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Abstract: 

The main aim of this paper is to solve a path planning problem for an autonomous 

mobile robot in static and dynamic environments. The problem is solved by determining 

the collision-free path that satisfies the chosen criteria for shortest distance and path 

smoothness. The proposed path planning algorithm mimics the real world by adding the 

actual size of the mobile robot to that of the obstacles and formulating the problem as a 

moving point in the free-space. The proposed algorithm consists of three modules. The 

first module forms an optimized path by conducting a hybridized Particle Swarm 

Optimization-Modified Frequency Bat (PSO-MFB) algorithm that minimizes distance 

and follows path smoothness criteria. The second module detects any infeasible points 

generated by the proposed PSO-MFB Algorithm by a novel Local Search (LS) algorithm 

integrated with the PSO-MFB algorithm to be converted into feasible solutions. The third 

module features obstacle detection and avoidance (ODA), which is triggered when the 

mobile robot detects obstacles within its sensing region, allowing it to avoid collision 

with obstacles. The simulation results indicate that this method generates an optimal 

feasible path even in complex dynamic environments and thus overcomes the 

shortcomings of conventional approaches such as grid methods. Moreover, compared to 

recent path planning techniques, simulation results show that the proposed PSO-MFB 

algorithm is highly competitive in terms of path optimality. 

 

 

Keywords: Autonomous Mobile Robot, Robot path planning, particle swarm 

optimization, bat algorithm, collision avoidance. 

 

1. Introduction 

Autonomous navigation of mobile robots cover a wide spectrum of applications, 

including mining, military, rescuing, space, agriculture, and entertainment [1]. In these 

applications, successful navigations of mobile robots mainly depend on their intelligence 

capabilities. Among these capabilities, path planning is the most effective and important 

intelligent feature. Path planning involves the creation of an optimized collision-free path 

from one place to another. It can be divided into various categories depending on the 

nature of the environment: static path planning, where obstacles do not change their 

position with time, and dynamic path planning where the position and orientation of 

obstacles change with time. These can be further subdivided according to the knowledge 

level of the mobile robot into offline and online algorithms. In offline path planning, the 

mobile robot has a complete knowledge of the environment. Consequently, the path 
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planning algorithm produces a complete path before the robot begins moving. However, 

in online path planning, information about the environment is obtained from a local sensor 

attached to the mobile robot, and the mobile robot requires the ability to construct a new 

path in response to any environment change [2]. This categorization can be further 

subcategorized according to the target nature, into stationary and dynamic targets. In 

stationary target, the mobile robot searches for a static point in its workspace, and once it 

has located this point, it will never move away from it. On the other hand, in dynamic 

target, the mobile robot must search for a moving target while avoiding obstacles. In the 

latter case, the mobile robot and its target are both moving [3].  Each of the above 

scenarios require different path planning algorithms. 

 

Path planning studies began in the late 1960s, and various techniques have been 

suggested involving cell decomposition [4], roadmap approaches [5], and potential fields 

[6]. The main drawbacks of these algorithms are inefficiency, because of high 

computational costs, and inaccuracy, because of the high risk of getting stuck in local 

minima. Adopting various heuristic methodologies can defeat the impediments of these 

algorithms, and these include the application of neural systems, genetics, and nature-

inspired algorithms [7]. Rapid satisfactory solutions are one of the leading significant 

focal points of such heuristic methodologies, and these are particularly appropriate for 

finding solutions to NP-complete problems. 

 

In this paper a new path planning algorithm is developed. The algorithm consists of 

three main modules: the first module involves point generation achieved using a novel 

heuristic nature-inspired algorithm, which is a hybridization between Particle Swarm 

Optimization and Modified Frequency Bat Algorithms (PSO-MFB). The PSO-MFB 

generates and select the points that satisfy the multi-objective measure proposed in this 

work, which is a combination of shortest path and path smoothness. Then the proposed 

algorithm is integrated with a second module which converts infeasible solutions into 

feasible ones. In the third module an avoidance algorithm is employed to avoid obstacles. 

 

The current paper is structured as follows. First, section 2 highlights several research 

methodologies, then section 3 presents the problem statement, preliminaries, and the 

performance criteria considered in this work. Swarm based optimization is introduced in 

section 4, while in section 5, the methodologies proposed for mobile robot path planning 

in this work are introduced. In section 6, a set of simulation results are presented to 

demonstrate the effectiveness of the proposed methodology as compared with previous 

works. Section 7 present a discussion of the obtained results. Finally. Conclusions and 

recommendations are presented in section 8.  

 

2. Related Works 

Numerous approaches have been used to solve single/multi-objective path planning 

problems for mobile robots, such as swarm/nature-inspired algorithms, neural networks, 

and fuzzy logic. The first group includes several previous studies that have exploited 

examples of natural swarm behaviours. The works in [8] and [9] utilized the standard Ant 

Colony optimization (ACO) to solve path planning problems for complex environments. 

An improved version of ACO (IACO) has been proposed in [10] to obtain faster 

convergence speed and to avoid trapping into local minimum. Compared to other 
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algorithms, the IACO produced optimum path, however, it takes longer time to converge 

[10].   

Various works have also adopted heuristic methods and employed these to solve 

different aspects of path planning methods such as Bat algorithm (BA) [11], Particle 

Swarm Optimization [12], Cuckoo search (CS) algorithms [13], Bacterial Foraging 

optimization [14], Artificial Immune Systems [15], and the Whale Optimization 

Algorithm (WOA), implemented in a static environment to satisfy requirements for the 

shortest and smoothest path [16]. GA and its modified versions are frequently 

implemented to find the shortest path for mobile robot path planning in different 

environments [17], while path planning using neural networks was developed in [18]. 

Integrating a path planning algorithm with the motion controllers of mobile robots was 

achieved in [19–22], where several different motion control strategies were employed, 

including fuzzy logic controls, adaptive neuro-fuzzy inference systems, and model 

predictive controls. The Wind Driven Optimization (WDO) and Invasive Weed 

Optimization (IWO) algorithms were used to tune the parameters of the fuzzy logic 

controller and adaptive neuro-fuzzy inference systems in [20], [21], respectively, while 

ACO and PSO were used in the tuning of the fuzzy logic controller presented by [23]. 

The works in [24–26] incorporated two-level navigation algorithms, where the higher 

level was mainly concerned with path planning and guidance for the mobile robot, while 

the motion control directing the mobile robot in its configuration space was included in 

the lowest level. Mobile robot energy consumption is an important issue directly related 

to smooth trajectory planning. Minimum-energy cornering trajectory planning algorithm 

with self-rotation and energy constrained objective measures were developed in [27]. 

 

Hybridization of meta-heuristic algorithms were also employed to improve robot 

path planning algorithms. The objective of hybridizing two meta-heuristic algorithms is 

to combine the advantages of each algorithm to form an improved one. Such hybridized 

algorithms used in robot path planning include genetic algorithm and particle swarm 

optimization (GA-PSO) [28], Multi-Objective Bare Bones Particle Swarm Optimization 

with Differential Evolution (MOBBPSO) [29], cuckoo search (CS) and bat algorithm 

(BA) [30] 

 

One of the drawbacks in the studies mentioned above is that the mobile robot was 

treated as a simple particle. While some of these algorithms were oriented toward finding 

the shortest path avoiding static obstacles. Other studies focused on the avoidance of 

dynamic obstacles while achieving the shortest distance without considering the 

smoothness of the path. Moreover, despite the ease of implementation of the grid-based 

methods used by some of the above researches, these have several disadvantages such as 

the imprecise representation of the obstacle, where if the obstacle occupies only a small 

area of the cell, the entire cell is nevertheless reserved for that obstacle. This leads to the 

waste of a space and less flexibility in dynamic environments.  

 

The main contribution of this paper is to develop a new path planning algorithm 

which consists of three main modules:  

• The first module involves point generation, achieved using a novel heuristic 

nature-inspired algorithm, which is a hybridization between Particle Swarm 

Optimization and Modified Frequency Bat Algorithms, thus a PSO-MFB 

Algorithm. This hybridized algorithm generates and selects the points that 
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satisfy the multi-objective measure proposed in this work, which is a 

combination of shortest path and path smoothness.  

• In the second module the PSO-MFB algorithm is integrated with a second 

module in which a local search technique converts infeasible solutions into 

feasible ones.  

• In addition, to avoid obstacles, twelve sensors are deployed around the mobile 

robot to sense obstacles, and once they are detected, an avoidance algorithm is 

triggered to avoid obstacles; this is a function of the third module. 

 

3. Problem Statement and Preliminaries 

Assume a mobile robot at a start position (SP) that is required to reach a goal position 

(GP) in a given workspace. Several static and dynamic obstacles are assumed to exist in 

the mobile robot workspace. The objective of a path planning problem is to find an 

optimum or near-optimum path (safest, shortest, and smoothest) without colliding with a 

problem, some of the assumptions made in this paper should be made explicit. 

 

Assumption 1: The obstacles are represented as circular shapes. 

 

Assumption 2: The mobile robot is a physical body; thus, to take into account the actual 

size of the mobile robot, the obstacles are expanded by the radius of mobile robot (rMR), 

so that the mobile robot can be considered as a point, as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Expanding obstacles size corresponding to mobile robot size. 

 

Assumption 3: There are no kinematic constraints which affect the motion of the mobile 

robot. The only effective source is the motion of the obstacles. 

 

Assumption 4: The mobile robot motion is omnidirectional, and it can move in any 

direction at any time.  

A. Performance Criteria  

1) Shortest Distance 

In path planning field, “Shortest Distance” means minimising the path length between 

the start and goal points. At any iteration, the point 𝑤𝑝𝑗(𝑡) is selected as the best one if it 

has the shortest distance to the goal point 𝑤𝑝(𝑁) such that   
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𝑓1(𝑥, 𝑦) = 𝑑(𝑤𝑝𝑗(𝑡), 𝑤𝑝(𝑁)) (1) 

 

is minimum, where d(.,.) is the Euclidean distance. The Shortest Path Length (SPL) is the 

sum of all the distances between mid-points (𝑤𝑝𝑗(2) ⋯ 𝑤𝑝𝑗(𝑁 − 1)) generated by the 

path planning algorithm between the start point (SP) 𝑤𝑝(1) and the Goal Point (GP)  

𝑤𝑝(𝑁), given by: 

𝑆𝑃𝐿 = ∑ 𝑑 (𝑤𝑝𝑗(𝑡), 𝑤𝑝𝑗(𝑡 + 1))

𝑁−1

𝑡=1

= ∑ 𝑑𝑡

𝑁−1

𝑡=1

 (2) 

 

where, j is the index of the best solution generated by the swarm optimization based path 

planning algorithm. 

𝑑𝑡 = √(𝑥𝑤𝑝𝑗(𝑡+1) − 𝑥𝑤𝑝𝑗(𝑡))2 + (𝑦𝑤𝑝𝑗(𝑡+1) − 𝑦𝑤𝑝𝑗(𝑡))2 

 

         

2) Path Smoothness 

This involves minimising the difference of the angles between the straight lines (goal-

current points and suggested points-current point), as shown in Fig. 2 and given by: 

𝑓2(𝑥, 𝑦) = ∑|𝜃(𝑤𝑝(𝑡),𝑤𝑝(𝑡+1)) − 𝜃(𝑤𝑝(𝑡),𝑤𝑝(𝑁))|

𝑁−1

𝑡=1

 (3) 

 

 

Fig. 2.  Path smoothness: Summing Angles errors. 

where, 
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𝜃(𝑤𝑝(𝑡),𝑤𝑝(𝑡+1)) = 𝑡𝑎𝑛−1
𝑦𝑤𝑝𝑗

 (𝑡+1)−𝑦𝑤𝑝 (𝑡)

𝑥𝑤𝑝𝑗
 (𝑡+1)−𝑥𝑤𝑝 (𝑡)

 , 𝜃(𝑤𝑝(𝑡),𝑤𝑝(𝑁)) = 𝑡𝑎𝑛−1 𝑦𝑤𝑝 (𝑁)−𝑦𝑤𝑝 (𝑡)

𝑥𝑤𝑝 (𝑁)−𝑥𝑤𝑝(𝑡)
 

From Fig. 2,  𝜃1 , 𝜃2 , and 𝜃3 are the angles between line segment (𝑤𝑝(𝑡), 𝑤𝑝(𝑁)) and 

(𝑤𝑝(𝑡), 𝑤𝑝1(𝑡 + 1)),( 𝑤𝑝(𝑡), 𝑤𝑝2(𝑡 + 1)),( 𝑤𝑝(𝑡), 𝑤𝑝3(𝑡 + 1)) respectively. It's 

obvious that the 𝜃2 has minimum angle among the competing points (𝑤𝑝1,𝑤𝑝2,𝑤𝑝3). 

The overall multi-objective optimization is the weighted sum of the above two objectives: 

𝑓(𝑥, 𝑦) = 𝑤1 𝑓1(𝑥, 𝑦) + 𝑤2𝑓2(𝑥, 𝑦) (4) 

where 𝑤1 and 𝑤2 are degrees of importance of the two objectives. Their values must 

satisfy the following condition: 

𝑤1 + 𝑤2 = 1 (5) 

The overall fitness function is given by: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑓(𝑥, 𝑦) + ℇ
 (6) 

where ℇ is a small number (e.g., ℇ = 0.001) used to prevent division by zero case. The 

process of selecting the best solution among competing feasible options in each iteration 

depends on the balance between the two performance objectives declared in (1) and (3) 

for all available solutions.  In Fig. 3, the best point among six competing points is point 

𝑤𝑝3 for the t iteration, and point 𝑤𝑝5 in the (t+1) iteration, while in the (t+2) iteration, 

points 𝑤𝑝2 and 𝑤𝑝3 offer shorter distances but larger difference angles, in contrast to 

point 𝑤𝑝1 which provides a balance between the two criteria; thus, point 𝑤𝑝1 is selected. 

This process is continued until reaching GP. 

 

 

Fig. 3. Mid-points selection for multi-objective path planning. 
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B. Obstacles Movement  

In this case, the obstacle changes its location at each time step continuously. The 

movement of the dynamic obstacles in this work is considered to be one of the following 

types: 

1) Linear movement  

In this case, the obstacles move in a straight line with specific velocity (𝑣𝑜𝑏𝑠) and direction 

(𝜑𝑜𝑏𝑠) according to the following relationship:  

𝑥𝑜𝑏𝑠_𝑁𝑒𝑤 = 𝑥𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠  × 𝑐𝑜𝑠 𝜑𝑜𝑏𝑠 (7) 

𝑦𝑜𝑏𝑠_𝑁𝑒𝑤 = 𝑦𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠  × 𝑠𝑖𝑛 𝜑𝑜𝑏𝑠 (8) 

where  𝜑𝑜𝑏𝑠 is the slope of the linear motion. 

2) Circular trajectory  

The obstacles move along a circular path given by the centre of the circle (𝑥𝑐, 𝑦𝑐) and the 

radius (𝑟𝑐). Thus, the new position of the obstacle is given by: 

𝑥𝑜𝑏𝑠 = 𝑥𝑐 + 𝑟𝑐  × cos 𝜕 (9) 

𝑦𝑜𝑏𝑠 = 𝑦𝑐 + 𝑟𝑐  × sin 𝜕 (10) 

The range of 𝜕 represents the portion of circular arc for a complete circle (0 < 𝜕 < 2𝜋). 

 

4. Swarm-based Optimization 

Swarm Intelligence (SI) is an artificial collection of simple agents based on nature-

inspired behaviours that can be successfully applied to optimization problems in a variety 

of applications. The search process of such optimization algorithms continues to find new 

solutions until a stopping condition is satisfied (either the optimal solution is found, or a 

maximum number of iterations is reached). These SI behaviours can be used to solve a 

variety of problems, and thus there are several SI-based algorithms. Two such algorithms 

are used in this paper. 

A. Particle Swarm Optimization (PSO) Algorithm 

This is a population-based heuristic strategy for optimization problems developed by J. 

Kennedy and R. C. Eberhard in 1995 [31], stimulated by the social conduct of schooling 

fish and flocking birds. It consists of a swarm of particles, and each particle in PSO has a 

position 𝑥𝑖 and velocity 𝑣𝑖. The position represents a solution suggested by the particle, 

while the velocity is the rate of change to the next position with respect to the current 

position. These two values (position and velocity) are randomly initialized, and the 

solution construction of PSO algorithm includes two phases: 

• Velocity Update of the Particle 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (11) 

 

• Position Update of the Particle 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (12) 

 

From (11), the velocity of the particle i is affected by three main components: the 

particle's old velocity 𝑣𝑖(𝑡); a linear attraction toward the personal best position ever 

found (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖), scaled by the weight 𝑐1and a random number 𝑟1 ∈ [0, 1]; and the 

final component is a linear attraction towards the global best position found by any 
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particle in the swarm (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖),  scaled by weight 𝑐2 and a random number                  

𝑟2∈ [0, 1]. The particle’s position for the t+1 iteration is updated according to (12). 

B. Modified Frequency Bat (MFB) Algorithm 

The Bat Algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 [32]. It 

is based on the echolocation or bio sonar characteristics of micro bats. Echolocation is an 

important feature of bat behaviour: the bats emit sound pulses and listen to the echoes 

bouncing back from obstacles while flying. By utilising the time difference between its 

ears, the loudness of the response, and the delay time, a bat can thus figure out the 

velocity, shape, and size of prey and obstacles. A bat also has the ability to change the 

way its sonar works. If it sends sound pulses at a high rate, it can fly for less time while 

obtaining thorough details about its surroundings.  

 

1) The Movement of Artificial Bats 

The updating process of bat positioning is as follows: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝛽𝑖  (13) 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + (𝑧𝑖(𝑡 + 1) − 𝑧∗)𝑓𝑖   (14) 

𝑧𝑖(𝑡 + 1) = 𝑧𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (15) 

where 𝛽𝑖 = 𝑡 ∗ e(−𝜌∗𝑟), t  is iteration number, r  is a random number [0,1], the value of 𝜌 is an 

application dependent, for path planning problem the value of 𝜌 is chosen to be (0.01). This 

means that 𝛽 will increase with time for each bat generating low frequencies at the early 

stages of the search process. These frequencies increase with time to improve the global 

search performance, where 𝑧∗ is the present global best location solution, found after 

making a comparison between all the solutions among all m bats. For the local search 

stage, once a solution is selected among the current best solutions, a new solution is 

generated for each bat locally using random walk: 

𝑧𝑛𝑒𝑤 = 𝑧𝑜𝑙𝑑 + 𝜎𝜖𝐴(𝑡) (16) 

where 𝜖 is a random number within [−1, 1]. A(t) is the average loudness of all the bats at 

time step t, and σ is a scaling parameter included to control the step size.  

2) Loudness and Pulse Emission 

The loudness, 𝐴𝑖 , and the rate of pulse emission, 𝑟𝑖 , must be updated as the iterations 

proceed. The loudness usually decreases once a bat has found its prey, whereas the rate 

of pulse emission increases according to the following equations: 

𝐴𝑖  (𝑡 + 1) = 𝛼𝐴𝑖  (𝑡) (17) 

𝑟𝑖(𝑡 + 1) = 𝑟𝑖(0)[1 − exp(−𝛾𝑡)] (18) 

where 0 <α < 1 and γ > 0 are design parameters.  

 

5. Proposed Method 

This section describes the proposed path planning algorithm for a mobile robot with 

omnidirectional motion based on hybridized swarm optimization integrated with Local 

Search and obstacle avoidance techniques.  

A. Proposed Hybrid PSO-MFB Algorithm 

To increase the overall performance, the advantage features of two or more optimization 

algorithms are combined to produce a hybridised optimization algorithm. In this paper, a 

hybridisation between PSO and MFB algorithms is proposed. The variations of loudness, 

𝐴𝑖 , and pulse emission rates, 𝑟𝑖, also provide an auto zooming capability for the 
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optimization algorithm. Finding the optimum values of the MFB algorithm parameters 

(α, γ) is handled by the PSO algorithm. However, such parameter settings may be 

problem-dependent and thus tricky to define. In addition, the use of time-varying 

parameters during such iterations may be advantageous. The proper control of such 

parameters can thus be important, and consequently, variations of the parameters α and γ 

(hence the loudness 𝐴𝑖 and the pulse rate 𝑟𝑖) within a suitable range have been adapted by 

the PSO algorithm to find a balance between exploration and exploitation in the MFB 

algorithm. The pseudo code for the proposed Hybrid PSO-MFB algorithm is shown in 

Algorithm 1 and the overall procedure of the proposed Hybrid PSO-MFB algorithm is 

shown in Fig. 4. The solution of the PSO in the proposed algorithm (particle size) is a 

vector of dimension 2, where 𝑥(1,1) represents the value of 𝛼 while 𝑥(1,2) is the value 

of 𝛾. 
 

B. Proposed Local Search (LS) Technique 

The solution is considered infeasible if the next point generated by the hybrid PSO-MFB 

algorithm lies within an area occupied by an obstacle. Another infeasible solution is 

where the next point 𝑤𝑝𝑐(𝑡 + 1) and the previous point 𝑤𝑝(𝑡) form a line segment 

passing through an obstacle. 

 

 

Algorithm 1: Pseudo code for Proposed Hybrid PSO-MFB 

1: Initialize PSO and MFB parameters: population 

size of n particles, 𝑟1, 𝑟2, 𝑐1, 𝑐2, population 

size of m bats, frequencies𝑓𝑖, pulse rates 

𝑟𝑖 and the loudness 𝐴𝑖; 

2: Randomly generate an initial solutions, 𝑥1= 

[𝛼1, 𝛾1], 𝑥2= [𝛼2, 𝛾2], …, 𝑥𝑛= [𝛼𝑛, 𝛾𝑛]; 

3: for i = 1: n 

4: Call MFB algorithm, (13)-(18); 

5: end for 

6: Choose the best bat that achieves the best 

fitness   defined in (6), e.g., 𝑧𝑘𝜆, 𝜆=1: m; 
7: Store index (k); 

8: Gbest = 𝑥𝑘 = [αk, 𝛾𝑘]; 

9: If stopping criteria not satisfied then 

10: Update velocity and position of particles 

according to (11)-(12); 

11: Go to 3; 

12: Else 

13: obtain results; 

14: end if 
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Fig. 4. Proposed Hybrid PSO-MFB optimization algorithm. 

The LS technique converts these infeasible solutions into feasible ones. These two 

situations are explained in the following section with the aid of graphical and 

mathematical illustrations of the proposed solutions.  

 

1) The points lie inside the obstacle 

This situation is shown in Fig. 5 (a). It is checked by computing the Euclidean distance 

𝑑(𝑤𝑝𝑐(𝑡 + 1), 𝑃𝑜𝑏𝑠) using (1) between the candidate point, 𝑤𝑝𝑐(𝑡 + 1), and the centre of 

the obstacle 𝑃𝑜𝑏𝑠 = (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠). If 𝑑(𝑤𝑝𝑐(𝑡 + 1), 𝑃𝑜𝑏𝑠)or simply d, is less than the 

obstacle’s radius, 𝑟𝑂𝑏𝑠, then it is considered an infeasible candidate solution: 

 

𝑑(𝑤𝑝𝑐(𝑡 + 1), 𝑃𝑜𝑏𝑠) < 𝑟𝑂𝑏𝑠 (19) 
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(a) (b) 

 

Fig. 5. Infeasible path, (a) the point lies inside the obstacle, (b) the proposed solution. 

 

This case is resolved by ousting these candidate solutions outside the area occupied by 

the obstacle according to the following suggested rules; see Fig. 5(b): 

𝑥𝑤𝑝̅̅̅̅̅𝑐(𝑡+1) = 𝑥𝑤𝑝𝑐(𝑡+1) + (𝑟𝑂𝑏𝑠 + 𝑑𝑠 − 𝑑) × cos 𝜗𝑐 (20) 

𝑦𝑤𝑝̅̅̅̅̅𝑐(𝑡+1) = 𝑦𝑤𝑝𝑐(𝑡+1) + (𝑟𝑂𝑏𝑠 + 𝑑𝑠 − 𝑑) × sin 𝜗𝑐 (21) 

where 𝑑𝑠 refers to the minimum safety distance, 𝜗c is the angle between obstacle centre, 

and c-th candidate point 𝑤𝑝𝑐(𝑡 + 1). Therefore, the red points in Fig. 5 represent the 

candidate solutions generated by the hybrid PSO-MFB Algorithm, while the green ones 

are the updated ones according to (20) and (21), where 𝑤𝑝
𝑐
(𝑡 + 1) =(𝑥𝑤𝑝̅̅̅̅̅𝑐(𝑡+1), 

𝑦𝑤𝑝̅̅̅̅̅𝑐(𝑡+1)).  

 

2)  The line segment passes through the obstacle   

The second situation is shown in Fig. 6 (a); here, a line segment that connects two 

consecutive points, 𝑤𝑝(𝑡) and 𝑤𝑝𝑐(𝑡 + 1), passes through the region occupied by the 

obstacle. This situation can be resolved using the following procedure: 

1- Find the equation of the line segment that connects any two consecutive points as 

shown in Fig.6 (b). 

𝑦 = 𝑚𝑥 + 𝑞 (22) 

Where: m is slope of line segment, q is dc value 

Substitute 𝑦 as given by (22) into the circle equation that describes the obstacle 

circumference: 

(𝑥 − 𝑥𝑜𝑏𝑠)2 + (𝑦 − 𝑦𝑜𝑏𝑠)2 = (𝑟𝑂𝑏𝑠)2 (23) 

2- Solve for 𝑥 to find whether the line intersects with the obstacle. The resulting equation 

will be quadratic and in terms of only x, and its solution is given as: 

𝑥1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

(24) 
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(a) (b) 

 

Fig. 6. Infeasible Path: (a) the line segment passes through the obstacle, (b) the 

proposed solution. 

The exact behaviour depends on 𝑏2 − 4𝑎𝑐 and is determined by the three possible 

solutions:  

• if 𝑏2 − 4𝑎𝑐 < 0, then 𝑥1,2 are complex.  Here, the path segment does not intersect 

with the obstacle and the path is a feasible solution. 

• if 𝑏2 − 4𝑎𝑐 = 0, then 𝑥1,2 has a single solution. The path segment is tangential to 

the obstacle and the path is considered to be an infeasible solution. 

• Finally, if 𝑏2 − 4𝑎𝑐 > 0, then 𝑥1,2 are real, the path segment intersects with the 

obstacle, and the path is an infeasible solution. 

The solutions are updated by ousting the next candidate solutions outside the region of 

the obstacle according to the following rules (green points in Fig.6 (b)): 

𝑥𝑤𝑝̅̅̅̅̅𝑐(𝑡+1) = 𝑥𝑤𝑝𝑐(𝑡+1) + (δ ∗ 𝐷) cos ∅𝑐                                        (25) 

𝑦𝑤𝑝̅̅̅̅̅𝑐(𝑡+1) = 𝑦𝑤𝑝𝑐(𝑡+1) + (δ ∗ 𝐷) sin ∅𝑐                                       (26) 

𝛿 is chosen to be 0.6, D is the distance between candidate way point (𝑤𝑝𝑐(𝑡 + 1)) and 

pervious way point (𝑤𝑝(𝑡)) 

C. Obstacle Detection and Avoidance (ODA) 

When a moving obstacle gets closer to the mobile robot while the latter follows the 

feasible path generated by the proposed hybrid PSO-MFB algorithm, or the mobile robot 

itself gets closer to a static obstacle, it must instantly react to avoid this obstacle, or a 
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collision will occur. In this section, the sensors deployment and a proposed method for 

sensing obstacles to achieve obstacle detection is thus presented, and a proposed method 

for avoiding these obstacles called the gap vector method is discussed. 

1) Obstacle detection (OD) Procedure 

Sensing is accomplished by attaching twelve virtual sensors around the mobile robot. 

These are separated equally, with each sensor covering an angle range of 30° and having 

a certain value of Sensing Range (SR), as shown in Fig. 7. As assumed in section 3, the 

obstacles are expanded by the radius of the mobile robot (rMR), so that it can be considered 

as a point. In this critical worst case, the mobile robot will touch the obstacle, however, 

for practical considerations an additional distance is added to avoid such case. This 

distance is provided by the robot sensors and termed as sensing range (SR) which is set 

to 0.8 m in the design. 

 

 
Fig.7. Sensors deployment of the mobile robot. 

The obstacles are detected using a Sensory Vector (Vs) with length equal to the number 

of deployed sensors: 

𝑉𝑠 = [𝑎(1) … 𝑎(𝑖) … 𝑎(12)] 

 where a(i), 𝑖 ∈ {1,2, . . ,12} are variables with binary values, and Vs reflects the status of 

an obstacle extant in an angle range Si, 𝑖 ∈ {1,2, . . ,12}. For example, with a(1) = a(2) = 

a(7) = logic “1”, this indicates that obstacles are detected inside SR and in the angle range 

S1, S2, and S7 respectively, while a logic “0” in a certain a(i)s of Vs represents a free 

space in the corresponding angle ranges Sis. To find Vs, for each obstacle located inside 

SR in a certain angle range, say Si, draw the tangent lines to the expanded obstacle (red 

circle in Fig. 8) to intersect at the mobile robot A, 𝑀𝑅𝑃𝑜𝑠 = (𝑥𝑀𝑅 , 𝑦𝑀𝑅). See Fig.8. 
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Fig.8. Angle calculation between the mobile robot and the obstacle 

 

Suppose that the distance between the mobile robot A with position 𝑀𝑅𝑃𝑜𝑠 = (𝑥𝑀𝑅 , 𝑦𝑀𝑅) 

and the centre of the obstacle B with position 𝑜𝑏𝑠𝐵𝑃𝑜𝑠 = (𝑥𝑜𝑏𝑠𝐵, 𝑦𝑜𝑏𝑠𝐵) is Euclidean 

distance 𝑑(𝑀𝑅𝑃𝑜𝑠, 𝑜𝑏𝑠𝐵𝑃𝑜𝑠), or simply d as given by (1), compute angles 𝜃1 and 𝜃2 

between the hypotenuse d and the tangent lines of the obstacle B extant in a certain Si. 

Given 𝑀𝑅𝑃𝑜𝑠 = (𝑥𝑀𝑅 , 𝑦𝑀𝑅) and 𝑜𝑏𝑠𝐵𝑃𝑜𝑠 = (𝑥𝑜𝑏𝑠𝐵, 𝑦𝑜𝑏𝑠𝐵),  𝜃𝑇 , which describes the 

angle between the mobile robot A and the obstacle B, can be easily found. From the basic 

geometry of triangles and since  𝑟𝑂𝑏𝑠 ⊥ 𝑑𝑛 , property of tangents, then 𝑑2 = 𝑑𝑛
2 + 𝑟𝑂𝑏𝑠

2  , 
Pythagoras theorem, thus: 

𝜃1 = 𝜃2 = sin−1
𝑟𝑂𝑏𝑠

𝑑
 (27) 

𝜃𝑇𝑝1 = 𝜃𝑇 − 𝜃1 (28) 

𝜃𝑇𝑝2 = 𝜃𝑇 + 𝜃1 (29) 

 

Based on the above analysis, Vs is found by setting the values of a(i)’s, 𝑖 ∈ {1,2, . . ,12} in 

the Vs to logic “1” if the corresponding angle range Si is occupied by static and/or 

dynamic obstacles. This is realized when the angle difference 𝜃𝑇𝑝2 − 𝜃𝑇𝑝1for each 

obstacle lies in the angle range Si’s. An example for the obstacle detection procedure 

using mobile robot path planning is depicted in Fig. 9; in this case, 

 

Vs = [1 1 0 0 0 0 1 1 1 0 0 0] 

 

 
Fig. 9. Obstacle detection of the mobile robot. 
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The obstacles obs1, obs4, and obs3 lie inside SR, and obs1 has an angle difference of  

𝜃𝑇𝑝2 − 𝜃𝑇𝑝1 that lies in the angle ranges S1 and S2, obs3 has its angle difference which 

lies in the angle ranges S8 and S9. While obs4 has its own angle difference inside S7 only. 

 

2) Obstacle Avoidance (OA) Algorithm 

Obstacles avoidance is achieved by using a gap vector (Vg) concept, which is a binary 

vector where logic “1” represents an occupancy gap and logic “0” represents a free gap. 

The length of the gap vector Vg is equal to the length of Vs. The mobile robot chooses the 

gap that gives the shortest path moving towards GP. This Vg can be derived from the 

sensing vector Vs as follows: each consecutive zero in Vs represents a free gap (i.e., logic 

0 in Vg); otherwise it is an occupied gap (i.e., logic 1 in Vg). The above procedure yields: 

Vs = [1 1 0 0 0 0 1 1 1 0 0 0] 

Vg = [1 1 0 0 0 1 1 1 1 0 0 1] 

After constructing Vg, several free gaps (permissible suggested mobile robot positions) 

are produced (see Fig. 10). The angle of each available free gap 𝜓𝑖  is simply 𝜓𝜇 = 𝜇 ∗ 30, 

where 𝜇 is the index of the “0” in Vg. The next step is to determine the next position for 

the mobile robot (best free gap gi in Vg), through which the mobile robot will evade the 

obstacles and continue moving toward GP using Algorithm 1. Algorithm 2 describes the 

OA steps with details. 

 

 

 

 
Fig. 10. Available free gaps. 

 

Algorithm 2: Obstacle Avoidance (OA) 
Inputs: Given m is the number of obstacles  existing  

within  SR,  𝑟𝑀𝑅,  𝑀𝑅𝑃𝑜𝑠 = (𝑥𝑀𝑅 , 𝑦𝑀𝑅), 𝑟𝑂𝑏𝑠, and 𝑜𝑏𝑠_𝑖𝑃𝑜𝑠 =
(𝑥𝑜𝑏𝑠_𝑖, 𝑦𝑜𝑏𝑠_𝑖); 
 

Outputs: Finding the best permissible mobile robot 

position 𝑔𝜇𝑃𝑜𝑠= (𝑥𝑔𝜇, 𝑦𝑔𝜇); 
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1: for i=1 : m 

2: 𝑑𝑖 = 𝑑(𝑀𝑅𝑃𝑜𝑠, 𝑜𝑏𝑠_𝑖𝑃𝑜𝑠) 

3: end for 

4: Calculate the shortest distance (dsh), 

5: dsh = min ( 𝑑1, … , 𝑑𝑚);  

6: Q = 𝑟𝑀𝑅+𝑟𝑂𝑏𝑠 +SR; 

7: 𝜇 = index of the “zeros” in Vg; 
Mg = total number of available free gaps; 

8: Calculate the new allowable mobile robot 

positions 𝑔𝑖𝑃𝑜𝑠= (𝑥𝑔𝑖, 𝑦𝑔𝑖); as follows 

9: for i = 𝜇: Mg 

10: if  )dsh <
𝑄

2
(   then 

11: 𝑥𝑔𝑖 = 𝑥𝑀𝑅 + 1.5 ×  𝑑𝑠ℎ × 𝑐𝑜𝑠 𝜓𝑖 
𝑦𝑔𝑖 = 𝑦𝑀𝑅 + 1.5 × 𝑑𝑠ℎ × 𝑠𝑖𝑛 𝜓𝑖  

12: Else 

13: 𝑥𝑔𝑖 = 𝑥𝑀𝑅 + 𝑑𝑠ℎ × cos 𝜓𝑖 

𝑦𝑔𝑖 = 𝑦𝑀𝑅 + 𝑑𝑠ℎ × sin 𝜓𝑖 

14: end if 

15: 𝐺𝑃𝑃𝑜𝑠 = (𝑥𝐺𝑃 , 𝑦𝐺𝑃); 

16: 𝑑𝑔𝑖 = 𝑑(𝑔𝑖𝑃𝑜𝑠, 𝐺𝑃𝑃𝑜𝑠) using (1); 

17: end for 

18: The best allowable position 𝑔𝜇𝑃𝑜𝑠= (𝑥𝑔𝜇, 𝑦𝑔𝜇)  is 

chosen by OA that has the smallest  𝑑(𝑔𝜇𝑃𝑜𝑠 , 𝐺𝑃𝑃𝑜𝑠);              

Fig. 10 offers an illustrative example. There are five available gaps in Vg, labelled g3, g4, 

g5, g10, and g11. Assume that all the following positions and radii are in metres and that 

𝑀𝑅𝑃𝑜𝑠 = (3, 3), 𝑜𝑏𝑠1𝑃𝑜𝑠 = (3.71, 3.41), 𝑜𝑏𝑠3𝑃𝑜𝑠 = (2.31, 2.75), 𝑜𝑏𝑠4𝑃𝑜𝑠 = (2.34, 2.76), 

𝐺𝑃𝑃𝑜𝑠= (10, 10), SR = 0.8, and 𝑟𝑀𝑅= 𝑟𝑂𝑏𝑠= 0.3. The Euclidean distance between the 

mobile robot and each obstacle can be calculated as 𝑑(𝑀𝑅𝑃𝑜𝑠, 𝑜𝑏𝑠1) = 0.82, 

𝑑(𝑀𝑅𝑃𝑜𝑠, 𝑜𝑏𝑠3) = 0.73, and 𝑑(𝑀𝑅𝑃𝑜𝑠, 𝑜𝑏𝑠4) = 0.7. Therefore, dsh = 0.7. It is obvious 

that all Euclidean distances between the mobile robot and each obstacle is larger than or 

equal to 
Q

2
, where Q = 𝑟𝑀𝑅+𝑟𝑂𝑏𝑠 +SR. Specifically in this case, Q = 0.3+0.3+0.8 = 1.4 

and  dsh= 
𝑄

2
  (line 13 in Algorithm 2 is activated).Thus, the new allowable mobile robot 

positions at the available free gaps can be calculated according to Algorithm 2 and are 

tabulated in Table 1. 

 

 

TABLE 1: Calculations of the allowable mobile robot positions 

Gap 
index(𝜇) 

Angle 
𝜓𝑖  (deg) 

Suggested 
position 

(x, y) 

Distance to 
GP 

3 90° (3, 3.7) 9.4175 
4 120° (2.65, 3.6) 9.7459 
5 150° (2.39, 3.35) 10.1062 

10 300° (3.35, 2.39) 10.1062 
11 330° (3.6, 2.75) 9.6707 
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Thus, the new allowable mobile robot position 𝑀𝑅_𝑁𝑒𝑤𝑃𝑜𝑠 = (𝑥𝑀𝑅_𝑁𝑒𝑤, 𝑦𝑀𝑅_𝑁𝑒𝑤) will 

be at 𝑔3𝑃𝑜𝑠= (𝑥𝑔3, 𝑦𝑔3) and is given as 

 

𝑥𝑀𝑅_𝑁𝑒𝑤 = 𝑥𝑔3 = 3 + 0.7 × cos(90) =3 

𝑦𝑀𝑅_𝑁𝑒𝑤 = 𝑦𝑔3 = 3 + 0.7 × sin(90)  =3.7 

 

The mobile robot will avoid the obstacles through gap g3, since this has shortest distance 

with GP, dg3= 9.4175 m, as in Fig.10. 

 

D. Proposed Complete Path Planning Algorithm 

In this subsection, the complete path planning algorithm for a mobile robot with an 

omnidirectional mobile robot is presented in static and dynamic environments. The first 

step for planning a path is to initialise the environment settings (SP, GP, 𝑂𝑏𝑠𝑃𝑜𝑠, SR) and 

the parameter settings of the proposed PSO-MFB optimization algorithm. The current 

position of the mobile robot (𝑀𝑅𝑃𝑜𝑠) is stored in a path vector called path. 

 

The mobile robot continues gathering information about the surrounding environment via 

the deployed sensors to detect any obstacles while it navigates toward its GP. The overall 

process is presented in Algorithm 3.  It should be emphasized that the process of the path 

planning problem in a dynamic environment is similar to that in static environment except 

that the movement of the dynamic obstacles in Equations (7-10) are considered. 

 

 

  

 

Algorithm 3: Path Planning using hybrid PSO-MFB Algorithm- Static and 

Dynamic Environments 

1: Initialize: 𝑆𝑃𝑃𝑜𝑠, 𝐺𝑃𝑃𝑜𝑠,𝑂𝑏𝑠𝑃𝑜𝑠, SR=0.8, 𝑟𝑀𝑅,  𝑟𝑂𝑏𝑠, PSO 

parameters: population size of  n  particle, 𝑟1, 𝑟2, 

𝑐1, 𝑐2, MFB parameters: population size of m bats, 

frequency 𝑓𝑖, pulse rate 𝑟𝑖 and the loudness 𝐴𝑖; 

2: 𝑀𝑅𝑃𝑜𝑠 =𝑆𝑃𝑃𝑜𝑠; 

3: path ← 𝑀𝑅𝑃𝑜𝑠; 

4: while (𝑀𝑅𝑃𝑜𝑠 ≠ , 𝐺𝑃𝑃𝑜𝑠) 

5: if  obstacles are dynamic then 

6:  𝑂𝑏𝑠𝑃𝑜𝑠  ←  𝑛𝑒𝑤 𝑂𝑏𝑠𝑃𝑜𝑠(𝐸𝑞. (7 − 10)) 

7: end if 

8: Collect data from virtual twelve sensors; 

9: if d(𝑀𝑅𝑃𝑜𝑠, 𝑂𝑏𝑠𝑃𝑜𝑠)≤ Q then 

10: switch on [Algorithm 2]; 

11: Else 

12: navigate toward GP [Algorithm 1]; 

13: end if 

14: go to 3 
 

15: end while 
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6. Simulation Results 

In simulation, three case studies were conducted. The first case study included 

simulations of path planning by the mobile robot in a static environment, while the second 

case study presents the simulation results in a dynamic environment, and the final case 

study contains a comparison with previous works. All experiments are achieved the 

following solutions after executing the algorithm ten times using MATLAB R2015a 

programming language. The MATLAB codes are run on a computer system with 2.76 

GHz Core i7 CPU, and 4 G RAM. 

A. Algorithmic Parameter Setting 

The simulation parameters for PSO-MFB algorithm are listed in Table 2. 

The simulation parameters for the algorithms used in the comparisons section, presented 

in [33], are: The maximum cycle= 120, limit= 50, and 1 scout bee is generated each time, 

penalty 𝛿=100, the coefficients values 𝛼=2 and 𝛽=0.5, population size is 6, where 3 are 

employed bees and the other 3 are onlooker bees; food source NS is 3 and 𝑛𝑝=3. While 

in [34] The GA used to simulate the cases had population size 50, crossover probability 

0.85, mutation probability 0.15, size of each chromosome 16 bits (binary codification), 

maximum number of generations 100, the selection operator is roulette wheeling with 

elitist structure. For the bacteria colony algorithm the following parameters needed 

population size=50, number of chemotactic steps 15, maximum number of steps that a 

bacterium can swim in a turn =10, number of reproductions =4, number of elimination-

dispersals events=2, elimination dispersal Probability=0.3, of the movement taken in one 

step =2.5. 

 

B. Path Planning in a Static Environment 

In this case study, an environment with static obstacles is utilised to demonstrate the 

effectiveness of the proposed path planning algorithm for the mobile robot. The static 

environment consists of five static obstacles of different sizes. The starting point was 

𝑆𝑃𝑃𝑜𝑠 = (0, 0), the goal point was 𝐺𝑃𝑃𝑜𝑠= (10, 10), and the radius of the mobile robot was 

𝑟𝑀𝑅 = 0.5 (m). The proposed Algorithm 3 was applied and Algorithm 1 was also applied 

as a point generation tool for the path planning algorithm in 3. The settings for this 

environment are listed in Table 3, and the optimized fitness function is defined as in (5). 

 

TABLE 2: Parameter setting for Hybrid PSO-MFB 

Parameter Value 

No. of iteration 5 
population size𝑃𝑆𝑂  5 

population size𝑀𝐹𝐵𝐴 5 
[𝑐1, 𝑐2] [2, 2] 

[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] [0, 10] 
σ 0.3 

sensor range 0.8 (m) 
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The best path (higher fitness of (6) with maximum smoothness and the shortest distance 

was obtained as equal to 14.7785 m as shown in Fig. 11, passing through points (2.7467, 

1.5316), (2.9402, 1.9507), (3.8288, 4.7084), (6.6503, 8.1422), and (6.8160, 8.2288) with 

computation time (3.48) min. as shown in Table 4. 

 

 
 

 

 

 
Fig. 11.  The best path achieved using Algorithm 3. 

 

C. Path Planning in a Dynamic Environment 

In the second case study, the proposed path planning Algorithm 3 was tested under a 

dynamic environment consisting of six dynamic obstacles; the starting point was 𝑆𝑃𝑃𝑜𝑠 = 

(1, 1), the goal point was 𝐺𝑃𝑃𝑜𝑠= (10, 10), and the radius of the mobile robot was 𝑟𝑀𝑅= 

TABLE 3: Static Environment Settings 

Obstacle 
no. 

Radius(𝑟𝑂𝐵𝑆) Position 
(𝑂𝑏𝑠𝑃𝑜𝑠) 

1 0.5 (2, 2.3) 
2 0.8 (5, 4) 
3 1.2 (8, 2) 
4 1 (7.7, 7) 
5 0.7 (3, 8.3) 

 

 

TABLE 4: Simulation result using MFB and Hybrid PSO-MFB algorithm 

Run 

no. 

Path Length 

MFB 

Fitness Computation 

time (min) 

Path Length 

(Hybrid 

PSO-MFB 

Fitness Computation 

time (min) 

1 14.793 0.067599 0.5529887 14.786 0.06763 3.425260 

2 14.8112 0.067516 0.7384254 14.7953 0.06758 3.189191 

3 14.793 0.067599 0.7050320 14.796 0.06758 3.704136 

4 14.8112 0.067516 0.8844321 14.8083 0.06752 3.368553 

5 14.8525 0.067328 1.2217404 14.7909 0.06760 3.316233 

6 14.8028 0.067554 0.7457431 14.7785 0.06766 3.483598 

7 14.8798 0.067205 0.8554462 14.7915 0.06760 3.720351 

8 14.8051 0.067544 0.8571433 14.7876 0.06762 3.521768 

9 14.793 0.067599 0.6038037 14.8023 0.06755 3.201012 

10 14.8112 0.067516 0.7717397 14.7921 0.06760 3.247233 
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0.3 m. In this environment, some of the obstacles moved linearly and others moved in a 

circular trajectory. The positions, velocities, and directions of the dynamic obstacles are 

listed in Tables 5 and 6. 

 

 
 

 
 

The mobile robot navigates from its SP toward its GP using the proposed Algorithm 3 

as shown in Fig.12 (a) until it encounters an obstacle within its sensing region as depicted 

in Fig. 12 (b-e). At that time, the mobile robot triggers Algorithm 2 to avoid the obstacles 

and changes its original path, using the proposed new collision-free path toward GP.  The 

mobile robot continues its motion using Algorithm 3 until it reaches GP. The best 

collision-free path obtained was 13.6696 m with computation time (4.162) sec, as shown 

in Fig. 12(f). 

 

 

  
(a) 

 

(b) 

 

TABLE 5: Settings for the linear moving obstacles 
 

Obstacle no. Centre Radius(𝑟𝑂𝐵𝑆)  𝑣𝑜𝑏𝑠 

(m/s) 

𝜑𝑜𝑏𝑠 (deg) 

1 (7.5,2.1) 0.3 0.16 70° 

2 (5.1,8.3) 0.3 0.13 0° 

 

 

 

 

 

 

 

 

TABLE 6: Settings for the circular moving obstacles 

Obstacle no. Initial  

Position 

Circle Centre  

(𝑥𝑐 , 𝑦𝑐) 

Circle Radius  

(𝑟𝑐) 

3 (6,5) (5, 5) 1 

4 (4,5) (5, 5) 1 

5 (5,7.5) (5, 5) 2.5 

6 (5,2.5) (5, 5) 2.5 
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(c) 

 

(d) 

 

  

(e) (f) 

Fig. 12. The best path achieved with Algorithm 3 for the above dynamic environment. 

 

D. Comparison with Other Path Planning Algorithms 

In this subsection, the performance of the proposed path planning algorithm using a 

hybrid PSO-MFB algorithm is compared with the works of [33–35]. The first case study 

involved an environment also used in these works, which consists of four static obstacles. 

The optimization techniques used to obtain the best path were the Direct Artificial Bee 

Colony (DABC) and Minimum Angle Artificial Bee  Colony (MAABC) algorithms in 

[33] while the work in [34] included GA and Bacterial Colony (BC) algorithms. The 

proposed Hybrid PSO-MFB algorithm was applied in the same environment as shown in 

Fig. 13. 
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Fig. 13. The best path achieved using Algorithm 3. 

 

The best path obtained using the proposed Hybrid PSO-MFB Algorithm was 14.3255 m, 

compared with 14.3625 m using DABC, 14.3371 m using MAABC, 14.5095 m using 

GA, and 14.3802 m using BC. The comparison with these works is illustrated in Table 7. 

It is worth mentioning that the environment size in [35] was 100m x 100m, and that this 

environment was scaled to 10m x 10m by dividing the results of GA and BC algorithms 

by a factor of 10 to make a fair comparison between the proposed PSO-MFB algorithm 

and the GA and BC ones. 

 

 
Based on the above results, it is obvious that the Hybrid PSO-MFB algorithm outperforms 

the other optimization techniques listed in Table 7. The proposed hybrid PSO-MFB 

algorithm provides the best path, which can be verified by the values of the mean, 

minimum, and maximum fitness values. 

  

The environment in [35], which involved six static obstacles, was used in the second case 

study for comparison. The optimization technique used to obtain the shortest path was a 

standard ABC in [35], and DABC and MAABC in [33]. The proposed Hybrid PSO-MFB 

algorithm was applied to the same environment, as shown in Fig. 14.  

 

TABLE 7: Comparison Results for the first case study with ten experiments 

Optimization 

Technique 

Max. 

Fitness 

Min. 

Fitness 

Mean  

Fitness 

Hybrid 

PSO-MFB 
0.06980 0.06968 0.06977 

DABC 0.06962 0.06859 0.06934 

MAABC 0.06974 0.06865 0.06934 

GA 0.06892 0.06448 0.06778 

BC 0.06954 

 

0.06908 

 

0.06937 
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Fig. 14. The best path obtained using Algorithm 3. 

 

The best path obtained using the proposed Hybrid PSO-MFB algorithm was 14.6384 m, 

compared to 14.7422 m and 14.7163 m using the DABC, MAABC algorithms, 

respectively. The best path using the ABC algorithm in [35] was 14.8821 m (after scaling 

by 10). The comparison results show that the proposed Hybrid PSO-MFB Algorithm 

outperforms ABC, DABC, and MAABC optimization algorithms in terms of finding the 

shortest distance. Finally, even though the improvement in the shortest path using the 

proposed Hybrid PSO-MFB algorithm is slight as compared with some path planning 

algorithms, in environments with large distances, the slight improvements in the shortest 

path become noticeable.  

 

 

 

7. Discussion  

Based on the simulation results it is obvious that the proposed Hybrid PSO-MFB 

algorithm outperforms other optimization techniques in terms of the shortest distance 

(i.e., it has higher fitness value). More specifically, the hybrid PSO-MFB outperforms the 

MFB in terms of path length because each particle in PSO calls for a complete MFB 

algorithm with dynamic parameters (𝛼 &𝛾) rather than static ones. This leads to more 

adaptation of the MFB algorithm to the loudness Ai(t) and the rate of the pulse emission 

ri(t), which increases the potential of the MFB algorithm to find better solutions. 

However, this success is on account of the computation time of the algorithm, whereas 

with Hybrid PSO-MFB algorithm it is higher than that of the MFB one. Fortunately, this 

problem can be overcome easily with the advancement in the H/W technology and the 

development of small-sized and very high-speed microcontroller units and FPGA boards. 

Concerning the comparisons with the already existing path planning methods in the 

literature, more improvement can be achieved using the proposed PSO-MFB algorithm, 

but, on account of the mobile robot safety (i.e., mobile robot gets too close to one or more 

of the obstacles).  
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8. Conclusions 

This paper proposed a path planning algorithm for mobile robots using a Hybrid PSO-

MFB swarm optimization algorithm integrated with LS and ODA strategies. The size of 

the mobile robot was taken into account by enlarging the size of the obstacles in the free-

space environment. The algorithm was tested in static and dynamic environments with 

different scenarios to minimise a multi-objective measure of path length and minimum 

angles. In the context of the simulation results, it can be concluded that the proposed 

hybrid PSO-MFB algorithm proved its efficacy in avoiding static and dynamic obstacles 

in a simple manner and reduced time. The simulation results demonstrated that the 

proposed path planning algorithm offers significant advances over current state-of-the-

art options.  In future work, consideration of the H/W implementation of the proposed 

Hybrid PSO-MFB algorithm-based path planning on real omnidirectional mobile 

platform will be an interesting task. Another possible direction which might be conducted 

in the future is the implementation of the proposed path planning algorithm in an intricate 

cluttered dynamic environment with moving target.  
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