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Abstract

The use of computer aided diagnosis (CAD) systems, which are computer
based tools for the automatic analysis of medical images such as mammo-
gram and prostate MRI, can assist in the early detection and diagnosis of
developing cancer. In the process of CAD for mammogram, the task of image
processing (IP) plays a fundamental role in providing promising diagnostic re-
sults, by exploiting high-quality features extracted from the mammographic
images. Normally, an IP procedure for mammographic images involves three
mechanisms: region of interest (ROI) extraction, image enhancement (IE)
and feature extraction (FE). However, an improper utilisation of IE may
lead to an inferior composition of the features due to unexpected enhance-
ment of any irrelevant or useless information in ROI. In order to overcome
this problem, a fuzzy-rough refined IP (FRIP) framework is presented in this
paper to improve the quality of mammographic image features hierarchically.
Following the proposed framework, the ROI of each mammographic image
is segmented and enhanced locally in the area of the block which is of the
highest value of fuzzy positive region (FPR). Here, FPR implies a positive
dependency relationship between the block and the decision with regard to
the given feature set. The higher a block’s FPR value the more certain its
underlying image category. To attain a high quality of the image enhance-
ment procedure, the winner block will be further improved by a multi-round
strategy to create a pool of IE results. As such, for a mammographic image,
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after embedding the candidate enhanced blocks into the original ROI, the
respectively extracted features from the locally enhanced ROI are compared
against each other on the basis of the value of FPR. A given image is there-
fore represented by a set of features which are supported by the premier FPR
among all of the resulting extracted features. The quality of the extracted
features by FRIP is compared against that of those directly extracted from
the original images, from the globally enhanced images or from the randomly
locally enhanced images in performing classification tasks. The experimental
results demonstrate that the mammographic risk assessment results based
on the features achieved by the proposed framework are much improved over
those by the alternatives.

Keywords: Image processing, Feature extraction, Fuzzy-rough sets,
Mammographic risk assessment.

1. Introduction

Breast cancer is the most common cause of death for middle-aged women.
According to the estimates by the International Cancer Research Institute of
the World Health Organisation, more than one million women in the world
die from breast cancer every year [1]. According to a report of the Global
Cancer Statistics 2018 released by the International Agency for Research on
Cancer (IARC), which is part of the World Health Organization (WHO),
as almost 2.09 million new cases were diagnosed, breast cancer caused an
estimated 0.63 million deaths in 2018 [2]. Along with the increased levels of
breast cancer occurrence, the level of early detection has also been recorded
thanks to screening by the use of mammographic imaging and expert opinion.
Mammography is a specific type of imaging that uses a low-dose X-ray system
to result in a high-shrinkage and high-resolution movie to examine breasts [3].
However, even expert radiologists may sometimes fail to detect a significant
proportion of mammographic abnormalities. Also, a large number of detected
abnormalities are usually discovered to be benign following further medical
investigation.

Existing mammographic computer-aided diagnosis (CAD) systems [4, 5,
6] concentrate on the detection and classification of mammographic abnor-
malities, based on the features extracted from suspicious regions. Such tech-
niques on the digitalised mammogram help the doctors to discover the exis-
tence of tumor, especially useful when being applied in early stages of cancer
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development. Among the components for implementing CAD systems, im-
age processing (IP) plays a vital role in providing a set of high-level features
for promising diagnosis result. In general, the process of IP for mammogram
involves three mechanisms: the region of interest (ROI) extraction, image
enhancement (IE) and feature extraction (FE). Mammogram often contains
tags and artifacts that appear as high-intensity markers on a dark back-
ground. The noises, vascular and glandular tissues may affect the search for
abnormal areas and lead to a poor classification accuracy. Additionally, in
mammogram, chest muscles are present in the area of objects with various
noises. Such information also adversely affects the outcome of FE. Therefore,
FE is normally not appropriate to be applied to a mammographic image as
a whole, but it may be suitable for certain specific areas or ROI [7].

An ROI includes samples within a data set identified for a particular pur-
pose. For medical imaging, ROI is the most commonly used as a particular
portion which is of concern during a diagnosis or of interest during research.
ROI can be defined as the approximate outlining for the object of interest or
as a rectangular region that contains both the object of interest and certain
background. To extract ROI, a given image is normally denoised first. In
order to avoid any potential negative influence of the microstructure that
may appear in certain regions, the breast region is smoothed using a medi-
an filter, as done in [8]. Then, fuzzy c-means clustering [9] may be utilised
to divide pixel grey values into two separate categories: adipose tissue and
dense tissue. In the step of removing the background, techniques such as
the so-called modal open image function [10] can be applied. Subsequently,
a segmentation method based on area growth is often implemented to pre-
vent large-scale segmentation around the seed with only the suspected mass
present in the mammogram is segmented as the ROI [11]. Histogram may
be employed to enhance the image and the sobel detector may be performed
to support edge detection for preprocessing and image segmentation as with
the work of [12]. In [13], ROI regions are located and extracted on the ba-
sis of the maximally inscribed circle and centroid methods. In addition, an
algorithm automatically generates a class number that can partition mam-
mogram into the best areas as ROI rigions can be found in [14]. Similarly,
an algorithm that uses tetrolet filter to reduce the speckle noise and the ac-
tive contour method based on statistical features to automatically segment
breast lesions to obtain an ROI can be found in [15]. Methods for automatic
ROI construction have also been proposed to serve as an alternative to the
manual process of ROI labeling in CAD, for breast lesions [16, 17].
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The purpose of IE is to improve both the identifiability of target features
and the quality of images to meet the analysis needs of specific application
scenarios [18]. The commonly used IE methods include the following: (1)
Histogram equalisation: the histogram of the original image is converted
into an image with a probability density of 1 by the use of integral prob-
ability density function, thereby achieving the effect of improving contrast
[19] (e.g., through dynamic recursive sub-image histogram equalisation [20]).
(2) Median filtering: the intermediate value is taken after sorting out the
grey values of the pixels in the center of a given window, therefore being
itself a smoothing filter to eliminate noise and achieve enhancement [21]. (3)
Wavelet transform: the relevant wavelet parameters are modified as needed in
image decomposition and reconstruction, enabling multi-resolution analysis
that helps capture spatial domain localisation characteristics, while focusing
on the details of the interested object in the image [22].

From the enhanced ROI features are extracted. Commonly adopted FE
methods can be grouped into the following four categories: (1) Statistical
method, a typical representative of which is to conduct texture feature anal-
ysis through grey level co-occurrence matrix (GLCM) [23], and another is to
extract texture representations by manipulating image autocorrelation func-
tions (e.g., to extract the characteristic parameters such as the thickness and
directionality of the texture by calculating the energy spectrum function of
the image) [24]. (2) Geometry method, which offers means for texture feature
analysis based on the theory of texture primitives, including two influential
algorithms: the Voronio checkerboard feature method [25] and the structural
method [26]. (3) Model-based method, which is based on the structural
model of a given image, with the parameters of the model being used as tex-
ture features, typically including random field models (e.g., Markov random
field [27] and Gibbs random field model [28]). (4) Signal processing method,
which works by the use of linear transformation or filters to to obtain texture
features expressed in the transformed domain while being subject to certain
domain constraints (e.g., energy criteria) [29].

For conventional approaches to medical IP, an ROI region is normally
cut from the original image for processing in its entirety. In such an ROI,
not all information is useful or related to decision-making. A certain zone
of the ROI may possess more decisive information to the decision label than
the rest. If the process of IP ignores the relative significance of different
parts of the ROI, the subsequent operations, i.e., IE and FE may lead to an
opposite effect to the quality of the features from the design intention, due to
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the enhancement and prominence of irrelevant or useless information. This
may mislead the composition of the extracted features, thereby adversely
impacting upon the following tasks of data analysis, such as feature selection
and diagnosis decision making. In order to address this important problem,
this paper presents a fuzzy-rough refined IP (FRIP) framework with an aim
to improve the quality of mammographic image features hierarchically.

In this work, the ROI of a mammographic image is acquired by the suc-
cessful means as described in [30]. The popular sliding window (SW) algorith-
m [31] is adopted to achieve a segmentation, namely a cover of the resulting
ROI. The significance of each window block will be evaluated by the value of
fuzzy positive regions (FPR) [32, 33], with respect to the features extracted
using grey level co-occurrence matrix (GLCM) [23] within the given window.
Note that the FPR values imply a positive dependency relationship between
the objects and the decisions given the extracted feature sets. Thus, the
window contains the highest value of FPR is most confirmative to the image
label and the most preferable to represent the entire ROI. Such a window
(which has the highest FPR value) is further enhanced through the use of
a pulse coupled neural network (PCNN) [34]. In particular, to obtain high
quality features, the winner window is repeatedly enhanced by PCNN with
different thresholds each time when a pool of IE results is created.

In implementation, for a mammographic image, after embedding the can-
didate enhanced blocks into the original ROI, the respectively extracted fea-
tures from the locally enhanced ROI are compared against each other on the
basis of the values of their FPR. The original image is then represented by the
set of features which are obtained from the premier FPR among all extracted
feature sets. Furthermore, the mammographic risk assessment results based
on the extracted features by FRIP is compared against those based on the
features directly extracted from the original image, the globally enhanced im-
age, and the locally enhanced images using randomly chosen windows. The
classifiers adopted in this work for verification include J48 [35], JRip [36],
PART [37], AdaBoostM1 [38], RandomForest (RF) [39]. The experimental
results demonstrate that the mammographic risk assessment outcomes based
on the features achieved by the proposed framework are much better than
those by the alternative features, in terms of both classification accuracy and
kappa coefficient [40]. In order to examine the applicability of the proposed
approach, the results based on the features obtained by FRIP with different
configurations of the sliding window are illustrated also.

The remainder of this paper is structured as follows. The related work
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on mammogram feature extraction is outlined in Section 2. The improved
approach is presented and discussed in Section 4. In Sections 3 and 5, the
experimental data and results are described respectively. The paper is con-
cluded in Section 6, with a brief discussion regarding important further work.

2. Background

This section reviews the related approaches to FE, IE and image segmen-
tation that are employed in this work. Moreover, the concept of fuzzy-rough
sets which will be used as the underlying computational theory is introduced
as well.

2.1. Grey level co-occurrence matrix

The algorithm of grey level co-occurrence matrix (GLCM) refers to a
popular method for describing texture by studying the spatial correlation
characteristics of grey scales [23, 41]. As its name implies, running GLCM
is to obtain the co-occurrence matrix by calculating on the values of the
grey image. Then the eigenvalues of the matrix are obtained to represent the
features of the image. GLCM helps capture comprehensive information of the
image grey scales with respect to direction, adjacent interval and variation
amplitude. It forms the basis for analysing the local patterns of images and
their arrangement rules. As a powerful tool for feature extraction, GLCM is
usually used to extract texture features, including contrast, texture entropy,
correlation, variance [41]. GLCM can be run for different distances and
orientations [42]. Fig. 1 shows the way to generate GLCM features given
an image, where the grey level of each pixel ranges from 1 to 8 (see Fig.
1a). The scale of the resulting matrix is 8×8, as shown in Fig. 1b. Each
element G(i, j) of this matrix records the number of occurrences that the
grey level i is located at a distance d from a grey level j and in the horizontal
adjacent direction (i.e., being oriented by an angle θ = 0◦). For instance, in
Fig. 1a, the ordered tuple of grey levels 1 and 2 only occurs once from two
horizontally adjacent pixels. In this case, the value of G(1, 2) in the resulting
GLCM matrix is 1. Also, the value of the G(7, 5) of GLCM is 2 indicates
that the occurrence of the ordered tuple of grey levels 7 and 5 is observed
twice.

2.2. Sliding window algorithm

In the context of IP, a sliding window [31] is a rectangular region of fixed
width and height that slides across an image. For each of such regions, certain
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Figure 1: Example of GLCM computation with distance d =1 and angle θ = 0◦, of an 8
grey level image.

measures are applied to determine if the window contains any information of
interest.

Given an image whose size is m × n, the number of the sliding windows
of a size m̃× ñ is calculated by

num =

(
m− m̃
λ

+ 1

)
×
(
n− ñ
λ

+ 1

)
, (1)

where, λ is the step size of each sliding. This method slides the entire image
in equidistant steps with a fixed-size sliding window, and performs detection
within each sliding window. As such, its most significant strength is that
the miss detection rate is extremely low because it slides the entire image
without missing any position. As shown in Fig. 2, the step size λ is set to 48
pixels, the window size is set to 160×160 pixels, so the given 256×256 ROI
is traversed to result in nine areas.

Figure 2: Sliding window to capture image and local enhancement

During the procedure of searching for the optimal block, the size of the
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sliding window should be set appropriately. If the window is too small, the
result of the feature calculation is not going to be influential for decision-
making; if the window is too large, the small target area will be enlarged,
resulting in a decrease in target positioning accuracy. Note that if all windows
are mutually disjoint. Thus, they can constitute a segmentation, or otherwise
a cover, of the image.

2.3. Pulse coupled neural network model

Pulse coupled neural network (PCNN) is an iterative IE model, which
simulates the response of mammalian visual cortex neurons to visual signals.
PCNN has proven to be effective in many applications, e.g., for improving
the brightness or enhancing the edge of an image, and for making the texture
details more prominent [43]. Inspired by this observation, PCNN is adopted
herein to process mammogram images to make their texture representation
clearer and more recognisable.

The framework of PCNN can be regarded as a single-layer two-dimensional
network, in which each neuron corresponds to each pixel of the input image
[44]. Fig. 3 shows the a PCNN neuron model, which includes a receptive
field, a nonlinear modulation field, and a pulse generator. The function of
each component is introduced below.

Figure 3: A PCNN neuron model

1. For the pixel whose coordinate in an image is (i, j), the input of the
receptive field consists of a feedback input Fij and a linear connection
input Lij, as defined by

Fij[n] = Sij[n] (2)

Lij[n] = e−αLLij[n− 1] + VL
∑

WijklYkl[n− 1], (3)
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where, as the external input signal, n is the number of pulse ignition
iterations; Fij is equal to the value Sij of the grey level of this pix-
el; Lij is the connection input of the neighbourhood neuron, which is
obtained by a weighted summation of Ykl and Wijkl; Ykl, initialised as
0, is the output of the neighbouring neuron (acting as the input of
its neighbour); Wijkl is the internal connection matrix, and stores the
weighting coefficients for the neighbouring neuron connections; αL is
the attenuation constant of Lij; and VL is the intrinsic potential of the
connection input.

2. As the output of the modulation field, Uij is the internal activity item
formed by the signal of two input channels Fij and Lij through the
modulation, as defined below:

Uij[n] = Fij[n](1 + βLij[n]), (4)

where, β is the connection strength coefficient.

3. In the pulse generator, Uij is compared with a dynamic threshold Eij to
produce the output pulse Yij. When Eij exceeds the internal activity
item Uij, the pulse generator is turned off and the pulse is stopped.
Then, the threshold begins to decrease exponentially. When the dy-
namic threshold is lower than Uij, the pulse generator is turned on again
and the neuron is fired or activated, and a pulse or pulse sequence is
produced as the output in the following way [45]:

Eij[n] = e−αEEij[n− 1] + VEYij[n− 1], (5)

Yij[n] =

{
1, Uij[n] > Eij[n],

0, otherwise.
(6)

where, VE is the amplitude constant; αE is the time decay constant of
the dynamic threshold Eij, determining the number of iterations in a
cycle where all pixels are processed; and Yij is the pulse output function
of PCNN [46].

With the use of the output of pulse generator, the grey value of each pixel
is enhanced according to Eqn. (7).

EnhIij = (ln(Bri)− αE(ñ− 1))Yij, (7)
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where EnhIij represents the grey value of pixel (i, j) in the enhanced image
[34]; Bri is the maximum brightness value in the original image; and ñ records
the ignition time of this PCNN neuron. It can also be seen from Eqn. (7) that
by adjusting the value of αE, different IE effects can be obtained. In order
to ensure that Eij is attenuated sufficiently slowly to distinguish adjacent
grey levels by different ignition timings, the αE value should be carefully set,
which may be done empirically.

2.4. Fuzzy positive region

In a fuzzy-rough set (FRS) [32, 33, 47], there are two types of approxi-
mation: the lower approximation as the fuzzy positive region (FPR) and the
upper approximation as the complement of the fuzzy negative region. The
former is defined as the set of those objects which can be said with certainty
to belong to the concept to be approximated, and the latter is defined as
the set of objects which either definitely or possibly belong to the concept to
be approximated (given a reference equivalence partition of the universe of
discourse). Normally, the concept to be approximated refers to the decision
information of the datasets. The difference between the upper and lower
approximation is the area known as the fuzzy boundary region, representing
the area of uncertainty. When the boundary region is empty, there is no un-
certainty regarding the concept which is being approximated and all objects
belong to the subset of objects of interest with full certainty.

Definitions for the fuzzy lower and upper approximations can be found in
[32, 33], where a T -transitive fuzzy similarity relation is used to approximate
a fuzzy concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)), (8)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)), (9)

where U is a nonempty set of finite objects (the universe of discourse); I is
a fuzzy implicator; T is a T -norm; and RP is the fuzzy similarity relation
induced by the subset of features P :

µRP
(x, y) = Ta∈P{µRa(x, y)}, (10)

with µRa(x, y) being the degree to which the objects x and y are regarded to
be similar with respect to feature a.
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Given the above, the positive region regarding a fuzzy concept X and a
set of attributes Q which induces equivalence relations over U is defined by

µPOSRP
(Q)(x) = sup

X∈U/Q
µRPX(x), (11)

The value of Eq. (11) not only indicates the degree of object x belonging to
the FPR, but also illustrates the capacity of object x implying the decision.
The object with a higher value of FPR is more affirmatively related to the
decision regarding the given feature set. In this work, FPR is used as the
gauger to select the optimal local information of ROI and henceforth, the
best features of each mammographic image in the proposed IP framework.

3. Mammographic Dataset Used

The experimental data used in this paper is derived from images extract-
ed from the Mammographic Image Analysis Society (MIAS) database [48].
It includes a set of Medio-Lateral-Oblique (MLO) left and right mammo-
gram of 161 woman (322 samples). The spatial resolution of the image is
50µm×50µm, which is quantised to 8 bits with a linear optical density in
the range 0-3.2. As with the literature, mammographic risk assessment crite-
ria are herein based on BI-RADS [49], Boyd [50], Tabár [51], Wolfe [52] (see
Fig. 4 for examples).

(a) mdb098 (b) mdb084 (c) mdb304 (d) mdb252 (e) mdb116 (f) mdb318

Figure 4: Example mammograms, where (a) I, SCC 0%, Pattern II, N1; (b) II, SCC
0-10%, Pattern III, P1; (c) II, SCC 11-25%, Pattern III, P1; (d) II, SCC 26-50%, Pattern
I, P1; (e) III, SCC 51-75%, Pattern IV, P2; (f) IV, SCC >75%, Pattern V, DY.

In particular, BI-RADS [49] is used to category a mammogram into one
of four classes: 1 ) BI-RADS I: Breast density is low; 2 ) BI-RADS II: There
exists some fibroglandular tissue; 3 ) BI-RADS III: Breast density is high; 4 )
BI-RADS IV: Breast is extremely dense. In [53], it is reported that associa-
tions between BI-RADS I-IV and breast carcinoma (adjusted for weight) in
postmenopausal women of which the risks are 1, 1.6, 2.3 and 4.5, respectively
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Boyd [50] introduced a quantitative classification of mammographic den-
sity. It is based on the proportion of dense breast tissue relative to the overall
breast area. The classification is known as Six-Class-Categories (SCC) where
the density proportions are: Class1: 0%, Class2: (0-10%), Class3: (10-25%),
Class4: (25-50%), Class5: (50-75%) and Class6: (75-100%). The increase in
the level of breast tissue density is associated with an increase in the risk of
developing breast cancer. The increase in the level of breast tissue density
has been associated with an increase in the risk of developing breast can-
cer, specifically the relative risk for SCC 1-6 are 1, 1, 1.9, 2.2, 4.6 and 7.1,
respectively [50].

Tabár [51] described breast composition of four building blocks: nodular
density, linear density, homogeneous fibrous tissue and radiolucent adipose
tissues. These blocks also define mammographic risk classification. In par-
ticular, the following patterns are defined, with Patterns I-III corresponding
to lower breast cancer risk and Patterns IV-V relating to higher risk: 1 )
Pattern I mammograms are composed of 25, 16, 35 and 24% of the four
building blocks, respectively; 2 ) Pattern II has approximate compositions of
2, 14, 2 and 82%; 3 ) Pattern III is quite similar in composition to Pattern
II, except that the retroareolar prominent ducts are often associated with
periductal fibrosis; 4 ) Pattern IV is dominated by proniment nodular and
linear densities, with compositions of 49, 19, 15, and 17%; 5 ) Pattern V is
dominated by extensive fibrosis and is composed of 2, 2, 89 and 7% of the
building blocks, respectively.

Wolfe [52] used the following four categories to recognise mammogram: 1 )
N1 mainly concludes fatty tissue and a few fibrous tissue stands; 2 ) P1 shows
a prominent duct pattern, where a beaded appearance can be found either in
the subareolar area or in the upper axillary quadrant; 3 ) P2 indicates server
involvement of a prominent duct pattern which may occupy from one-half
up to all of the volume of the parenchyma, often with the connective tissue
hyperplasia producing coalescence of ducts in some areas; and 4 ) DY features
a general increase in density of the parenchyma and there may, or may not, be
a minor component of prominent duct. These four groups have an occurrence
rate of developing breast cancer of 0.1, 0.4, 1.7, 2.2, respectively.

4. Fuzzy-rough Refined Image Processing

Through an integrated use of the techniques introduced above, this sec-
tion presents a fuzzy-rough refined IP (FRIP) framework for mammographic
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Figure 5: Architecture of proposed framework

risk assessment. Fig. 5 illustrates the flowchart of the proposed scheme,
consisting of three key procedures:

1. Image pre-processing and ROI extraction.

2. ROI segmentation and local evaluation.

3. ROI local enhancement and feature fusion.

4.1. Image pre-processing and ROI extraction

The mammographic images are pre-processed to extract the breast tissue
region for further analysis. The breast region is denoised by removing the
pectoral muscles and other artifacts, such as the orientation tags and the ad-
hesive tapes from the image. Since most of the dense tissues and parenchymal
patterns are located within the breast fibroglandular disk area, it is expected
that the features will only be extracted from such regions. Segmentation of
the fibroglandular disk region can help to extract the tissue characteristics
of the right region. Take the BI-RADS criterion for instance, in most cases
the areas outside the fibroglandular region contain fatty tissue regardless of
their BI-RADS density class as most of the dense tissue patterns develop in
the fibroglandular region. So extracting similar features outside the fibrog-
landular region does not provide discriminative features for tissue density
classification. An appropriate ROI is extracted from each mammographic
image for the fibroglandular disk area, of a 256×256 pixel size, as shown
in Fig. 6. For extracting the fibroglandular disk region, the longest per-
pendicular distance from the breast boundary is considered which is usually
the distance starting from the nipple area and then, a parallel distance line
from the breast boundary is considered. The intersection point is regarded
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as the central point of the ROI region. With this central point, an ROI of a
256×256 pixel size is extracted as the sample fibroglandular disk region [30].

Figure 6: Extraction of fibroglandular disk area from mammogram

4.2. ROI segmentation and local evaluation

In the proposed framework, for capturing local information of the initial-
ly extracted ROI, the sliding window algorithm is employed to generate a
segmentation or a cover of the ROI region. For the purpose of making the
experiment more comprehensive and credible, the sizes of the sliding window
are assigned to be 160×160, 176×176, 192×192, 208×208, 224×224, respec-
tively. Note that if the step size λ of each sliding is a relatively large number,
the differences between the blocks may be missed. On the contrary, if λ is
rather small, the process of going throughout the entire image with the slid-
ing window will be time-consuming. Given the sizes of the sliding window
used in this paper, the step size λ of each sliding is set to 16 moderately. In so
doing, with the sliding windows whose sizes are 160×160, 176×176, 192×192,
208×208 and 224×224, a mammographic image will be segmented into 49,
36, 25, 16 and 9 blocks, respectively. In order to evaluate the significance
of each block in an ROI, from the original ROI regions and their window
blocks, the features are extracted by the GLCM algorithm. As shown in Fig.
7, the GLCM results are generated in four directions: 0◦, 45◦, 90◦, 135◦, and
the distance is set to equaling to 1 pixel.

Given the element G(x, y) of the resulting GLCM, the summations of the
i-th row and j-th column are defined as shown in Eqn. (12) and Eqn. (13),
respectively.

Gx(i) =
∑
j=1

G(i, j). (12)
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Figure 7: Pixels X1, X2, X3 and X4 are located at a distance d =1 from the central pixel
X following the angles: θ = 0◦, θ = 45◦, θ = 90◦ and θ = 135◦.

Gy(j) =
∑
i=1

G(i, j). (13)

Let µx, µy, θx , θy be the respective means and standard deviations of Gx and
Gy. The types of feature extracted in this work include contrast, entropy,
correlation, inverse difference moment (IDM) and angular second moment
(ASM), which are introduced as follows [54].

• Contrast (Con):

Con =
∑
i

∑
j

(i− j)2 ∗G(i, j). (14)

• Entropy (Ent):

Ent = −
∑
i

∑
j

G(i, j) ∗ log(G(i, j)). (15)

• Correlation (Cor):

Cor =

[∑
i

∑
j

(i ∗ j) ∗G(i, j)− µx ∗ µy

]
/σx ∗ σy. (16)

• Inverse Difference Moment (IDM):

IDM =
∑
i

∑
j

1

1 + (i− j)2
G(i, j). (17)
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• Angular Second Moment (ASM):

ASM =
∑
i

∑
j

G(i, j)2. (18)

With the use of the above features, the block that has the highest value of
FPR will be chosen to receive further enhancement. That is, with regard to
the proposed framework, the ROI of each mammographic image is segmented
and enhanced locally in the area of the highest FPR value. To ensure high
quality of the image enhancement procedure, the winner block which enjoys
the highest FPR value will be further improved by a multi-round strategy to
create a pool of image enhancement results. Therefore, for a mammographic
image, after embedding the candidate enhanced blocks into the original ROI,
the respectively extracted features from the locally enhanced ROI will be
compared against each other in terms of the FPR value. As a result, the
original image will be represented by the set of features which are entailed
by the premier FPR among all extracted features.

Following the example in Fig. 2, the FPR value of each block is calcu-
lated and marked in Fig. 8. It can be seen that block 4 has the highest
FPR=0.6848. As such, it will be chosen as the winner to receive further
enhancement. Moreover, blocks 1, 2, 5, 7 and 8, which are the neighbouring
blocks of block 4, achieve higher FPR values than blocks 3, 6, 9. This ob-
servation helps verify the rationality of the proposed method to choose the
winner block.

Figure 8: ROI segmentation and local evaluation
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4.3. ROI local enhancement and feature fusion

As indicated previously, the value of the time decay constant αE should be
determined carefully in order to ensure that the dynamic threshold Eij can be
attenuated sufficiently slowly to distinguish adjacent grey levels in different
ignition timings. Thus, the IE process on the chosen block is implemented
with a multi-round strategy by PCNN which is devised to have a different
value of αE in each round, to create a pool of IE results. In so doing, the
number of the sets of the candidate features to represent each mammographic
image is the same as that of the distinct values of αE for the PCNN algorithm.
As shown in Fig. 9, all of the candidate enhanced windows will be embedded
into the original ROI to produce the features by GLCM for use in further
evaluation.

Figure 9: ROI local enhancement

In the proposed framework, the appraisal of the candidate extracted fea-
tures from the locally improved ROI is conducted with the use of FPR as
well. Note that the features extracted from the entire original ROI, which
have been achieved in the process of evaluating the window blocks, are em-
ployed to represent the rest of the image. In addition, the winner set of
features associated with each mammographic image can be achieved from
the different rounds of IE process. Ultimately, the fusion of these sets of
features will be utilised as the ultimate FE results for the mammographic
image dataset. Overall, the proposed FRIP framework is outlined in Alg. 1.

Algorithm 1 Fuzzy-rough Refined Image Processing Framework
Input:

Data: Mammographic Image Dataset
αE: time decay constant;
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Max: number of rounds for updating αE.
Output: Xbest: resulting feature sets produced by FRIP.

1: Image pre-processing and ROI extraction on Data
2: Extracting feature dataset X0 from all ROIs
3: Initialisation: τ = 0, num = |Data|, i = 1
4: // ROI Segmentation and Local Evaluation
5: while i ≤Max do
6: for j = 1; j ≤ num; j + + do
7: Segmenting the j-th ROI into n blocks by sliding window
8: for k = 1; k ≤ n; k + + do
9: xjk = features extracted from k-th window of the j-th ROI

10: Xjk = updated X0 where features of j-th ROI are replaced
by xjk

11: µjk = value of FPR of xjk in Xjk

12: if µjk > τ then
13: τ = µjk
14: kb = k
15: end if
16: end for
17: // ROI Local Enhancement
18: Enhancing kb-th window block of j-th ROI by PCNN
19: Embedding enhanced block into original ROI
20: end for
21: Extracting feature dataset Xi from all locally enhanced ROIs
22: i+ +
23: end while
24: // Feature Fusion
25: Initialise: j = 1
26: while j ≤ num do
27: for i = 0; i ≤Max; i+ + do
28: xij = features of j-th sample in Xi

29: X̃ij = updated X0 where features of j-th sample are replaced by
xij

30: µ̃ij = value of FPR of xij in Xi

31: if µ̃ij > τ then
32: τ = µ̃ij
33: ib = i
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34: end if
35: end for
36: j = j + +
37: Xbest = feature dataset where j-th sample is equal to xibj
38: end while

As can be readily inferred from Alg. 1, the time complexity of the pro-
posed FRIP framework is O(max{Max, num, n}3).

In the following experiments, the time decay constant αE in PCNN is
initialised as 0.01 and will be updated 100 times with the step size 0.01. In
so doing, as the IE process is repeatedly executed, the value of αE increases
from 0.01 to 1. Moreover, as the number of pulse ignition iterations n is set
to 10,000, the associated dynamic threshold Eij, which is used to provoke
the effect of image enhancement by PCNN, will be updated 106 rounds in
total.

In addition, the comparative study will apply two variants of the FRIP
framework: the globally enhanced ROI (GE) strategy and the randomly lo-
cally enhanced ROI (RLE) strategy. Specifically, the GE strategy refers to
the means of enhancing the ROI entirely in the IE process within the pro-
posed framework. When FRIP randomly chooses the window block for fur-
ther enhancement, it will be referred to as the RLE strategy below. Running
these two counterparts will help demonstrate the validity and superiority of
the FRIP method.

5. Experimental Results

In this section, the mammographic risk assessment results based on the
features extracted by the proposed FRIP framework are compared against
those based on the original ROI strategy, the GE strategy and the RLE
strategy. The performance criteria used are: confusion matrix and the sta-
tistical tests on both classification accuracy and the kappa coefficient [40].
Moreover, the performance of the FRIP framework with different sizes of the
sliding window is also discussed.

The configuration of the implemented FRIP is given in Table 1, where σa
is the standard deviation of feature a in feature fusion.

The classification accuracies using the features achieved by FRIP, the
original ROI, GE and RLE are compared here. For completeness, the clas-
sification methods used in this comparative study are J48 [35], JRip [36],
PART [37], AdaboostM1 [38], RF [39].

19



Table 1: Configuration of implemented FRIP framework

Method Parameters

Sliding window

1. sliding window size is set to 160×160, 176×176, 192×192,
208×208, 224×224;
2. step size λ = 16.

PCNN

1. attenuation constant αL = 0.06931;
2. intrinsic potential VL = 1.00;
3. connection strength coefficient β = 0.2;
4. amplitude constant VE = 200;
5. time decay constant αE = 0.01;
6. number of rounds for updating αE=100;
7. number of pulse ignition iterations n=10000.

GLCM
1. distance d = 1;
2. direction angle θ = 0◦, θ = 45◦, θ = 90◦, θ = 135◦.

Feature fusion

1. Gödel T -norm (min(x,y));
2.  Lukasiewicz fuzzy implicator (min(1-x+y,1));
3. fuzzy similarity relation µRa(x, y) =

max
(

min
(
(a(y)−(a(x)−σa))
(a(x)−(a(x)−σa)) ,

((a(x)+σa)−a(y))
((a(x)+σa)−a(x))

)
, 0
)

.

5.1. Performance evaluation

The task of mammographic risk assessment is carried out in terms of
confusion matrix and the t-tests on both classification accuracy and the kappa
coefficient.

5.1.1. Confusion matrix

Confusion matrix offers a standard means to support evaluation of clas-
sification accuracy, expressed in a square matrix form with regard to the
number of the class categories. Classification accuracy is herein defined as
the ratio of the total number of samples correctly classified to the number of
all samples. Within a confusion matrix, each column represents the predic-
tion category, and the total number of each column represents the number
of data predicted for that category. Each row represents the true category to
which the data belongs, and the total number of data in each row represents
the number of data instances in that category.

The confusion matrices as shown in Table 2 in response to the use of the
BI-RADS criterion are based on the features achieved by the original, RLE,
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GE and FRIP, respectively. In particular, the RF method, with forests of 100
trees each, is herein applied to implement the classification tasks. The size
of the sliding window is set to 160×160. For Tables 3, 4 and 5, the identical
experimental configuration is employed for consistency.

Table 2: Confusion matrices and classification accuracies using the BI-RADS criterion
Original

(Accuracy=67.19%)
I II III IV

I 37 18 4 0
II 13 54 19 0
III 0 11 120 12
IV 0 2 20 12

RLE
(Accuracy=90.48%)

I II III IV
I 48 6 0 5
II 7 76 0 3
III 0 0 142 1
IV 5 2 0 27

GE
(Accuracy=90.09%)

I II III IV
I 45 2 11 1
II 5 81 0 0
III 4 2 135 2
IV 0 0 4 30

FRIP
(Accuracy=94.04%)

I II III IV
I 52 2 1 4
II 2 84 0 0
III 1 0 140 2
IV 5 1 0 28

Note that the FRIP framework seeks to reduce class confusion, such as
that between class II and class III in Table 2. This is of practical significance
because these two classes constitute the majority of BI-RADS; it is therefore
more useful, though more difficult, to identify class II and III separately. As
shown in Table 2, the original dataset performs poorly to distinguish between
these two classes. For example, by RF, 19 class II members are incorrectly
classified as class III, and 11 class III members are incorrectly classified as
class II. Although by RLE and GE, such classification results are improved,
the performance of FRIP still outperforms all of them. Few elements in
classes III and II are incorrectly classified into one another. Considering the
results shown in Tables 3, 4 and 5 jointly, it can be seen that the FRIP
framework improves the ability to distinguish classes significantly. Indeed,
these experimental comparisons have shown that the FRIP framework can
function better at the level of individual risk types. This is of great practical
significance. Moreover, the results also demonstrate that the use of FPR to
evaluate the window block is more promising than a random choice.
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Table 3: Confusion matrices and classification accuracies using the Boyd criterion
Original

(Accuracy=50.12%)
I II III IV V VI

I 0 5 0 1 0 0
II 1 37 10 8 2 2
III 0 12 19 11 3 1
IV 0 5 8 37 21 4
V 0 1 1 16 59 14
VI 0 0 0 11 23 10

RLE
(Accuracy=79.69%)

I II III IV V VI
I 1 3 0 2 0 0
II 1 53 0 4 2 0
III 0 0 38 6 2 0
IV 0 0 0 63 10 2
V 0 0 1 18 69 3
VI 0 0 0 0 6 38

GE
(Accuracy=74.64%)

I II III IV V VI
I 0 5 1 0 0 0
II 3 45 3 3 4 2
III 2 3 38 2 1 0
IV 0 1 0 62 12 0
V 0 0 0 6 77 8
VI 0 1 0 1 18 24

FRIP
(Accuracy=84.25%)

I II III IV V VI
I 1 2 0 0 3 0
II 0 49 3 2 6 0
III 0 2 40 1 3 0
IV 0 2 0 62 11 0
V 1 2 1 5 82 0
VI 0 0 0 0 8 36

Table 4: Confusion matrices and classification accuracies using the Tabár criterion

Original
(Accuracy= 57.04%)

I II III IV V
I 91 8 2 15 3
II 9 28 14 1 1
III 16 16 6 2 0
IV 25 0 1 50 6
V 7 0 0 13 8

RLE
(Accuracy= 78.16%)

I II III IV V
I 110 1 5 1 2
II 4 29 15 2 3
III 4 17 14 3 2
IV 0 1 2 77 2
V 1 2 2 1 22

GE
(Accuracy= 79.88%)

I II III IV V
I 109 2 1 7 0
II 1 32 13 7 0
III 5 11 21 3 0
IV 3 4 2 73 0
V 1 1 0 8 18

FRIP
(Accuracy=86.21%)

I II III IV V
I 111 1 1 4 2
II 10 36 2 5 0
III 0 2 38 0 0
IV 6 2 0 72 2
V 5 0 1 3 19

5.1.2. Statistical tests on Classification accuracy

The paired t-test with a significance level of 0.05 is employed to provide
a statistical analysis of the resulting classification accuracy rates by the 5
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Table 5: Confusion matrices and classification accuracies using the Wolfe criterion
Original

(Accuracy=57.91%)
I II III IV

I 41 17 4 0
II 15 51 24 2
III 1 17 71 19
IV 0 2 26 32

RLE
(Accuracy=89.64%)

I II III IV
I 48 3 2 9
II 3 86 1 2
III 2 1 105 0
IV 2 5 0 53

GE
(Accuracy=88.60%)

I II III IV
I 49 7 4 2
II 8 81 3 0
III 2 4 100 2
IV 2 0 5 53

FRIP
(Accuracy= 90.34%)

I II III IV
I 53 2 1 6
II 2 86 1 3
III 3 0 98 7
IV 2 1 2 55

classification methods introduced previously. This is done in order to ensure
that results are not discovered by coincidence. Note that In these evaluations,
the size of the sliding window is set to be 160×160 pixels again.

The results of t-tests are annotated with three tags: better (v), equiv-
alent ( ) or worse (*) in Tables 6, signifying that the relative performance
achievable by the features using the FRIP framework in comparison to the
features of the original dataset, GE and RLE approaches for all of the 4
mammographic risk assessment criteria. Such statistical significance results
are further summarised in the rightmost column of this stable, showing the
count of the number of statistically better, equivalent and worse results per
approach in comparison to the proposed. For example, by using the BI-
RADS criterion, the last entry “(0/0/5)” in the RLE row indicates that the
set of features generated by RLE performs worse than FRIP for 0 classifiers,
equivalently to FRIP for 0 classifiers, and worse than FRIP for 5 classifiers.

From the results shown in Table 6, it can be concluded that except for the
occasional inferior results as compared to the use of RLE by AdaboostM1
and JRip for the Wolfe criterion, the proposed FRIP framework statistically
outperforms its counterparts in most cases. This from one aspect demon-
strates that FRIP improves the quality of the features in an effective and
outstanding way for mammographic risk assessment.
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Table 6: T-test on classification accuracy

Dataset AdaboostM1 JRip PART J48 RF Summary

FRIP 91.83 90.09 91.52 91.64 94.04 (v/ /*)
BI-RADS RLE 88.37 * 85.72 * 87.69 * 87.63 * 90.48 * (0/0/5)

GE 88.63 * 87.02 * 87.48 * 87.82 * 90.09 * (0/0/5)
Original 61.12 * 65.90 * 59.38 * 60.86 * 67.19 * (0/0/5)

FRIP 83.63 81.71 82.70 83.48 84.25 (v/ /*)
Boyd RLE 76.27 * 75.13 * 74.96 * 75.27 * 79.69 * (0/0/5)

GE 72.16 * 68.09 * 71.45 * 73.31 * 74.64 * (0/0/5)
Original 48.13 * 41.30 * 46.87 * 46.20 * 50.12 * (0/0/5)

FRIP 86.80 80.39 85.17 85.57 86.21 (v/ /*)
Tabár RLE 76.24 * 71.71 * 74.54 * 74.79 * 78.16 * (0/0/5)

GE 77.39 * 75.29 * 76.40 * 77.39 * 79.88 * (0/0/5)
Original 52.91 * 49.66 * 51.39 * 52.91 * 57.04 * (0/0/5)

FRIP 88.59 86.49 88.91 89.16 90.34 (v/ /*)
Wolfe RLE 89.49 v 87.99 v 88.28 * 88.71 * 89.64 * (2/0/3)

GE 85.71 * 82.08 * 84.53 * 84.91 * 88.60 * (0/0/5)
Original 57.29 * 58.26 * 55.55 * 57.47 * 57.91 * (0/0/5)

5.1.3. Statistical tests on kappa coefficient

To further compare with the existing work, the kappa coefficient [40] is
employed to evaluate the experimental results also. The kappa coefficient
is generally regarded to be a more robust measure than simple percentage
agreement calculations on accuracy since it summarises the level of any a-
greement between observers after agreements by chance are removed. It tests
how well observers agree with themselves (repeatability) and with each oth-
er (reproducibility). A high value of the kappa coefficient represents better
performance.

Table 7 presents the comparative results on the quality of the features
produced by the FRIP framework and by again, the original, RLE and GE
strategies while using the same classifiers as illustrated previously. It can
be seen that for the BI-RADS, Boyd and Tabár metircs, FRIP leads to a
superior performance, although accidentally, for the Wolfe criterion, RLE
provides a statistically equivalent performance as compared to FRIP. This
observation is probably due to the fact that the block randomly chosen by
RLE happens to be closer to the winner block selected by FRIP. Because
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two adjacent sliding window share a certain amount of identical information,
the FPR values of these two blocks may be similar with regard to the Wolfe
criterion. Through the use of the multi-round image enhancement strategy,
the features extracted from the RLE selected block could be slightly better
than those from FRIP selected block by chance.

In particular, for all classification schemes, the values of the kappa coef-
ficient gained by FRIP are consistently, substantially higher than 0.60. This
once again demonstrate the superiority of the proposed approach.

Table 7: T-test on kappa coefficient

Dataset AdaboostM1 JRip PART J48 RF Summary

FRIP 0.88 0.85 0.88 0.88 0.91 (v/ /*)
BI-RADS RLE 0.83 * 0.79 * 0.82 * 0.82 * 0.86 * (0/0/5)

GE 0.83 * 0.81 * 0.82 * 0.82 * 0.85 * (0/0/5)
Original 0.43 * 0.49 * 0.40 * 0.82 * 0.51 * (0/0/5)

FRIP 0.79 0.76 0.78 0.79 0.80 (v/ /*)
Boyd RLE 0.70 * 0.68 * 0.68 * 0.69 * 0.74 * (0/0/5)

GE 0.65 * 0.59 * 0.64 * 0.66 * 0.68 * (0/0/5)
Original 0.34 * 0.22 * 0.32 * 0.31 * 0.36 * (0/0/5)

FRIP 0.82 0.73 0.80 0.81 0.81 (v/ /*)
Tabár RLE 0.68 * 0.61 * 0.66 * 0.66 * 0.71 * (0/0/5)

GE 0.70 * 0.66 * 0.68 * 0.70 * 0.73 * (0/0/5)
Original 0.36 * 0.28 * 0.34 * 0.36 * 0.41 * (0/0/5)

FRIP 0.84 0.82 0.85 0.85 0.87 (v/ /*)
Wolfe RLE 0.86 v 0.84 v 0.84 * 0.85 0.86 * (2/1/2)

GE 0.80 * 0.75 * 0.79 * 0.79 * 0.84 * (0/0/5)
Original 0.41 * 0.42 * 0.39 * 0.42 * 0.42 * (0/0/5)

5.2. Different sliding window sizes

In this subsection, different sliding window sizes are used to verify further
the superiority of the proposed method. The step size is set to 16 pixels.
The 5 resulting locally enhanced datasets are implemented with the sliding
window sizes which are of 160×160, 176×176, 192×192, 208×208, 224×224
pixels, respectively. For consistency of presenting experimental results, again,
the RF classifier with a forest of 100 trees is employed.
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Figure 10: Classification accuracy using different sliding window sizes for all assessment
criteria

As shown in Fig. 10, when compared to the original breast cancer dataset-
s, the feature datasets obtained from the enhanced images systematically re-
ceive higher classification accuracies. Occasionally, with a 208×208 window
size, the proposed method is slightly underperformed than GE. However, the
datasets obtained under the FRIP framework with different sliding window
sizes consistently outperform those by the GE and RLE strategies in most
cases. In addition, it can be observed that, in some cases, the size of the slid-
ing window will impact the quality of the final feature dataset significantly.

In general, through the experiments conducted, the FRIP framework has
improved the classification accuracy by 3-10% compared to the original, RLE
and GE schemes. By checking against the use of different classifiers while
comparing the classification accuracy and kappa coefficient in statistics, the
superiority of FRIP is clearly demonstrated. Importantly, with the use of dif-
ferently sized sliding windows, the FRIP datasets achieve consistently better
results, showing the robustness of the proposed approach. This experimental
result also implies that it is feasible to empirically select important parts to
construct FPR. A fundamental discovery is that information obtained from
the local evaluation can be more representative than the global information.
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6. Conclusion

Diagnosis of breast cancer using digital mammograms is an important
practical area of research. Positive results may affect human mortality. This
paper has presented a fuzzy-rough refined image processing (FRIP) frame-
work to improve the quality of mammographic image features hierarchically.
In particular, in this work, ROI is segmented and enhanced locally according
to the highest value of the fuzzy positive regions (FPR) of the blocks of po-
tential interest. An object with a higher value of FPR is more affirmatively
related to the decisions on risk assessment. In so doing, the features of a
mammographic image are extracted and represented according to a locally
enhanced ROI. The final feature dataset is generated as a fusion of such
resulting features, having the best FPR from a multi-round IE pool.

The proposed framework has proven to give improved mammographic risk
assessment results. Nevertheless, as pointed out previously, this is a very d-
ifficult application domain. There is no actual ground-truth to ensure which
classification result is to be ultimately correct in the first place. Therefore,
the experimental results achieved should be used with care, treating them
as providing a useful reference aid for human decision making. The eventual
task of deciding on the actual mammographic risk is up to human radiolo-
gists. Nevertheless, the present approach has shown to offer a good candidate
for playing such a supportive role.

The current work can be brought for classifying mammograms into nor-
mal and abnormal breast tissue in order to support radiologists for visual
diagnosis, and it can be extended to other mammogram databases. Current-
ly, GLCM and PCNN are utilised to implement the FE and IE methods. It
would be interesting to investigate any other novel methods which can ob-
tain more representative features (e.g., [55, 56] which is also based on fuzzy-
rough sets or [57] which covers a range of nature-inspired feature selection
approaches) may be employed as their replacement. For the sliding win-
dow algorithm, the step size of each sliding and the sliding window
size play an important role to impact the final results. Consequent-
ly, a sensitivity analysis implemented with an incremental step size
of sliding will be crucial for further model validation. Moreover,
since the important part of a medical image may not be regular, the method
focused on selecting irregular important areas is a worthwhile avenue of ex-
ploration.
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