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A two-stage robust optimisation for terminal traffic flow problem 1 

 2 

Abstract 3 

Airport congestion witnesses potential conflicts: insufficient terminal airspace and delay propagation within 4 

scrambled the competition in the terminal manoeuvring area. Re-scheduling of flights is needed in numerous 5 

situations, heavy traffic in air segments, holding patterns, runway schedules and airport surface operations. 6 

Robust optimisation for terminal traffic flow problem, providing a practical point of view in hedging uncertainty, 7 

can leverage the adverse effect of uncertainty and schedule intervention. To avoid delay propagation throughout 8 

the air traffic flow network and reduce the vulnerability to disruption, this research adopts a two-stage robust 9 

optimisation approach in terminal traffic flow. It further enhances the quality of Pareto-optimality Benders-dual 10 

cutting plane based on core point approximation in the second stage recourse decision. The efficiency of the 11 

cutting plane algorithm is evaluated by a set of medium sized real-life scenarios. The numerical results show 12 

that the proposed scheme outperforms the well-known Pareto-optimal cuts in Benders-dual method from the 13 

literature. 14 

  15 

Keywords: Robust optimisation; Terminal traffic flow problem; Benders cuts selection scheme; Dynamic 16 

relative interior point 17 

  18 



3 

 

1. Introduction 1 

Terminal Traffic Flow Problem (TTFP) schedules each approaching flight to its respective approaching 2 

decisions, by considering the assignment and conflict avoidance of the air route, joint-segment, common guided 3 

path, aeronautical holding and landing decisions [1, 2]. The complexity of the model for TTFP depends on the 4 

presence of air traffic and the limited availability of airside resources [3]. The uncertainty of air traffic delay 5 

may disrupt the process of scheduling and affect the reliability on predetermined optimal schedule as 6 

deterministic variability can result in infeasibility for some realisations of uncertainty [2, 4-9]. Therefore, Robust 7 

Optimisation (RO) deals with an optimisation problem focusing on a certain measurement on the robustness of 8 

a solution against the ambiguity of the underlying distribution of the uncertain variables [10, 11]. 9 

Decisionmakers can analyse the robustness and estimate their affordability of the worst-case outcome. Hence, 10 

the design of TTFP should needs to the robust approach to the inherent uncertainty when unanticipated delay is 11 

inevitable in practical situation of Air Traffic Control (ATC) performance [12, 13]. 12 

Of the few recent relevant papers that have considered uncertainty in TTFP, the most recent publications 13 

have considered the deterministic and stochastic approaches for Aircraft Sequencing and Scheduling Problem 14 

(ASSP) [1]. One primary objective of ASSP is to maintain smooth runway scheduling and sufficient separation 15 

time to alleviate the hazard effect of wake-vortex during the approaching and departing procedures [14]. 16 

Imposing the separation time requirement between adjacent flights, which is the standard ATC regulation in 17 

civil aviation, can result in fatal accidents and uncommon operations [15-17]. The category-based minimal 18 

separation requirement is a sequence parameter that includes buffer time between adjacent flights to ensure safe 19 

ATC [6, 18, 19]. Readers can refer to the variants of the deterministic ASSP model from the survey paper [1] or 20 

through following literature (E.g., Aircraft Landing Problem (ALP) [12, 20-26], Aircraft Take-off Problem (ATP) 21 

[16, 23], ASSP with mixed-mode operations [6, 27, 28], and ASSP with runway configuration switch [29-32]). 22 

Coordination between runway scheduling and other terminal traffic flow resources can also help reduce 23 

the problem of airport congestion [33]. The major challenge in managing air traffic flow in operations research 24 

is the complex coordination of all the interconnected air and surface traffic flow resources in mathematical 25 

modelling [1]. Jacquillat and Odoni [33] explained that joint optimisation for interdependent activities can 26 

mitigate airport congestion via scheduling interventions at the strategic level. Various applications can be 27 

considered joint decisions on airport surface traffic operations, such as runway scheduling and taxiway 28 

optimisation [34, 35] and runway configuration design and ASSP scheduling [30]. Comparatively, TTFP 29 

considers the resource coordination of ATC resources close to the Terminal Manoeuvring Area (TMA). Samà, 30 

D’Ariano, D’Ariano and Pacciarelli [36] proposed an alternative graph method using a network graph 31 

considering all the ATC resources in TMA. The re-routing strategies for TTFP using the alternative graph 32 

method can redirect flights to other approaching paths according to the on-going traffic congestion level [37-33 

39]. Tian, Wan, Han and Ye [40] proposed a terminal resource allocation model considering the emission and 34 

noise impact in congested terminal airspace configuration. Corolli, Lulli, Ntaimo and Venkatachalam [41] 35 

proposed a heuristic approach to solve the TTFP model with ground holding, airborne holding and rerouting 36 

against the stochastic factor of weather in a terminal airspace. The state-of-the-art literature on TTFP focuses 37 
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on the fault-driven re-scheduling method and stochastic optimisation instead of RO approach. 1 

RO is a relatively new research area for decision making over a postulated or user specific uncertainty set 2 

[42-44]. It was first introduced by Daniels and Kouvelis [45], and various publications have contributed to the 3 

research field in different research domain, including finance [46], energy [47, 48], human resource [49], 4 

machine scheduling [50], health services [51], network resilience [52, 53] and transportation engineering [53-5 

55]. The RO provides a solution that is feasible over a set of worst-case scenarios [6, 43, 56, 57]. The motivation 6 

to use robust criterion in real-world engineering applications ensures that the solution compensates for the 7 

known risk when wrong decisions impose considerable adverse effects on the solution quality [10, 58-62]. Since 8 

flight delays and airport congestion are frequently occur, the adoption of robust criterion will neutralise the 9 

possible delay propagation by considering the ambiguity of the underlying distribution of unknown parameters 10 

[60, 63-65].   11 

 A robust nonlinear optimisation problem with a convex function and linear constraints with polyhedral 12 

uncertainty set can be reformulated by applying the duality theory [66, 67] or via data mining technique [68]. 13 

The optimisation methods for RO depend on the class of the problem and the domain of the uncertainty set [69]. 14 

Gorissen, Yanıkoğlu and den Hertog [70] and Yanıkoğlu, Gorissen and den Hertog [71] provide general 15 

guidelines for the RO approach. The practical difficulty in solving a nonlinear RO problem may be due to the 16 

nature of the min-max or the max-min structure. This leads to an investigation of a two-stage RO approach by 17 

its robust counterpart in exploiting the deterministic equivalent in the nonlinear RO problem. In the two-stage 18 

RO approach, the first-stage attempts to solve the problem with deterministic variables, while the robust 19 

counterpart of the second stage computes the decision over the worst-case scenario and develops a cutting-plane 20 

method to achieve computational tractability in solving the two-stage RO. Readers can refer to the introduction 21 

of the robust counterpart corresponding to the uncertainty region [43, 70, 71].  22 

Benders-dual cutting plane method is used to generate cutting planes on the respective dual form problem 23 

involving continuous variables. Valid cutting planes guarantees convergence of the two-stage RO approach by 24 

periodically solving the first-stage and second-stage problems. Lei, Lin and Miao [72] presented a multiple-25 

optimality cutting scheme to reduce the number of iterations required and get faster convergence in the two-26 

stage RO approach. Rahmaniani, Crainic, Gendreau and Rei [73] suggested several methods to accelerate the 27 

convergence speed of the decomposition algorithm. In the two-stage RO approach, solving RO problems in a 28 

decomposition framework to find the worst-case scenarios can be computationally expensive. Furthermore, the 29 

number of valid cuts is associated with the number of iterations required to solve the two-stage RO approach. 30 

Therefore, generating a stronger cutting plane or multi-cutting plane could strengthen the convergence of the 31 

two-stage RO approach. Magnanti and Simpson [74] and Magnanti and Wong [75] investigated the degeneracy 32 

of the sub-problems, and found cuts from multiple optimal solutions can have different strengths. Magnanti and 33 

Wong [75] proposed a cut-selection scheme by an auxiliary optimisation problem to generate Pareto-optimal 34 

cuts. Magnanti and Wong [75] method attempted to generate a Pareto-optimal cut that could dominate other 35 

possible cuts in the dual problem. The estimation of the Pareto-optimal solution can be generated from a relative 36 
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interior point from the initial solution of the first-stage problem. However, solving the auxiliary optimisation 1 

problem can be time-consuming and numerically instable [73]. Papadakos [76] further improved the 2 

convergence of the Magnanti and Wong [75] method by algorithm modification. Their method successfully 3 

disregarded the equality constraint that illustrated the dependency on the optimal solution from the second-stage 4 

problem and introduced a convex combination of initial and incumbent core points. In their numerical analysis, 5 

the value of 𝜆 of the convex combination of the initial and incumbent core points is considered 0.5. de Sá, de 6 

Camargo and de Miranda [77] pointed out that fixing this 𝜆 value during the iterative procedure of two-stage 7 

optimisation may not be appropriate and that the possibility of finding the Pareto-optimal cuts is subjected to 8 

the quality of the core point approximation. In their approach, de Sá, de Camargo and de Miranda [77] 9 

considered the ratio of the convex combination as an optimisation problem when unbounded situation in the 10 

second-stage optimisation problem was encountered. The aforementioned approaches considered the static core 11 

point or estimated the core point by the optimisation method.  12 

There is no perfect way to obtain the best core point as the evaluation of the effectiveness of a Pareto-13 

optimal cut and the quality of the core point requires a post-hoc analysis. Obtaining the best core point is 14 

challenging in the two-stage RO approach. de Sá, de Camargo and de Miranda [77] method gives an idea of the 15 

dynamic core point, however, it can change the 𝜆 value of the convex combination when solving the second-16 

stage problem, which is infeasible. Furthermore, de Sá, de Camargo and de Miranda [77] method may not be 17 

effective if the first and second- stage problems are always feasible during the iterative procedure. The proposed 18 

approach ensures core-point estimation is limited to the infeasibility in the second-stage optimisation problem, 19 

but relative to the ‘information’ of the iterative procedure of the two-stage RO approach. It further improves the 20 

convergence of Papadakos [76] method by considering dynamic core points. To yield a relatively high quality 21 

of Pareto-optimal cuts, the characteristics of the core point approximation by a stochastic element and the 22 

association of the convergence performance can enhance the convergence speed of the two-stage RO approach, 23 

as finding the best core point at each iteration is computationally difficult. The strength of the Benders-dual 24 

cutting plane can be closely related to the convergence process of the incumbent lower bound value. We believe 25 

that several unchanged lower bound values in the iterative procedure can be an ‘alert’ of a poor incumbent 26 

relative interior point. Therefore, we suggest a meta-heuristic approach as an adaptive parameter to work on the 27 

convergence procedure of the two-stage RO approach. To the best of our knowledge, the dynamic core point by 28 

the meta-heuristic for the two-stage RO approach is not covered by the literature. 29 

The computational efficiency can further be enhanced by the recent advancement of optimisation methods, 30 

such as meta-heuristics, which does not guarantee to find an optimum solution; however, it can effectively 31 

obtain a near-optimal that satisfies the needs for commercial engineering applications [1, 78, 79]. Please note 32 

that in the proposed approach, the convergence procedure is guided by a two-stage RO approach and a Benders-33 

dual cutting plane. A meta-heuristic worked as an adaptive parameter in the two-stage RO approach. Therefore, 34 

the proposed approach can reach an optimal solution, however, the speed of convergence is subjected to the 35 

performance of the meta-heuristics and the strength of the Pareto-optimal cuts.   36 
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  This work introduced a two-stage RO approach for TTFP and proposed dynamic core-point estimation 1 

based on meta-heuristics. First, an alternative path method for TTFP was proposed. The alternative graph 2 

method proposed by Samà, D’Ariano, D’Ariano and Pacciarelli [36] considers disjunctive graphs to represent 3 

the traverse operations of TMA resources from entry waypoints to runways for all flights. Comparatively, path 4 

selection using Directed Acyclic Graph (DAG), which is a directed graph with no directed cycles [80, 81], in 5 

an alternative path method is considered since each flight has a limited number of choices of alternative paths 6 

when approaching. Therefore, an alternative path method for TTFP is suggested. Second, a min-max TTFP with 7 

uncertainty is introduced. Intuitively, the flight time between TMA resources is uncertain and subject to minor 8 

perturbations of dynamic changes in wind speed, weather conditions and current traffic conditions. The 9 

addressed imprecision of flight time due to the disturbance in flight speed and wind direction is practical in 10 

common operations. The nonlinear Robust TTFP is reformulated as a two-stage problem with a structure of 11 

mixed-integer linear programming. Therefore, the model is tractable using the MILP solver. Third, we proposed 12 

a parameter to determine core-point approximation via meta-heuristic and enhance the computational efficiency 13 

based on Papadakos [76] auxiliary optimisation problem. de Sá, de Camargo and de Miranda [77] method 14 

suggests a formulation of core point approximation to adjust the core point when the second-stage recourse 15 

decision is unbounded. Our proposed method is inspired by de Sá, de Camargo and de Miranda [77]’s work and 16 

considers a dynamic core point estimation associated with the convergence performance of the two-stage RO 17 

approach. Core algorithmic components from Simulated Annealing (SA) are extracted and integrated with the 18 

two-stage RO approach. The proposed two-stage RO approach incorporates the synergy of Benders-dual cutting 19 

plane, Pareto-optimality and core point approximation by meta-heuristics in an interdependent and interaction-20 

based algorithm framework that provides a high practical efficacy on better convergence properties in solving 21 

an two-stage RO problem. 22 

After providing a short summary of the research, the contemporary research development and in-depth 23 

literature review on ASSP, TTFP, the two-stage RO approach and the cutting plane methods are presented in 24 

Section 1. Section 2 illustrates the problem background and the mathematical formulation of TTFP. Section 3 25 

presents the two-stage RO approach for TTFP by realising the worst-case scenarios. Section 4 introduces the 26 

Benders-dual cutting plane and the two common Pareto-optimal cutting plane schemes. The proposed core point 27 

approximation via meta-heuristic and Pareto-optimal cutting plane using the dynamic core point method are 28 

presented in the same Section. Section 5 evaluates the Pareto-efficiency of the proposed cutting plane method 29 

by solving the medium-sized instances based on real-life flight data. The concluding remarks and limitations 30 

are presented in Section 6. 31 

 32 

2. Terminal traffic flow problem 33 

The deterministic terminal traffic flow problem is illustrated herein with some of its basic properties. We 34 

have considered an alternative path planning in TMA, where the set of paths are pre-generated and each 35 

approaching flight is assigned to a path from its entry waypoints to the runway. The path assignment for each 36 

flight needs to be determined in the scheduling decision, given the hard constraints of sufficient longitudinal 37 



7 

 

separation between flights and conflict-free approaching in TTFP. The proposed model makes several 1 

assumptions. First, the air routes near the TMA within the decision horizon are fixed. The set of alternative paths 2 

and landing directions may vary from time to time due to changes in wind direction and the degree of the 3 

headwind. This assumption can be realised by considering a time-variant alternative path model. Second, an 4 

actual operation is assumed to be free from operational failures, such as missed approach, emergency landing, 5 

engine failure and abnormal operations. Third, we assume the imprecise estimation of flight time on air route 6 

falls into an interval case in RO. Fourth, mono-aeronautical holding for each racetrack is sufficient in our case 7 

study for an airport as some approaching paths have several racetracks and the sufficient capacity to handle 8 

daily traffic.  9 

 10 

Fig. 1. A schematic diagram of alternative paths model (a toy problem) 11 

For ease of explanation, we have presented a schematic diagram of an alternative path model using a toy 12 

problem in Fig. 1, where flights 𝑗 and 𝑖 will be approaching from entry waypoint 5 and towards destination 13 

waypoint 25. An approaching route is usually presented in the form of a directed graph. Therefore, there are a 14 

limited number of approaching paths. Fig. 1 indicates alternative paths {4, 12, 17, 25} and {4, 12, 17, 18, 25} 15 

for flight 𝑗 (middle one in Fig. 1) and alternative paths {5, 14, 19, 25}, {5, 14, 19, 20, 25}, {5, 12, 17, 25} and 16 

{5, 12, 17, 18, 25} for flight 𝑖 (left one in Fig. 1). The terminal traffic flow model attempts to determine the 17 

best and conflict-free solution with respect to the objective function. The joint decision requires checking if 18 

there is any conflict or violation of the constraints regarding the selected paths for flights 𝑗 and 𝑖 from a set of 19 

alternative paths (right one in Fig. 1). For Instance, if flight 𝑖 takes {5, 12, 17, 25} and flight 𝑗 takes {4, 12, 20 

17, 18, 25} as their approaching route, respectively, then the solution must satisfy non-overtaking and sufficient 21 

longitudinal separation constraints on waypoints {12, 17, 18, 25}. 22 

The mathematical model of TTFP takes the following input data. The TTFP contains a terminal traffic 23 

network with multiple entry points and one landing runway in accordance with the setting of case airport and 24 

the number of |𝐼| flights to be landed in the decision horizon. Let 𝐼 be the set of flights and let each flight be 25 

indexed by 𝑗, 𝑖. In ATC regulation, each pair of adjacent flights (flight 𝑗 and flight 𝑖) must satisfy the minimum 26 
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longitudinal separation requirement 𝛿𝑗𝑖  (in nautical miles), which is a hard constraint to accommodate the 1 

adverse effect of wake vortices generated by the leading flight. Each flight is only associated with one entry 2 

waypoint 𝑢𝑖
𝑠  in the decision horizon. The destination node (runway) is denoted by 𝑢𝑖

𝑒 . The transit node is 3 

indexed by 𝑢, 𝑣, 𝜋 ∈ 𝑉. Since the entry waypoint is fixed in accordance with the en-route of the departure airport, 4 

the entry waypoint is a flight-specific entry waypoint parameter.  5 

The model for TTFP is formulated using a directed graph 𝐺 = (𝑉, 𝐸) with a set of nodes (or waypoint) 𝑉 6 

and a set of arcs 𝐸. Each path 𝑝𝑖 contains a set of waypoints 𝑝𝑖 = (𝑜, 𝑢𝑖
𝑠, … , 𝑢𝑖

𝑒 , 𝑑) from the origin node 𝑢𝑖
𝑠 7 

(more specifically, the entry waypoint) to the destination node 𝑢𝑖
𝑒 (more specifically, the runway). Dummy 8 

nodes 𝑜  and 𝑑  are introduced for the first and final nodes in the di-graph. Hence, the pair of origin and 9 

destination nodes (𝑢𝑖
𝑠, 𝑢𝑖

𝑒) indicates the predetermined entry waypoint and runway in the TTFP, respectively. 10 

Edge (𝑢, 𝑣) ∈ 𝐸 presents the flight path between two adjacent waypoints in the problem. The collection of all 11 

waypoints for a set of alternative paths 𝑃𝑖 is indicated by 𝑉𝑖
𝑝𝑖 ⊂ 𝑉, whereas the set of flight paths 𝐸𝑖

𝑝𝑖 ⊂ 𝐸 12 

illustrates all air routes to reach the runway by using path 𝑝𝑖. The number of alternative paths 𝑃𝑖 depends on 13 

the valid paths from start to end positions. Therefore, the set of nodes in the alternative path for flight 𝑖 is 𝑉𝑖 =14 

∪𝑝𝑖∈𝑃𝑖
𝑉𝑖

𝑝𝑖 , while the set of arc in the alternative path model is 𝐸𝑖 =∪𝑝𝑖∈𝑃𝑖
𝐸𝑖

𝑝𝑖 . In this regard, 𝑉𝑗, 𝑉𝑖 ∈15 

𝑉, 𝐸𝑗 , 𝐸𝑖 ∈ 𝐸 in digraph 𝐺. For the set of alternative paths 𝑃𝑖, we consider mono-aeronautical holding for each 16 

racetrack by introducing the artificial node on the entry/exit of the aeronautical holding racetrack. 17 

Alternative paths 𝑃𝑖 are a predefined set as the pair of origin and destination nodes (𝑢𝑖
𝑠, 𝑢𝑖

𝑒) is the input 18 

of the model. For such a network, each flight is assigned with an approaching path 𝑝𝑖 by the ATC and follows 19 

the set of waypoints to reach the destination node. A feasible schedule 𝑋 is constructed by 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢. The 20 

arrival time of the destination node is a joint decision of 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢.  21 

 22 

We use 𝜑𝑖
𝑝𝑖 as a binary decision variable for path selection. 23 

𝜑𝑖
𝑝𝑖 = {

1, if flight 𝑖 ∈ 𝐼 is assigned to the path 𝑝𝑖 ∈ 𝑃𝑖 .
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 24 

𝑧𝑗𝑖𝑢 is a binary decision variable that is used to determine the sequence of the schedule. 25 

𝑧𝑗𝑖𝑢 = {
1, if flight 𝑗 is before flight 𝑖 on waypoint 𝑢 (not necessary immediately).
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 26 

 27 

The estimated time of arrival on entry waypoint 𝑢𝑖
𝑠 for flight 𝑖 ∈ 𝐼 is defined as 𝑇𝑖 and flight time from 28 

nodes 𝑢 to 𝑣 for flight 𝑖by 𝑡𝑖(𝑢,𝑣). Therefore, the model measure the arrival time 𝜏𝑖𝑢
𝑝𝑖 on each waypoint in the 29 

path 𝑝𝑖 for flight 𝑖 regarding the choice of paths. The arrival time of node 𝑢 by path 𝑝𝑖 for flight 𝑖 is denoted 30 

as 𝜏𝑖𝑢
𝑝𝑖, where 𝜏𝑖𝑢

𝑝𝑖 ≥ 0. 31 

The main purpose of the model is to serve all arrival flights at the lowest time possible. Regarding the 32 

objective of the model, we are concerned about the path selection associated with 𝑤𝑖
𝑝𝑖 and the completion time 33 
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of severing all flights 𝐶 in the decision horizon. Imposing a weight 𝑤𝑖
𝑝𝑖 for path 𝑝𝑖 is practical, in the sense 1 

that ATC and airlines wish to minimise the time for airborne holding. The weight parameter 𝑤𝑖
𝑝𝑖 can be simply 2 

defined as the number of aeronautical holding racetracks on path 𝑝𝑖. Indeed, additional aeronautical holding 3 

may increase or take the same completion time to serve all the flights in the decision horizon. The minimisation 4 

of the total number of aeronautical holdings in a solution may not offer practical meaning to the mathematical 5 

model, as the optimal solution with an objective function of minimising the completion time of serving all flights 6 

𝐶  implicitly implies a solution with minimum number of aeronautical holding. However, it allows a good 7 

estimation of initial solution on the joint decision of 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢 in the two-stage RO (will be discussed in the 8 

next section). The pair (𝑢𝑖
𝑠, 𝑢𝑖

𝑒) is fixed, and the decision variable 𝜑𝑖
𝑝𝑖 decides the path selection 𝑝𝑖 from a set 9 

of valid alternative paths 𝑃𝑖. Each path is associated with a weight coefficient 𝑤𝑖
𝑝𝑖. We simply assume the 10 

number of aeronautical holdings on 𝑝𝑖 for the value of 𝑤𝑖
𝑝𝑖. The decision variables 𝑧𝑗𝑖𝑢 indicate the sequential 11 

relationship for flights 𝑗 and 𝑖 on the waypoint 𝑢. Therefore, a feasible schedule 𝑋 is the joint decision of 𝜑𝑖
𝑝𝑖, 12 

𝑧𝑗𝑖𝑢, 𝜏𝑖𝑢
𝑝𝑖 and 𝐶. A summary of the notations is presented in Table 1. 13 

 14 

Table 1 15 

Notations and decision variables. 16 

Sets with indices Explanation 

𝐼 A set of approaching flights in the decision horizon (index 𝑖, 𝑗) 

𝑃𝑖 A set of alternative paths (index 𝑝𝑖) 

𝑉 A vertex set of waypoints in the TMA (index 𝑜, 𝑢𝑖
𝑠 , 𝑢, 𝑣, 𝜋, 𝑢𝑖

𝑒 , 𝑑) 

𝐸 An edge set of air route in TMA 

𝐺 A directed graph consisting of a nonempty vertex set of waypoints 𝑉 and an edge set of air route 𝐸 in TMA 

Ω The uncertainty set 

Parameters Explanation 

𝑖, 𝑗 Flight ID 𝑖, 𝑗 ∈ 𝐼 

𝑢, 𝑣, 𝜋 Transit node 𝑢, 𝑣, 𝜋 ∈ 𝑉 

𝑜, 𝑑 The artificial node representing the start and end node 𝑜, 𝑑 ∈ 𝑉 

𝑢𝑖
𝑠 The entry waypoint for flight 𝑖, 𝑢𝑖

𝑠 ∈ 𝑉 

𝑢𝑖
𝑒 The approaching runway for flight 𝑖, 𝑢𝑖

𝑒 ∈ 𝑉 

𝑇𝑖 Estimated time of arrival in the terminal control area for flight 𝑖 ∈ 𝐼 

𝑤𝑖
𝑝𝑖  The weight coefficient associated with the path selection 𝑝𝑖 ∈ 𝑃𝑖 

𝑀 Large artificial variable 

𝑡𝑖(𝑢,𝑣) The flight time from nodes 𝑢 to 𝑣 for flight 𝑖 

𝛿𝑗𝑖  Longitudinal separation time on air route between flight 𝑗 and 𝑖 

𝑝𝑖 A path with a set of waypoints from entry waypoints 𝑢𝑖
𝑠 to runway 𝑢𝑖

𝑒 for flight 𝑖 ∈ 𝐼, 𝑝𝑖 ∈ 𝑃𝑖 

Decision variables Explanation 

𝑋 A solution 𝑋 is constructed by 𝜑𝑖
𝑝𝑖  and 𝑧𝑗𝑖𝑢 

𝜑𝑖
𝑝𝑖  1, if flight 𝑖 is assigned to the path 𝑝𝑖; 0, otherwise 

𝑧𝑗𝑖𝑢 1, if flight 𝑗 is before flight 𝑖 on node 𝑢 (not necessary immediately); 0, otherwise 
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𝜏𝑖𝑢
𝑝𝑖  The arrival time on node 𝑢 using path 𝑝𝑖 for flight 𝑖, 𝜏𝑖𝑢

𝑝𝑖 ≥ 0 

𝐶 The completion time of the terminal traffic flow model, C ≥ 0  

 1 

2.1. Nominal problem formulation 2 

Given the above notations for parameters and decision variables, we presented the nominal formulation of 3 

TTFP and assumed all parameters to be deterministic. The Objective function (1) minimises the weighted 4 

penalties of path assignment and the realised completion time on serving all arriving flights. 5 

 6 

𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖
𝑝𝑖𝜑𝑖

𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ 𝐶 (1) 

𝑠. 𝑡. Constraints (2) – (13)  

 7 

Alternative paths constraints 8 

∑ 𝜑𝑖
𝑝𝑖 = 1

𝑝𝑖∈𝑃𝑖

, ∀𝑖 ∈ 𝐼 (2) 

𝑧𝑗𝑖𝑢 + 𝑧𝑖𝑗𝑢 ≤ 1, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (3) 

𝜑𝑖
𝑝𝑖 + 𝜑

𝑗

𝑝𝑗 ≤ 𝑧𝑗𝑖𝑢 + 𝑧𝑖𝑗𝑢 + 1, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀𝑝𝑗 ∈ 𝑃𝑗 (4) 

𝑧𝑖𝑗𝑣 − 𝑧𝑖𝑗𝑢 ≥ ∑ 𝜑𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖

+ ∑ 𝜑
𝑗

𝑝𝑗

𝑝𝑗∈𝑃𝑗

− 2, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑗 ∩ 𝐸𝑖\{(𝑜, 𝑢𝑖
𝑠), (𝑢𝑖

𝑒 , 𝑑)} 
(5) 

 Each flight must assign an approaching path 𝑝𝑖 from a set of alternative paths 𝑃𝑖 using decision variables 9 

𝜑𝑖
𝑝𝑖 in Constraint set (2). Constraint set (3) explains a sequential relationship using decision variable 𝑧𝑗𝑖𝑢. If 10 

the assigned paths for flights 𝑗 and 𝑖 contain node 𝑢, then flight 𝑗 must pass through node 𝑢 either earlier or 11 

later than flight 𝑖. Constraint set (4) illustrates the association of decision variables 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢. Constraints 12 

(5) describe the overtaking constraints of any pair of flights 𝑗 and 𝑖. 13 

 14 

Constraints of arrival time at waypoints and separation time requirements 15 

𝜏𝑖𝑜
𝑝𝑖 ≥ 𝑇𝑖𝜑𝑖

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (6) 

𝜏𝑖𝑢
𝑝𝑖 ≤ 𝑀𝜑𝑖

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑢 ∈ 𝑃𝑖 (7) 

𝐶 − 𝜏𝑖𝑑
𝑝𝑖 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (8) 

𝜏𝑖𝑣
𝑝𝑖 − 𝜏𝑖𝑢

𝑝𝑖 ≥ 𝑡𝑖(𝑢,𝑣) − M(1 − 𝜑𝑖
𝑝𝑖), ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑖, 𝑢 < 𝑣 (9) 

∑ 𝜏𝑖𝑢
𝑝𝑖

𝑝𝑖∈𝑃𝑖

𝑢∈𝑉
𝑖
𝑝

− ∑ 𝜏
𝑗𝑢

𝑝𝑗

𝑝𝑗∈𝑃𝑗

𝑢∈𝑉𝑗
𝑝

≥ 𝛿𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢), ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 ∖ {𝑜, 𝑑} 
(10) 

The arrival time of the entry route is represented by the first dummy node 𝑜; 𝜏𝑖𝑜
𝑝𝑖 indicates the ready time 16 

for TTFP using path 𝑝𝑖 for all flights 𝑖 ∈ 𝐼 by Constraint set (6). Constraint set (7) explains that the arrival 17 
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time 𝜏𝑖𝑢
𝑝𝑖 for all nodes 𝑢 ∈ 𝑃𝑖 is positive when 𝑝𝑖 is selected. Otherwise, 𝜏𝑖𝑢

𝑝𝑖 is zero. 𝜏𝑖𝑑
𝑝𝑖 indicates the arrival 1 

time on runway for flight 𝑖 using path 𝑝𝑖. The completion time 𝐶 on serving all arrival flights is calculated by 2 

Constraints set (8) and must be larger than or equal to 𝜏𝑖𝑑
𝑝𝑖. The flight time 𝑡𝑖(𝑢,𝑣) from node 𝑢 to node 𝑣 is 3 

computed using Constraint set (9). Depending on the path selection by 𝑝𝑗 ∈ 𝑃𝑗 and 𝑝𝑖 ∈ 𝑃𝑖 and any union of 4 

node 𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 ∖ {𝑜, 𝑑}, Constraint set (10) enforces the arrival time on node 𝑢 by flights 𝑗 and 𝑖 that need 5 

to satisfy the longitudinal separation requirement 𝛿𝑗𝑖.  6 

 7 

Number sets of decision variables 8 

𝜑𝑖
𝑝𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (11) 

𝑧𝑗𝑖𝑢 ∈ {0,1}, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (12) 

𝜏𝑖𝑢
𝑝𝑖 ∈ ℝ+, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀𝑜, 𝑢, 𝑑 ∈ 𝑃𝑖 (13) 

The decision variables 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢 are binary variables in nature, as explained by the Constraints (11) 9 

and (12). Constraint set (13) indicates that 𝜏𝑖𝑢
𝑝𝑖 is a positive real number. 10 

 11 

3. Formulation of the two-stage robust terminal traffic flow problem 12 

The nominal model can be solved as a mixed-integer linear program given all the parameters are known. 13 

However, the disturbance in flight speed, head wind speed and delay in air traffic can affect the actual flight 14 

time from the entry waypoints to the runway. The solution obtained by the nominal model may not be 15 

appropriate as the uncertainty factor can lead to violation of the longitudinal separation requirement. To address 16 

the uncertain factor 𝑡̃𝑖(𝑢,𝑣), we reformulate TTFP by adopting the two-stage RO approach with Bertsimas-Sim 17 

uncertainty. We first introduce the postulated uncertainty set in this work, and further explain the two-stage RO 18 

approach for TTFP. In the two-stage RO framework, the first-stage is to determine path selection, and the 19 

second-stage to determine completion time of serving all arrival flights under the worst-case scenarios.   20 

 21 

3.1. Definition of uncertainty set 22 

In this section, we present the description of uncertainty set for TTFP. The flight time on air route 𝑡̃𝑖(𝑢,𝑣) 23 

falls under an interval [𝑡𝑖(𝑢,𝑣), 𝑡𝑖(𝑢,𝑣)], where 𝑡𝑖(𝑢,𝑣) ≤ 𝑡𝑖(𝑢,𝑣), with respect to the minimum and maximum flight 24 

times on edge (𝑢, 𝑣) ∈ 𝐸𝑖 for flight 𝑖 ∈ 𝐼. The uncertainty set is defined by Ω in Equation (14). 25 

 26 

Ω = {𝑡̃𝑖(𝑢,𝑣), ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖: 𝑡̃𝑖(𝑢,𝑣) = 𝑡𝑖(𝑢,𝑣) + 𝑡̂𝑖(𝑢,𝑣)𝜃𝑖(𝑢,𝑣)
𝑝𝑖 , 𝜃𝑖(𝑢,𝑣)

𝑝𝑖 ∈ {0,1}} (14) 

 27 

 The arbitrary uncertainty set Ω is finite in nature as we have considered the integral flight time on each 28 

arc in the robust TTFP. Let 𝐸𝑖
𝐿 represent an edge set with the largest number of edges (𝑢, 𝑣) ∈ 𝐸𝑖 from the set 29 

of alternative paths 𝑃𝑖 for flight 𝑖. 𝜃𝑖(𝑢,𝑣)
𝑝𝑖  is a binary decision variable. 30 
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 1 

3.2. First-stage design decision: approach path assignment problem 2 

The first-stage approach path assignment problem includes 𝜑𝑖
𝑝𝑖  and 𝑧𝑗𝑖𝑢  ; 𝑑(𝜑̂, 𝑧̂)  is the optimal 3 

completion time of serving all arriving flights under the postulated uncertainty set according to a fixed-path 4 

assignment solutions 𝜑̂ and 𝑧̂. As mentioned earlier, the weighted path assignment in the objective function 5 

(15) provides an initial solution with the least number of aeronautical holdings as a warm start in the two-stage 6 

RO approach. As the objective function is to compute the completion time serving all arriving flights, 7 

Constraints (6) – (10) and (13) are also included in the first-stage design decision to generate a valid lower 8 

bound during convergence. The formulation of the first-stage design decision is presented as follow: 9 

 10 

min ∑ ∑ 𝑤𝑖
𝑝𝑖𝜑𝑖

𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ 𝑑(𝜑̂, 𝑧̂, Ω) (15) 

     𝑠. 𝑡. Constraints (2) – (13)  

 11 

3.3. Second-stage recourse decision: the total completion time of serving all flights in a planning horizon 12 

In this section, the second-stage recourse decision computes an optimal value in the worst-case scenario 13 

by realising the postulated uncertainty set Ω on the fixed path assignment solutions 𝜑̂ and 𝑧̂ from the first-14 

stage design decision. We consider variables 𝐶, 𝑡̃𝑖(𝑢,𝑣) and 𝜏𝑖𝑢
𝑝𝑖 in the formulation of the second-stage recourse 15 

decision. The primal form of the second stage recourse decision is presented as follow. Constraints set (17) 16 

illustrates the computation of the flight time from nodes 𝑢 to 𝑣 under a postulated uncertainty set. The primal 17 

form of the second-stage recourse decision is presented as follows: 18 

 19 

𝑑(𝜑̂, 𝑧̂, Ω) = 𝑚𝑎𝑥
𝑡∈Ω

𝑚𝑖𝑛 𝐶 (16) 

     𝑠. 𝑡. Constraints (6) – (10) and (13)  

𝜏𝑖𝑣
𝑝𝑖 − 𝜏𝑖𝑢

𝑝𝑖 ≥ 𝑡̃𝑖(𝑢,𝑣) − M(1 − 𝜑𝑖
𝑝𝑖), ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑖, 𝑢 < 𝑣, ∀𝑡 ∈ Ω (17) 

 20 

3.4. Benders reformulation 21 

The objective function (18) of the recourse problem is presented in max-min sense and solving the primal 22 

form of the second-stage recourse decision directly is complex. We, therefore, consider Benders reformulation 23 

to take the dual of the inner minimisation problem in the model (6) - (10), (13), (16) and (17). Dual variables 24 

𝑏𝑖
𝑝𝑖 , 𝑘𝑖𝑢

𝑝𝑖 , 𝑎𝑖
𝑝𝑖 , 𝑔𝑖(𝑢,𝑣)

𝑝𝑖   and ℎ𝑗𝑖𝑢  are the multiplies of Constraints (6), (7), (8), (9), and (10), respectively, by 25 

duality theory. Hence, we have Constraints (19) – (22) in the dual model. The domain of the dual variables are 26 

explained in Equations (23) – (27). After applying the dual theory, the dual form of the recourse decision now 27 

becomes a maximisation problem. In this regard, the realised flight time 𝑡̃𝑖(𝑢,𝑣) in the primal form of model (6) 28 

- (10), (13), (16) and (17) is now reformulated in form of 𝑡𝑖(𝑢,𝑣) + 𝑡̂𝑖(𝑢,𝑣)𝜃𝑖(𝑢,𝑣)
𝑝𝑖 , where 𝜃𝑖(𝑢,𝑣)

𝑝𝑖  is associated with 29 
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the Constraints (28). The dual form of the recourse decision is shown as follows: 1 

 2 

𝑑(𝜑̂, 𝑧̂, Ω) = max
𝑎,𝑏,𝑘,𝑔,ℎ

max
𝜃

∑ ∑ (𝑇𝑖𝜑̂𝑖
𝑝

)𝑏𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂𝑖
𝑝𝑖)𝑘𝑖𝑢

𝑝𝑖

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

 

+ ∑ ∑ ∑ (𝑡𝑖(𝑢,𝑣) + 𝑡̂𝑖(𝑢,𝑣)𝜃𝑖(𝑢,𝑣)
𝑝𝑖 − 𝑀(1 − 𝜑̂𝑖

𝑝𝑖)) 𝑔𝑖(𝑢,𝑣)
𝑝𝑖

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

 

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧̂𝑗𝑖𝑢))ℎ𝑗𝑖𝑢

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

 

(18) 

𝑠. 𝑡.  

∑ ∑ 𝑎𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

≤ 1 (19) 

𝑏𝑖
𝑝𝑖 + 𝑘𝑖𝑜

𝑝𝑖 − 𝑔
𝑖(𝑜,𝑢𝑖

𝑠)

𝑝𝑖 − ∑ ℎ𝑖𝑗𝑜

𝑗,𝑖≠𝑗∈𝐼

+ ∑ ℎ𝑗𝑖𝑜

𝑗,𝑖≠𝑗∈𝐼

≤ 0, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(o, 𝑢𝑖
𝑠) ∈ 𝐸𝑖 

(20) 

−𝑎𝑖
𝑝𝑖 + 𝑘𝑖𝑑

𝑝𝑖 + 𝑔
𝑖(𝑢𝑖

𝑒,𝑑)

𝑝𝑖 − ∑ ℎ𝑖𝑗𝑑

𝑗,𝑖≠𝑗∈𝐼

+ ∑ ℎ𝑗𝑖𝑑

𝑗,𝑖≠𝑗∈𝐼

≤ 0, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢𝑖
𝑒 , 𝑑) ∈ 𝐸𝑖 

(21) 

𝑘𝑖𝑣
𝑝𝑖 + 𝑔𝑖(𝑢,𝑣)

𝑝𝑖 − 𝑔𝑖(𝑣,𝜋)
𝑝𝑖 − ∑ ℎ𝑖𝑗𝑣

𝑗,𝑖≠𝑗∈𝐼

𝑣∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}

+ ∑ ℎ𝑗𝑖𝑣

𝑗,𝑖≠𝑗∈𝐼

𝑣∈𝑉𝑗∩𝑉𝑖{𝑜,𝑑}

≤ 0, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢, 𝑣), (𝑣, 𝜋)

∈ 𝐸𝑖, , 𝑢 < 𝑣, 𝑣 < 𝜋 ∖ {𝑜, 𝑑} 

(22) 

𝑏𝑖
𝑝𝑖 ∈ 𝑅+, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (23) 

𝑘𝑖𝑢
𝑝𝑖 ∈ 𝑅−, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀𝑢 ∈ 𝑉𝑖 (24) 

𝑎𝑖
𝑝𝑖 ∈ 𝑅+, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (25) 

𝑔𝑖(𝑢,𝑣)
𝑝𝑖 ∈ 𝑅+, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (26) 

ℎ𝑗𝑖𝑢 ∈ 𝑅+, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 ∖ {𝑜, 𝑑} (27) 

𝜃𝑖(𝑢,𝑣)
𝑝𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (28) 

 3 

A linear transformation is required for the dual form of the recourse decision due to the fact that terms 4 

𝑡̂𝑖𝑢𝑣𝜃𝑖(𝑢,𝑣)
𝑝𝑖 𝑔𝑖(𝑢,𝑣)

𝑝𝑖    in (18) are nonlinear. However, the second-stage recourse decision is a disjoint bilinear 5 

program over a polyhedron, where the variables 𝜃 and 𝑔 are disjoint concerning different linear constraints. 6 

The realised uncertain parameters 𝜃 is regulated by the Constraints (28), while the dual variables 𝑏𝑖
𝑝𝑖, 𝑘𝑖𝑢

𝑝𝑖, 𝑎𝑖
𝑝𝑖, 7 

𝑔𝑖(𝑢,𝑣)
𝑝𝑖  and ℎ𝑗𝑖𝑢 are joint decisions by Constraints (19) – (27). We can perform a linear transformation of the 8 

dual form of the model (18) – (28) by introducing an auxiliary variable 𝜗𝑖(𝑢,𝑣)
𝑝𝑖  as shown in model (19) – (32) 9 

[82, 83].  10 

 11 
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𝑑(𝜑̂, 𝑧̂, Ω) = max
𝑎,𝑏,𝑘,𝑔,ℎ,𝜃

∑ ∑ (𝑇𝑖𝜑̂𝑖
𝑝𝑖)𝑏𝑖

𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂𝑖
𝑝𝑖)𝑘𝑖𝑢

𝑝𝑖

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖𝑢𝑣 − 𝑀(1 − 𝜑̂𝑖
𝑝𝑖)) 𝑔𝑖(𝑢,𝑣)

𝑝𝑖

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖

𝜗𝑖(𝑢,𝑣)
𝑝𝑖

𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧̂𝑗𝑖𝑢))ℎ𝑗𝑖𝑢

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

 

(29) 

     𝑠. 𝑡. Constraints (19) – (28)  

𝜗𝑖(𝑢,𝑣)
𝑝𝑖 ≤ 𝜃𝑖(𝑢,𝑣)

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (30) 

𝜗𝑖(𝑢,𝑣)
𝑝𝑖 ≤ 𝑔𝑖(𝑢,𝑣)

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (31) 

𝜗𝑖(𝑢,𝑣)
𝑝𝑖 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑖, 𝑢 < 𝑣 (32) 

 1 

4. Solution methodology 2 

Given the characteristics of a two-stage optimisation framework, the general framework of solution 3 

considering combinatorial cut and Benders-dual cutting plane is introduced in this section. We present several 4 

methods considering the Pareto-optimal condition in the second-stage recourse decision to accelerate the 5 

convergence procedure of the two-stage RO approach. The objective value obtained by the first-stage design 6 

decision is the lower bound and the objective value obtained by the second stage recourse decision is the upper 7 

bound of the two-stage RO problem. An overview of the first-stage relaxation and Pareto-optimal cutting 8 

scheme is given below. 9 

 10 

4.1. Benders-dual cutting plane  11 

The Benders-dual cutting plane tackles the convergence procedure using strong duality in the recourse 12 

decision. Using the Objective function (29), optimality cuts can be produced to converge the two-stage RO at 13 

each iteration. The completion time of serving all arrival flights in the 𝜁th iteration is denoted by 𝐶𝜁.We can 14 

enumerate all extreme points of the polyhedron by Equations (34). The optimal value must be greater than or 15 

equal to 𝐶𝜁 to satisfy the 𝜁th iteration; Λ is the set of extreme points that achieves dual information and can 16 

be obtained by solving the recourse decision until the current iteration. The optimality cut can then be generated 17 

based on the archived 𝑏̂𝑖
𝑝𝑖, 𝑘̂𝑖𝑢

𝑝𝑖, 𝑎̂𝑖
𝑝𝑖, 𝑔𝑖(𝑢,𝑣)

𝑝𝑖  and ℎ̂𝑗𝑖𝑢 using Equation (34). 18 

 The iterative procedure of the two-stage RO approach is guided by the optimal value of the First-Stage 19 

Design Decision (FSDD) and Second-Stage Recourse Decision (SSRD). ψ𝐹𝑆𝐷𝐷 denotes the optimal value of 20 

the FSDD with respect to the first-stage incumbent solution (𝜑, 𝑧), which is the Lower Bound (LB) value in 21 

the two-stage RO approach. 𝜓𝑆𝑆𝑅𝐷 represents the optimal value of the SSRD with respect to the second-stage 22 

incumbent solution (𝑎, 𝑏, 𝑘, 𝑔, ℎ, 𝜃|𝜑̂, 𝑧̂, Ω) , which is the Upper Bound (UB) value in the two-stage RO 23 

approach. Adding Benders-dual cuts into the relaxed first-stage design decision model, the LB value becomes 24 

a non-decreasing value along the iteration. The two-stage RO approach converge to the global optimum using 25 
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the iterative relaxation framework. In this regard, the termination of the iterative procedure occurs when LB 1 

value is equal to UB value. The condition 𝐿𝐵 = 𝑈𝐵 also implies the robust solution is globally optimum. The 2 

pseudo code is presented in Algorithm 1. 3 

The model of the relaxed first-stage design decision is presented as follows: 4 

 5 

min ∑ ∑ 𝑤𝑖
𝑝𝑖𝜑𝑖

𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ 𝐶 (33) 

𝑠. 𝑡. Constraints (2) – (5) and (11) – (12)  

𝐶 ≥ ∑ ∑ (𝑇𝑖𝜑𝑖
𝑝𝑖)𝑏̂𝑖

𝑝𝑖𝜁

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑𝑖
𝑝𝑖)𝑘̂𝑖𝑢

𝑝𝑖𝜁

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖𝑢𝑣 − 𝑀(1 − 𝜑𝑖
𝑝𝑖)) 𝑔𝑖(𝑢,𝑣)

𝑝𝑖𝜁

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))𝜃𝑖(𝑢,𝑣)
𝑝𝑖 𝑔̂𝑖(𝑢,𝑣)

𝑝𝑖𝜁

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢)) ℎ̂𝑗𝑖𝑢
𝜁

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

, ∀𝜁 ∈ Λ 

(34) 

 6 

Algorithm 1. The pseudo code of two-stage RO approach 7 

1 Set 𝑈𝐵 = ∞, 𝐿𝐵 = −∞, 𝑖𝑡𝑒𝑟 = 0, 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  

2 While 𝐺𝑎𝑝 ≥ 𝐸𝑥𝑖𝑡𝐺𝑎𝑝 and 𝐶𝑃𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝐶𝑃𝑈𝑙𝑖𝑚𝑖𝑡 do  

3      Solve the relaxed first stage design decision and obtain the optimal value ψ𝐹𝑆𝐷𝐷  

4      𝐿𝐵 ← ψ𝐹𝑆𝐷𝐷  

5      Solve linear dual form of second stage recourse decision and obtain the optimal value 𝜓𝑆𝑆𝑅𝐷  

6      Add optimality cut to the relaxed first stage design decision if second stage recourse decision is feasible  

7      Update 𝑈𝐵 ← 𝜓𝑆𝑆𝑅𝐷 , if necessary  

8      [Pareto optimality cutting plane]  

9      𝐺𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵) 𝑈𝐵⁄   

10      𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1  

11 End  

 8 

 9 

4.1.1. Pareto-optimal cut by Magnanti and Wong method 10 

The efficiency of the two-stage RO approach depends on the number of effective cuts, the strength of the 11 

optimality cut at each iteration and the number of iterations required to attain a global optimal value, all of 12 

which are associated with the computation time and the convergence speed of the two-stage RO approach. 13 

Magnanti and Wong [75] explained that the Pareto-optimal needs to be considered to determine a dominant cut 14 

in multiple optimal solutions. A proper choice of dual variables from a set of Pareto-optimal solutions is 15 

expected to enhance the convergence rate of the algorithm. Magnanti and Wong [75] proposed dual-variable 16 



16 

 

selection method to tackle the problem of different Benders cuts from multiple optimal solutions. This method 1 

tries to obtain the dual information dominates other cuts with respect to the Pareto-optimal condition.   2 

 3 

Definition 1. A Pareto-optimal cut satisfies the condition that the cut is not dominated by any other cut. Dual 4 

information (𝑏, 𝑘, 𝑎, 𝑔 and ℎ) represent a set of feasible values for the dual problem. A Bender cut associated 5 

with (𝑏1, 𝑘1, 𝑎1, 𝑔1 and ℎ1) dominates a cut associated with (𝑏2, 𝑘2, 𝑎2, 𝑔2 and ℎ2) on at least one point 6 

𝜑̂, 𝑧̂ ∈ 𝑋 as explained in Equation (35) and Constraints (2) – (6), (11) and (12) hold. In this regard, it can be 7 

said that the dual information (𝑏1 , 𝑘1 , 𝑎1 , 𝑔1  and ℎ1 ) dominate (𝑏2 , 𝑘2 , 𝑎2 , 𝑔2  and ℎ2 ) and that can be 8 

termed as a pareto-optimal cut. 9 

 10 

∑ ∑ (𝑇𝑖𝜑𝑖
𝑝𝑖)𝑏𝑖

𝑝𝑖1

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑𝑖
𝑝𝑖)𝑘𝑖𝑢

𝑝𝑖1

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖(𝑢,𝑣) − 𝑀(1 − 𝜑𝑖
𝑝𝑖)) 𝑔𝑖(𝑢,𝑣)

𝑝𝑖1

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))𝑤𝑖(𝑢,𝑣)
𝑝𝑖1

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢)) ℎ𝑗𝑖𝑢
1

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

≥ ∑ ∑ (𝑇𝑖𝜑𝑖
𝑝𝑖)𝑏𝑖

𝑝𝑖2

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑𝑖
𝑝𝑖)𝑘𝑖𝑢

𝑝𝑖2

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖(𝑢,𝑣) − 𝑀(1 − 𝜑𝑖
𝑝𝑖)) 𝑔𝑖(𝑢,𝑣)

𝑝𝑖2

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))𝑤𝑖(𝑢,𝑣)
𝑝𝑖2

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢)) ℎ𝑗𝑖𝑢
2

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

, ∀𝜑, 𝑧 ∈ 𝑋 

(35) 

 11 

A core point is required for a robust TTFP to generate a Pareto-optimal cut. The definition of a core point is 12 

given below: 13 

 14 

Definition 2. A point 𝜑0, 𝑧0 ∈ 𝑋 is a core point that exists at the region of the relative interior of the convex 15 

hull 𝑟𝑖(𝑋𝑐), where 𝑟𝑖(∙) is the relative interior and 𝑋𝑐 the convex hull of set 𝑋. 16 

 17 

 The core point (𝜑0, 𝑧0) is an initial fixed core point that is in accordance with Magnanti and Wong [75] 18 

method and the point (𝜑𝜁 , 𝑧𝜁) of the second-stage recourse design associated to the current solution at 𝜁th 19 

iteration. Ψ𝑠𝑝(𝑏, 𝑘, 𝑎, 𝑔, ℎ, 𝜃) is the objective value of the second-stage recourse design associated with fixed 20 
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solutions 𝜑𝜁  and 𝑧𝜁 . Magnanti and Wong [75]’s Pareto optimality cut can generate an alternative for the 1 

Pareto-optimal cut that fosters the convergence process of the two-stage RO. Model (19) – (28), (30) – (32), 2 

(36) and (37) presents the optimisation model to generate the Pareto-optimality cut by the Magnanti-Wong 3 

method. 4 

 5 

𝑚𝑎𝑥 ∑ ∑ (𝑇𝑖𝜑𝑖
𝑝𝑖0

)𝑏𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑𝑖
𝑝𝑖0

)𝑘𝑖𝑢
𝑝𝑖

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖(𝑢,𝑣) − 𝑀(1 − 𝜑𝑖
𝑝𝑖0

)) 𝑔𝑖(𝑢,𝑣)
𝑝𝑖

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))𝑤𝑖(𝑢,𝑣)
𝑝𝑖0

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢
0 )) ℎ𝑗𝑖𝑢

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

 

(36) 

     𝑠. 𝑡. Constraints (19) – (28), (30) – (32)  

∑ ∑ (𝑇𝑖𝜑̂𝑖
𝑝𝑖𝜁

) 𝑏𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂𝑖
𝑝𝑖𝜁

) 𝑘𝑖𝑢
𝑝𝑖

𝑢∈𝑉𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖(𝑢,𝑣) − 𝑀 (1 − 𝜑̂𝑖
𝑝𝑖𝜁

)) 𝑔𝑖(𝑢,𝑣)
𝑝𝑖

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖(𝑢,𝑣))𝑤𝑖(𝑢,𝑣)
𝑝𝑖

(𝑢,𝑣)∈𝐸𝑖𝑝𝑖∈𝑃𝑖𝑖∈𝐼

+ ∑ ∑ ∑ (𝑆𝑗𝑖 − 𝑀 (1 − 𝑧𝑗𝑖𝑢
𝜁

)) ℎ𝑗𝑖𝑢

𝑢∈𝑉𝑗∩𝑉𝑖∖{𝑜,𝑑}𝑖,𝑗≠𝑖∈𝐼𝑗∈𝐼

= ψ𝑠𝑝(𝑏, 𝑘, 𝑎, 𝑔, ℎ, 𝜃) 

(37) 

 6 

 7 

4.1.2. Pareto-optimal cut by Papadakos method 8 

de Sá, de Camargo and de Miranda [77] illustrated that Constraint (35) is dense and vulnerable to 9 

numerical instability. Papadakos [76], therefore, developed an approximated core-point method for a Pareto-10 

optimal cut and disregarded Constraint (37) in Magnanti-Wong method to ease the computation. Although there 11 

are several methods to obtain a core point, no practical method can guarantee a good core point according to 12 

Mercier, Cordeau and Soumis [84].  13 

 14 

Definition 3. A core point that can provide a valid Pareto-optimal cut is equivalent to that of Magnanti and 15 

Wong [75] method by the model (19) – (28), (30) – (32) and (36) – (37) or Papadakos [76] method by (19) – 16 

(28), (30) – (32) and (36). 17 

 18 

Definition 4. A point (𝜑0, 𝑧0) is a point according to Magnanti and Wong [75] method that exists if the feasible 19 
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region of the second-stage recourse decision is not empty and can span the set of projections in the first stage 1 

variables. 2 

 From the above definition, Papadakos [76] proposed an approximation-based core-point assembly method 3 

to construct an updated core point iteratively. Considerably, different core points (𝜑0, 𝑧0)  may be able to 4 

generalise different pareto-optimal cuts. Papadakos [76] suggested that any convex combination of a valid initial 5 

point by Magnanti and Wong [75] method can also be a valid core point (𝜑0, 𝑧0) . An updated core point 6 

(𝜑0,𝜁+1, 𝑧0,𝜁+1) was generated by considering the convex combination of an initial core point (𝜑0, 𝑧0) and 7 

an incumbent solution (𝜑𝜁 , 𝑧𝜁) at the 𝜁th iteration using Equations (38) and (39). Empirically, Papadakos [76] 8 

illustrated that λ = 0.5 provides the best computational efficiency in their numerical analysis. 9 

 10 

𝜑0,𝜁+1 = (1 − λ)𝜑0 + λ𝜑𝜁 (38) 

𝑧0,𝜁+1 = (1 − λ)𝑧0 + λ𝑧𝜁 (39) 

 11 

4.1.3. Proposed pareto-optimal cut by core point selection scheme λ𝜁 12 

Although Papadakos [76] suggested that λ = 0.5 provides the best solution quality in their computational 13 

analysis, there is no guarantee that a fixed λ value will provide a good core point during an iterative process. 14 

de Sá, de Camargo and de Miranda [77] developed a λ-optimal method to optimise. Instead of using λ-optimal 15 

by de Sá, de Camargo and de Miranda [77] method at each iteration, the proposed method adjusts λ value 16 

regarding the solution quality in several iterations and gains better computational efficiency than fixed the λ 17 

value. Meta-heuristics can, somehow, be incorporated for choosing the best-incumbent λ value regarding the 18 

number of unsuccessful updates in 𝐿𝐵 for several iterations. 19 

 In the proposed matheuristic approach, we integrated the core components of SA proposed by Kirkpatrick, 20 

Gelatt and Vecchi [85], including the acceptance probabilities by the Metropolis process [86] and the cooling 21 

schedule. It should be noted that the best-incumbent λ value is not fixed but serves as the best value for the 22 

𝜁 th iteration. Therefore, λ  value can change during the iterative process of the two-stage RO approach. 23 

Furthermore, the integration of the two-stage RO approach and the algorithmic components of SA rely on the 24 

interoperation and interdependence of the algorithmic framework to determine λ  value. A proper best-25 

incumbent λ value along with a stochastic process increases the possibility of generating a good core point 26 

(𝜑0, 𝑧0)  and obtains a pareto-optimal cut. This incorporation on the convergence process synergies the 27 

performance of the Bender cut generation and pareto-optimal cut by λ𝜁 . During the iterative process, the 28 

combinatorial cuts converge the two-stage RO problem by evaluating the incumbent 𝐿𝐵 and 𝑈𝐵, whereas the 29 

SA determines 𝜆 value regarding the unsuccessful update on the incumbent 𝐿𝐵 at 𝜁th iteration. The second-30 

stage recourse decision in the framework is equivalent to that in Papadakos [76] method, however, λ𝜁 may 31 

change iteratively. The design of the dynamic core point λ𝜁 is based on the convergence performance of 𝐿𝐵. 32 

The number of unsuccessful change on the incumbent 𝐿𝐵 is denoted as 𝜐. This value is set to zero when the 33 

𝐿𝐵𝜁  at the 𝜁 th iteration is greater than 𝐿𝐵𝜁−1  at the 𝜁 − 1 th iteration, whereas 𝜐  increase by one if 𝐿𝐵𝜁 34 
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equals to 𝐿𝐵𝜁−1 according to Equation (40). This is an important indicator to guide the acceptance probabilities 1 

by the Metropolis process when the incumbent core point (𝜑0, 𝑧0) cannot generate a pareto-optimal cut using 2 

the incumbent solution (𝜑𝜁 , 𝑧𝜁)  at the 𝜁 th iteration. To hold Definition 4, λ𝜁  must within the range [0,
1

2
] 3 

according to Equation (41).  4 

𝜐 = { 𝜐 + 1 if 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1

0          if 𝐿𝐵𝜁 > 𝐿𝐵𝜁−1 
  

(40) 

λ𝜁 ∈ [0,
1

2
] 

(41) 

 The proposed update of λ𝜁 value relies on the convex combination of Magnanti and Wong [75] initial 5 

core point and the core point of the incumbent solution (𝜑𝜁 , 𝑧𝜁)  at the 𝜁 th iteration. This process tries to 6 

reassemble the core point that satisfies Definition 4 via convex combination if the incumbent point (𝜑0,𝜁 , 𝑧0,𝜁) 7 

does not successfully generate a strong Pareto-optimal cut in terms of the 𝐿𝐵 convergence process. The update 8 

of the λ𝜁 value follows metropolis-based criteria according to Equation (42) [86]. The value Τ refers to the 9 

current temperature while 𝜐  can be denoted as the current temperature in the SA framework. The value 𝜐 10 

denotes the number of unsuccessful updates on 𝐿𝐵. The increase in 𝜐 results in the increase of the probabilities 11 

of the metropolis process ρ𝜁  at the 𝜁 th iteration. At this point, it can be assumed that a higher number of 12 

accumulated unsuccessful updates on 𝐿𝐵𝜁 indicates a higher chance of weaker Pareto-optimal cuts from a core 13 

point 𝜑0,𝜁 , 𝑧0,𝜁. Given maximum temperature Τ in a decreasing fashion is required to represent the annealing 14 

procedure in SA [85], we suggest  Τ𝜁 = 𝑈𝐵𝜁 − 𝐿𝐵𝜁 in our proposed matheuristic. A shrinking margin of Τ𝜁 15 

implies a higher chance of variation of the core point (𝜑0, 𝑧0) in the metropolis process. 16 

ρ𝜁 =
1

(1 + 𝑒
−𝜐

Τ𝜁 )

 (42) 

 The adjustment of the λ𝜁 value is based on the 𝐿𝐵 convergence process and the acceptance criterion of 17 

the metropolis process can be seen in Equation (43). At the 𝜁th iteration, λ𝜁+1 is initially set as λ0 (λ0 = 0.5 18 

in our proposed model) if the current 𝐿𝐵𝜁 successfully increases after adding the Pareto-optimal cuts developed 19 

from the 𝜁 − 1th iteration. This method tries to reset λ𝜁+1 at the next iteration to reassemble a new core point 20 

(𝜑0,𝜁+1, 𝑧0,𝜁+1)  similar to the method of convex combination in Papadakos [76] method. However, if the 21 

current 𝐿𝐵𝜁 equals 𝐿𝐵𝜁−1, then the Benders cut from 𝜁 − 1th iteration is considerably weak. We attempt to 22 

reassemble the core point (𝜑0,𝜁+1, 𝑧0,𝜁+1) by linear combination of the core points at a stochastic ratio of the 23 

λ𝜁 value, which is tuned by meta-heuristics. This mechanism follows the algorithmic structure of the metropolis 24 

process in SA, which considers a transition probability to adjust the λ𝜁  value to diversify the core point 25 

(𝜑0,𝜁+1, 𝑧0,𝜁+1) at the next iteration. The acceptance criterion of the metropolis process of the adjustment on 26 

the λ𝜁 value is determined by a random variable 𝑟, where 𝑟 = [0,1]. If 𝑟 ≥ ρ𝜁, then, no adjustment to the 27 

λ𝜁+1 value is made. If 𝑟 < ρ𝜁, then the λ𝜁+1 value equals λ𝜁 − ∆𝜆. The range of λ𝜁 must satisfy the condition 28 

in Equation (41). We simply set ∆𝜆 = 0.1  in our analysis. Indeed, a larger value of ∆𝜆  implies a greater 29 



20 

 

amplitude of λ, and vice versa. Since Papadakos [76] suggested that λ = 0.5 gives the best computational 1 

performance in their analysis, we considered a minor perturbation on λ𝜁+1 with ∆𝜆 = 0.1. 2 

λ𝜁+1 = {

λ0,                                   𝑖𝑓 𝐿𝐵𝜁 > 𝐿𝐵𝜁−1

λ𝜁 ,                    𝑖𝑓 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1 𝑎𝑛𝑑 𝑟 ≥ ρ𝜁

λ𝜁 − ∆𝜆, 𝑖𝑓 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1 𝑎𝑛𝑑 𝑟 < ρ𝜁

 (43) 

 At each iteration, we adopted a simple cooling strategy to govern the λ𝜁 value with a constant cooling 3 

rate. The cooling scheme is suggested as 
∆𝜆

2
 to maintain a balance between exploitation (diversification) and 4 

exploration (intensification). Ng, Lee, Chan and Qin [6] explained in the computational analysis of meta-5 

heuristic performance that exploitation refers to the ability to search for a better solution from a promising 6 

region, while exploration refers to the ability to escape from the local optimal. The two principal performance 7 

metrics measure the tendency of the  λ𝜁 value through trial-and-error interactions. In our preliminary study 8 

(not shown herein to avoid lengthy computational analysis), when the cooling scheme is equivalent to ∆𝜆, then 9 

the λ𝜁 value is mostly equal to 0.5. The λ𝜁 value tends to be 0 when we adopt 
∆𝜆

5
 or 

∆𝜆

10
 in the cooling scheme. 10 

We found that 
∆𝜆

2
 provides a good balance in the adjustment of the λ𝜁  value such that it can foster the 11 

convergence process of the two-stage RO approach. Therefore, we adopted a cooling scheme in Equation (44). 12 

λ𝜁+1 = λ𝜁 +
∆𝜆

2
 

(44) 

 The convex combination of a core point approximation is similar to that proposed by Papadakos [76]. The 13 

updated core point (𝜑0,𝜁+1, 𝑧0,𝜁+1) is shown in Equations (45) and (46). As mentioned earlier, the decision of 14 

update strategy on the core point at the next iteration (𝜑0,𝜁+1, 𝑧0,𝜁+1) depends on the performance of  𝐿𝐵𝜁  and 15 

𝐿𝐵𝜁−1 . If the value of  𝐿𝐵𝜁   is successfully increased compared to 𝐿𝐵𝜁−1 , the updated core point 16 

(𝜑0,𝜁+1, 𝑧0,𝜁+1)  is reconstructed as the initial core point (𝜑0, 𝑧0) . Otherwise, the updated core point 17 

(𝜑0,𝜁+1, 𝑧0,𝜁+1) is a convex combination of the initial (𝜑0, 𝑧0) and incumbent core points (𝜑𝜁 , 𝑧𝜁) using an 18 

adaptive λ𝜁. 19 

𝜑0,𝜁+1 = {
𝜑0                              𝑖𝑓 𝐿𝐵𝜁 > 𝐿𝐵𝜁−1

(1 − λ𝜁)𝜑0 + λ𝜁𝜑𝜁  𝑖𝑓 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1 
 

(45) 

𝑧0,𝜁+1 = {
𝑧0                              𝑖𝑓 𝐿𝐵𝜁 > 𝐿𝐵𝜁−1

(1 − λ𝜁)𝑧0 + λ𝜁𝑧𝜁  𝑖𝑓 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1 
 

(46) 

 20 

 The pseudo code of the two-stage RO approach with the dynamic core point method by SA is presented 21 

in Algorithm 2. 22 

 23 

Algorithm 2. The pseudo code of proposed two-stage RO approach with dynamic core points method by simulated annealing 24 

1 Set 𝑈𝐵 = ∞, 𝐿𝐵 = −∞, 𝑖𝑡𝑒𝑟 = 0, λ0 = 0.5, 𝜐 = 0, 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  

2 Set initial core point (𝜑0, 𝑧0)  

3 While 𝐺𝑎𝑝 ≥ 𝐸𝑥𝑖𝑡𝐺𝑎𝑝 and 𝐶𝑃𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝐶𝑃𝑈𝑙𝑖𝑚𝑖𝑡 do  
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4      Solve the relaxed first stage design decision and obtain the optimal value ψ𝐹𝑆𝐷𝐷  

5      𝐿𝐵 ← ψ𝐹𝑆𝐷𝐷  

6      Solve dual form of second stage recourse decision and obtain the optimal value 𝜓𝑆𝑆𝑅𝐷  

7      Add optimality cut to the relaxed first stage design decision if second stage recourse decision is feasible  

8      IF Pareto-optimal cut is successfully obtained  

      THEN  

9           Add pareto-optimal cut if Papadakos model is feasible  

10           Update 𝑈𝐵 ← 𝜓𝑆𝑆𝑅𝐷, if necessary  

11           IF 𝐿𝐵𝜁 = 𝐿𝐵𝜁−1  

12                THEN 𝜐 = 𝜐 + 1  

13                ELSE 𝜐 = 0  

14           Compute ρ𝜁 (27), where Τ𝜁 = 𝑈𝐵𝜁 − 𝐿𝐵𝜁   

15           Update λ𝜁 by Equation (28), where 𝑟~𝑈([0,1])  

16           Update the incumbent core point 𝜑0,𝜁+1, 𝑧0,𝜁+1 using λ𝜁 by (29) and (30)  

17      λ𝜁+1 = λ𝜁 +
∆𝜆

2
  

18      𝐺𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵) 𝑈𝐵⁄   

19      𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1  

20 End  

 1 

5. Numerical study 2 

5.1. Description of the real-data instances 3 

The proposed method was applied to a real-life case study in April 2018 at The Hong Kong International 4 

Airport (HKIA) from a licensed API from FlightGlobal. We are interested in the TTFP for approaching flights 5 

and a scenario that includes the largest number of flight movements at half-hour intervals. Only one set of test 6 

instances on 22nd April, 2018 recorded 19 flight movements from 17:30 to 18:00. Therefore, we simply used 7 

real-world instances at the HKIA on 22nd April, 2018 in our numerical analysis. The total number of approaching 8 

flight movements on 22nd April, 2018 was found to be 488. The distribution of the flight movement at half-hour 9 

intervals is presented in Fig. 2. The total number of instances is 41. The instance ID is represented by a digit 10 

(hour) and one alphabet (First half-an-hour by ‘F’ or second by ‘S’) to indicate the corresponding half-hour 11 

intervals of the dataset. For example, the dataset from 04:30 to 05:00 and from 23:00 to 23:30 are denoted as 4-12 

S and 23-F, respectively. 13 
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 1 

Fig. 2. The number of approaching flights at half-hour intervals on 22nd April, 2018 2 

 3 

The arrival routes and terminal holding patterns in our model follow the terminal airspace setting in HKIA 4 

(IATA: HKG, ICAO: VHHH) as shown in Fig. 3. There are 10 entry waypoints (DOTMI, LELIM, ELATO, 5 

NOMAN, SABNO, ASOBA, DOSUT, IKELA, SIKOU and SIERA) in the HK TMA. Regarding the mono-6 

aeronautical holding rule and the network of HK TMA, 26 alternative paths were constructed in the proposed 7 

model.  8 

 9 
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 1 

Fig. 3. The approach paths of the terminal airspace in HKIA 2 

 3 

In the RO, the set of traversing time 𝑡̃𝑖(𝑢,𝑣) ∈ Ω  is assumed to have an interval-based uncertainty 4 

[𝑡𝑖(𝑢,𝑣), 𝑡𝑖(𝑢,𝑣)] . The realised traversing time 𝑡̂𝑖(𝑢,𝑣)  is subject to the perturbation of a normal speed profile 5 

regarding flight classes. The distance in nautical miles between waypoints is denoted as 𝜅(𝑢,𝑣). The nominal 6 

traversing time 𝑡𝑖(𝑢,𝑣)  is a flight category-based parameter that can be computed by Equation (47). The 7 

deviation from nominal 𝑡𝑖(𝑢,𝑣) and the realised traversing time 𝑡𝑖(𝑢,𝑣) can be computed by Equation (48). Table 8 

2 illustrates the lower bound and upper bound values of a normal speed profile under the case of an airport. 9 

Table 3 explains the category-based longitudinal separation distance in nautical miles in HK TMA. 10 

 11 

 12 
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𝑡𝑖(𝑢,𝑣) =
𝜅(𝑢,𝑣)

𝜔𝑖
, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖, 𝑢 < 𝑣 

(47) 

𝑡̂𝑖(𝑢,𝑣) =
𝜅(𝑢,𝑣)

𝜔𝑖
−

𝜅(𝑢,𝑣)

𝜔𝑖
, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 

(48) 

 1 

Table 2 2 

Normal speed profile regarding flight classes 3 

𝑘𝑛𝑜𝑡𝑠a 𝐿𝑆𝐹 𝑀𝑆𝐹 𝑆𝑆𝐹 

𝜔𝑖 250 250 275 

𝜔𝑖 300 270 295 

∆𝜐𝑖 50 20 20 

a: 𝜐𝑖  𝑘𝑛𝑜𝑡𝑠 = 3600 𝜐𝑖  𝑁𝑀 𝑠⁄ , 𝑆𝑆𝐹: Small size flight; 𝑀𝑆𝐹: Medium size flight; 𝐿𝑆𝐹: Large size flight 4 
 5 

Table 3 6 

Longitudinal separation distance (in nautical miles) 7 

𝑁𝑀 𝐿𝑆𝐹 𝑀𝑆𝐹 𝑆𝑆𝐹 

𝐿𝑆𝐹 4 5 7 

𝑀𝑆𝐹 3 3 5 

𝑆𝑆𝐹 3 3 3 

𝑆𝑆𝐹: Small size flight; 𝑀𝑆𝐹: medium size flight; 𝐿𝑆𝐹: large size flight 8 

 9 

 10 

5.2. Computational efficiency 11 

The computation was performed using Intel Core I7 3.60GHz CPU and 16 GB RAM in a Windows 7 12 

Enterprise 64-bit operating environment. The Pareto-optimal cuts and the proposed method were coded using 13 

C# language with Microsoft Visual Studio 2017 and IBM ILOG CPLEX optimisation Studio 12.8.0.  14 

 15 

5.3. Convergence profile 16 

In this section, we have provided one of the case examples from our test instance to explain the mechanism 17 

and performance of the proposed method and the overall convergence performance. Since the algorithm 18 

structure of the variants of Pareto-optimal cutting scheme differ from each other, comparison of the number of 19 

iterations may lead to biased results. We, therefore, indicate the algorithm performance using the measurement 20 

and the CPU time. Meta-heuristics do not guarantee an optimal condition and can be preserved in the form of a 21 

stochastic optimisation method. However, in our proposed approach, the optimal condition is guided by Benders 22 

dual cutting plane, duality and the iterative relaxation procedure in the two-stage RO approach. The meta-23 

heuristics in the two-stage RO approach focuses on the core point intervention using a stochastic adjustment of 24 

the λ𝜁  value. Therefore, the proposed method can guarantee an optimal solution. The stochasticity of the 25 

proposed method affects the speed of the convergence process and the CPU time. 26 

The proposed algorithm performed similarly in various instances. We, therefore, select one instance to 27 

elaborate the mechanism of stochastic adjustment of the λ𝜁 value in the convergence process. Fig. 4 presents 28 
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the convergence process of the instance 13-S solved by the proposed method. Eleven flights were seen to enter 1 

TMA from 13:30 – 14:00 in the test instance. The optimal value of the 13-S instance under the worst-case 2 

scenario was 7847.23. The convergence process of the proposed method took 107 iterations to reach the 3 

optimum stage. The grey plot represents the upper bound value, while the variables plot represents the lower 4 

bound value. The incumbent λ𝜁 value was presented using a sequential scales (from blue to pink). Dots with 5 

blue colour on the lower bound curve indicates a λ𝜁 value with 0.5 and dots with pink colour on the lower 6 

bound curve indicates a λ𝜁 value with 0. As mentioned in the section 4.1.3, λ𝜁 value is adjusted with regard to 7 

the convergence performance of LB value and must satisfy Constraint (26). Since a practical method is not 8 

available to obtain a good core point at each iteration, the proposed method imposes stochasticity in the λ𝜁 9 

value and allows reassembling the next core point (𝜑0,𝜁+1, 𝑧0,𝜁+1) from the initial (𝜑0, 𝑧0) and incumbent 10 

core points (𝜑𝜁 , 𝑧𝜁) using adaptive λ𝜁. When 𝐿𝐵 remains unchanged, the λ𝜁 value has a stochastic property 11 

(λ𝜁 ∈ [0,
1

2
] ) to restructure the convex combination of the updated core point (𝜑0,𝜁+1, 𝑧0,𝜁+1) . When 𝐿𝐵  is 12 

successfully updated, λ𝜁+1 and the updated core point are reset as its initial values (λ𝜁 value with 0.5 and 13 

(𝜑0,𝜁+1, 𝑧0,𝜁+1) ← (𝜑0, 𝑧0)).  14 

 15 

Fig. 4. Convergence process of the instance 13-S using Papadakos method with dynamic core points 16 

 17 

We further map the 𝐿𝐵 performance of the two-stage RO approach, Pareto-optimal cut by Magnanti-and-18 

Wong method, Pareto-optimal cut by Papadakos method and Pareto-optimal cut by the proposed method in a 19 

scatter plot with time index in Fig. 5. As the convergence process of the proposed method may vary in CPU 20 
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time, we randomly pick one result out of ten. The proposed method can reach the optimal solution and satisfy 1 

the stopping criteria of the proposed method in approximately 2.5 minutes, the Pareto-optimal cut by the 2 

Magnanti-and-Wong method and Papadakos method were unable to reach the optimum value at the time it 3 

reached the 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡 . The results suggest that the proposed method outperforms Pareto-optimal cut by 4 

Magnanti-and-Wong method and Papadakos method in solving the 13-S instance. 5 

 6 

 7 

Fig. 5. The algorithms performance by solving 13-S instance regarding the incumbent lower bound value with time index 8 

 9 

 10 
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5.4. The efficiency of Pareto-optimal cuts 1 

We measured the efficiency of the Pareto-optimal cuts through different approaches in our computational 2 

analysis. The iterative process of the two-stage RO approach is terminated by either of the two conditions. (a) 3 

the computational limit 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡 reaches 1,800 seconds or (b) the 𝐿𝐵 is greater than or equal to UB. 𝐿𝐵 4 

denotes a non-decreasing and fractional value while UB the best-known incumbent objective value. Since each 5 

instance represents a half-hour interval, a 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡 of 1,800 seconds was chosen. The global optimal solution 6 

can be obtained when 𝐿𝐵 equals 𝑈𝐵. In this regard, we can measure the optimality gap by using Equation (49) 7 

[81]. We, therefore, evaluated the algorithm performance of the variants of the Pareto-optimal cutting schemes. 8 

A small value of the optimality gap indicates a close-to-optimal situation, whereas a zero value of the optimality 9 

gap indicates an optimal condition.  10 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 % (𝑂𝐺%) =  
𝑈𝐵 − 𝐿𝐵

𝑈𝐵
 

(49) 

 11 

The algorithm performance was evaluated by solving 41 real-world instances. The computational results 12 

are illustrated in Table 4. Detailed computational results of CPU time, LB and distribution of optimality cut and 13 

Pareto-optimal cut are presented in Appendices A and B. Since the proposed method includes randomness in 14 

the convex combination of core points, we performed the analysis in 10 runtimes to measure the worst, average 15 

and the best performance of the proposed method. In Table 4, the average optimality gap of the two-stage RO 16 

approach, the two-stage RO with Magnanti-and-Wong method, two-stage RO with Papadakos method and two-17 

stage RO with the proposed dynamic core points method are 18.73%, 19.15%, 11.40% and 9.32%., respectively 18 

The average CPU time of the algorithms is similar, which is in the range of 18 to 23 minutes. The results show 19 

that the performance of the proposed method does not dominate the performance of other methods, since the 20 

worst performance of the proposed method is slightly poor than the results from the Pareto-optimal cut by 21 

Papadakos method. However, Table 4 indicates that the average and the best performance of the proposed 22 

method in 10 runtimes outperform other methods.  23 

 24 

Table 4 25 

Computational performance with the measurement of the optimality gap 26 

Instance 

ID 

# 

flight 

Two-stage RO Magnanti-and-

Wong method 

Papadakos 

method 

Proposed method 

Max. Avg. Min. 

0-F 6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

0-S 5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

4-S 5 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 

5-F 5 0.00% 0.00% 0.02% 0.02% 0.02% 0.02% 

5-S 6 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 

6-F 8 27.65% 0.00% 3.02% 3.62% 1.36% 0.16% 

6-S 8 0.00% 25.04% 1.79% 2.68% 1.70% 0.90% 

7-F 11 36.85% 38.39% 8.62% 12.95% 8.36% 6.44% 

7-S 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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8-F 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

8-S 11 35.80% 35.46% 6.37% 6.39% 6.09% 5.40% 

9-F 15 37.20% 37.23% 29.93% 37.50% 24.16% 7.75% 

9-S 13 1.42% 36.63% 0.00% 15.72% 13.74% 0.00% 

10-F 14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

10-S 15 37.68% 37.35% 28.77% 30.78% 21.59% 8.73% 

11-F 12 35.46% 35.18% 1.86% 3.85% 2.44% 0.89% 

11-S 10 30.68% 0.00% 0.00% 0.00% 0.00% 0.00% 

12-F 13 0.00% 0.00% 0.00% 0.05% 0.04% 0.04% 

12-S 13 31.28% 30.10% 25.83% 31.38% 27.23% 17.24% 

13-F 13 35.07% 35.07% 10.59% 11.36% 11.13% 10.59% 

13-S 11 36.15% 18.08% 18.08% 18.15% 18.06% 17.79% 

14-F 15 27.84% 28.55% 28.55% 27.10% 15.58% 7.48% 

14-S 16 33.76% 33.88% 27.67% 27.67% 25.65% 7.53% 

15-F 13 21.20% 20.84% 8.16% 8.16% 8.16% 8.15% 

15-S 16 37.54% 37.08% 37.08% 38.14% 30.37% 0.02% 

16-F 13 38.66% 39.11% 39.11% 39.64% 19.67% 0.00% 

16-S 14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

17-F 14 0.00% 38.07% 0.00% 3.49% 3.23% 2.00% 

17-S 19 28.42% 29.59% 26.02% 30.56% 26.83% 25.50% 

18-F 15 35.73% 0.00% 0.00% 35.73% 23.23% 0.02% 

18-S 13 2.56% 0.00% 2.56% 3.22% 1.41% 0.00% 

19-F 14 36.33% 36.36% 36.63% 36.05% 10.71% 7.44% 

19-S 14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

20-F 15 33.66% 34.48% 12.13% 14.21% 13.06% 10.45% 

20-S 14 1.02% 34.05% 34.05% 36.45% 11.65% 1.02% 

21-F 14 32.63% 32.82% 12.39% 12.41% 11.51% 5.91% 

21-S 17 39.29% 39.36% 39.53% 33.14% 23.79% 17.55% 

22-F 13 0.63% 0.00% 0.00% 0.63% 0.51% 0.00% 

22-S 15 24.02% 22.80% 22.80% 17.68% 14.97% 11.30% 

23-F 12 29.40% 29.84% 5.70% 5.72% 5.71% 5.70% 

23-S 9 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 

Average OG% 18.73% 19.15% 11.40% 13.28% 9.32% 4.54% 

Average CPU 

(mins) 

19:33 20:21 18:46 22:07 20:57 18:48 

 1 

 2 

As the average OG% between the proposed algorithm and Papadakos method has about 2% difference on 3 

average. Therefore, we further conducted the statistical analysis between the benchmarking algorithms (Two-4 

stage RO approach, Magnanti-and-Wong method and Papadakos method) and the proposed algorithm using 5 

Wilcoxon-signed ranks test. The statistical analysis was conducted with the software IBM SPSS Statistics 22. 6 

For the level of significance, a probable value of α = 0.05  was considered as significant. 41 real-life case 7 

studies was evaluated and the proposed algorithm performed in 10 runtimes. The sample size of the Wilcoxon-8 
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signed rank test is 410. Table 5 presents the statistical results of Wilcoxon-signed rank test. We further evaluated 1 

the strength of the effect size by R value. The solution quality of the proposed algorithm has a greater effect 2 

than the results from the two-stage RO approach and Magnanti-and-Wong method and has a smaller effect than 3 

the results from Papadakos method. Fig. 6 illustrates the optimality gap of algorithm performance using box 4 

diagram. The 50th percentile of the proposed method is slightly higher than the 50th percentile of the Papadakos 5 

method. However, the interquartile range of the proposed method is smaller than the benchmarking algorithms. 6 

We, therefore, conclude that the proposed algorithm statistically outperforms the benchmarking algorithms. 7 

 8 

Table 5 9 

Comparison of the benchmarking algorithms and proposed algorithm: Wilcoxon-signed ranks test 10 

Algorithms (𝐍 = 𝟒𝟏𝟎) Z score Asymp. Sig. (2 tailed) R value Strength of effect size 

Two-stage RO -11.582 0.000 0.5720 Large effect 

Magnanti-and-Wong method -11.295 0.000 0.5578 Large effect 

Papadakos method -2.340 0.019 0.1155 Small effect 

 11 

 12 

Fig. 6. Optimality gap of different algorithms in the box plot 13 

 14 
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6. Concluding remarks 1 

This research proposed an alternative path for the robust TTFP under uncertainty and investigated the 2 

efficiency of the variants of pareto-optimal cut and the dynamic core point selection scheme using SA algorithm. 3 

The predetermined solution for TTFP may not be applicable without the consideration of the inherent 4 

uncertainty of flight time on the approach path. The propagation of terminal traffic delays may attribute to 5 

scheduling intervention in daily operation. The RO offers a conservative approach in handling uncertainty and 6 

enhances the solution robustness resulting in a high level of solution robustness against uncertainty. The 7 

integration of the dynamic core points by SA algorithm and the two-stage RO approach by Papadakos method 8 

could enhance the efficiency of Pareto-optimal cutting scheme in solving half-hour real-world instances. The 9 

results show that the average and the best performance of the proposed method outperform the well-known 10 

Pareto-optimal cutting scheme by the Magnanti-and-Wong method and the Papadakos method in our numerical 11 

experiments. 12 

 Several interesting aspects of RO and optimisation methods can be considered for future work. These 13 

include: (a) The assumption that the terminal traffic flow model can be released in accordance with the structure 14 

of a TMA and an airport. In multiple runway systems, some runways are commonly designed solely for aircraft 15 

landing while others solely for aircraft take-off. Such a mechanism is inflexible and cannot resolve unexpected 16 

disruptive events. Pooling the available runway capacity via runway configuration switching significantly 17 

improves the robust level of runway operations and resolves the arrival-departure-demand/capacity mismatch 18 

problem. (b) Other robust criteria can also be considered in the model. Distributionally robust optimisation is a 19 

conservative approximation approach to that can estimate the expected constraint violation for possible 20 

disturbance distributions and is especially applicable under highly uncertain environments and mean-covariance 21 

information about the distributions of uncertain parameters. This optimisation offers conservative and robust 22 

runway decision-making schemes using the mean and covariance of input parameters when obtaining the 23 

probability distributions of the parameters is ambiguous or cannot be determined precisely. Investigating the 24 

risk assessment technique under the distributionally robust approach, particularly conditional-value-at-risk 25 

method, using probability distribution, described by the mean and covariance of the deviation from the 26 

predetermined landing/take-off operation time, instead of a merely known or ambiguous set of probability 27 

distributions to achieve lower-tolerance-to-loss-of-delay compensation. (c) Matheuristic is a new research 28 

direction in the research field of computational intelligence. One special challenge in the optimisation problem 29 

in airside operations is the interconnected airside activities requires real-time decisions. Many naturally inspired 30 

meta-heuristic algorithms have gained increasing popularity because of their high efficiency, which involves 31 

specific controlling parameters to maintain the balance between exploitation and exploration in the convergence 32 

process. Contrarily, the advancement of mathematical programming is still attempting to cope with the 33 

computational needs of the industry. A significant computational effort is required to resolve complex, high-34 

dimensional and optimisation problems under uncertainty. Current research states that matheuristic is a 35 

promising optimisation technique regarding computation time and solution quality. 36 

 37 
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