
Abstract

Criminals can launder crypto-currencies through mixing coins, whose original

purpose is preservation of privacy in the presence of traceability. Therefore, it’s

essential to elaborately design mixing polices to achieve both privacy and anti-

money laundering. Existing work on mixing policies relies on the knowledge of

a blacklist. However, these policies are paralyzed under the scenario where the

blacklist is unknown or evolving. In this paper, we regard the above scenario

as games under incomplete information where parties put down a deposit for

the quality of coins, which is suitably managed by a smart contract in case

of mixing bad coins. We extend the poison and haircut policies to incomplete

information games, where the blacklist is updated after mixing. We prove the

existence of equilibria for the improved polices, while it is known that there

is no equilibria in the original poison and haircut policies, where blacklist is

public known. Furthermore, we propose a seminal suicide policy: the one who

mixes more bad coins will be punished by not having the deposit refunded.

Thus, parties have no incentives to launder money by leveraging mixing coins.

In effect, all three policies contrast money laundering while preserving privacy

under incomplete information. Finally, we simulate and verify the validity of
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these policies.
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1. Introduction

The whole transactions’ history in blockchain is transparent by resorting

to some probing tools. For instance, it’s easy to trace the source of bitcoins

even if the accounts are anonymous. Some empirical experiments indicate that

anonymous parties of bitcoins in the cyberspace can be traced to their true5

identities in real world. As a consequence, parties’ privacy is sabotaged without

protection for identities and transactions. The seminal idea of mixing coins

consists of collecting coins from several sources and distributing coins to various

targets. The basic principle is to strip the addressed of source and targets such

that no traceability can be implemented by probing tools. Thus the privacy and10

anonymity are strengthened.

The most popular mixer is based on coin mixing protocols without host. e.g

Coinjoin and Coinshuffle [1, 2, 3]. Parties can mix their coins through certain

service providers, such as Wasabi wallet and Samourai wallet. However it leaves

mixing coins vulnerable to adversarial behaviours, such as money laundry. For15

example, in December 2019, one account has been suspended by Binance Singa-

pore since it attempted to send bitcoins to Wasabi wallet. Binance announced

that the account violated Binance Singapore’s anti-money laundering policy and

triggered a risk alert from the monetary authority of Singapore. In February

2020, US authorities charged DropBit CEO for allegedly laundering bitcoins for20

311M USD. The indictment asserts that the Helix mixer is suspected of being

involved in remittances and money laundering.1

Therefore, new mechanism of mixing coins are clearly needed to improve the

tradeoff between privacy and adversarial purposes. One can make a tradeoff

1https://www.bleepingcomputer.com/news/security/helix-bitcoin-mixer-owner-charged-

for-laundering-over-310-million/
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by utilizing deposits managed by smart contracts according to game theory25

principles [4, 5]. Note that we may also utilize some advanced technology like

machine learning [6], data mining [7] and secure multi-party computation [8, 9]

to solve these kind of problems since adversaries need to learn the quality of

bad coins. Here the quality of bad coins means the ratio of the bad coins.

In this paper our results are established on the assumption of a blacklist30

with adversarial learning, and therefore we will focus on adversarial behaviours

through the view of game theory under incomplete information [10, 11], which is

a more complex scenario for machine learning system. We assume the existence

of a blacklist dynamically updated as a service managed by a trusted third

party. The initial listing of a coin in the blacklist is clearly critical and requires35

trust in the blacklist manager. Information about transactions, on which the

blacklist is based, is actually public and verifiable and does not require trust.

Other judgements may also be easily verifiable, consider for instance coins from

a publicly known ransomware address. However, blacklist management may

clearly constitute a dominant position. The problem of trust in blacklists is40

scope for future work.

1.1. Related work

There have been a flurry of related works in mixing coins, while this work

sets out to address the problem of privacy preserving and anti-money launder.

Many empirical works focus on other problems such as phishing protection [12]45

and data sharing [13]. However, these works are not fully convincing, not being

suitably supported by formal analysis. Edward et al. explore the model for mal-

ware infections in blacklisting by utilizing a simple Markov model [14]. Hofmeyr

et al. trade off between prevented harm and collateral damage by modelling po-

tential policy interventions [15]. In fact, it’s better to describe these problems50

in game theory with economic views. For example, Acquisti et al. [16] discuss

the economic incentives in message anonymization from the viewpoint of game

theory, even if blockchains had not been defined at the time.

Moser et al. propose three policies to assess risk in bitcoin transactions,
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focusing on risk scoring and the implications of blacklisting: poison, haircut55

and seniority for quality propagation [17]. Bonneau et al. [18] borrow the above

three policies and analyse them toward game-theoretic view. More specifically,

they formalize the game of mixing coins with different quality. They analyse

the conditions to reach equilibria for different scenarios including perfect games

and imperfect simultaneous-move games. However, their work does not consider60

extensive games under incomplete information, which is more suitable for real

application scenarios2.

1.2. Motivations and contributions

The original incentive for mixing coins is to provide privacy for sponsors

(aka. privacy seeker), who pay privacy providers for the service. However,65

perpetrators may launder money by mixing with bad coins, which jeopardize

the original incentives for mixing coins. Indeed, it is a better practice to only

mix coins with good coins. That is, parties with bad coins should bear no

incentives to mixing coin services.

The intuition of the approach followed in this paper is that privacy seekers70

and mixing providers commit deposits through smart contracts before they mix

coins. The ones who attempt to mix bad coins will be punished by deducting

their deposits. Thus, perpetrators have no incentives to mix bad coins especially

when the deposits are larger than bad coins. Such a trivial solution can be

trivially achieved by implementing deposit mechanisms in the poison and haircut75

policy of [22]. Unfortunately, these policies are not geared to the following

scenario: the blacklist is updated during the process of mixing coins and the

parties therein are allowed to alternatively take actions. Although the work

of [22] discusses the scenario under imperfect information, they only analyze

simultaneous games, where parties take actions at the same time.80

In this paper, we consider a more complex scenario, i.e. extensive games

2Note that fuzzy theory can be also used to solve a number of relevant problems. However,

this is out of scope here. Interested readers may refer to [19, 20, 21] for more details.
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under incomplete information. In Figure 1, the blacklist is updated within an

interval T and the time for mixing coins is S > T . Initially, the blacklist L is

partial knowledge to Bob since bad coins x are not updated to the blacklist.

Bob deems x as good coins and mixes his coins y with Alice’s coins x. The85

dotted boxes in mixing transaction trold denote the outputs in the context that

x are good coins. However, the blacklist is updated to L′ after interval T ,

and x are detected as bad coins in L′. Therefore, the receivers get outputs

in trnew instead of trold. The gray boxes denote the outputs with bad coins3.

Consequently, Alice successfully mixes bad coins under such scenario. In the90

following of this paper, incomplete information refer to scenarios similar to the

one in Figure 1, if not differently specified.

Blacklist L Blacklist L’

Input x

Input y

mixing transaction trold

Output z1

Output z2

Output z3

Output xz4

Input x

Input y

mixing transaction trnew

Output z1

Output z2

Output z3

Output xz4

Updated in interval T

The time for mixing coins S

x

x

Alice

Bob

Figure 1: The mixing coins under incomplete information.

We revisit poison and haircut policies and extend them to incomplete infor-

mation; we discuss the limits of seniority policy in the presence of incomplete

information; and we overcome such limitations by proposing the new suicide95

3Note that we do not demonstrate the concrete policy here. Therefore, the gray boxes just

symbols for the outputs with bad coins and are not generated by any specific policy.
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policy, which enforces the punishment to those that mix bad coins. The main

contributions of this paper are as follows:

• Poison and haircut policy are revisited for mixing coins and extended to

incomplete information. A deposit mechanism based on a smart contract

is introduced to facilitate privacy protecting while avoiding money laun-100

dering trough mixing coins.

• We show that seniority policy is invalid under incomplete information,

where a blacklist is not timely updated. This is due, intuitively speaking,

to the fact that the policy fails to negotiate the order and amounts of

transaction’s outputs since the blacklist does not necessarily include all105

bad coins at the beginning of mixing.

• We propose suicide policy, as an improved seniority policy, to punish

the parties with a low-level of good coins. That is, all bad coins are

assigned to the parties who are mixing with the larger numbers of bad

coins. Furthermore, deposits are not refund to the one who mix with the110

larger numbers of bad coins.

• We prove the existence of equilibria for the poison, haircut and suicide

policy, respectively. We carry out simulations, whose results show the

validity of these new policies under incomplete information. Furthermore,

privacy seekers and providers may choose optimal mix strategies to reach115

a trade-off between privacy and anti-money laundering.

1.3. Road map

The remainder of this paper is organized as follows. Section 2 presents some

preliminaries, e.g. different types of games and mixing coins. An extensive game

under incomplete information is described in Section 3, where we bridge the120

notions between game theory and our model, and redefine utilities for our model.

We analyze the equilibria conditions for each policy in Section 4. Moreover, we

propose a new policy to solve the problem in seniority, where two parties cannot
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negotiate under incomplete information. In section 5, simulations are shown to

empirically and visually support out theoretical analysis. Section 6 summarizes125

results and looks into future work.

2. Background on games and mixing policies

2.1. Games under incomplete information

In game theory, parties are assumed to be rational and aim to to maxi-

mize their utilities. Games fall into various categories according to different130

rules. Static and extensive games are defined according to whether parities take

actions simultaneously; perfect and imperfect games are defined according to

whether parties achieve complete action information with respect to their op-

ponents; complete and incomplete games are defined whether parties may or

may not learn all information about the game. These games can arbitrarily135

be combined in new categories, like static games under perfect information,

incomplete games under incomplete information, etc. In this paper, we focus

on extensive games under incomplete information, where parties take actions

alternatively and they observe the actions of forgoers. Incomplete information

here means that parties have partial information on strategy space, utilities140

etc. More specifically, parties only have partial information about the blacklist

when they make decisions: due to the lack of timely updates, the blacklist be-

comes partial information for parties. However, for simplicity, we assume that

the blacklist will be updated during the game, and it is common knowledge for

both parties. We rely on smart contracts that may decide whether to refund145

deposits or not according to the blacklist.

For completeness, we repeat the definition of extensive game under incom-

plete information as in [23].

Definition 1. An extensive game with incomplete information

< P, Ai∈{1,2..}, H, P, fc, (IPi)i∈{1,2..}, Ui∈{1,2..} >
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is described as follows.150

1. A set of parties P = {Pi}, i ∈ {1, 2, ...}.

2. A set of actions Ai for each Pi. The action profile is denoted as a =

(a1, a2, ..., ...), where ai ∈ Ai.

3. A set of histories H consisting of sequences actions of assigned parties.

The set of actions available after the nonterminal histories is denoted by155

Z.

4. A function P that assigns to each nonterminal history a party Pj ∈ P.

5. For each party Pj , an information set is denoted by IPj
sufficing that

h ∈ H : P (h) = Pj .

6. For each party Pj , a utility function Uj defined on Z denotes his payoffs.160

Another important notion in game theory, is equilibria, which guarantee parties

not to deviate from specific strategy. The main task of sub-game perfect Nash

equilibrium in extensive and incomplete information is to delete unbelievable

threat strategies from Nash equilibria such that reasonable results are predicted.

More specifically, sub-game perfect Nash equilibrium requires that the behaviors165

in equilibrium are optimal in each information set.

Definition 2. A strategy profile is a sub-game perfect Nash equilibrium if

this profile is Nash equilibrium for each sub-game.

One way to solve equilibria in extensive games under incomplete informa-

tion is backward induction. Backward induction is an iterative process, which is170

commonly used in finite extensive form and sequential games. More specifically,

the player who makes the last move in the game choose his/her optimal strategy.

Then, given these optimal strategy, it’s turn for the next-to-last moving player

to choose his/her optimal strategy. This process continues backward until each

player involved in this game choose their optimal strategies. In effect, the op-175

timal strategy for each player constitutes the strategy profile (aka. sub-game

perfect Nash equilibrium).

Theorem 1. A strategy profile is sub-game perfect Nash equilibrium of

extensive game with incomplete information, if and only if it’s selected by back-
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ward induction.180

2.2. Policies in mixing coins

Mixing coins is proposed to strengthen anonymity (avoiding privacy leakage),

since the transactions and their origins are public and can be easily traced

with blockchain exploration tools. The mixing process is as follows [3], taking

Coinjoin as an example.185

1. Assume a group of parties U = u1, u2, ...un who are willing to mix their

coins. They resort to service providers, e.g. some wallets, which provide

mixing service. Coinjoin is one of these services, is practical and imple-

mented in some wallet [24, 25].

2. Policies about mixing with bad coins are in place and publicly known by190

the parties. That is, the parties should know the consequence if they mix

with bad coins. Thus, they decide whether to mix according to the quality

of their coin. Generally, parties with bad coins are willing to mix so that

they can laundry their coins. On the other hand, parties with good coins

risk to lose their money if they mix with bad coins. Therefore, the mixing195

policies are rather important in the mixing process.

3. With the help of the wallet, all ui generate a mixing transaction that

includes the addresses of each ui as inputs and the mixing addresses of

the mixing service as outputs.

4. The mixing service needs to be trusted by parties in U , which need to200

sign with their keys the transaction. of the members in U . Otherwise, the

transaction is invalid.

5. Parties verify whether the jointly signed transaction sends correct coins

to the output addresses. If not, they refuse to mix coins and quit.

After mixing, it is hard to trace coins by simply relying on transactions’ input-205

output relations, since parties in mixing coins merge their inputs and outputs

into a single transaction. Parties who seek anonymity need to find available

peers to mix with in the blockchain system. Therefore, they are generally ready

to pay a mixing fee to incentive others to take part in mixing with them.
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Table 1: The update rules of coins’ quality for poison policy

qa qb q′a q′b

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

Issues spring up because perpetrators may be willing to mix their low-quality210

(bad) coins, both earning the mixing fee and laundry their money. The solution

to blacklist unsafe coins is effective, since parties will decline to mix their coins

with those in the blacklist in order to avoid that bad coins diffuse through

mixing. [22] presents three policies for quality propagation: poison, haircut and

seniority policy. In the sequel, we briefly summarise their basic idea.215

We inherit their notation: qa, qb ∈ [0, 1] denote the quality of coins of a

privacy seeker and a privacy provider, respectively, where qa = 0 denotes that

all coins of the privacy seeker are bad, and qa = 1 that all are good. We use q′a,

q′b to denote the updated coin quality after the mixing and a, b to denote the

number of coins of the parties, respectively.220

• Poison policy. The presence of a single bad coin ”poisons” all coins of a

party, i.e. qa = 0 if only one coin is blacklisted. Differently, qa = 1 implies

that all coins are good. For simplicity, we assume that the number of

output coins equals that of input coins. Coin quality is updated according

to Table 1. It’s easy to see that q′a = q′b = qaqb.225

• Haircut policy. The privacy seeker and provider are again jointly re-

sponsible for the bad coins, as they will have the same coin quality after

the mix, defined as q′a = q′b = aqa+bqb
a+b . Obviously, parties with higher coin

quality have no incentives to mix (if not the fees), since their quality will

decrease.230

• Seniority policy. The privacy seeker and privacy provider need to know

10



the exact coin quality qa and qb, in order to enter negotiation. Importantly,

the most distinctive feature of the seniority policy is that the coin quality

does not change through mixing, after negotiation. This policy however

requires that the blacklist is updated timely, otherwise parties fails to235

negotiate beforehand. A detailed example of negotiation can be found in

in [22].

3. Games and utility under incomplete information

3.1. Game with deposits under incomplete information

The framework of our mixing games is similar to that of [22] except for the240

information sets. There are two parties in each game: privacy seeker S with a

coins of quality qa, and privacy provider P with b coins of quality qb, where qa

and qb denote the ratio of good coins for S and P respectively. Here good coins

means coins which are not listed in blacklist. The game is as follows.

1. S decides whether to sponsor a mixing request and the coins who will245

invest in the mixing.

2. If S decides not to mix with others, S does not to sponsor a request. The

ratios of good coins remain unchanged. In general, S invests a for mixing.

However, S must budge for the bribery c once s/he decides to sponsor the

request. Put differently, S only invest a− c if s/he decides not to sponsor250

a request. Otherwise, s/he should invest a including the bribery.

3. If S sponsors a request for mixing coins with cost g. The cost g is burned

no matter P accepts it or not. Note that the invest coins are a and b for

S and P respectively. Then it’s turn for P to decide whether to accept

the request.255

(a) If P does not accept to mix, two parties fail to mix. The ratios of

good coins remain unchanged.

(b) If P accepts to mix, P gets a bribery c.

(c) Finally, S and P update ratios of good coins q′a, q′b.

4. So far, the game is identical to [22].260
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The most distinctive feature is that the blacklist may be updated periodi-

cally, i.e. the blacklist is updated during party interaction. In this case, parties

with bad coins may take advantage from mixing with others. For example, S

requests to mix a good coins, currently not in the blacklist, with P. P checks

the blacklist learning that the a coins are not in blacklist and accepts the re-265

quest. However, before they de-facto mix their coins, the blacklist is updated

including the a coins as bad coins. Consequently, P suffers from mixing bad

coins without any remedial measure. In some sense, the blacklist provides only

partial information to P in this example.

Ideally, P should be able to cope with the limits of such partial informa-270

tion from the blacklist. We introduce a deposit enforced by smart contracts

in the policies described above, seen as a game. The basic idea is simple: S

deposits d1 before sponsoring the request and P deposits d2 before accepting

the request. For simplicity, we assume that d = d1 = d2. Deposits will be re-

funded to each party if there are no bad coins after their interaction. Note that275

it’s assumed that blacklist updates before refunding happens, so that partial

information becomes common knowledge. Furthermore, in our game S and P

move alternatively under incomplete information, which differs from the simul-

taneous move in [22]. Due to partial and evolving information, the information

set for S and P may differ. In the sequel, parties achieve expected utilities U280

with respect to their information set. The extensive game under incomplete

information with deposits, dubbed as Gd, is shown in Figure 2, and defined as

< P, Ai∈{S,P}, H, P, fc, (IPi
)i∈{S,P}, Ui∈{S,P} > according to Definition 1:

1. A set of parties P = {S,P}, denoting privacy seeker and privacy provider

respectively.285

2. Action set AS = {Sponsor,Not Sponsor}, where the former denotes that

S sponsor a mixing smart contract and the latter denotes the opposite

side. Action set AP = {Accept,Not Accept}, where the former denotes

that P accept mixing and the latter denotes the opposite side.

3. The set of history H denotes the action sequence from the root to the ter-290
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minal nodes in Figure 2. For example, (Sponsor, Accept) and (Sponsor,

Not Accept) are histories in Gd. The terminal nodes with respect to ter-

minal histories Z are graphical represented as squares in Figure 2. Non-

terminal nodes are presented as hollowed and solid circles. The hollowed

circles mean that decision maker is either S or P. The solid circle means295

that blacklist leads to partial information with uncertain probabilities p

and 1− p, the meaning of which varies with policies [26]. We will present

details in following sections.

4. The function P assigns to each nonterminal history a party so that they

take their actions alternatively. For example, P assigns P to nonterminal300

histories Sponsor and Not Sponsor.

5. The dotted line labeled with S (P) in Figure 2 denotes the information

set IS (IP).

6. The terminal histories of Gd are labelled with the pair of utilities of S and

P, respectively. These are discussed in the next section.305

S

SponsorNot Sponsor Not SponsorSponsor

P

AcceptNot Accept Not AcceptAccept

Blacklist (partial information)

p 1-p

((a-c)qa,bqb)((a-c)qa,bqb)

(aqa,bqb) (aqa,bqb)(Us,Up)(Us´,Up´)

1

2 3 4 5

6

Figure 2: The extensive game under incomplete information with deposits.
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3.2. Utilities for the new game

The definition of utilities for each terminal nodes are similar to [22] except

for the deposits and laundry incomes. The utility function consists of five com-

ponents:

1. Privacy incomes up: It indicates the privacy achievement for each party310

with coefficients τa ∈ [0, 1] and τb ∈ [0, 1] for S and P respectively, which

shows how parties value their privacy. Privacy income contribute to util-

ities as τaaq
′
a and τbbq

′
b.

2. Laundry incomes ul: It indicates the degree that parties value the laun-

dering, i.e. mixing, money. The coefficients are λa ∈ [0, 1] and λb ∈ [0, 1]315

for S and P respectively. For example, S does not value the laundering

money if λa = 0. Therefore, λa only affects the coins after mixing. The

utilities contributed by this part are λaaq
′
a and λbbq

′
b.

3. Coins for mixing: S and P invest a coins and b coins, respectively, to mix

with each other. So, the utilities of this part are aq′a and bq′b. It is worth320

remarking that this case includes the mixing costs c (see next item) paid

as an incentive to invite P to mix. However, P has the right to accept it

or not. If P refuses, then S only invests a− c coins to mix. In this case,

according to the chosen notation, the utilities for S and P are (a − c)qa
and bqb, respectively (as in node 1 in Figure 2).325

4. Mixing costs c: This cost is due to S trying to incentives P to accept to

mix coins together. This is done by sponsoring a smart contract in charge

of guaranteeing the promised payment to P. Therefore, the utilities of

this part are −cqa and cq′b for S and P respectively. Note cq′b instead of

cqb, due to the fact that c coins are paid to P after mixing. Actually, in330

the presence of a smart contract, we should also consider the cost g of

the gas needed for running the contract. Given that generally g is much

smaller than c, we neglected g in this paper for simplicity.

5. Deposits ud: Deposits are introduced for the purpose of preventing parties

from using bad coins in mixing: parties may lose the deposit if their coins335
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result to be in the blacklist after an update of the list. As an example, S

wants to mix coinS coins, which are not in the blacklist L at the beginning

of the process, but will be included in the revised blacklist L′ (Figure 1).

P will accept mixing since coinS are good coins. Thus, P will eventually

suffer from mixing with coins that have been meanwhile blacklisted. Under340

complete information, P would instead have never accepted the mixing.

S may leverage the updating gap to decoy P for mixing. Therefore, the

deposits are important to prevent S from a successful decoy.

After the mixing, no deposit will be refunded to any part that will result to

have used bad coins in the mixing. If only one party will result to have used345

bad coins, a fee will be deducted from its (non-returned) deposit and paid

to the counterpart, which does not have bad coins, as a compensation, i.e.

a bonus. The amount of the bonus is proportional to the amount of bad

coins used in the mixing by the (only) offender. If both parties will result

to have used bad coins, the fee will be deducted to both - proportionally350

- and paid as a bonus to the counterpart, respectively.

For instance, suppose that in the end, according to the revised blacklist

L′, we have q′a = 0.333, i.e. only 1/3 of S’s coins are good, while all P’s

coins are good. Then 2/3 of S’s deposit, 6 out of 9 coins say, will be paid

to P as a bonus.355

It is worth remarking that i. deposits and bonus are fully managed by a

smart contract according to the updated blacklist L′ (Figure 1). Parties

pay the deposit to the smart contract, since they can trust that it will be

correctly executed by the blockchain. Different formulations for refunds

and bonuses can be adopted; ii. the contract earns coins from the non-360

returned deposits. One could imagine that such a surplus could be used

for supporting parties that have incurred losses due to bad mixing. This

is scope for future work; and iii. for the sake of simplicity we assume

here that deposit coins are actually good coins (also in the revised L′).

Relaxing this assumption is also scope for future work.365

Formally, the depositing and refunding processes are as follows.
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(a) Parties do not pay a deposit if S does not sponsor or P does not

accept the mixing (nodes 1,2,5,6 in Figure 2).

(b) If S sponsors a smart contract and P accepts it, then S and P pay the

deposit d to the smart contract before mixing. Therefore, deposits370

incur −dqa and −dqb to S and P respectively.

(c) The utility due to deposits depends on whether parties get refunds or

a bonus after mixing, according to the following three possible cases:

i. Both S and P have no bad coins after mixing. The smart con-

tract refund d to both parties. Therefore, deposits incur −dq′a375

and −dq′b to S and P respectively. So, the net utility incurred

by depositing are −dqa + dq′a and −dqb + dq′b, respectively. Note

that −(−dqa + dq′a) = dqa − dq′a and −(−dqb + dq′b) = dqb − dq′b
are withhold by the smart contract as bonus to others.

ii. Only one party, S say, has bad coins. The smart contract returns380

to P its deposit d and a bonus deducted from the d of S. It

returns the remaining coins from S’s deposit to S. The bonus

is computed according to coin qualities: P receives dq′b (due to

refund of the deposit) and dqa − dq′a (due to a positive bonus).

S does not get the deposit back. Therefore, the net utility for S385

is –dqa and for P is (−dqb + dq′b) + (dqa − dq′a).

iii. Both S and P have bad coins. In this case, the smart contract

does not refund any deposit and the bonuses are determined as

follow: the bonus for S is dqb − dq′b and for P is dqa − dq′a.

Therefore, the net utility for S is (–dqa + dq′a) + (dqb − dq′b) and390

for P is (–dqb + dq′b) + (dqa − dq′a).

In Figure 2, the utilities for S and P are listed below the leaf nodes. The utilities

for nodes 3 and 4 are more complex, and depend on the different policies. Note

that the utilities for each leaf do not necessarily consist of all the five parts

mentioned above.395

• Utilities for nodes 1 and 6. S does not sponsor a mixing request. There-

fore, S only spends a− c coins, not needing the sponsoring budget c. On
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the other hand, P retains b coins. The coins’ quality remains unchanged.

Therefore, the utilities for node 1 and 6 are defined as (a− c)qa and bqb,

respectively.400

• Utilities for nodes 2 and 5. S sponsors a mixing request while P does not

accept the request. It follows that S and P do not mix. However, S should

budget for sponsoring beforehand, even if P does not accept the request.

P retains b coins. In addition, the coins’ quality remains unchanged. So

the utilities for node 2 and 5 are defined as aqa and bqb, respectively.405

• Utilities for node 3 and 4. S sponsors a smart contract and P accepts

it, and S and P mix coins. Recall that S bribes P with c. Thus, S and

P invest a (which includes c) and b, respectively. Furthermore, coins’

qualities are updated according to the different policies. Distinguishing in

our framework, parties deposit a deposit, whose restitution is regulated

by the smart contract according to the updated blacklist L′, so coping

with partial information and uncertainty. Utilities in nodes 3 and 4 differ

according to the coins’ quality, but they can be expressed by the general

formulas ÛS and ÛP . In the sequel, US , UP , U ′S and U ′P are instances

of (1) and (2), with different qa, qb, q
′
a, and q′b. Let βa = τa + λa + 1,

βb = τb + λb + 1.

ÛS = τaaq
′
a + λaaq

′
a + (aq′a − cqa) + (−dqa + dq′a) + (dqb − dq′b)

= βaaq
′
a − cqa − dqa + dq′a + dqb − dq′b

(1)

ÛP = τbbq
′
b + λbbq

′
b + (bq′b + cq′b) + (−dqb + dq′b) + (dqa − dq′a)

= βbbq
′
b + cq′b − dqb + dq′b + dqa − dq′a

(2)

4. Equilibria in mixing games under incomplete information

In this section, we will analyze the conditions for sub-game perfect Nash

equilibrium with respect to each policy under incomplete information by im-

plementing backward induction. We will present, given proper conditions,
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(Sponsor,Accept) is sub-game perfect Nash equilibrium for each policy accord-410

ing to backward induction.

4.1. Poison policy

According to this policy, qa = 1 holds when none of the a coins is in the

blacklist. qa, qb, q
′
a and q′b are defined in Table 1. Furthermore, it holds that

q′a = q′b = qaqb.415

However, P may not be sure whether qa could actually evolve to q′a = 0

after a revision of the blacklist, given partial information of P. P has a prior

probability p on whether qa = 1. Note that, in node 3, qa is assumed to be 1

with probability p. Therefore, the utilities for S and P follow from (1) and (2)

with qa = 1 and q′a = q′b = qaqb = qb:420

US = βaaqb − c− d+ dqb, UP = βbbqb + cqb (3)

Note that formula (3) may correspond to 5(d) case 1 or 5(d) case 2 relying

on coins’ quality of P.

In node 4, qa is assumed to be 0 with probability 1−p. Therefore, the utilities

for S and P follow from (1) and (2) with qa = 0 and q′a = q′b = qaqb = 0:

U ′S = U ′P = 0 (4)

Note that formula (4) may correspond to 5(d) case 2 or 5(d) case 3 relying425

on coins’ quality of P.

It is worth remarking that P may accept mixing sponsored by S only when

qb = 1. Otherwise, US = −c − d < 0 < bqb and S would not propose a mixing

to P. Therefore, we have,

US = βaa− c, UP = βbbqb + cqb (5)

Consequently, we first analyse the choices of P according to backward in-430

duction. P had to make a decision once Gb reaches information set IP . Here P

may either accept or not accept to mix coins with S.
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1. If he chooses Not Accept, P gets expected utility bqb no matter what q

is. Note that P gets expected utility due to the partial information. For

example, P think S has bad coins with probability p. Therefore, the utility435

is bqb in node 2 with probability p and bqb in node 5 with probability 1−p

(ref. Figure. 2). The expected utility is pbqb + (1− p)bqb = bqb.

2. If he chooses Accept, he gets expected utility UP = pUP + (1 − p)U ′P .

Note that in node 3, the utility is UP with probability p and in node 4,

the utility U ′P with probability 1− p.440

The expected utilities are defined in similar way if not specified. P chooses

Accept if UP > bqb. That is,

p >
b

bβb + c
(when qb = 1) (6)

Note that P can choose any action when qb = 0 since both lead to utility 0.

Then we backward to anaylse S ′s choices.

1. If he chooses Not Sponsor, S gets utility a− c.

2. If he chooses Sponsor, he gets expected utility US = pUS + (1− p)U ′S .445

S chooses Sponsor if US > a− c. That is,

p >
a− c
βa − c

(when qb = 1) (7)

Given p > b
bβb+c

, p > a−c
βa−c , (Sponsor,Accept) is sub-game perfect Nash

equilibrium. That is, no one can increase his/her utility by unilaterally deviate

from the equilibrium.

4.2. Haircut policy

In haircut policy, we have q′a = q′b = aqa+bab
a+b .450

1. S obtains expected utility US = βaa
aqa+bqb
a+b + (qa − qb)d if he choose

Sponsor and aqa otherwise.
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2. Gb will follow the history (Sponsor,Accept), then it should suffice that

UP > bqb and US > aqa. That is,

P obtains expected utility UP = βbb
aqa+bqb
a+b +(qa−qb)d if he choose Accept455

and bqb otherwise.

Gb will follow the history (Sponsor,Accept), then it should suffice that UP >

bqb and US > aqa. That is,

qa
qb
<

abβa − (a+ b)d

(1− βa)a2 − (a+ b)d+ ab
(8)

qa
qb
>

(1− βb)b2 − (a+ b)d+ ab

abβb + (a+ b)d
(9)

If qaqb meets formulas (8) and (9), S has incentives to sponsor a mixing request

and P has incentives to accept it. There also exists a sub-game equilibrium460

(Sponsor,Accept) in haircut policy.

4.3. Suicide policy: a variant of seniority policy

Seniority policy is invalid in Gd because blacklist may be partial information

and S and P fail to negotiate with respect to allocation without exactly knowing

qa and qb. A trivial solution is to leverage cryptographic tools (e.g. secure465

multiparty computation) for parties to negotiate. For example, parties securely

compute a function f(qa, qb) = (q′a, q
′
b) with their private inputs. However,

S and P may conceal the coin quality. Furthermore, efficiency may be not

acceptable for specific applications.

In this paper, we propose a variant of seniority policy, which allows parties to470

mix coins without negotiating beforehand. The basic idea is simple: the party

who has higher ratio of bad coins will pay the bill of all bad coins. For example,

if S has more bad coins, all bad coins will be assigned to S after mixing. The

update rules of coins’ quality for suicide policy is shown in Table 2.

The utilities for each terminal history are defined similar to poison policy.

The utility definitions are shown in Formulations (10)-(13).

US = (βaa+ d+
ad

d
)− (c+ d+

ad

d
)qa (10)
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Table 2: The update rules of coins’ quality for suicide policy

q′a q′b

qa ≥ qb 1 max{0, bqb+a(qa−1)b }

qa < qb max{0, aqa+b(qb−1)a } 1

UP = (βbb+ c+ d)(qb +
a

b
(qa − 1))− qbd+ qad− d (11)

U ′S = (βaa− c+ d)(qa +
b

a
(qb − 1))− qad+ qbd− d (12)

U ′P = (βbb+ c+ d)− qbd+
bd

a
(1− qb) (13)

Formulations (10)-(13) are too complex to analyse, so we present a simple475

version for suicide policy. More specifically, we assume bqb+a(qa−1)
b < 0 and

aqa+b(qb−1)
b < 0 are always less than 0. That is, aqa + bqb < min{a, b}. Then

max{0, bqb+a(qa−1)b } = 0 and max{0, aqa+b(qb−1)b } = 0. The simplified suicide

policy is shown in Table 3. Consequently, we have the simplified utilities.

US = βaa− cqa + d− qad+ qbd > 0 (14)

UP = −qbd+ qad− d < 0 (15)

U ′S = −cqa − qad+ qbd− d < 0 (16)

U ′P = βbb+ c+ d− qbd+ qad > 0 (17)

Backward induction. P may either accept or not accept to mix coins with480

S.
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Table 3: The update rules of coins’ quality for suicide policy

q′a q′b

qa ≥ qb 1 0

qa < qb 0 1

1. If he chooses Not Accept, P gets expected utility bqb no matter what q is.

The utilities are bqb in nodes 2, 5 (ref. Figure 2). Therefore, the expected

utility is pbqb + (1− p)bqb = bqb.

2. If he chooses Accept, he gets expected utility UP = pUP+(1−p)U ′P . Note485

that the utility is UP in nodes 3 and U ′P in node 4.

P chooses Accept if UP > bqb suffices. That is,

qa >
bqb + dqb + bpβb + pc+ 2pd− bβb − c− d

d
(18)

Then we backward to analyse S ′s choices.

1. If he chooses Not Sponsor, S gets utility aqa.

2. If he chooses Sponsor, he gets expected utility US = pUS + (1− p)U ′S .

S chooses Sponsor if US > aqa suffices. That is,

qa <
apβa + (2p+ qb − 1)d

a+ c+ d
(19)

Similarly to poison and haircut policies, the sub-game perfect Nash equi-490

librium (Sponsor,Accept) exists in suicide policy when formulas (18)(19) are

established. Put differently, S sponsors a mixing request and P accepts it.

Meanwhile, both parties have no incentives to mix with bad coins. Otherwise,

the one who mix more bad coins will suffer from affording all bad coins.

5. Simulations495

We simulate the conditions of aforementioned equilibria for each policy with

Matlab. In this paper, we address extensive games under incomplete informa-

tion, a more complex but practical scenario. For simplicity, we fix some pa-

rameters, only keeping crux metrics in order to find the incidence of equilibria.
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Furthermore, we restrict the range for the parameters without loss of generality500

to simulate the theoretical results. For example, a, b ∈ [1, 10], qa, qb, p ∈ [0, 1],

βa, βb ∈ [1, 3], d > a, d > b, 1 < c < a. We highlight that in [22], there is

no mixing equilibrium for these policies. While in this paper, there are, given

proper parameters, no more than one equilibrium for all three policies.

5.1. Poison policy505

Recall that in simultaneous-move game under imperfect information, the

authors claim that no one would like to mix good coins with others in case of

encountering bad coins. That is, no equilibrium exist in [22], where privacy

seeker sponsors mixing and privacy provider responds to it. However, in this

paper, we prove that there are more than one equilibrium in Gd for the case510

of poison policy. More specifically, the Formulas (6) and (7) are borderlines

for P and S respectively to reach the equilibrium. A more clear graphical

representation is shown in Figure 3. For example, c = 7.25, p = 0.35 is an

equilibrium here. In effect, the points in gray area constitute the set of equilibria.

The reason for the absence of qa and qb is that their values are either 0 or 1.515

The trend for the grey area is: c increases with the decreasing of p. That is,

S costs less if P has more confidence that S has more good coins. An extreme

case in Figure 3 occurs that P would like to accept the mixing request when

he believes, with probability only around 60%, that S has good coins even if

the payment is 0. However, the payment increases to 7.25 when the probability520

decreases to 35%. We may take another way to understand: a bad reputation

for S should pay a high cost for mixing. On the other hand, S has no incentives

to sponsor a mixing when cost is higher than 7.25.

Note that p = 0.5 is chosen since not all choices of p lead to the existence

of equilibria. Figure 4 presents the relationship between p and qa under fixed525

parameters. qa is valid only p falls between 0.44 and 0.57, which may variant

with the changes of other parameters, while the trend is similar.
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Figure 3: The conditions of equilibrium for poison policy (a = b = 10, d = 25, βa = 1.5,

βb = 2.1).
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Figure 4: The relationship between p and qa (qb = 0.5, a = 10, d = 25, βa = 1.5, βb = 2.1,

c = 5.
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5.2. Haircut policy

Recall that in simultaneous-move game under imperfect information with

respect to haircut policy, the authors claim that “there will be no equilibrium530

outcome with a strictly positive payoff for both players, ...”[22]. In this paper,

Figure 5 illustrates the effect of a, qa/qb on equilibria. Unlike the case of poison

policy, there is no distinct linear relationship between a and qa/qb. The common

universality for the points in grey area in Figure 5 is that most points require

qa/qb > 1. That is, the quality of S should be at least higher than that of P.535

For instance, there exists an equilibrium when a = 9 and qa/qb = 1.22. Note

that it’s not always establish for haircut policy, where, for example, a = 2, 3, 4...

and qa/qb = 1.22. Therefore, the existence of equilibria heavily depends on

parameters.

0 1 2 3 4 5 6 7 8 9 10
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

a

qa/qb

 

 

(7)

(8)

1.22

Figure 5: The conditions of equilibrium for haircut policy (b = 10, d = 20, βa = 1.5, βb = 0.5,

c = 0.1, p = 0.5).

5.3. Suicide policy540

In [22], the seniority policy can be reduced to haircut policy. Therefore, it

inherits the conclusions of haircut policy there. The authors also claim that
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seniority policy is more or less a modification of signal game under incomplete

information with cost commitment. Unfortunately, there are still no more mix-

ing equilibria for seniority with respect to seniority policy. In this paper, we545

revisit seniority policy and propose an updated version since parties cannot ne-

gotiate without knowing the exact values of bad coins. The deposits in suicide

policy can be regarded as cost commitment for game Gd. The existence of de-

posits deters parties not to mix bad coins. Otherwise deposits will not refund.

There are more than one equilibrium for suicide policy under the thrust of de-550

posits (grey area in Figure 6). For example, c = 2.8, qa = 0.56 constitute an

equilibrium. Generally, c is relatively low when qa is high. That is, S would like

to pay less if he has more good coins. On the other hand, he must pay more

for his bad coins. Otherwise, P would not take risk to accept mixing bad coins.

No equilibrium exists when qa is lower than 0.5 even if S pays all his coins. So555

the existence of equilibria heavily depends on the parameters.
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Figure 6: The conditions of equilibrium for suicide policy (a = 5, b = 10, d = 25, βa = 1.5,

βb = 2.1, qb = p = 0.5).

We fix qb = 0.6 as a reference for the case qb = 0.5, where other parameters
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are the same (as shown in Figure 7). The equilibria for qb = 0.6 include the

points in area IV , while those for qb = 0.5 include the points in areas I, II,

III and IV . It’s obvious the equilibria area is larger when qb is smaller, which560

means P prefer to mix when he has more bad coins. Note that here we only

discuss the existence of equilibria instead of precise values and the equilibria

areas vary with variant parameters.
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Figure 7: The conditions of equilibrium for suicide policy (a = 5, b = 10, d = 25, βa = 1.5,

βb = 2.1, qb = p = 0.5).

6. Conclusions and future works

The method of mixing coins is a double-edged sword, which may provide565

privacy and facilitate money launder. Previous works solve this problem when

blacklist is common knowledge or present simultaneous game under imperfect

information. In this paper, we consider complex scenario, where blacklist is not

updated timely. Furthermore, we allow parties to take actions alternatively.

Therefore, previous solutions do not match to this new scenario. We introduce570

deposits enforced by smart contracts and extend the utilities in the new model.
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Furthermore, we analyze poison and haircut policies under incomplete infor-

mation and list the conditions for sub-game perfect equilibrium. That is, S

sponsors a smart contract for mixing coins and P accepts it. However, deposits

mechanism fails to directly transplant for seniority policy since parties cannot575

negotiate beforehand. In the sequel, we proposed suicide policy to prevent bad

coins from entering mixing.

In this paper, we fixed our model under some assumptions. For example, we

assume that the blacklist will be updated after the game. These assumptions

should be unbundled and more general models are needed in the future works.580

Furthermore, the parameters in our model are not necessary optimal ones since

we choose them manually. In the future works, we may break this defect by

introducing machine learning. One of the urgent problems is to build a data set

for the target.

Acknowledgments585

This study was funded by Foundation of National Natural Science Foun-

dation of China (grant number:61771231, 6150028), Natural Science Shandong

Province (grant number: ZR2016FM23, ZR2017MF010, ZR2017MF062), Key

Research and Development Program of Shandong Province NO. 2019GGX101025).

References590

[1] G. Maxwell, Coinjoin: Bitcoin privacy for the real

world. post on bitcoin forum, accessed on August 2013.

https://bitcointalk.org/index.php?topic=279249 (2013).

[2] Wiki, Coinjoin, accessed on June 2020. https://en.bitcoin.it/wiki/CoinJoin

(2020).595

[3] T. Ruffing, P. Moreno-Sanchez, A. Kate, Coinshuffle: Practical decentral-

ized coin mixing for bitcoin.

28



[4] Y. Wang, A. Bracciali, T. Li, F. Li, X. Cui, M. Zhao, Randomness invali-

dates criminal smart contracts, Information Sciences 447 (2019) 291–301.

[5] L. Zhang, Y. Wang, F. Li, Y. Hu, M. H. Au, A game-theoretic method600

based on q-learning to invalidate criminal smart contracts, Information

Science 498 (2019) 144–153.

[6] Z. Yang, T. Ouyang, X. Fu, X. Peng, A decision making algorithm for

online shopping using deep learningcbased opinion pairs mining and q-rung

orthopair fuzzy interaction heronian mean operators, International Journal605

of Intelligent Systems 35 (5).

[7] X. Yu, H. Wang, Zheng, X. Zheng, Y. Wang, Effective algorithms for ver-

tical mining probabilistic frequent patterns in uncertain mobile environ-

ments, International Journal of Ad-Hoc Ubiquitious Computing 23 (3-4)

(2016) 14437–151.610

[8] Y. Wang, M. Zhao, Y. Hu, Y. Gao, X. Cui, Secure computation protocols

under asymmetric scenarios in enterprise information system, Enterprise

Information Systems (2019) 1–21.

[9] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, Y.-a. Tan, Secure

multi-party computation: theory, practice and applications, Information615

Sciences 476 (2019) 357–372.

[10] R. Urena, G. Kou, J. Wu, F. Chiclana, E. Herrera-Viedma, Dealing with

incomplete information in linguistic group decision making by means of in-

terval type-2 fuzzy sets, International Journal of Intelligent Systems 34 (6)

(2019) 1261–1280.620

[11] X. Ding, H. Liu, A new approach for emergency decision-making based

on zero-sum game with pythagorean fuzzy uncertain linguistic variables,

International Journal of Intelligent Systems 34 (7) (2019) 1667–1684.

29



[12] N. Tsalis, N. Virvilis, A. Mylonas, T. Apostolopoulos, D. Gritzalis, Browser

blacklists: the utopia of phishing protection, in: International Conference625

on E-Business and Telecommunications, Springer, 2014, pp. 278–293.

[13] M. Vasek, M. Weeden, T. Moore, Measuring the impact of sharing abuse

data with web hosting providers, in: Proceedings of the 2016 ACM on

Workshop on Information Sharing and Collaborative Security, ACM, 2016,

pp. 71–80.630

[14] B. Edwards, T. Moore, G. Stelle, S. Hofmeyr, S. Forrest, Beyond the black-

list: modeling malware spread and the effect of interventions, in: Proceed-

ings of the 2012 New Security Paradigms Workshop, ACM, 2012, pp. 53–66.

[15] S. Hofmeyr, T. Moore, S. Forrest, B. Edwards, G. Stelle, Modeling internet-

scale policies for cleaning up malware, in: Economics of Information Secu-635

rity and Privacy III, Springer, 2013, pp. 149–170.

[16] A. Acquisti, R. Dingledine, P. Syverson, On the economics of anonymity,

in: International Conference on Financial Cryptography, Springer, 2003,

pp. 84–102.
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