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A b s t r a c t 
 

Combining the advantages 
and disadvantages of 
supervised learning and 
unsupervised learning 
strategies in convolution 
neural networks, this paper 

proposes a semi-supervised single-image depth prediction model based on binocular 
information and sparse laser data. The model improves the  depth prediction 
accuracy by introducing sparse depth monitoring information, which provides a 
better convergence of the model with a local optimal solution. In the experiment, we 
validate the effectiveness of the model on the KITTI data set. Compared to the 
supervised algorithm, the root mean square error is reduced by 41.6% and, compared 
to the unsupervised algorithm, the root mean square error is reduced by 26.9%. 

 
 

 

1. Introduction 
 

Image depth information plays an important role in object 
recognition, scene restoration, autonomous driving and other 
fields. With the increasing demand for new technologies, the 
rapid development of convolution neural networks (CNNs) in re- 
cent years has provided a new breakthrough in the development 
of visual depth technology. The existing research results can be 
divided into supervised and unsupervised methods. 

Among the existing research methods and supervised meth- 
ods, the most classic model is the network model proposed by the 
Eigen Group from New York University in 2014 [1], which divides 
the depth prediction into two steps. The first step is to predict the 
overall coarse-grained depth map. The second step is to fine-tune 
the resulting coarse-grained depth information result map, cor- 
responding to a coarse network and a refined network. At CVPR 
2015, Laina et al. [2] proposed a depth prediction model based on 
the Fully Convolutional Network (FCN) [3] structure. The existing 
depth prediction with a deep learning-based approach generally 
uses an end-to-end framework. That is, it employs convolutional 
upsampling for feature extraction and analysis. The parameters 
are trained to reduce the error between the prediction and the 
true value. 

The core of an unsupervised algorithm is the disparity map 
between binocular images. In addition to bidirectional matching 

 

 (BM), semi-global matching (SGM) [4] and graph cuts (GCs) [5], 
three common traditional algorithms, there are  unsupervised 
depth prediction algorithms based on deep learning. The idea is    
to use a CNN based on an end-to-end framework to predict the 
disparity map corresponding to the image. Garg  et  al.  [6]  used 
the above idea to predict the depth map corresponding to the 
output image by training a CNN model based on the end-to-end 
framework. 

Although the unsupervised learning method significantly 
im- proves predictive accuracy when compared to supervised 
learn- ing, there is still a disadvantage: that the unsupervised 
learning model convergence is based on the loss  of  image  
similarity, and the computation of image similarity is weak in 
the image gradient. The unsupervised model is not accurate 
enough for subtle depth differences in the prediction results. 
In contrast, the supervised learning model is based on the 
calculation of the loss of a single pixel, so it also has a better 
response to the difference in pixel points in the flat region. 

Inspired by the research work in [6,7], which leverages the 
advantages and disadvantages of supervised learning and 
unsu- pervised learning, we proposes a semi-supervised depth 
predic- tion with binocular information and sparse laser data. 
This model inputs with binocular RGB images and Velodyne 
laser data from the KITTI data set, where binocular RGB 
images are first used for unsupervised learning to obtain 
disparity maps. It is then fused with sparse laser depth data as 
supervised learning for the final depth prediction. In the 
learning stage, we also introduce a small amount of sparse 
supervision information to limit the solution space, and the 
depth prediction accuracy of the final model is improved with 
real-time performance. 
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In addition, this paper improves the effectiveness of unsuper- 
vised depth with sparse depth information. In the experiment 
involving the accuracy prediction model on the KITTI data set, 
we obtain a linear mean square error of 4.211 and an accuracy 
ratio for the depth pixel of 86.2%, which is better than previous 
algorithms. 

2.3.  Conventional  unsupervised  depth  prediction algorithm 
 

In binocular stereo vision, the restoration of three-dimensional 
(3D) information on the scene usually requires corresponding 
parallax information, and the depth information of each pixel 
point can be obtained by using a mathematical formula. 

In the following paragraphs, Section 2 presents background 
and related work, Section 3 shows our architecture and algorithm, 
Section 4 explains the experiments and the final section offers the 

depth (I)  
 

f ∗ B  
dis (I)  
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conclusion to this research.  

 
2. Background and related work 

 
2.1. Introduction to convolutional neural networks 

 
In 1980, Kunihiko [8] first proposed the concept of the CNN, 

which is based on local connections between neurons and a 
hierarchical tissue image. CNN is mainly composed of a con- 
volutional layer, a pooling layer, an activation function, a full 
connection layer, a softmax regression layer and other modules. 
The ordered connections of these modules constitute an end-to- 
end deep learning framework. In 1988, LeCun [9] proposed the 
LeNet-5 network structure, which used the gradient descent algo- 
rithm to train the CNN in order to classify handwritten numbers 
and obtained better experimental results than the conventional 
machine learning algorithm. 

Since 2012, CNNs have developed rapidly, with AlexNet [10], 
ZFnet [11], VGNet [12] GoogleNet [13] and ResNet [14] models 
having been proposed in that order. Some applications, especially 
ImageNet [15] in 2012, and DeepFace [16] and DeepID [17,18]   
in 2013, can handle image classification and identification with 
large-scale database, which is not possible for conventional al- 
gorithms. Meanwhile, AlphaGo [19], based on a search tree and 
deep neural network, was developed by Google in 2016 and beat 
the human champion in the Go competition. These major events 
further established the important role of CNNs. 

At present, CNNs are among the research hotspots in many 
scientific fields, especially in image recognition, image segmen- 
tation and image classification. Furthermore, they can also di- 
rectly acquire the features used to predict the visual depth from 
the original image, while avoiding the complicated preprocess- 
ing of large-scale image sets, meaning that they will be enjoy 
widespread application in the near future. 

 
2.2. Supervised depth prediction algorithm 

 
One of the most classical models for depth prediction was 

proposed by the Eigen Group of New York University in 2014. 
This model divides the depth prediction into two steps. The first 
step is to predict the overall coarse-grained depth map, while 
the second step is to perform the fine-tuning depth estimation 
from previous coarse-grained information about the depth map 
results. At CVPR 2015, Laina et al. [2] proposed a depth prediction 
model based on the FCN [3] structure. As the fully connected 
layer is removed, the number of network parameters is reduced 
to accelerate convergence and, since the depth image is no longer 
limited to the fully connected layer, any size of the output map 
can be obtained in this framework. Chen et al. [20] changed the 
task from predicting fixed depth to relative depth with the rel- 
ative relationship between predicted near and far pixels, greatly 
reducing the difficulty of the coefficient problem, making is more 
similar to visual perception in the human system. 

|dLR (x, y) − dRL (x + dLR (x, y) , y)| < th (2) 

In Eq. (1), B is the camera focal length variable, f is the binocu- 
lar baseline length variable, dis (I) is the parallax corresponding to 
the pixel in image I, and depth(I) is the obtained image’s 3D depth 
profile. Parallax calculation methods can be classified into two 
categories: conventional algorithms and those based on matching 
strategies such as BM, SGM and GCs. 

BM takes the right image as a reference. First, the matching 
point in the reference picture,  according to  the matching cost, 
is found, then the matching point in the left image is found in 
the same way. If the matching point is found within the specified 
range from the target point, the match is successful. 

SGM [4] is an improved version of the BM algorithm and 
constructs a disparity map by selecting the disparity value of each 
pixel point, then optimizes the disparity value of each pixel point 
by minimizing the global energy function of the disparity map. 
SGM optimizes the mismatch problem caused by occlusion in the 
BM algorithm by matching uniqueness detection, as well as re- 
moves residual noise after LR and unique detection via connected 
region detection. The optimization effect is shown in Fig. 1b-c. 
In the case of GCs [5], an optimization algorithm is applied to 
solves the problem of energy minimization in the image field. It 
can be used for binocular disparity estimation. The effect is shown 
in Fig. 1d. 

Comparing the results of the three conventional methods, it 
can be found that: the edge distortion of the object in the BM 
algorithm is severe and has more noise points; the SGM algo- 
rithm optimizes the shortcomings of the BM, such that the edge 
information in the result image can be found to be optimized; and 
the GC algorithm results are the best of the three, with clear edge 
information and a few mismatching points, although it is also the 
most time-consuming algorithm of the three. 

 
2.4.  Unsupervised depth prediction with a deep learning algorithm 

 
In addition to the above three common conventional algo- 

rithms, there are also unsupervised depth prediction approaches 
based on deep learning algorithms. The idea is to use the CNN 
based on an end-to-end framework to  predict  the disparity  map 
of the image. The core of the unsupervised algorithm is the dis- 
parity map between binocular images. If the binocular disparity 
map dis (I) is known, then the image Ir corresponding to the right 
eye can be generated by the left eye image Il and the disparity map, 
which can be calculated by Eq. (3). In the same way, the     left eye 
image can also be generated by the right eye image. The 
unsupervised depth prediction model utilizes this binocular im- 
age constraint. In the network model training process, the left eye 
image Il predicts the disparity map dpredvia the network model 
F (I), then maps the right eye image to the left eye’s estimated 
image Il

∧ according to the disparity map. If the predicted disparity 
map is highly accurate, then Il

∧ and Il will be very similar. In the 
absence of depth information supervision, the model has to learn 
how to minimize the difference between the estimated left image 
and the original left image. 

Ir = Il (dis (xl) + xl) (3)
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Garg et al. [6] presented a typical depth prediction model, 
which uses the above idea to predict the depth map correspond- 
ing to the output image by training a CNN model based on the 
end-to-end framework. The network model is shown in Fig. 2. 
The forward process of the model is to generate a warp image 
by fusing the right image and to predict the inverse depth from 
the CNN processing of the left image. This reverse process is     
to minimize the gap between the reconstructed image and the 
original left image as a reconstruction error of the model. 

After the unsupervised prediction algorithm proposed by Garg 
et al. an improved version of the model is proposed in [21]. 
Since the relationship between the binocular images is mutual, 
the right image can be reconstructed according to the drawing 
as well as reconstructed. Further, the practice of Garg et al. only 
utilizes the constraint between the original left image and the 
reconstructed left image. Godard [7] creatively uses a network 
model to predict the disparity maps for the left and right images 
and then reconstruct the right and left images. Not only that, 
because the predicted left and right disparity maps also have a 
binocular geometric parallax relationship, reconstructed left and 
right disparity maps can also be obtained. 

This transforms the single left image constraint in the unsu- 
pervised learning process into a left image and a right image, 
along with their disparity maps. In addition to adding constraints 
to the unsupervised reverse process, Godard [7] also adjusted the 
network architecture. In the upsampling process, the disparity 
estimation map corresponding to the current feature is increased 
by interpolation and passed to the next upsampling module. This 
is similar to coarse-grained and fine-grained fine-tuning in each 
upsampling, which makes the predictions more accurate. 

 
3. Architecture and algorithms 

At present, the research results based on deep learning can 
be divided into two categories according to different learning 
strategies: (1) supervised learning, by training the network model 
in the RGBD image data set, obtains a CNN model for predict- 
ing the depth of each pixel from a single image; (2) unsuper- 
vised learning, without real depth maps, automatically learns a 
model capable of predicting disparity maps using the intrinsic 
constraints between binocular images. 

The most effective method for supervised learning in KITTI is 
the method in [1], with a prediction result of δ1 69.2%. The  
optimal method for unsupervised learning is the method in [21], 
and the prediction result is δ1 87.3%. In our analysis, we found  
the issues of previous works to be: 

(1) The KITTI data set is derived from an unmanned mission, 
the image acquisition scene is mainly outdoors, and the depth 
information is acquired using 64-line laser radar; thus, the sparse 
real depth map cannot generate a suitable model for convergence 
in order to obtain a better local minimum. 

(2) Unsupervised learning uses binocular image information 
from the data set. Since there is a large number of pixel pairs 
between binocular images that comply with parallax geometry 
from the stereo vision, convergence is not performed well enough 
to obtain a better local minimum from the binocular image. 

In summary, although the unsupervised learning method rep- 
resents a significant improvement in predictive accuracy, com- 
pared to supervised learning, it can be seen from the above 
description that the unsupervised model involves low resolution 
for pixels with subtle depth differences in the prediction results. 
In contrast, the supervised learning model is based on the loss 
computation function from pixels of a single image, and offers 
better response to the difference in pixel points in a flat region. 

3.1. Proposed architecture 
 

Inspired by the research work in [6,7], we leverage the ad- 
vantages of supervised learning and unsupervised learning strate- 
gies, then propose a semi-supervised depth prediction model 
using binocular information and sparse laser data. The overall 
architecture is shown as Fig. 3. 

The model is input with binocular RGB images and Velodyne 
laser data in the KITTI data set, where binocular RGB images are 
used for unsupervised learning to obtain disparity maps, while 
sparse laser depth data are also used to supervise the depth 
prediction results. 

The end-to-end CNN model in this paper is an improved 
encoder–decoder framework, in which the new idea of multi- 
loss and sub-pixel rearrangement is applied to the upsampling 
module in this architecture. The detailed frame structure is shown 
in Fig. 4. 



  
 

 
 
For the parameter setting of the CNN model, the feature ex- traction 
of the algorithm is based on the encoder part f (x), using the 
ImageNet-based pretraining model, ResNet-50. Based on the 
network model, the fully connected layer is  removed  and  the  final 
output of the network is characterized as an H × W × 2048 

feature matrix. The input to the decoder part g (x) is parsed as  
a feature. The decoder part g (x) of the end-to-end framework 
is responsible for mapping the obtained feature map from the 
feature space onto the depth space, such that a dense depth map 
is finally obtained. 
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3.2. Loss function 
 

A new loss of the model consists of unsupervised and super- 
vised losses is proposed 

The loss of the model is the difference between the recon- 
structed image and the original image. The more accurate the 
parallax result predicted by the model, the smaller the difference 
between the reconstructed image and the original image. The 
learning process of the model is the process of continuously 
reducing the difference between the reconstructed image and the 
original image. According to the literature published by Nvidia 
and the MIT [21], in the field of image processing based on deep 
learning, commonly used indicators to measure the difference 
between images are as follows: L1, L2, PSNR and SSIM [22]. 

The PSNR (peak signal-to-noise ratio) is the most widely used 
image quality evaluation index; but, as it is based on the error of 
the pixel in the corresponding position, this leads to an evaluation 
result which is often inconsistent with the subjective feeling of 
the person. At the same time, due to the point-to-point error 
calculation method, the PSNR does not take into account the 
correlation between the pixel points in the image and other pixels 
in the field. The above characteristics mean that the PSNR is 

before and after image reconstruction is a combination of L1 and 
SSIM loss function. 

The network model in this paper uses an end-to-end frame- 
work, where the encoder  uses  ResNet50,  which  removes  the 
fully connected layer, and the decoder consists of a series of 
upsampling modules. Between  the  output  disparity  map  and  
the depth, a convolution layer is added in order to learn the 
mapping relationship between parallax and real depth. The loss     
of the model consists of unsupervised reconstruction losses and 
supervisory losses, where the reconstruction losses are obtained 
from Eq. (9) and the supervisory losses are obtained from Eq. (10). 
Before model training, this paper uses the trained model param- 
eters based on  ImageNet  in  order  to  initialize  the  parameters  in 
the model. For the parameters of the decoder module, ini- 
tialization is made by referring to the MSRA method described      
in [23]. In the model training process, the learning rate for the 
feature extraction parameters is reduced to one  tenth  of  the 
global learning rate, while the upper sampling module learning 
rate uses the global learning rate. In addition, according to dif- 
ferent learning stages, the global learning rate is correspondingly 
attenuated. When the model loss is small, the global learning rate is 
attenuated to one tenth. 

commonly used for quality evaluation before and after image 
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relation in the image domain, which is more suitable for scenes 

 

CS  = 1 ∑ ⏐⏐dpij − dp∧⏐⏐ (10) 

brightness, contrast and structural information in the image, as 
shown in Fig. 5. 

The computation of the SSIM can be divided into two stages: 
(1) computation of the luminance evaluation index l (x, y) based 
on the image mean values µx and µy, the contrast  evaluation  
index c (x, y) based on image variances σx and σy, and the struc- 
tural correlation index s (x, y) based on image variances σx and σy, 
according to Eqs. (4)–(6); (2) the final quality evaluation index is 
obtained from Eq. (7), in which α β γ 1, k1 0.01, k2 
0.01, L 255 are often used. The range of the SSIM is 0–1, and  
the distortion degree is inversely proportional to the value. 

2µxµy + C1 

4. Experiments 
 

4.1. Experimental data set 
 

In order to verify the effectiveness of the feature parsing 
module proposed in this paper, we use the KITTI data set, which 
was jointly established by the Karlsruhe Institute of Technology 
and the Toyota American Technology Research Institute. It is  
the largest data set in the field of computer vision for autopilot 
applications. The data set can be used to evaluate the perfor- 
mance of stereo vision, visual tracking, visual odometry, 3D object 
detection and other applications in the vehicle environment. It 

l (x, y) = µ2 + µ2 + C (4) also contains real-world scenes for specific driving scenarios, such 
 

c(x, y) 
 2σxσy + C2 
σ 2 + σ 2 + C2 (5) 

The KITTI data set (url: http://www.cvlibs.net/datasets/kitti/) 
contains, for example, image data, laser data and GPS data. The x y data collection platform is shown in Fig. 7a. The platform is 

s (x, y) 
σxy  + C3

 

σxσy + C3 
(6) equipped with two grayscale cameras, two color cameras, one 64-

line 3D laser radar and a GPS navigation system. In this paper, 
SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ (7) 

where C1, C2, C3 are determined as follows: 

C1  = (k1L)2 , C2  = (k1L)2 , C3 = C2/2 (8) 

The loss function of the model consists of two parts: an un- 
supervised loss from binocular information and a supervised loss 
from laser sparse depth. Deriving the decoder from the Godard [7] 
model, our improved model first predicts the binocular disparity 
maps  disp∧

l      and  disp∧
r      from  the  left  image,  then  obtains  the 

reconstructed left image Il  and right image Ir  with the disparity 
estimation map. This is similar to images Il and Ir in Eq. (3). Next, 
the reconstructed maps disp′

l and disp′
r are generated according  

to the left and right parallax maps. Finally, the depth prediction 
map  disp∧

l     is  obtained  according  to  the  left  disparity  estimation 
map  depth∧

l   .  Based  on  the  above  intermediate  results,  the  final 
loss of the model is obtained according to the semi-supervised 
model with loss function architecture, as shown in Fig. 6. The loss 

binocular RGB image data and laser radar data in the KITTI data 
set are used for the experiment. The RGB image and the laser 
sparse depth information are shown in Fig. 7b. 

 
4.2. Experimental setup and experimental environment 

 
In order to verify the effectiveness  of the  fusion model  with 

the accuracy of depth prediction,  we  set  up  experiments  based 
on the following two comparative groups: (1)  using  binocular  
data and 64-line laser depth data to train  the  network  model,  then 
verifying the effectiveness by adding sparse information as a 
comparison with existing unsupervised algorithms; (2) extracting 
sparse depth data from the corresponding depth information as 
four-, eight-, 16-, 32- and 64-line laser scanning. The improved 
model was trained and evaluated, and the influence of different 
laser line numbers on depth prediction was also evaluated. 

This paper uses the KITTI image data set as experimental data. 
The data set is divided according to the partitioning method for 

as urban, rural, campus and highway scenes. 

with distortion. As the SSIM features highly in images from nature 
images, it can measure the quality of the image in terms of the 

i,
 

compression. 
Compared with the PSNR, the SSIM (structural similarity in- 

dex) is a quality evaluation index that calculates the pixel cor- 

α 

i,
 

1 

http://www.cvlibs.net/datasets/kitti/
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depth prediction sub-tasks. It contains 86,000 frames of image 
data: 43,000 image frames comprise the training set, while the 
test set has 34,000 image frames with corresponding laser scan- 
ning data. In the model for the training process, we employ data 
augmentation to increase the data set which uses the following 
methods: horizontal flip image, gamma adjustment, random ad- 
justment of color channels, and contrast- and brightness-adjusted 
methods. 

The laser sampling method is different from the random sam- 
pling method with the KITTI experimental data set as in [24]. Our 
method extracts the laser scanning of plane data as four, eight, 16 
and 32 lines according to the structure information from 64-line 
laser radar. 

According to the Velodyne HDL-64e user manual, the longi- 
tudinal scanning angle of the lidar is    24.8o    +2.0o, as shown    
in Fig. 8 (left). The spatial laser scan involves a space rotation 
around 360o, and the laser point set in the experimental data set 
is distributed in this lidar space. Since the longitudinal angle of 
each line is the same, the lidar space is divided into 64 sub-spaces 
with an angle of 0.42o, and the real depth information required 
for the experiment is extracted from 64 sub-spaces with a fixed 
step size. The laser sampling result is shown in Fig. 8 (right). 

In the experiment, we conduct a comparison of the depth pixel 
ratio with different laser sampling lines. The results are shown 
in Table 1, which shows that the true depth information of the 
sampled KITTI data set is very sparse. 



  
 

 
 

Table 1 

 
 

RMSE is reduced by 1.638, and the depth prediction accuracy δ1 
Pixel ratios with the known depth of the sample results.    

Number  of laser lines 4 8 16 32 64 
   Depth pixel ratio 1.40 2.70 4.50 9.70 19.60  

 
Table 2 
Comparison of improved unsupervised algorithms and mainstream algorithms. 

is increased by 5.6%. 
From the experimental comparison, we can see that the un- 

supervised algorithm significantly improves prediction accuracy 
compared to the current mainstream supervised algorithm, which 
is due to the addition of the intrinsic constraint between binoc- 
ular images. At the same time, compared with the supervised 

 
Eigen et al. [1] 

RMSE 

7.216 

Rel 

0.228 

δ1 
67.9 

δ2 
89.7 

δ3 
96.7 

algorithm, the sparse laser depth information makes the model 
prediction closer to the real distribution. This validates the ef- 

Garg et al. [6] 5.104 0.169 74.0 90.4 96.2 fectiveness of the added sparse laser depth information to im- 
Godard et al. [7] 5.849 0.141 81.8 92.9 96.6 prove the accuracy of final depth prediction. The depth prediction 
Godard et al. [7] + CS 
Liu et al. [25] 
Zhou et al. [26] 
Mahjourian et al. [26] 

5.763 
6.523 
6.565 
6.220 

0.136 
0.275 
0.275 
0.250 

83.6 
67.8 
71.8 
76.2 

93.5 
89.5 
90.1 
91.6 

96.8 
96.5 
96.0 
96.8 

examples of our improved model are shown in Fig. 9. 
It can be seen from the improved unsupervised depth pre- 

diction  algorithm  renderings  that  the  depth prediction results 
Yin et al. [27] 5.737 0.232 84.6 93.4 97.2 already contain obvious object contour information, such as ve- 
Ours (with 64 lasers) 4.211 0.124 86.2 94.3 97.4 hicles, pedestrians, plants on both sides of the road, and road 

      signs. 
 

4.3. Comparison 
 

In order to confirm the addition of sparse laser information, 
which can effectively improve the accuracy of depth prediction, 
we perform a comparative experiment with other mainstream 
algorithms. In this experiment, a binocular image and laser depth 
information are used from the KITTI data set. In this comparison, 
each algorithm is performed 20 times on the training data set, 
with a batch size of 20. The final evaluation results are shown in 
Table 2. 

It can be seen from the experimental results that the addi- 
tion of sparse real laser depth information makes a significant 
improvement to prediction accuracy. Compared with the ex- 
isting supervised depth prediction algorithm [1], the improved 
unsupervised depth prediction algorithm reduces the root mean 
square error (RMSE) by 41.6%, and the depth prediction accuracy 
from 67.9% to 86.2%. Compared with the existing unsupervised 
prediction algorithm [7] (without the Cityscapes data set), the 

For the processing speed of this algorithm, the module with 
the largest amount of computation is the depth prediction of 
CNN, and this module has only the operation of convolution, and 
no function of neural network. Therefore, our algorithm will be 
faster than the normal CNN algorithm for image classification 
and object detection. According to our experiments, the inference 
time of our algorithm is less than 0.05 s per frame, and it is more 
suitable than real-time processing. 

To further quantify the impact of sparse real depth informa- 
tion on unsupervised predictive models, we designed a second set 
of comparative experiments. We extracted the sparse depth data 
corresponding to the four-, eight-, 16-, 32- and 64-line lasers as 
supervised information and added them to the model for model 
training and evaluation. The final prediction results are shown in 
Table 3. 

It can be seen from the experimental results of lasers with 
different line numbers that, as the linearity of the number of laser 
lines increases, the accuracy of depth prediction tends to increase 
as well. This indicates that the sparse supervision information is 
effective for improving the prediction accuracy of the model. 



  
 

 
 

 
 
 

Table 3 

 

 
the advantages and disadvantages of supervised learning and 

The effect of different laser line numbers on the prediction results.  
 

 RMSE Rel δ1 δ2 δ3 
Exp. 1 (4 lines) 5.104 0.159 84.1 93.4 97.2 
Exp. 2 (8 lines) 4.976 0.148 84.7 93.8 97.2 
Exp. 3 (16 lines) 4.685 0.134 85.4 93.8 97.3 
Exp. 4 (32 lines) 4.519 0.126 85.9 94.1 97.4 
Exp. 5 (64 lines) 4.211 0.124 86.2 94.3 97.4 

 
 

4.4. Applied experiment 
 

This research work is suitable for supporting the work of the 
unmanned sweeping vehicle project. The unmanned sweeping 
vehicle platform is shown in Fig. 10 (a), which is equipped with 
a binocular camera, 16-line laser radar and GPS equipment. The 
depth prediction algorithm, based on our improved method, plays 
an important role in obtaining 3D structural information on the 
environment and enabling high-level semantic segmentation for 
path planning. 

In this application, the trained model with the KITTI data   
set can be applied to our university scene as well. The depth 
prediction results are shown in Fig. 10b. From the prediction 
results, clearer contour information of the object can be obtained 
and the predicted depth image can reflect the true 3D structure 
as well. 

 
5. Conclusion 

 
This paper first introduces the unsupervised depth prediction 

algorithm with the binocular parallax images. Further, we analyze 

unsupervised learning. Then, an improved semi-supervised depth 
prediction model combining these two learning strategies is pro- 
posed. The improved model utilizes the unsupervised prediction 
of binocular images by introducing sparse laser depth informa- 
tion. Finally, based on the KITTI data set, two sets of comparative 
experiments are carried out to confirm the effectiveness of other 
mainstream models. In addition, the depth prediction experiment 
also considers the influence of different numbers of laser lines. 
Finally, the effect of the improved algorithm is demonstrated on 
our unmanned sweeping platform, with depth rendering images 
from our university scene. 
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