. Liu, Multi-strategy ensemble grey wolf optimizer and
its application to feature selection, Appl. Soft Comput. 76 (2019) 16-30.

23

600

605

610

615

620

625

630

635

[29]

[35]

[36]

[37]

B. Hu, Y. Dai, Y. Su, P. Moore, X. Zhang, C. Mao, J. Chen, L. Xu,
Feature selection for optimized high-dimensional biomedical data using an
improved shuffled frog leaping algorithm, IEEE ACM Trans. Comput. Bi.
15 (6) (2018) 1765-1773.

F. Pourpanah, Y. Shi, C. P. Lim, Q. Hao, C. J. Tan, Feature selection based
on brain storm optimization for data classification, Appl. Soft Comput. 80
(2019) 761-775.

R. Sheikhpour, M. A. Sarram, R. Sheikhpour, Particle swarm optimization
for bandwidth determination and feature selection of kernel density esti-
mation based classifiers in diagnosis of breast cancer, Appl. Soft Comput.
40 (2016) 113-131.

K. R. Harrison, A. P. Engelbrecht, B. M. Ombuki-Berman, Self-adaptive
particle swarm optimization: a review and analysis of convergence, Swarm

Intelligence 12 (3) (2018) 187-226.

Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive learning
based particle swarm optimization, Inform. Sci. 181 (20) (2011) 4515-4538.

C.H. Li, S. X. Yang, T. T. Nguyen, A self-learning particle swarm optimizer
for global optimization problems, IEEE Trans. Syst. Man Cyb. 42 (3) (2012)
627-646.

T. Niknam, H. D. Mojarrad, H. Z. Meymand, Non-smooth economic dis-
patch computation by fuzzy and self adaptive particle swarm optimization,
Appl. Soft Comput. 11 (2) (2011) 2805-2817.

M. Chih, Self-adaptive check and repair operator-based particle swarm op-
timization for the multidimensional knapsack problem, Appl. Soft Comput.
26 (2015) 378-389.

M. Karimi-Nasab, M. Modarres, S. M. Seyedhoseini, A self-adaptive PSO
for joint lot sizing and job shop scheduling with compressible process times,
Appl. Soft Comput. 27 (2015) 137-147.

A. Banitalebi, M. 1. A. Aziz, Z. A. Aziz, A self-adaptive binary differential
evolution algorithm for large scale binary optimization problems, Inform.
Sci. 367 (2016) 487-511.

Y. Xue, J. M. Jiang, B. P. Zhao, T. H. Ma, A self-adaptive artificial bee
colony algorithm based on global best for global optimization, Soft Comput.
22 (9) (2018) 2935-2952.

Y. Xue, B. Xue, M. Zhang, Self-adaptive particle swarm optimization for
large-scale feature selection in classification, ACM Trans. Knowl. Discov.
D. 13 (5) (2019) 1-27.

24

640

645

650

655

660

665

670

[41]

[42]

[43]

[44]

J. Kennedy, R. Eberhart, Particle swarm optimization, in: Int. Conf. Neu-
ral Networks, Vol. 4, 1995, pp. 1942-1948.

Y. Zhang, H. G. Li, Q. Wang, C. Peng, A filter-based bare-bone particle
swarm optimization algorithm for unsupervised feature selection, Applied
Intelligence 49 (8) (2019) 2889-2898.

B. Tran, B. Xue, M. J. Zhang, Variable-length particle swarm optimization
for feature selection on high-dimensional classification, IEEE Trans. Evolut.
Comput. 23 (3) (2019) 473-487.

C. Y. Qiu, Bare bones particle swarm optimization with adaptive chaotic
jump for feature selection in classification, Int. J. of Comput. Int. Sys.
11 (1) (2018) 1-14.

Y. H. Lu, M. H. Liang, Z. Y. Ye, L. C. Cao, Improved particle swarm
optimization algorithm and its application in text feature selection, Appl.
Soft Comput. 35 (2015) 629-636.

L. E. Peterson, K-nearest neighbor, Scholarpedia 4 (2) (2009) 1883.

M. Li, B. Yuan, 2D-LDA: A statistical linear discriminant analysis for image
matrix, Pattern Recogn. Lett. 26 (5) (2005) 527-532.

V. Franc, V. Hlavac, Multi-class support vector machine, in: Obj. Recog.
Supp. User Inter. Serv. Rob., 2002, pp. 236-239.

Y. Hou, X. Ding, R. Hou, Support vector machine classification prediction
model based on improved chaotic differential evolution algorithm, in: 13th
Int. Conf. on Natural Comput., Fuzzy Sys. and Know. Disc., 2017, pp.
123-129.

G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory
and applications, Neurocomputing 70 (1) (2006) 489-501.

K. Bache, M. Lichman, [UCI machine learning repository.
URL http://archive.ics.uci.edu/ml/index.php|

C. workbench Team, |Causality workbench data-repository.
URL http://www.causality.inf.ethz.ch

B. Xue, M. Zhang, W. N. Browne, Particle swarm optimisation for feature
selection in classification: Novel initialisation and updating mechanisms,
Appl. Soft Comput. 18 (4) (2014) 261-276.

H. Wang, H. Sun, C. Li, S. Rahnamayan, J. S. Pan, Diversity enhanced
particle swarm optimization with neighborhood search, Inform. Sci. 223 (2)
(2013) 119-135.

25

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://www.causality.inf.ethz.ch
http://www.causality.inf.ethz.ch

675

680

685

690

695

[55]

J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions,
IEEE Trans. Evolut. Comput. 10 (3) (2006) 281-295.

Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive learning
based particle swarm optimization, Inform. Sci. 181 (20) (2011) 4515-4538.

Y. Xue, S. Zhong, Y. Zhuang, B. Xu, An ensemble algorithm with self-
adaptive learning techniques for high-dimensional numerical optimization,
Appl. Math. Comput. 231 (1) (2014) 329-346.

D. B. Fogel, An introduction to simulated evolutionary optimization, IEEE
Trans. Neural Networ. 5 (1) (1994) 3-14.

A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm
with strategy adaptation for global numerical optimization, IEEE Trans.
Evolut. Comput. 13 (2) (2009) 398-417.

Q. Fan, X. Yan, Self-adaptive differential evolution algorithm with discrete
mutation control parameters, Expert Syst.with Appl. 42 (3) (2015) 1551
1572.

J. Yang, V. Honavar, Feature subset selection using a genetic algorithm,
IEEE Intel. Sys. The. Appl. 13 (2) (2002) 44-49.

X. Qiu, K. C. Tan, J. Xu, Multiple exponential recombination for differen-
tial evolution, IEEE Trans. Cybernetics 47 (4) (2017) 995-1006.

J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the
use of nonparametric statistical tests as a methodology for comparing evo-
lutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1)
(2011) 3-18.

26

	Introduction
	Self-adaptive Parameter and Strategy based Particle Swarm Optimization (SPS-SPO)
	Representation of Solutions
	Initialization and Update Mechanisms
	Candidate Solution Generation Strategies(CSGSs)
	Strategy Self-adaptive Mechanism
	Parameter Self-adaptive Mechanism
	Parameter Initialization
	Parameter Update Procedure

	Experiments
	Datasets
	Algorithms and Classifiers for Comparison
	Parameter Settings

	Results and Analysis
	Comparison of the Four Classifiers
	Comparison of SPS-PSO with Other EC Algorithms
	Convergence Performance of the EC Methods on the Training Sets

	Conclusions and Future Work

