
A NATURE-INSPIRED FEATURE SELECTION APPROACH BASED
ON HYPERCOMPLEX INFORMATION

A PREPRINT

Gustavo H. de Rosa, João P. Papa
Department of Computing
São Paulo State University
Bauru, São Paulo - Brazil

gustavo.rosa@unesp.br, joao.papa@unesp.br

Xin-She Yang
School of Science and Technology

Middlesex University
London, United Kingdom
x.yang@mdx.ac.uk

January 15, 2021

ABSTRACT

Feature selection for a given model can be transformed into an optimization task. The essential idea
behind it is to find the most suitable subset of features according to some criterion. Nature-inspired
optimization can mitigate this problem by producing compelling yet straightforward solutions when
dealing with complicated fitness functions. Additionally, new mathematical representations, such as
quaternions and octonions, are being used to handle higher-dimensional spaces. In this context, we
are introducing a meta-heuristic optimization framework in a hypercomplex-based feature selection,
where hypercomplex numbers are mapped to real-valued solutions and then transferred onto a boolean
hypercube by a sigmoid function. The intended hypercomplex feature selection is tested for several
meta-heuristic algorithms and hypercomplex representations, achieving results comparable to some
state-of-the-art approaches. The good results achieved by the proposed approach make it a promising
tool amongst feature selection research.

Keywords Meta-heuristic optimization · Hypercomplex spaces · Feature selection

1 Introduction

Optimization techniques became more and more popular in the last few years. Beneficial in numerous applications,
ranging from engineering [1, 2], medicine [3, 4] to machine learning fine-tuning [5, 6, 7, 8], they provide suitable
solutions and virtually none human interaction with the modeling process, leaving the burden of choosing parameters to
the model itself. In this context, most of the obstacles described by non-convex mathematical functions [9] requires
more robust optimization approaches rather than conventional optimization methods.

Meta-heuristics algorithms, usually referred to as nature-inspired, or even to swarm- or evolutionary-based algorithms,
gained great attention in the last years, attempting to solve optimization problems in a more appealing way than
traditional methods. These so-called nature techniques work without derivatives, thus being suitable for problems with
high dimensional spaces. Even though they provide outstanding results in different applications, they can still get
trapped into local optimal points. Thus, an important question is how to run these algorithms in the case of complex
objective functions. One can refer to hybrid variants [10], aging mechanisms [11], and fitness landscape analysis [12]
as some distinct strategies used to deal with this issue.

As mentioned above, the problem of selecting possible parameters can be solved as an optimization problem, where
a subset of parameters or features can be used to calculate the value of a fitness function. This is similar to feature
selection, and it is usually classified into two divisions: (i) wrapper approaches [13], and (ii) filter-based [14]. The
former methods use the output of some classifier (e.g., classification accuracy) to control the optimization method.
Conversely, filter-based ones do not consider this information.

ar
X

iv
:2

10
1.

05
65

2v
1

 [
cs

.N
E

]
 1

4
Ja

n
20

21

A PREPRINT - JANUARY 15, 2021

One can presume that feature selection is a straightforward solution that automatizes the choice of parameters. However,
it is still necessary to select an appropriate fitness function, which is regularly correlated to the problem’s nature. Also,
most machine learning problems deal with high-dimensional data, thus amplifying the problem of exploring the search
space. An intriguing way to tackle this obstacle is to use a more complex representation of the search space, the
so-called hypercomplex search space. The goal behind handling hypercomplex spaces is based on the possibility of
having more natural fitness landscapes, although it has not been mathematically proved yet. Nevertheless, the results
achieved previously sustain such a hypothesis [15, 16, 17, 18].

Normalized quaternions, also known as versors, are broadly used to describe the orientation of objects in three-
dimensional spaces, being extremely efficient in performing rotations in such spaces [19]. Another intriguing addition
of quaternions are the octonions, comprised of eight dimensions [20]. Even though they are not well known in the
literature, they have compelling traits that make them suitable for special relativity and quantum mechanics, among
other research specialties [21, 22]. However, to the best of our knowledge, they have not been used to embed search
spaces in meta-heuristic feature selection so far.

This study considers 8 meta-heuristic techniques, among with their quaternion- and octonion-based versions, validated
under 20 different datasets, proving the robustness of quaternionic and octatonic representations for hypercomplex-
embedded search spaces. Therefore, we believe this paper can serve as a foundation for prospective research regarding
hypercomplex representations in the context of meta-heuristic-based feature selection.

The rest of this paper is organized as follows. Sections 2 and 3 present the theoretical background related to
hypercomplex-based spaces (quaternions and octonions), and the proposed approach for hypercomplex-based feature
selection, respectively. Section 4 discusses the methodology and the computational setup adopted in this paper, while
Section 5 presents the numerical results. Finally, Section 6 states conclusions and future works.

2 Hypercomplex-based Spaces

2.1 Complex Numbers

The following problems can be solved with the modern methods of numerical analysis:

x2 + 1 = 0, (1)

in spite of the fact that x2 = −1 cannot be a rational solution as any number square root must be positive, x ∈ <.

The problem (1) can be solved using the imaginary representation:

i2 = −1, (2)
although this may not appear to be logically correct. The imaginary numbers assemble a structure called complex
numbers, which is formed by real and imaginary terms, as follows:

c = h0 + h1i, (3)
where h0, h1 ∈ < and i2 = −1. One can perceive that it is feasible to obtain a real number by using h1 = 0, or even
an imaginary number by placing h0 = 0. Thus, the complex numbers deal with the generalization of both real and
imaginary numbers.

One striking operation that performs positively well in a two-dimensional space is the rotation of complex numbers.
Firstly, let us map a complex number on a two-dimensional grid, called complex plane, where the horizontal axis holds
the real part mapping (Re), and the vertical axis is accountable for the imaginary part (Im). This description is depicted
by Figure 1.

One can see that we need to multiply a complex number by i for each 90-degree rotation in the complex plane. To
clarify this, let us consider a random point denoted by r = i+ 1. Also, let x be the result of the multiplication of r by i,
as follows:

x = ri = i+ i2 = −1 + i. (4)

Now, we can obtain a singular y point by multiplying again x by i:

y = xi = −i+ i2 = −1− i. (5)

2

A PREPRINT - JANUARY 15, 2021

Re

Im

1-1

i

-i

Figure 1: Representation of a complex plane, which is used to map complex numbers onto a two-dimensional space.

Moreover, if we multiply the result y by i, a w point can be achieved as follows:

w = yi = −i− i2 = 1− i. (6)

Finally, by multiplying w with i, we conclude:

z = wi = i− i2 = 1 + i, (7)
where z is the same first defined position, i.e., r = z. Figure 2 illustrates the above calculations.

Re

Im

1-1

i

-i

√2-√2

√2i

-√2i

r = z = 1 + ix = -1 + i

y = -1 - i w = 1 - i

Figure 2: Representation of complex numbers’ rotation throughout the complex plane.

2.2 Hypercomplex Numbers

In a particular behavior, we can extend the idea of complex numbers by adding new imaginary terms, producing the
so-called hypercomplex numbers. This concept also allows rotations to be performed in higher-dimensional complex
spaces. In this work, we consider two traditional hypercomplex representations: quaternions and octonions.

2.2.1 Quaternions

A quaternion q is a hypercomplex number, composed of real and complex parts, being q = h0 + h1i + h2j + h3k,
where h0, h1, h2, h3 ∈ < and i, j, k are imaginary numbers (also known as “fundamental quaternions units"). This
assumption is hold by the following set of equations:

ij = k, (8)

3

A PREPRINT - JANUARY 15, 2021

jk = i, (9)

ki = j, (10)

ji = −k, (11)

kj = −i, (12)

ik = −j, (13)

and
i2 = j2 = k2 = −1. (14)

Essentially, a quaternion q is a four-dimensional space representation over the real numbers, i.e., <4.

Given two arbitrary quaternions q1 = g0 + g1i+ g2j + g3k and q2 = h0 + h1i+ h2j + h3k, the quaternion algebra
defines a set of main operations [23]. The addition operation, for instance, can be defined as follows:

q1 + q2 = (g0 + g1i+ g2j + g3k) + (h0 + h1i+ h2j + h3k) (15)
= (g0 + h0) + (g1 + h1)i+ (g2 + h2)j + (g3 + h3)k,

while the subtraction is defined as follows:

q1 − q2 = (g0 + g1i+ g2j + g3k)− (h0 + h1i+ h2j + h3k)

= (g0 − h0) + (g1 − h1)i+ (g2 − h2)j + (g3 − h3)k. (16)

Morever, Fister et al. [15, 16] introduced two other operations, qrand and qzero. The former initializes a given quaternion
with values drawn from a Gaussian distribution N , and is defined as follows:

qrand() = {gi = N (0, 1) | i ∈ {0, 1, 2, 3}}. (17)

The latter equation initializes a quaternion with zero values, as follows:

qzero() = {gi = 0 | i ∈ {0, 1, 2, 3}}. (18)

2.2.2 Octonions

Octonions are a natural extension of quaternions and were discovered autonomously by John T. Graves and Arthur
Cayley around 1843. An octonion is composed of seven complex parts and one real-valued term, being defined as
follows:

o = h0e0 + h1e1 + h2e2 + . . .+ h7e7, (19)

where hi ∈ < and ei are the imaginary numbers, i = 0, . . . , 7. Commonly, e0 = 1 is used in order to obtain the
real-valued term of the octonion.

The addition, subtraction, and norm equations are computed likewise to the quaternions’ formulae, giving us a clear
implementation framework in order to manipulate several hypercomplex representations.

4

A PREPRINT - JANUARY 15, 2021

3 Feature Selection

This section outlines the proposed method for meta-heuristic-based feature selection. One can understand the feature
selection process as a method that decides whether a feature should be selected or not (boolean) in order to solve a
given problem. As traditional optimization algorithms use a continuous-valued search space, we need to shape the
search space into an n-dimensional binary structure, where solutions are selected across the edges of a hypercube.
Furthermore, as our problem is to select or not a feature, each solution individual is now an n-dimensional binary array,
where each dimension corresponds to a specific feature and the values 1 and 0 indicate whether this feature will or will
not be part of the new set.

Concerning conventional optimization algorithms, the solutions are found upon continuous-valued positions of the
search space. In order to accomplish this binary-valued individual, one can restrain the new solutions to binary values
only:

S(xji) =
1

1 + e−xj
i

, (20)

xji =

{
1 if S(xji) > α,
0 otherwise

(21)

in which α ∼ U(0, 1), and x ∈ < stands for a possible solution.

Equation 20 represents the transfer function, which maps real-valued solutions into binary-valued ones. Note that any
transfer functions can be used to fulfill this purpose. In this work, we are using a sigmoid function (Equation 20), which
is illustrated by Figure 3 to map bounded real-valued solutions1 is bounded within the interval [−20, 20]. and generate
a probability. Further, the mapped value is compared against a uniform distribution sampling in order to obtain the
binary output (Equation 21).

-20 -15 -10 -5 0 5 10 15 20

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x
)

Figure 3: Sigmoid transfer function f(x) = 1
1+e−x bounded in [−20, 20].

3.1 Hypercomplex Feature Selection

A hypercomplex-based feature selection strategy does not deviate too much from the regular method. One can encode
the common search space into a higher-dimensional space, by applying the power of quaternions or octonions. When

1Each real-valued solution

5

A PREPRINT - JANUARY 15, 2021

conducting the meta-heuristic algorithm through the hypercomplex space towards a feasible solution, a crucial operator
that needs to be defined is the p-norm, which is responsible for mapping hyper-complex values to real numbers. Let q
be a hypercomplex number with real coefficients {hd}Dd=1, one can compute the Minkowski p-norm as follows:

‖q‖p =

(
D∑

d=1

|hd|p
)1/p

(22)

where D is the number of dimensions of the space (2 for complex numbers, 4 for quaternions and 8 for octonions,
for instance) and p ≥ 1. Common values for the latter variable are 1 or 2 for the Taxicab and Euclidean2 norms,
respectively. Hence, one can see the p-norm as a generalization of such distance operators.

Prior to the transfer function activation, there is an additional equation, called the Span function, which is responsible
for mapping the norm’s output between the lower and upper bounds, as follows:

qspan() = (bu − bl)
‖q‖p
D1/p

+ bl, (23)

where bl and bu stands for the lower and upper bounds, respectively.

Figure 4 illustrates an encoding of a solution vector x into a quaternionic space, where xji depicts the i-th component
of the hypercomplex number for the j-th decision variable. The same approach can be applied to octatonic spaces by
extending the quaternion q (four components) to an octonion o (eight components).

x i
1 x i

2 x i
3 … x i

n

a
1

b
1

c
1

d
1

q
1

a
2

b
2

c
2

d
2

q
2

a
3

b
3

c
3

d
3

q
3

a
n

b
n

c
n

d
n

q
n

…

…

…

…

…

Figure 4: Quaternionic hypercomplex encoding of a solution vector x, such that xj
i stands for the i-th component of the hypercomplex

number for the j-th decision variable.

4 Methodology and Setup

The idea behind this work is to model the task of selecting the most suitable features for a given problem through a
meta-heuristic optimization process. As stated in Section 1, feature selection stands for a proper selection of features,
reducing a particular problem’s dimensionality and usually enhancing its performance. Also, as the proposed approach
is a wrapper-based one, there is a need to define an objective function that will conduct the optimization process.
Therefore, the proposed approach aims at selecting the subset of features that minimize the classification error (maximize
the classification accuracy) of a given supervised classifier over a validation set. Although any supervised pattern
recognition classifier could be applied, we opted to use the Optimum-Path Forest (OPF) [24, 25] since it is parameterless
and has a fast training procedure. Essentially, the OPF encodes each dataset’s sample as a node in a graph, whose
connections are defined by an adjacency relation. Its learning process aims at finding prime samples called prototypes
and trying to conquer the remaining samples by offering them optimum-paths according to a path-cost function. In the
end, optimum-path trees are achieved, each one rooted at a different prototype node.

2In this work, we opted to use the Euclidean Norm as mapping function.

6

A PREPRINT - JANUARY 15, 2021

Dataset Task # Training Samples # Testing Samples # Features

Arcene Mass Spectrometry 100 100 10,000

BASEHOCK Text 997 996 4,862

COIL20 Face Image 770 770 1,024

DNA Biological 2,000 1,186 180

Isolet Spoken Letter Recognition 780 780 617

Lung Biological 102 101 3,312

Madelon Artificial 2,000 600 500

MPEG7-BAS Image Descriptor 700 700 180

MPEG7-Fourier Image Descriptor 700 700 126

Mushrooms Biological 4,062 4,062 112

NTL-Commercial Energy Theft 2,476 2,476 8

NTL-Industrial Energy Theft 1,591 1,591 8

ORL Face Image 200 200 1,024

PCMAC Text 972 971 3,289

Phishing Network Security 5,528 5,527 68

Segment Image Segmentation 1,155 1,155 19

Sonar Signal 104 104 60

Splice Biological 1,000 2,175 60

Vehicle Image Silhouettes 423 423 18

Wine Chemical 89 89 13

Table 1: Employed datasets used in the computations

.

Given a set of hypercomplex candidate solutions {s}Si=1, where s = {s1, s2, . . . , sj} | j ∈ {1, 2, . . . , N}, such that S
stands for meta-heuristic candidates and N for the number of decision variables (number of the problem’s features
depicted in Table 1), we wish to learn the best set of features F ?. Namely, we want to solve the following optimization
problem:

F ? = {fi(si, F) | i ∈ [1, S]} ,
st. 1 ≤ F ≤ N. (24)

where fi(si, F) stands for the fitness function (OPF accuracy over validation set) of candidate i based on its binary
solution si, which is responsible for activating or deactivating the set of features F . Finally, the meta-heuristic intrinsic
mechanics3 are executed to identify the best solution so far and to update the candidates’ position in the hypercomplex
space.

4.1 Datasets

Table 1 describes all the datasets utilized in this work. We selected 20 datasets that diversify within the number of
samples, classes, and features, suggesting a more strong validation under distinguished scenarios. The datasets were
downloaded from LibSVM’s project4 and Arizona State University’s (ASU) repository5, being already quantized for
categorical features and processed for missing values6. As we need a unique set to guide the optimization process, not
being the test one, we partitioned all datasets’ training sets in half, composing the so-called validation set. Therefore,
we use 25% for the training step, 25% for the optimization task validation, and the remaining 50% to assess the
experimental validation (testing step).

3Note that some meta-heuristic might start their searching procedure with every possible initial features, while others might start
with a randomly subset of the initial features.

4https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets
5http://featureselection.asu.edu/datasets.php
6One can find their post-processed versions at: http://recogna.tech

7

A PREPRINT - JANUARY 15, 2021

Algorithm Parameters

ABC number of trials = 1, 000

AIWPSO c1 = 1.7 | c2 = 1.7 | w = [0.5, 1.5]

BA f = [0, 100] | A = 1.5 | r = 0.5

CS β = 1.5 | p = 0.25 | α = 0.8

FA α = 0.2 | β = 1.0 | γ = 1.0

FPA β = 1.5 | p = 0.8

PSO c1 = 1.7 | c2 = 1.7 | w = 0.7

Table 2: Parameter settings for the meta-heuristic algorithms considered in the work.

4.2 Computational Setup

The source code used in this work comes from two libraries: LibOPT7 and LibDEV8. Both libraries are implemented in
the C language and have been extensively used throughout scientific research. The LibOPT library is a collection of
meta-heuristic optimization techniques, while the LibDEV library provides an integration environment, e.g., feature
selection conducted over meta-heuristic optimizations. One can refer to [26] in order to understand how it is possible to
work under the LibOPT environment, i.e., how to design a hypercomplex optimization task.

To perform a reasonable comparison among distinct meta-heuristic techniques, we must rely on mathematical methods
that will sustain these observations. The first step is to decide whether to use a parametric or a non-parametric
statistical test [27]. Unfortunately, we can not consider a normality state from our numerical trials due to the aleatory
and non-deterministic factor derived from the meta-heuristic techniques, restraining our analysis to non-parametric
approaches.

Secondly, acknowledging that the results of our numerical trials are independent (i.e., classification accuracy) and
continuous over a particular dependent variable (i.e., number of observations), we can identify that the Wilcoxon
signed-rank test [28] will satisfy our obligations. It is a non-parametric hypothesis test used to compare two or more
related observations (in our case, repeated measurements over a certain meta-heuristic) to assess whether there are
statistically significant differences between them.

For every dataset, each meta-heuristic was evaluated under a 2-fold cross-validation9 with 25 runs. Additionally, for
every meta-heuristic, 15 agents (particles) were used over 25 convergence iterations. To provide a thorough comparison
between meta-heuristics, we have chosen different techniques, ranging from swarm-based to evolutionary-inspired ones,
in the context of feature selection:

• Artificial Bee Colony (ABC) [29];
• Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO) [30];
• Bat Algorithm (BA) [31];
• Cuckoo Search (CS) [32];
• Firefly Algorithm (FA) [33];
• Flower Pollination Algorithm (FPA) [34];
• Particle Swarm Optimization (PSO) [35].

Note that, for each selected meta-heuristic, we will also present their quaternion- and octonion-based versions, being
the former preceded by a Q prefix and the latter preceded by an O prefix. Table 2 presents the chosen parameter setting
for every meta-heuristic technique10. We overlooked quaternion- and octonion-based algorithms from the table, as their
parameters are the same as their original version.

Concerning ABC, we only need to set the number of trial limits for each food source. AIWPSO defines minimum
and maximum weight as a w interval, and c1 and c2 as the control parameters. BA has the minimum and maximum

7https://github.com/jppbsi/LibOPT
8https://github.com/jppbsi/LibDEV
9Remember that the training set was again split in half to form the validation set, used during the optimization process.

10Note that these values were empirically chosen according to their authors’ definition.

8

A PREPRINT - JANUARY 15, 2021

frequency ranges defined by f interval, as well as the loudness parameter A and pulse rate r. With CS, we demand to
set up β, which is used to compute the Lévy distribution, as well as p, which is the probability of replacing worst nests
by new ones and α which is the step size. Regarding FA, we have α for calculating the randomized parameter, as well
as the attractiveness parameter β0 and the light absorption coefficient γ. FPA requires the β parameter, used to compute
the Lévy distribution and p, which is the probability of local pollination. Finally, PSO defines w as the inertia weight,
and c1 and c2 as the control parameters.

5 Numerical Results

This section presents the numerical results concerning the proposed experiments. Furthermore, it is divided into two
subsections, which are in charge of discussing the overall analysis and the convergence analysis, respectively.

In order to provide statistical analysis to the numerical results, we opted to bold the best results’ cells according to the
Wilcoxon signed-rank test with 5% of significance. In other words, it is possible to observe that, regarding a particular
column, every bolded cell achieved the most suitable accuracy, time, or number of features according to the statistical
test.

5.1 Overall Analysis

Table 3 describes all datasets’ average accuracy over the test set found by each meta-heuristic technique. A very
interesting fact to highlight is that for almost every dataset, at least one meta-heuristic technique was able to achieve a
performance comparable to the baseline approach, i.e., OPF classification using the whole dataset. On the other hand,
considering Arcene, Mushrooms, NTL-Commercial, NTL-Industrial, and Splice datasets, meta-heuristic techniques
outperformed the baseline approach.

Regarding only meta-heuristic techniques and their hypercomplex versions, one can see that the hypercomplex-based
algorithms were able to achieve comparable accuracy values. In some cases, they even outperformed their naïve
versions, e.g., QFA, QFPA, OFPA, and QPSO on Arcene; QAIWPSO on COIL20; QAIWPSO on Madelon; QCS,
QFPA, and OFPA in Mushrooms; QABC and OABC in ORL; QABC, QBA, and OBA in PCMAC; QABC, OABC,
OAIWPSO, QFA, OFA, QFPA and OFPA in Phishing; OABC and QPSO in Splice; QCS and OCS in Wine. In such case,
outperforming means that a particular technique was capable of achieving a higher accuracy than another technique.
Essentially, the Wilcoxon signed-rank test assess whether there was a statistical similarity between the accuracies
obtained by each one of the techniques. Thus, as the statistical test was conducted over the independent accuracies
for each meta-heuristic technique, it is possible to observe that the most significant techniques (bolded ones) in the
aforementioned cases were also the ones that achieved higher accuracy than their naïve versions.

ABC QABC OABC AIWPSO QAIWPSO OAIWPSO BA QBA OBA CS QCS OCS FA QFA OFA FPA QFPA OFPA PSO QPSO OPSO BASELINE

Arcene 83.13% 83.04% 83.13% 83.50% 82.89% 82.52% 82.83% 82.72% 82.61% 82.41% 82.38% 82.75% 82.70% 83.04% 82.55% 82.72% 82.90% 82.92% 82.26% 83.21% 82.47% 81.58%

BASEHOCK 79.49% 79.07% 79.98% 79.67% 79.86% 78.84% 79.99% 79.58% 79.73% 80.14% 78.87% 79.83% 79.25% 79.99% 79.62% 79.80% 79.00% 79.02% 79.63% 79.59% 80.13% 82.12%

COIL20 99.04% 99.09% 99.03% 99.02% 99.13% 99.07% 99.09% 99.08% 99.08% 99.12% 99.09% 99.07% 99.08% 99.06% 99.09% 99.09% 99.04% 99.10% 99.13% 99.07% 99.04% 99.30%

DNA 79.43% 79.58% 79.17% 78.95% 78.70% 78.64% 79.08% 79.32% 77.55% 77.90% 77.49% 78.06% 78.69% 79.23% 78.97% 79.17% 79.30% 79.30% 79.51% 78.71% 79.26% 82.33%

Isolet 90.79% 90.81% 90.72% 90.89% 90.77% 90.83% 90.55% 90.71% 90.77% 90.57% 90.71% 90.70% 90.68% 90.89% 90.73% 90.77% 90.67% 90.69% 90.67% 90.71% 90.66% 91.30%

Lung 93.08% 93.13% 92.68% 91.95% 92.43% 92.26% 92.61% 92.66% 92.77% 92.20% 92.47% 92.56% 92.70% 92.54% 92.49% 92.88% 92.71% 92.87% 92.83% 91.89% 92.51% 93.24%

Madelon 63.42% 62.69% 63.00% 62.73% 64.52% 63.21% 63.85% 62.25% 65.12% 63.48% 62.69% 63.63% 63.94% 63.23% 62.79% 62.81% 63.70% 63.41% 62.87% 63.03% 62.47% 64.37%

MPEG7-BAS 88.78% 88.85% 88.90% 88.91% 88.90% 88.90% 88.80% 88.98% 88.81% 88.92% 88.97% 88.81% 88.89% 88.99% 88.83% 88.81% 88.85% 88.81% 88.90% 88.96% 88.88% 89.11%

MPEG7-Fourier 72.12% 71.94% 72.00% 71.91% 71.91% 72.18% 72.19% 72.06% 72.18% 69.46% 70.00% 70.49% 71.78% 71.86% 71.96% 72.02% 72.19% 72.16% 72.12% 72.22% 72.14% 72.09%

Mushrooms 96.19% 96.57% 98.81% 96.61% 97.63% 97.43% 95.81% 96.61% 94.04% 97.11% 97.40% 94.62% 96.90% 94.80% 96.31% 94.14% 95.68% 97.09% 96.09% 95.39% 96.09% 94.36%

NTL-Commercial 92.73% 92.59% 92.16% 91.84% 90.78% 92.39% 92.42% 92.17% 91.93% 79.22% 76.07% 79.99% 91.71% 91.99% 92.05% 92.17% 92.39% 91.76% 92.52% 92.57% 91.93% 61.45%

NTL-Industrial 95.77% 95.36% 95.31% 95.40% 95.37% 95.42% 95.58% 95.04% 95.22% 77.90% 82.95% 79.16% 94.80% 95.82% 94.64% 95.05% 94.79% 94.77% 94.99% 94.84% 94.54% 67.86%

ORL 93.56% 93.75% 93.60% 93.67% 93.54% 93.46% 93.57% 93.84% 93.57% 93.62% 93.60% 93.53% 93.58% 93.60% 93.69% 93.66% 93.56% 93.72% 93.75% 93.57% 93.49% 93.25%

PCMAC 71.97% 72.24% 71.35% 72.44% 71.16% 71.58% 71.18% 71.83% 73.18% 72.03% 72.32% 71.98% 71.99% 71.50% 72.19% 72.78% 72.54% 72.36% 71.81% 71.64% 72.35% 72.75%

Phishing 84.53% 85.36% 86.56% 84.74% 84.02% 85.99% 84.92% 85.49% 84.76% 85.40% 84.90% 84.06% 83.35% 85.26% 85.19% 84.40% 84.40% 85.61% 84.79% 84.10% 85.93% 86.67%

Segment 97.33% 97.19% 97.25% 97.15% 97.05% 97.20% 97.19% 97.20% 97.06% 96.22% 96.35% 95.95% 97.29% 96.82% 97.21% 97.13% 97.20% 97.19% 97.17% 97.31% 96.83% 97.34%

Sonar 79.40% 81.72% 79.57% 81.21% 81.56% 79.89% 81.20% 80.15% 80.62% 80.44% 80.94% 80.76% 80.32% 80.20% 80.76% 79.80% 80.53% 80.80% 80.78% 80.14% 80.77% 81.75%

Splice 71.64% 71.33% 71.99% 71.87% 71.72% 70.99% 70.93% 71.14% 71.32% 69.53% 69.56% 70.21% 71.32% 71.33% 71.50% 72.30% 71.83% 71.08% 70.81% 71.68% 71.35% 70.89%

Vehicle 78.17% 77.41% 77.62% 77.11% 77.25% 77.42% 77.60% 77.51% 76.98% 76.74% 76.20% 76.34% 77.25% 76.79% 77.11% 77.46% 77.09% 77.71% 76.93% 76.53% 76.85% 77.63%

Wine 96.21% 96.46% 96.58% 95.94% 95.62% 95.96% 96.67% 96.63% 96.23% 94.87% 95.51% 95.55% 96.42% 96.22% 95.99% 96.16% 96.09% 95.81% 96.23% 96.39% 95.98% 95.80%

Table 3: Average accuracy achieved over the test set considering all datasets.

9

A PREPRINT - JANUARY 15, 2021

An interesting fact emerging from Table 4 is that CS was able to achieve the lowest number of features in nearly every
dataset. Furthermore, when standard CS did not deliver the lowest number of features, its quaternionic and octatonic
representations were able to achieve this intent11.

Even though most algorithms were able to diminish the features’ space size and obtain statistically similar accuracy
within respect to the baseline method, in some cases they reached a slightly lower accuracy than the original OPF
classification. However, it should be noted that in the case of the BASEHOCK dataset, where even the baseline
classification obtained the best accuracy, all other meta-heuristic techniques could reduce by about 35% of the number
of features while scoring 2-3% lower accuracy than OPF.

ABC QABC OABC AIWPSO QAIWPSO OAIWPSO BA QBA OBA CS QCS OCS FA QFA OFA FPA QFPA OFPA PSO QPSO OPSO BASELINE

Arcene 6462.88 6473.48 6482.36 6454.20 6492.80 6467.04 6476.72 6486.52 6512.96 6419.40 6453.76 6478.40 6466.00 6471.68 6491.80 6471.56 6481.52 6479.60 6450.84 6468.56 6505.52 10000.00

BASEHOCK 3166.92 3141.28 3142.16 3148.48 3149.76 3153.28 3167.52 3167.60 3170.32 3124.72 3143.72 3139.64 3152.16 3146.40 3156.52 3151.52 3131.08 3135.00 3149.40 3147.32 3147.68 4862.00

COIL20 670.04 666.16 663.92 658.92 664.12 668.84 667.56 668.28 674.88 654.52 660.52 664.56 666.12 664.44 667.00 663.56 664.08 666.44 664.40 666.80 666.88 1024.00

DNA 117.04 117.48 116.44 117.20 116.80 117.88 119.96 116.92 116.72 118.04 116.36 113.00 117.84 116.40 115.96 119.04 117.96 119.00 115.00 116.28 117.00 180.00

Isolet 407.08 401.12 398.16 396.24 399.12 401.08 399.48 403.36 408.84 393.40 398.64 401.40 402.52 397.88 399.76 402.20 397.68 400.32 397.24 397.88 399.72 617.00

Lung 2138.28 2132.52 2135.64 2125.32 2143.64 2147.60 2148.08 2151.12 2148.36 2130.36 2144.88 2143.84 2150.40 2143.88 2143.64 2136.52 2141.64 2147.96 2134.40 2145.24 2141.92 3312.00

Madelon 324.72 321.72 324.40 321.96 322.44 324.44 324.00 327.44 330.36 325.16 324.24 324.44 325.84 328.80 323.16 324.68 323.48 327.56 324.64 323.92 324.00 500.00

MPEG7-BAS 118.12 120.80 119.00 118.40 120.12 119.84 118.56 121.52 120.44 115.88 116.84 116.80 120.92 117.68 119.20 118.32 118.92 117.88 117.88 118.52 119.44 180.00

MPEG7-Fourier 81.08 82.08 81.88 82.52 81.04 82.36 84.36 84.40 83.08 81.12 81.48 82.64 82.64 82.92 81.24 82.36 82.84 83.04 83.88 82.44 81.32 126.00

Mushrooms 74.92 70.36 70.56 72.48 74.04 73.28 73.44 72.88 72.84 70.32 73.08 71.76 74.96 72.16 73.12 75.24 74.12 70.52 73.08 73.28 73.84 112.00

NTL-Commercial 5.72 5.60 5.60 5.84 5.76 5.76 5.68 5.76 5.56 5.04 5.04 4.84 5.68 5.72 5.44 5.64 5.68 5.64 5.68 5.48 5.44 8.00

NTL-Industrial 5.40 5.24 5.52 5.24 5.36 5.44 5.68 5.80 5.44 5.76 5.20 5.08 5.56 5.00 5.40 5.20 5.20 5.32 5.52 5.64 5.44 8.00

ORL 665.76 656.96 659.96 662.96 663.28 663.88 666.48 665.48 671.24 653.92 661.00 659.84 664.72 658.40 665.56 662.84 657.80 662.80 658.16 660.76 659.16 1024.00

PCMAC 2152.68 2114.28 2130.60 2132.16 2123.76 2128.32 2140.04 2137.88 2154.60 2112.16 2115.40 2123.12 2129.24 2126.48 2130.44 2135.56 2128.88 2130.92 2128.48 2126.76 2131.52 3289.00

Phishing 45.16 44.68 45.60 44.52 44.84 46.36 45.28 45.12 44.88 44.40 44.12 44.88 44.92 45.44 46.60 44.80 46.44 45.40 45.12 44.80 46.48 68.00

Segment 14.04 13.20 13.48 13.44 13.44 13.80 13.44 13.84 13.64 13.04 13.24 12.40 13.32 13.48 14.08 13.68 13.04 13.44 13.56 13.92 13.44 19.00

Sonar 40.24 39.40 38.80 39.00 39.76 40.84 40.04 37.96 39.12 39.52 39.64 39.48 37.92 38.24 40.28 39.76 39.08 40.32 39.48 38.24 39.96 60.00

Splice 40.48 39.72 39.72 40.68 40.24 40.28 40.56 38.80 40.64 38.76 39.40 40.04 39.28 40.40 40.92 40.40 39.92 40.48 40.04 40.44 39.80 60.00

Vehicle 13.40 12.68 12.72 12.84 12.00 12.28 12.60 12.96 13.40 11.92 12.20 12.08 12.84 12.72 13.00 13.08 13.28 12.76 13.52 12.52 13.16 18.00

Wine 9.20 9.04 9.24 8.40 9.04 9.12 9.28 9.00 9.56 9.04 8.80 8.88 9.04 9.08 9.48 9.00 9.32 8.76 9.28 8.92 9.48 13.00

Table 4: Average number of features used over the test set considering all datasets.

Table 5 shows that CS-based techniques completed the optimization runs in a significantly lower computation time
than every other technique. Additionally, Figures 5 and 6 illustrate a more in-depth comparison between CS and its
hypercomplex versions for four distinct datasets: DNA, NTL-Commercial, Phishing and Segment. One can observe that
Figure 5 represents the CS-based techniques behavior, where the best techniques are positioned in the top-left corner of
the graphic, i.e., best accuracy and lowest number of features. For the sake of brevity, we opted to show some datasets
that have discrepant data, i.e., datasets that have a low amount of features, being more susceptible when selecting a
subset of features. In such cases, any incorrect feature selection will depreciate the classification results, thus, making
the convergence process more unstable.

One can perceive that CS-based techniques encountered a feasible number of features, but not necessarily the best
accuracy. If one observes the difference between the best and the worst accuracy considering all datasets (except
NTL-based ones) and meta-heuristic techniques, there is not a single one that surpasses the 4.77% barrier. Nevertheless,
CS suffered in the NTL datasets (energy theft identification), which are highly unbalanced and have a relatively small
amount of features. As CS encountered the lowest number of features in such a low-dimensional dataset, it is possible
to observe that is has overfitted the optimization process to find the lowest number of possible features at the cost of
penalizing the classifier, hence, achieving a not suitable accuracy for these particular datasets.

Regarding the hypercomplex techniques, such as quaternion and octonion, it is possible to observe that they have an
extra computational loop per feature, due to its number of dimensions, e.g., 4 and 8. If the number of selected features
is sufficiently smaller to overcome this extra loop, the hypercomplex techniques will achieve a shorter computational
time than the conventional ones. For example, in a 100-features problem, the conventional technique loop lasts for
100 times, while the quaternion and octonion loops last for 400 and 800 times, respectively. If the quaternion-based
technique selects 25 features averagely while the octonion-based one selects 12.5 features averagely, both will perform
a loop that lasts for 100 times, being comparable to the conventional algorithm.

The results obtained in this study prove the promising use of meta-heuristic optimization techniques when selecting a
quasi-optimum subset of features while preserving its performance and discriminative aptitudes.

11QCS achieved the lowest number of features for the Phishing dataset while OCS achieved this goal for the DNA, NTL-
Commercial and Segment datasets.

10

A PREPRINT - JANUARY 15, 2021

ABC QABC OABC AIWPSO QAIWPSO OAIWPSO BA QBA OBA CS QCS OCS FA QFA OFA FPA QFPA OFPA PSO QPSO OPSO

Arcene 43.48s 42.11s 43.06s 21.59s 23.08s 23.45s 21.92s 23.97s 25.78s 7.81s 10.06s 11.68s 22.90s 27.62s 34.57s 22.59s 27.62s 31.83s 22.21s 22.70s 23.42s

BASEHOCK 1114.33s 1105.60s 1108.30s 563.38s 563.89s 566.88s 568.81s 571.82s 571.79s 189.89s 203.89s 203.53s 545.73s 543.84s 547.47s 564.81s 565.72s 567.54s 556.54s 558.63s 561.71s

COIL20 179.37s 181.11s 181.33s 90.92s 93.17s 93.01s 90.47s 92.77s 94.90s 30.19s 33.10s 33.57s 89.41s 88.91s 90.34s 92.62s 92.79s 94.25s 90.70s 91.86s 91.87s

DNA 240.43s 241.94s 242.54s 171.38s 171.86s 171.85s 124.60s 123.88s 123.78s 45.01s 46.74s 46.34s 121.66s 122.14s 122.58s 123.84s 125.02s 124.48s 171.20s 171.06s 169.50s

Isolet 135.52s 138.87s 138.42s 69.96s 70.40s 70.60s 69.60s 71.11s 71.01s 21.85s 25.73s 26.05s 68.44s 68.02s 69.73s 70.96s 71.09s 70.74s 68.78s 69.86s 69.86s

Lung 15.19s 15.07s 15.50s 7.84s 8.12s 8.42s 7.73s 8.60s 9.01s 2.76s 3.61s 4.17s 7.98s 9.61s 11.74s 7.98s 9.87s 11.24s 7.71s 7.78s 8.05s

Madelon 704.37s 698.42s 698.56s 354.86s 356.56s 357.16s 358.11s 359.54s 361.50s 120.80s 127.19s 128.23s 343.79s 341.46s 343.17s 355.31s 353.68s 354.26s 351.40s 352.89s 352.85s

MPEG7-BAS 38.05s 35.59s 37.25s 25.01s 25.71s 25.25s 18.78s 18.46s 18.67s 6.61s 7.29s 7.39s 18.96s 19.36s 19.17s 19.51s 18.89s 19.64s 25.40s 25.16s 25.06s

MPEG7-Fourier 27.92s 25.70s 25.78s 19.29s 19.54s 19.46s 13.74s 13.87s 13.97s 4.68s 5.00s 5.02s 13.31s 13.33s 13.25s 13.37s 13.17s 13.26s 18.91s 18.69s 18.87s

Mushrooms 791.66s 785.72s 785.15s 600.75s 600.03s 601.13s 405.80s 408.04s 409.10s 143.20s 151.30s 152.22s 398.83s 397.73s 398.85s 404.05s 403.06s 404.90s 597.34s 596.48s 595.58s

NTL-Commercial 272.72s 271.35s 270.80s 139.44s 138.38s 138.36s 139.15s 138.73s 138.41s 50.04s 49.76s 49.56s 132.70s 133.49s 133.30s 138.46s 137.85s 138.23s 138.58s 137.60s 137.83s

NTL-Industrial 113.70s 111.91s 111.74s 57.60s 56.71s 56.55s 57.79s 57.30s 57.27s 20.58s 20.62s 20.55s 54.88s 54.97s 54.58s 57.11s 57.30s 57.02s 57.68s 56.60s 56.46s

ORL 13.07s 13.05s 13.08s 6.73s 6.77s 6.93s 6.38s 6.96s 7.20s 2.07s 2.62s 2.82s 6.67s 7.56s 8.63s 6.87s 7.19s 7.67s 6.64s 6.79s 6.80s

PCMAC 751.25s 742.09s 744.23s 377.87s 381.31s 380.74s 382.81s 382.50s 386.86s 128.28s 136.87s 137.31s 365.66s 366.69s 370.00s 380.84s 382.02s 381.16s 374.06s 376.45s 377.26s

Phishing 1119.79s 1110.41s 1110.58s 943.66s 941.99s 939.85s 576.86s 578.64s 578.91s 206.02s 218.22s 218.06s 569.57s 567.55s 567.86s 574.09s 572.32s 573.75s 936.62s 933.18s 932.34s

Segment 72.41s 72.66s 72.15s 36.87s 36.99s 36.63s 37.23s 37.26s 37.11s 13.02s 13.43s 13.53s 35.18s 35.53s 35.46s 36.98s 37.02s 36.75s 37.25s 36.33s 36.58s

Sonar 0.51s 0.53s 0.53s 0.40s 0.41s 0.41s 0.27s 0.28s 0.29s 0.10s 0.11s 0.13s 0.28s 0.34s 0.41s 0.28s 0.31s 0.33s 0.40s 0.40s 0.41s

Splice 37.29s 34.84s 34.96s 30.49s 30.29s 29.83s 18.24s 18.19s 18.50s 6.94s 6.91s 6.99s 17.79s 17.92s 17.83s 18.33s 18.41s 18.75s 31.50s 30.83s 29.60s

Vehicle 10.01s 9.82s 9.71s 4.90s 4.93s 4.96s 4.96s 5.00s 5.04s 1.77s 1.79s 1.82s 4.86s 4.86s 4.89s 5.00s 5.04s 5.07s 5.02s 4.98s 4.96s

Wine 0.44s 0.44s 0.44s 0.22s 0.23s 0.23s 0.22s 0.23s 0.23s 0.08s 0.08s 0.09s 0.22s 0.23s 0.25s 0.23s 0.23s 0.24s 0.22s 0.22s 0.22s

Table 5: Average computation time required by the optimization process considering all datasets.

5.2 Convergence Analysis

The convergence curves of CS and its variants obtained for the DNA, NTL-Commercial, Phishing, and Segment datasets
are shown in Figure 7.

An interesting fact that one can perceive is that hypercomplex-based techniques were able to converge faster and better
than the standard version in three out of four datasets (DNA, Phishing, and Segment). Additionally, it is essential to
highlight that as hypercomplex-based algorithms use an enhanced version of the search space, i.e., a space with a more
substantial amount of possible values, they are capable of better exploring it, thus, leading to better convergence rates
and fitness values. Moreover, as OCS encodes a higher-dimensional space, i.e., 8 dimensions, it was able to achieve the
lowest fitness for two datasets (Phishing and Segment), thus showing its exploration capability of the search space.

11

A PREPRINT - JANUARY 15, 2021

(a) (b)

(c) (d)

Figure 5: Number of selected features x Accuracy ([0,1]) chart considering CS, QCS and OCS in: (a) DNA, (b)
NTL-Commercial, (c) Phishing and (d) Segment datasets.

12

A PREPRINT - JANUARY 15, 2021

(a) (b)

(c) (d)

Figure 6: Computation time (s) for each independente run of CS, QCS and OCS in: (a) DNA, (b) NTL-Commercial, (c)
Phishing and (d) Segment datasets.

13

A PREPRINT - JANUARY 15, 2021

(a) (b)

(c) (d)

Figure 7: Iteration x Fitness chart considering CS, QCS and OCS in: (a) DNA, (b) NTL-Commercial, (c) Phishing and
(d) Segment datasets.

14

A PREPRINT - JANUARY 15, 2021

6 Conclusion

This paper addressed the problem of feature selection through a meta-heuristic optimization approach. A wide range
of meta-heuristic techniques was employed in 20 distinct datasets in order to provide a more thoughtful numerical
validation of the proposed computational framework. Additionally, we also present three distinct search spaces for each
optimization technique: standard, quaternionic, and octatonic.

In most circumstances, the meta-heuristic techniques were able to outperform the baseline approach (OPF classification
over the full-features dataset). In such cases, outperforming means that a singular technique was able to attain higher
accuracy than another algorithm, according to the Wilcoxon signed-rank test with 5% of significance. Besides, it is
possible to highlight that all meta-heuristic techniques were able to diminish a substantial number of the initial datasets’
features while maintaining their classification accuracy.

Even though most algorithms were able to reduce the features’ space size and obtain statistically similar accuracy
within respect to the baseline method, in some cases, they reached a slightly lower accuracy than the original OPF
classification. Nevertheless, it should be remarked that in the BASEHOCK dataset, where the baseline classification
achieved the best accuracy, all other meta-heuristic techniques could decrease by about 35% of the number of features
while scoring 2-3% lower accuracy than OPF.

An intriguing fact is that CS was able to obtain the lowest number of features in nearly every dataset, but not necessarily
the best accuracy. If one perceives the discrepancy between the best and the worst accuracy considering all datasets
(except NTL-based ones) and meta-heuristic techniques, there is not a single one that exceeds the 4.77% limit.
Nonetheless, CS underwent in the NTL datasets (energy theft identification), which are highly unbalanced and have
a comparatively small amount of features. As CS obtained the lowest number of features in such a low-dimensional
dataset, it is reasonable to mention that is has overfitted the optimization process in an attempt to find the lowest number
of possible features. Such a procedure penalized the classifier and, consequently, achieved a not proper accuracy for
these particular datasets.

Furthermore, we presented a more in-depth analysis considering CS and its variants, QCS, and OCS, among four
distinct datasets that have discrepant data, i.e., datasets with a low amount of features and highly sensitive to feature
selection. This analysis provided thoughtful insights regarding the number of selected features per accuracy they were
able to achieve, the time they took to perform the optimization process, and their convergence process. Additionally, it
is essential to highlight that CS hypercomplex-based approaches took more time than their standard version, while they
were able to converge better (to a lower fitness function value) than its naïve version.

For future works, we aim at exploring within more depth the hypercomplex mapping function, e.g., norm function.
We have high hopes in understanding more the hypercomplex structure, as it seems that one of the central concepts in
applying them to feature selection methods lies in transferring values from hypercomplex- to real-valued search spaces.

Acknowledgments

The authors appreciate São Paulo Research Foundation (FAPESP) grants #2013/07375-0, #2014/12236-1, #2016/19403-
6, #2017/02286-0, #2017/25908-6, #2018/21934-5 and #2019/02205-5, and CNPq grants 307066/2017-7 and
427968/2018-6.

References

[1] X.-S. Yang. Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley Publishing, 1st
edition, 2010.

[2] B. K. Oh, K. J. Kim, Y. K.and H. S. Park, and H. Adeli. Evolutionary learning based sustainable strain sensing
model for structural health monitoring of high-rise buildings. Applied Soft Computing, 58:576–585, 2017.

[3] S. Klein, M. Staring, and J. Pluim. Evaluation of optimization methods for nonrigid medical image registration
using mutual information and b-splines. IEEE Transactions on Image Processing, 16(12):2879–2890, 2007.

[4] N. Dey, S. Samanta, S. Chakraborty, A. Das, S. Chaudhuri, S. Sheli, and J. Suri. Firefly algorithm for optimization
of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging.
Journal of Medical Imaging and Health Informatics, 4(3):384–394, 2014.

[5] G. H. Rosa, J. P. Papa, A. N. Marana, W. Scheirer, and D. D. Cox. Fine-tuning convolutional neural networks
using harmony search. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications.
Springer International Publishing, 2015.

15

A PREPRINT - JANUARY 15, 2021

[6] J. P. Papa, G. H. Rosa, K. A. P. Costa, A. N. Marana, W. Scheirer, and D. D. Cox. On the model selection of
Bernoulli restricted Boltzmann machines through harmony search. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’15, pages 1449–1450, New York, USA, 2015. ACM.

[7] J. P. Papa, W. Scheirer, and D. D. Cox. Fine-tuning deep belief networks using harmony search. Applied Soft
Computing, 46:875–885, 2016.

[8] J. P. Papa, G. H. Rosa, A. N. Marana, W. Scheirer, and D. D. Cox. Model selection for discriminative restricted
Boltzmann machines through meta-heuristic techniques. Journal of Computational Science, 9:14–18, 2015.

[9] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, 1999.
[10] X. M. Hu, J. Zhang, Y. Yu, H. S. H. Chung, Y. L. Li, Y. H. Shi, and X. N. Luo. Hybrid genetic algorithm

using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on
Evolutionary Computation, 14(5):766–781, 2010.

[11] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, H. S. H. Chung, Y. Li, and Y. H. Shi. Particle swarm
optimization with an aging leader and challengers. IEEE Transactions on Evolutionary Computation, 17(2):241–
258, 2013.

[12] E. Pitzer and M. Affenzeller. A Comprehensive Survey on Fitness Landscape Analysis. Springer, Berlin, 2012.
[13] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273–324, 1997.
[14] N. Sánchez-Maroño, A. Alonso-Betanzos, and M. Tombilla-Sanromán. Filter methods for feature selection–a

comparative study. In International Conference on Intelligent Data Engineering and Automated Learning, pages
178–187. Springer, 2007.

[15] I. Fister, X.-S. Yang, J. Brest, and I. Fister Jr. Modified firefly algorithm using quaternion representation. Expert
Systems with Applications, 40(18):7220–7230, 2013.

[16] I. Fister, J. Brest., I. Fister Jr., and X.-S. Yang. Modified bat algorithm with quaternion representation. In IEEE
Congress on Evolutionary Computation, pages 491–498, 2015.

[17] J. P. Papa, D. R. Pereira, A. Baldassin, and X.-S. Yang. On the harmony search using quaternions. In F. Schwenker,
H. M. Abbas, N. El-Gayar, and E. Trentin, editors, Artificial Neural Networks in Pattern Recognition: 7th IAPR
TC3 Workshop, ANNPR, pages 126–137, Cham, 2016. Springer International Publishing.

[18] J. P. Papa, G. H. Rosa, D. R. Pereira, and X.-S. Yang. Quaternion-based deep belief networks fine-tuning. Applied
Soft Computing, 60:328–335, 2017.

[19] J. C. Hart, G. K. Francis, and L. H. Kauffman. Visualizing quaternion rotation. ACM Transactions on Graphics
(TOG), 13(3):256–276, 1994.

[20] J. T. Graves. On a connection between the general theory of normal couples and the theory of complete quadratic
functions of two variables. Philosophical Magazine, 26(173):315–320, 1845.

[21] S. De Leo. Quaternions and special relativity. Journal of Mathematical Physics, 37(6):2955–2968, 1996.
[22] D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser. Foundations of quaternion quantum mechanics.

Journal of Mathematical Physics, 3(2):207–220, 1962.
[23] D. Eberly. Quaternion algebra and calculus. Technical report, Magic Software, 2002.
[24] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki. Supervised pattern classification based on optimum-path forest.

International Journal of Imaging Systems and Technology, 19(2):120–131, 2009.
[25] J. P. Papa, A. X. Falcão, V. H. C. Albuquerque, and J. M. R. S. Tavares. Efficient supervised optimum-path forest

classification for large datasets. Pattern Recognition, 45(1):512–520, 2012.
[26] João Paulo Papa, Gustavo Henrique de Rosa, and Xin-She Yang. On the Hypercomplex-Based Search Spaces for

Optimization Purposes, pages 119–147. Springer International Publishing, Cham, 2018.
[27] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric Statistical Methods, volume 751. John Wiley & Sons,

Hoboken, NJ, USA, 2013.
[28] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.
[29] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. Journal of Global Optimization, 39(3):459–471, 2007.
[30] M. M. Ebadzadeh A. Nickabadi and R. Safabakhsh. A novel particle swarm optimization algorithm with adaptive

inertia weight. Applied Soft Computing, 11:3658–3670, 2011.
[31] X.-S. Yang and A. H. Gandomi. Bat algorithm: a novel approach for global engineering optimization. Engineering

Computations, 29(5):464–483, 2012.

16

A PREPRINT - JANUARY 15, 2021

[32] X-S. Yang and S. Deb. Engineering optimisation by cuckoo search. International Journal of Mathematical
Modelling and Numerical Optimisation, 1:330–343, 2010.

[33] X.-S. Yang. Firefly algorithm, stochastic test functions and design optimisation. International Journal Bio-Inspired
Computing, 2(2):78–84, 2010.

[34] S.-S. Yang, M. Karamanoglu, and X. He. Flower pollination algorithm: A novel approach for multiobjective
optimization. Engineering Optimization, 46(9):1222–1237, 2014.

[35] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, USA,
2001.

17

	1 Introduction
	2 Hypercomplex-based Spaces
	2.1 Complex Numbers
	2.2 Hypercomplex Numbers
	2.2.1 Quaternions
	2.2.2 Octonions

	3 Feature Selection
	3.1 Hypercomplex Feature Selection

	4 Methodology and Setup
	4.1 Datasets
	4.2 Computational Setup

	5 Numerical Results
	5.1 Overall Analysis
	5.2 Convergence Analysis

	6 Conclusion

