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Abstract 
 

Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for 

affective human interactions. Researchers have given machines the ability to recognize affective 

communication through the above modalities in the past decades. In addition to facial expressions, changes 

in the level of sound, strength, weakness, and turbulence will also convey affective. Extracting affective 

feature parameters from the acoustic signals have been widely applied in customer service, education, and 

the medical field. In this research, an improved AlexNet-based deep convolutional neural network (A-DCNN) 

is presented for acoustic signal recognition. Firstly, preprocessed on signals using simplified inverse filter 

tracking (SIFT) and short-time Fourier transform (STFT), Mel frequency Cepstrum (MFCC) and waveform-

based segmentation were deployed to create the input for the deep neural network (DNN), which was applied 

widely in signals preprocess for most neural networks. Secondly, acoustic signals were acquired from the 

public Ryerson Audio-Visual Database of Affective Speech and Song (RAVDESS) affective speech audio 

system. Through the acoustic signal preprocessing tools, the basic features of the kind of sound signals were 

calculated and extracted. The proposed DNN based on improved AlexNet has a 95.88% accuracy on 

classifying eight affective of acoustic signals.  By comparing with some linear classifications, such as 

decision table (DT) and Bayesian inference (BI) and other deep neural networks, such as AlexNet+SVM, 

recurrent convolutional neural network (R-CNN), etc., the proposed method achieves high effectiveness on  

the accuracy (A), sensitivity (S1), positive predictive (PP), and f1-score (F1). Acoustic signals affective 

recognition and classification can be potentially applied in industrial product design through measuring 

consumers’ affective responses to products; by collecting relevant affective sound data to understand the 

popularity of the product, and furthermore, to improve the product design and increase the market 

responsiveness. 
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short time Fourier transform 

 

1. Introduction 
 

Affective computing refers to the ability to detect, classify, organize, and respond to human affective 

communication which can help users get efficient and friendly feelings. This kind of development can also 

be used by special credits to help people understand the affective world of themselves and others. The 

research of affective computing makes the formal machine more visual, which is the prerequisite for realizing 



human-computer interaction [1]. To date, affective information extraction based on acoustic features is 

widely used in language, affective, and affective recognition, and making much more critical issues in the 

field of intelligent computing. The sound itself has no affective, but auditory signals (such as loudness and 

fluency), lip muscle tension and facial expressions during pronunciation can give a psychological or innate 

feeling to people [2, 3]. Sound is an analog signal, and the time domain waveform of the sound only represents 

the relationship of the signals’ pressure with time and cannot be represented as the features of the sound as 

well [4]. Therefore, the sound waveform need to be converted into acoustic feature vectors formally; Turner 

et al. developed a flexibility algorithm to the decomposition process of discrete wavelet transform (DWT), 

so-called wavelet packet transform (WPT) for speaker identification [5]; Yuan, X.-C at el. [6] also used 

wavelet packet analysis for speaker-independent affective recognition and improved the recognition rates in 

EMODB (Berlin Database of Affective Speech) and EESDB (an elderly affective speech database). At 

present, there are many acoustic feature extracting methods (FEM), such as Mel frequency Cepstrum 

coefficient (MFCC), linear prediction cepstral coefficient (LPCC), multimedia content description interface 

(MPEG7), etc. [7]. Among them, MFCC is based on Cepstrum, which is more in line with the principle of 

human hearing and is therefore the most commonly in the most effective acoustic feature extraction 

algorithms. Before extracting the MFCC, the acoustic signals need to be pre-processed, including 

analog/digital (AD) transferring, pre-emphasizing, and windowing [8]. 

 

The classification of acoustic affective features is mainly subdivided into three categories including prosodic 

features (super-segment features / hyper-linguistic features) including duration-related features, fundamental 

frequency-related features, and energy-related features [9]; and sound quality features, such as spectrum-

based correlation analysis feature is a reflection of the correlation between the change in the form of the vocal 

tract and the vocalization motion [10 11]. Acoustic feature extraction is the important step in the whole 

acoustic recognitions process. It includes the fundamental frequency characteristics, such as pitch, it is the 

reciprocal of the vocal cord vibration frequency, which refers to the period when a person makes voiced 

sounds, and the airflow causes the vocal cords to vibrate through the soundtrack. The period of vocal cord 

vibration is the pitch period. The fundamental frequency contains a large number of features that characterize 

speech affective, which are crucial in acoustic affective recognition. The change range is 50-500Hz; and the 

detection difficulty is relatively high [12, 13]. Commonly, fundamental frequency feature extraction methods 

are used for the autocorrelation function (ACF)-time domain, average amplitude difference method (AMFD)-

time domain and wavelet method (WM)-frequency domain; C.K, Y., et al selected higher order spectral 

features in a set for affective recognition by using 28 bi-spectral features and 22 bi-coherence features [14].  

 

In other way, the formant characteristics also can be used for acoustic recognition; from an acoustic point of 

view, it means that the sound channel can be regarded as a sound tube with a non-uniform cross-section, 

while the frequency of the sound excitation signal matches the frequency of the sound channel; and the sound 

channel will resonate. The resulting waveform is called a formant. Formants are one of the most important 

parameters of speech signal processing, which determines the sound quality in vowels. Its parameters include 

formant frequency and formant bandwidth. Daneshfar et al. [15] introduced a high-dimensional hybrid 

feature vector for dealing with spectral-prosodic features of speech and performed high effectiveness in 

recognize EMODB. The positions of the formants of different affective pronunciations are different. When 

the affective state changes, the peak values of the first three formants change greatly, and the peaks are the 

first, second, and the third formant from low to high. Generally, the average value, maximum value, minimum 

value, dynamic change range, average change rate, mean square deviation of the first, second, and third 

formant are selected [16, 17]. 

 

Before deep learning is applied, spectrogram, MFCC are commonly used as for acoustic signal processing;  

while in other hand, the Koff model is still a common method for acoustic affective recognition; and 

traditionally, convolutional neural networks (CNN) and time-domain pyramid matching also were used to 

extract and recognize affective features in acoustic signals [18, 19]. As deep-learning-based recognition 

methods are developed recently, unsupervised learning program-a feature detector layer may be created 

without labeling data; and a reconstruction learning goal is used to “pre-training” several layers of increasing 

complexity feature detector. The first important application of this pre-training method is in acoustic feature 

recognition [20-22]. This method also has been used to calculate a series of probability values corresponding 

to the window of short-term coefficients extracted from a sound sample. These probability values reflect the 

probability that each segment of speech is represented by a frame in the window. In the standard acoustic 



recognition test of the small vocabulary, the training effect of this method broke the record, and soon it is 

developed to break the standard voice test record of the large vocabulary [23]. The methods of acoustic 

feature extraction based on deep learning also include some common feature de-dimensionality algorithms, 

such as principal component analysis (PCA), linear discriminant analysis (LDA), local preservation 

projection (LPP), multidimensional scale analysis (MDS), Isometric mapping (ISOMAP), local linear 

embedding (LLE), and Laplacian eigenmaps (LE) [24,26]. The traditional CNN model has a shallow structure 

and limited ability to model acoustic features. If a CNN and a deep confidence network (DBN) are used to 

generate a deep convolutional network, a neural network can be added. The depth of the model to enhance 

the modeling ability of the model will be created [27, 28]. The deep CNN model may improve the accuracy 

in acoustic recognition task. The proposed residual / highway network allows us to train the neural network 

deeper [29, 30]. In the process of trying deep CNN, there are roughly two strategies: one is the acoustic model 

based on the deep CNN structure in the HMM framework. The CNN can be a CNN network structure 

connected by VGG or residual, or a CLDNN structure. The other is a very popular end-to-end structure in 

the past two years, such as the use of CNN or CLDNN in the CTC framework to achieve end-to-end modeling, 

or coarse-grained modeling unit technology, such as low frame rate and chain (LFRC) model. Google 

attempts to deep CNN’s path mainly using a variety of methods and model fusion, such as network-in-

network (NiN), batch normalization (BN), and convolutional LSTM (ConvLSTM) [31,32]. However, studies 

have shown that convolutional neural networks help the training set or tasks with small data differences the 

most. For most other tasks, the relative word error rate declines generally only 2% up to 3% [33].  As a deep 

neural network, the AlexNet network structure model proposed by Alex in 2012 detonated the application of 

neural networks, has been widely used in acoustic affective recognition [34-36]. Furthermore. Boddapati et 

al. [37] used CNN and DBN for image recognition, such as, AlexNet and GoogLeNet for classifying 

environmental acoustic signals, and Boloukian and Safi-Esfahani [38] developed an autoencoder neural 

Turing machine (DN-AE-NTM) model for classifying speech-impaired people. 

 

In this paper, acoustic feature signals are used for speech affective-based calculation and recognition; Music 

Analysis, Retrieval and Synthesis for Audio Signals (MARSYAS, http://marsyas.info), an audio signals 

analysis, retrieval and synthesis tools for basic features calculation. By separating preprocessing and 

waveform-based processing, an improved AlexNet deep convolutional neural network (ADCNN) is finally 

used to classify acoustic affective dataset from public datasets. The framework of the research is shown in 

Fig.1. The rest of the paper structure is organized as follows; Section 2 introduces the data preprocessing and 

feature extraction; Section 3 presents the modeling and method; Section 4 presents the results and discussion, 

and Section 5 presents the conclusion. 

 

 
Figure 1. the framework of affective acoustic recognition using an improved AlexNet-based deep 

neural networks 

 

 

 



2. Modelling 

2.1 Preprocessing 

The purpose of acoustic signals preprocessing is to highlight the useful information contained in the speech 

acoustic signals as much as possible and reduce the impact of other useless information (noisy). The 

following sections briefly introduce the sampling quantization, windowing and framing, and endpoint 

detection. 

 

2.1.1 Sampling and Quantization 

To perform post-framing windowing and endpoint detection processing, the voice signal needs to be 

converted from a continuous analog signal to a discrete digital signal. The digitization of speech signals 

includes two processes: sampling and quantizing. The time interval in the sampling process is determined by 

the sampling frequency. The larger the sampling frequency, the smaller the time interval and the better the 

quality of the resulting speech acoustic signal. However, the sampling frequency is not as large as possible. 

Due to the limited hearing ability of the human, while the sampling frequency exceeds a certain range, so the 

acoustic signal will contain more redundant information that is not related to affective expression, which may 

affect human affective. In the field of speech acoustic processing, the sampling frequencies of 11.25kHz, 

22.05kHz and 44.1kHz respectively represent the three qualities of low, medium and high signals. For the 

research of speech affective recognition, generally adopting medium-quality speech signals can satisfy the 

demand. So, a sampling frequency of 22.05kHz can be used by sampling. After sampling the original acoustic 

signal, only discrete digitalization is realized in time, and the amplitude needs to be digitized by quantization. 

The most important parameter in the quantization process is the number of quantization bits and 8-bit, 12-

bit, and 16-bit are commonly used. The higher the number of bits, the higher the accuracy, and the greater 

the storage space required as well. 

2.1.2 Windowing and Framing 

Although the voice signal is a non-stationary signal that changes with time, it also has short-term stability, 

that is, within a short time range (usually considered to be 10-30ms), the voice signal remains basically 

unchanged. Therefore, in order to analyze the characteristic parameters of the voice signal, the voice signal 

must be segmented first, which is commonly referred to as framing. It is determined by two parameters, 

frame length and frame shift. Frame length refers to the length of each frame. Frame shift indicates the degree 

of overlap between two adjacent frames. In this paper, when the affective speech is framed, the frame length 

is 512 sampling points, and the frame shift is 256 sampling points. The framing process usually requires the 

use of a fixed-length window moving in one direction. This is the windowing operation mentioned. The 

relationship between the digitized speech signal ( )x n  and the window function ( )w n  can be expressed as 

( ) ( ) ( )wx n x n w n=                                                                                        (1) 

where, the ( )w n  has the form of rectangular windows, Hamming windows and Hann windows are shown 

as follows, 
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where, N  is the length of the frame. The main lobe of the rectangular window is narrow, but the peak of the 

side lobe is high, which causes serious spectrum leakage; the main lobe of the Hamming window is wider, 

which is about twice that of the rectangular window, but the side lobe attenuation is large, which can 

effectively reduce the spectrum leakage To reflect the spectral characteristics of short-term signals to a large 

extent. Hann window and Hamming window are both cosine windows, but the weighting coefficients are 

different, but they are better than rectangular windows. In this paper, the window function used for framing 

is the Hamming window. 

2.1.3 Endpoint Detection 

Endpoint detection is a key step in the speech processing process. The purpose of endpoint detection for 

voice signals is to find the start and end points of a segment of speech and obtain valid segments of speech. 

This paper adopts a dual-limit gate endpoint detection method based on short-term energy and short-time 

zero-crossing rate. The specific steps are as follows: 

Step 1: First calculate the energy of each frame of voice signal after framing by, 
1

2

0

( )
N

n n

m

E x m
−

=

=                                                                                (5) 

Where, n refers to the n-th frame speech signal, m refers to the m-th sampling point, and N is the frame length. 

Step 2: calculate the zero-crossing rate ( crz ) of each frame, 

1

| ( ( ) sgn( ( 1)) |
N

cr n n

i

z sgn x i x i
=

= − −                                              (6) 

where, | . |  means absolute and sgn(.) is a sign function as defined by, 
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Step 3: calculate the average “e” and standard deviation “ e ” of the short-term energy of the entire voice 

on a frame basis, and set two thresholds for the initial detection of the voice start and end points, high 

threshold 15− dB, low threshold is 3 ee + dB. The high threshold is used to determine the starting point 

of the voice, and the low threshold is used to determine whether the voice ends. 

Step 4: calculate the mean value “mv” and standard deviation “ mv  ” of the short-term zero-crossing rate of 

the entire voice on a frame basis, and set the zero-crossing rate threshold as 3 mvIZCT mv = + . The 

consonant position at the end completes the second detection of the starting point and ending point of the 

voice. 



2.2 Deduction and Segmentation 

 

2.2.1 features extraction for acoustic signals 

 

The Fourier transform is to de-compose signals into countless sine wave (or cosine wave) signals. Because 

of its small amount of calculation, Fast Fourier Transform (FFT) has been widely used in the field of signal 

processing technology, for example, analysis and Synthesis, and multiplex conversion of fully digital time 

division and frequency division (TDM/FDM) in communication systems, as well as signal filtering and 

related analysis in the frequency domain; in addition, through radar, sonar, and vibration signals. In order to 

improve the resolution of the target search and tracking, the FFT is used to analyze the spectrum. The 

emergence of FFT has played an important role in the development of digital signal processing. In this study, 

we used FFT to process and reduce the dimension of the speech signal to facilitate the next step of processing. 

Another deduction method applied in this paper is the simplified inverse filter tracking (SIFT), which is a 

new version of related processing methods for extracting basic audio signals. The basic idea of this method 

is to first perform LPC analysis and inverse filtering on the acoustic signal to obtain the predicted residual of 

the speech signal, then filter the residual signal through an autocorrelation filter, and then perform peak 

detection. Flatten the obtained spectrum [39]. The Linear Predictive Analysis Method (LPC) is that the 

acoustic signal can be approximated by a linear combination of several acoustic sampling points in the past. 

By minimizing the variances between the predicted sample values and the actual output values, a set of linear 

prediction coefficients can be obtained from the transfer function of the channel. The power spectrum of the 

channel transfer function can be obtained by modulo H (z), and the bandwidth and center frequency can be 

detected more accurately based on the power spectrum. 

 

The one of the rest processes in this stage is formant extraction including Cepstrum, which uses the 

homomorphic unwinding technique to separate the pitch information from the channel information, so that 

the formant parameters can be directly obtained. This method is more accurate than directly performing the 

Discrete Fourier Transform (DFT) calculation to obtain the formant, which avoids the fundamental harmonic 

wave frequency error. The second process used in this research is Mel frequency Cepstrum coefficient 

(MFCC) extraction. MFCC is a characteristic parameter discovered according to human hearing mechanism, 

which has a non-linear correspondence with frequency. Below 1000 Hz, the human ear's ability to perceive 

sound has a linear relationship with frequency, while above 1000 Hz, the human ear's ability to perceive 

sound has a nonlinear relationship with frequency. MFCC utilizes this non-linear relationship to obtain the 

spectral characteristics. It is based on the hearing merits of the human ear and is a robust frequency domain 

speech feature parameter. The human ear uses Mel to subjectively measure the pitch. The pitch of a speech 

signal of 1000 Hz and 40 dB is specified as 1000 Mel. On the Mel scale, the subjective perception of the 

human ear on the pitch of speech is linear. The human ear basement membrane is equivalent to a non-uniform 

filter bank. The cell membranes in different places have different responses to frequency. Each part 

corresponds to a filter group, and each filter group corresponds to a center frequency and bandwidth. The 

bandwidth is about 100 Mel [40,41]. 

 

Fourier transform the original acoustic signal to obtain the frequency spectrum by using 

[ ] [ ] [ ]X k H k E k=                                                  (8) 

And the amplitude is presented by 

|| [ ] || || [ ] |||| [ ] ||X k H k E k=                                          (9) 

Where, || . ||  is a norm of a vector. Continuously, taking logarithms on both sides, we have that, 

log || [ ] || log || [ ] || [ ] || log || [ ] || log || [ ] ||X k H k E k H k E k= = +                       (10) 

And then, taking inverse Fourier transform on both sides, we have that, 

[ ] [ ] [ ]x k h k e k= +                                                              (11) 

Summarized that Cepstrum is a spectrum obtained by inverse Fourier transform of the Fourier transform of 

a signal after logarithm operation. 

 

As the human’s hearing system is a particular non-linear system, and its sensitivity for different frequency 

signals is different obviously. So, in the extraction of acoustic features, the human hearing can not only 

extract semantic information, but also extract the speaker’s personal features, which are beyond the reach of 



existing acoustic recognition systems. If the characteristics of human auditory perception processing can be 

simulated in the acoustic recognition system, it is possible to improve the speech recognition rate.  MFCC 

here simplices the human hearing merits; and the linear spectrum is first mapped to the MFCC’s nonlinear 

spectrum based on auditory perception, and then being converted to the Cepstrum. The formula for converting 

ordinary frequency to Mel frequency is, 

( ) 2595*lg(1 / 700)mel f f= +                                              (12) 

Then, we pass the spectrum through a set of Mel filters to get the Mel spectrum. The formula is, 

log [ ] log( )X k mel spectrum= −                                            (13) 

The Cepstrum based analysis is illustrated in Fig. 2. The algorithm for MFCC based acoustic signals 

processing as described in Algorithm 1.  

 

Figure 2. MFCC based acoustic feature extraction process 

 



Algorithm 1: MFCC for acoustic signals processing 

REQUIRED: file_wav; Mel filter=26; len_FFT=512; sample_frq=16000Hz; lifter=22; pre-

emphasis=0.98; hamming_wind=TRUE; len_frame=400; _shift_frame=160; 

OUTPUT: m; ac (); 

# required wav file 

wavdataaudioread(*.wav) 

#Mel filter 

bankmelbankm(Mel_filt,len_FFT,sample_frq,Hammin_wind) 

# normalization 

banklognormalization(bank)  

# calculate dct coefficients 

FOR k1 TO 12    

       N1:26; 

       dctcoef(k)COS((2*n-1) *k*PI/ (2*26)); //PI=3.14159 

ENDFOR 

# pre-emphasis 

y.pfilter(1, pre-emphasis) 

# framing 

y.p=enframe(y.p,len_frame,shift_frame); 

# calculate each frame’s MFCC 

FOR i1 TO size (y.p,1) 

         yy.p(i,:); 

         yhamming_wind(y,400); 

         yabs(fft(y,512)); //FFT  

         yy^2; 

         c1dctcoef*log (bank*y (1:257)) ;// if N mod 2==0 then we have that N/2+1=257 

         c2c1*w;  

         c2c2*sqrt (2.0/26); 

         m(i)c2; 

ENDFOR 

#calculate the first order difference coefficient 

dtm=zeros(size(m)); 

FOR i3 TO size(m,1)-2 

        dtm(i)=-2*m(i-2)-m(i-1) +m(i+1) +2*m(i+2) 

ENDFOR 

dtm=dtm/3; 

#calculate the second order difference coefficient 

dtmm=zeros(size(dtm)); 

FOR i3 TO size(dtm,1)-2 

        dtmm(i)=-2*dtm(i-2)-dtm(i-1) +dtm(i+1) +2*dtm(i+2); 

ENDFOR 

dtmm=dtmm/3; 

#combine two MFCCs 

ac[m dtm dtmm]; 

RETURN: 

         ac, m 

 

 

 

 

 

 



2.2.2 Time Frequency Separating  

Acoustic signal segmentation is a very important issue for signal affective recognition. The automatic 

accurate positioning and segmentation of continuous acoustic signals is very difficult. It will lead to serious 

accumulation of neural network training errors in the later period if the signal segmentation is inaccurate; 

and the segmentation method based on the time domain belongs to the non-model method can be used to 

optimize the analysis process. Before that, a tool called MARSYAS (Music Analysis, Retrieval and Synthesis 

for Audio Signals) was used for acoustic signals’ features calculation, which is an open source software 

framework for audio processing with acoustic information retrieval applications. Algorithm 2 introduced the 

process for time frequency based acoustic signal separating process [42]. 

Algorithm 2: time frequency separating 

REQUIRED: w (wave file) 

OUTPUT: wave_data 

START  

  wreadfile(*. wave) 

   path wave_read (path): 

    wavfile  w.open(path,”rb”) 

params  wavefile.getparams() 

# get features using MARSYAS system 

    n_channels, sample_width, frame_rate, n_frames  params [:4]  

    datawav  wavefile.readframes(n_frames) 

    wavefile.close() 

    wave_data  np.fromstring(datawav, dtype = np.short) 

    if n_channels==1: wave_data.shape-1,1   

    if n_channels==2: wave_data.shape-1,2 

    wave_data  wave_data.T 

    time  np.arange(0, n_frames) * (1.0/frame_rate) 

RETURN 

   wave_data[0], time 

 

2.3 Classification 

2.3.1 AlexNet 

 

AlexNet is developed from LeNet [43] by deepening its network structure and learns much richer and higher 

dimensional image features. AlexNet has a deeper network structure, uses a cascaded convolutional layer, 

that is, convolutional layer + convolutional layer + pooling layer to extract the characteristics of the signal, 

uses Dropout to suppress overfitting, and can use data enhancement technology; use ReLu [44] to replace the 

previous sigmoid as an activation function, the main structure is as follows: 



 
Figure 3. AlexNet based deep neural networks structure 

 

The first layer is convolutional layer 1, and the input is 224 × 224 × 3 images; the number of convolution 

kernels is 96;  in this research, 48 cores is applied, and the size of the core is 11 × 11 × 31; set stride be 4, 

stride means the step size, and set pad be 0, that means the edge is not extended. The size of the graph after 

convolution can be calculated as, wide = (224 + 2 * padding-kernel_size) / stride + 1 = 54, height = (224 + 2 

* padding-kernel_size) / stride + 1 = 54, and dimension = 96. Then the perform index so called Local 

Response Normalized (LRN) is followed by pooling using pool_size = (3, 3), stride = 2, and pad = 0, and 

finally the feature map of the first layer of convolution is acquired.  The second layer is convolutional layer 

2. The input is the feature map of the previous layer of convolution (first layer); the number of convolutions 

is 256, and then we have 128 convolution kernels respectively in this research. The size of the convolution 

kernel is: 5 × 5 × 48; pad = 2, stride = 1; then do the LRN, and finally so max_pooling using pool_size = (3, 

3) and stride = 2. The third layer is convolution layer 3. The input is the output of the second layer; the 

number of convolution kernels is 384, kernel_size = 3 × 3 × 256, padding = 1, third Layer does not do LRN 

and Pool.The fourth layer is convolution layer 4. The input is the output of the third layer; the number of 

convolution kernels is 384, kernel_size = 3 × 3, padding = 1; is it the same as the third layer without LRN 

and Pool. The fifth layer is convolution layer 5. The input is the output of the fourth layer; the number of 

convolution kernels is 256, kernel_size = 3 × 3, padding = 1. Then, directly perform the max_pooling using 

pool_size = (3, 3) and stride = 2. The sixth, seventh, and eighth layers are fully connected layers. The number 

of neurons in each layer is 4096, and the final output softmax is 1000; because as mentioned above, the 

classification number is 1000. ReLU and dropout are used in the fully connected layer in this research. ReLU 

nonlinearity (Rectified Linear Unit) is,  

( )
tanh( )

x x

x x

e e
x

e e

−

−

−
=

+
                                              (14) 

The sigmoid function is defined as, 

1
( )

1 x
f x

e
=

+
                                                      (15) 

In the neural network, the activation function does a non-linear mapping of the output of the neuron, but the 

range of traditional activation functions such as tanh and sigmoid has a range, and the range of the ReLU 

activation function has no interval, so the result from ReLU need to be normalized (LRN), the LRN is defined 

as,  
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Where ( , )

i

x ya  presents the i-th kernel’s output in position ( , )x y  ; n  presents the number of the neighbors 

of ( , )

i

x ya . N  is the total counts of kernels; ( , )

i

x yb  is the result of LRN. ,   are parameters. 

The final step is overlapping pooling. The general pooling layer does not overlap, so pool_size and stride are 

generally equal; for example, an image of 8 × 8, if the size of the pooling layer is 2 × 2, then the operation 

after pooling will get an image with 4 × 4. This setting is called uncovered pooling operation; if stride less 

than pool_size, then it will generate a covered pooling operation, which is somewhat similar to convolutional 

operation, so that more accurate result can be acquired. Pooling operations uses overlays in top-1 and top-5 

reducing the error rate by 0.4% and 0.3%, respectively. In the process of training the network model, the 

covered pooling layer is less likely to overfit. So, dropout needs to be carried out for preventing overfitting. 

In the neural network, dropout is realized through modifying the structure of the neural network itself. For a 

certain layer of neurons, the neuron is set to 0 by a defined probability. This neuron does not participate in 

forward and backward propagation, just like in the network. It is deleted in the same way while keeping the 

number of neurons in the input layer and the output layer unchanged; and then update the parameters 

according to the learning method of the neural network. In the next iteration, some neurons are randomly 

deleted again (set to 0) until the end of training. Dropout should be regarded as a great innovation in AlexNet, 

and now one of the necessary structures in neural networks, dropout can also be regarded as a model 

combination. The network structure generated each time is different. By combining multiple models, 

overfitting can be effectively reduced while dropout only requires twice the training time to achieve model 

combination (similar to average) in much higher efficiencies.  

 

2.3.2 the improved AlexNet-based deep convolutional neural network 

The normalization method used in AlexNet is LRN, but LRN has certain defects. Our research is directed to 

take LRN instead of Batch normalization (BN), and ADCNN is proposed. BN is used to normalize the data, 

and then activated by the ReLU function after each convolutional layer AlexNet; then, the maximum pooling 

operation is performed subsequently. The number of neurons in the last fully connected layer is determined 

by the number of affective categories. The specific structure of the improved model is shown in Fig. 5. The 

input setting of the improved model is 227 × 227 × 3, that is, the input is a color image of 227 × 227. 

(1) C1 layer: the C1 layer uses 96 convolution kernels of size 11 × 11, and the convolution kernel 

movement step is set to 4; the size of the output feature map after convolution is 55 × 55 × 96. BN 

processing is performed immediately after the convolution, and the activation function also uses the 

ReLU function. When the C1 layer is pooled, the filter size is 3 × 3; the number is equal to the 

number of feature maps output after convolution, and the filter moving step is set to 2. The size of 

the output feature map after pooling is 27 × 27 × 96, and the calculation of the size of the feature 

map after convolution and pooling is shown in formula, 

 ( )
( ) ( )( ) _   2   

 _     1 
size input data pad size kernel

size feature map
stride

+  −
= +    (17) 

where, the pad refers to the number of pixels expanded on the feature map, and stride is the moving 

step of the convolution kernel. In general, when performing pooling operations, the extended feature 

map is not considered, that is pad = 0. 

(2) C2 layer: during the convolution of the C2 layer, the feature map output from the C1 layer is 

expanded by 2 pixels, and the size of the input feature map becomes 31 × 31 × 96. The size of the 

convolution kernel used in the C2 layer is 5 × 5, the number is 256, the moving step is 1, and 256 

27 × 27 feature maps are output. The C2 layer uses a filter with a size of 3 × 3 and a moving step 

size of 2 to pool the data, and finally the size of the output feature map is 13 × 13 × 256. Like the 

C1 layer, the BN and ReLU functions are added between the convolution and pooling of the C2 

layer. 

(3) C3 layer: Only the data is convolved in the C3 layer, and the convolutional data is not pooled like 

the C1 and C2 layers. In C3 layer convolution, the feature map output from the C2 layer is first 



expanded to 15 × 15 × 256, and then 384 3 × 3 convolution kernels are used to implement the 

convolution operation with a moving step of 1, and the output is 13 × 13 × 384 feature map. After 

convolution, the BN and ReLU functions are also used. 

(4) C4 layer: The parameter setting during convolution is exactly the same as the C3 layer. The feature 

map output from the C3 layer is expanded by one pixel and the size is 15 × 15 × 384. After the 

convolution is completed by 384 3 × 3 convolution kernels, the output 13 × 13 × 384 feature map. 

(5) C5 layer: The feature map output from the C4 layer is expanded by one pixel, and the size of the 

feature map becomes 15 × 15 × 384 during convolution. In the C5 layer convolution, 256 

convolution kernels with a size of 3 × 3 and a moving step of 1 are used, and the output feature map 

size is 13 × 13 × 256. Then, the feature maps activated by the BN and ReLU functions are pooled. 

When pooling, the filter size is 3 × 3, the moving step size is 2, and the size of the final output 

feature map is 6 × 6 × 256. 

(6) FC6 layer: The FC6 layer uses 4096 neurons to expand the feature map output from the C5 layer 

into one-dimensional data, Dropout is set to 0.5, and the activation function still uses the ReLU 

function. 

(7) FC7 layer: The FC7 layer is composed of 2048 neurons. This is because the 4096 data of the FC6 

layer go through 50% Dropout, and finally output 2048 data. The dropout and activation functions 

of FC7 layer are the same as FC6 layer. 

(8) FC8 layer: The FC8 layer is the classification output layer. The number of neurons is determined 

according to the number of affective categories. The activation function uses the “softmax” function. 

 

Figure 4. the improved deep neural network by AlexNet 

 

 

 

 



3. Results and discussion 

3.1 Data acquisition and preprocessing 
 

The Ryerson audio-visual database of emotional speech and song (RAVDESS, 

https://smartlaboratory.org/ravdess/) speech audio system was used for training and validating the deep 

neural networks proposed in this research. The dataset includes speech audio-only files with 16bit, 48kHz, 

the format is “wav”. Full dataset of speech and song, audio and video are approximately 24.8 GB provided 

by Zenodo. Construction and perceptual validation of 24 actors with 24×60 splits and 8 affective, which 

named in filename as 01 = “neutral”, 02 = “calm”, 03 = “happy”, 04 = “sad”, 05 = “angry”, 06 = “fearful”, 

07 = “disgust”, and 08 = “surprised” were prepared; the files also include affective intensity with 01 = normal 

and 02 = strong [45]. MARSYAS tools were used for calculating partly features that may be used in this 

research. 

 

3.2 Segmentation 
 

The sound signal segmentation for the waveform information actually takes an amplitude value on the 

waveform of the analog sound at every time interval, and converts the continuous data in time into the 

waveform separation process. In the process of extracting affective or affective from sound, proper waveform 

segmentation can greatly reduce the input complexity of the deep neural networks, thereby reducing the 

processing time of the deep network can be dramatical improving the accuracy of classification. Here, we 

show the waveforms of some sounds. According to observations, we know that this segmentation is actually 

to automatically complete the sound according to the internal structure of the sound signal. As shown in 

Figure 5. Among them, Figure 5-(a) can be roughly divided into 7 segments, (b) can be divided into 7 

segments, (C) is of 6 segments, and (d) is of 7 segments. These divisions are not done under manual 

intervention, but are formed by extracting key amplitudes. 

 

 
(a)                                                                                    (b) 

 
(c)                                                                                    (d) 

Figure 5. waveform-based segmentation using maximal amplification values 

 

STFT short-time Fourier transform is actually doing FFT on a series of windowed data. Some places will 

also mention DCT (Discrete Fourier Transform), and the relationship between DCT and FFT is: FFT is a fast 

algorithm to achieve DCT. Here we set the window length (window.length) to 128; the fast Fourier transform 

length (FFT.length) to overlap length (overlap.length) to 96. To briefly explain the transformation process, 

we take Figure 5-(a), and calculated as visualization in Fig.6-(a). There are 12 histogram plots of Mel cep 

and Fig. 6-(b) is the first histogram for the acoustic signal as showed in Fig. 5(a). 



 
Figure 6. frequency and power of acoustic signal (a) and one histogram plots of MFCC (b) 

 

 

The formant estimation with linear predictive coding (LPC) coefficients are still calculated subsequently. 

Fig.7 (a)-(d) show the estimation process of the vowel formant frequencies using LPC. The formant 

frequencies are obtained by finding the roots of the prediction polynomial. Fig.7 (a)-(d) as relative to Fig.5(a)-

(d) use the acoustic samples collected as described in Sec.3.1. the basic feature calculation is based on 

MARSYAS, while part of calculation works is based on signal processing toolbox™ of Matlab 2019b. The 

acoustic signal, such as human speech in this case is lowpass-filtered, while the low sampling frequency 

limits the order of the autoregressive model which can be fitted onto the acquired data. In spite of this 

limitation, the case here illustrates the technique for using LPC coefficients to determine vowel formants by 

using segmentation length (segment.length) is 100, and number of overlaps (n.overlap) is 90. 

 

  



 

 
(a)                                                                                          (b) 

 
(c)                                                                         (d) 

Figure 7. using LPC coefficients to determine vowel formants of acoustic signals 

After applied LPC coefficients, the STFT time-frequency representation on segments are calculated as shown 

in Fig. 8 (a)-(d). 

 

 
(a)                                                                                          (b) 

 
(c)                                                                                         (d) 

Figure 8. STFT time-frequency presentation on segments of samples (partly) 

 

We also calculated the probability density of the signals with input values, and Fig. 9 shows the concentric 

distribution of the probability density within [-0.02,0.02], which makes the inputs more stable for the deep 

neural networks. 

 



 
(a)                                                                                          (b) 

 
 

(c)                                                                                         (d) 

Figure 9. the probability density of the signals with input values 

With the SIFT preprocess, the actual improved signals distribution on frequency are shown in Fig.10 (a) -

(d), which relative to Fig.5 (a)-(d) separately.  

 

 
(a)                                                                                          (b) 

 
(c)                                                                                         (d) 

Figure 10. improved actual SIFT distribution of the signals 

 

 

 

 

 

 

 



3.3 Classification using the improved AlexNet based deep convolutional neural network 
 

The proposed improved deep neural networks applied the minimal batch size of 128; tune is 128; momentum 

is 0.9; L2 regularization is assigned as 0.005; the maximal epoch is 10; piecewise for learning rate with 2 

drop period and 0.2 drop factor. In this research, the proposed model used soft-max activation function and 

finally consumed 182 minutes running time for single CPU (i9-10940 14 cores, 28 threads with 3.5Gb up to 

4.2Gb, 32Gb RAM). The accuracy and loss in training the ADCNN model are shown in Fig.11. 

 

 
(a) accuracy with 1000 iterations  

 
(b) the loss of 1000 iterations 

Figure 11. classification accuracy by using a function of iteration in 25 layers of the model (a) and the 

loss as a function of iteration in 25 layers of the improved AlexNet-based deep neural network. 

The kind signal preprocessing and time-frequency transform using SIFT and STFT can improve waveform 

based acoustic effective classification accuracy. Table 1 shows the results of the comparing results 

with/without STFT preprocessed signals. 

 

 

 

Table 1. proposed method by comparing with/without STFT preprocessed signals 
Classifier/ Evaluation 

metric 
A S1 S2 PP NP P N F1 

Without SIFT and STFT 93.88% 83.42% 79.69% 81.47% 82.34% 8.18 0.17 0.87 

Without SIFT 94.44% 86.23% 81.76% 81.34% 81.23% 8.09 0.18 0.90 

Without STFT 95.82% 85.12% 80.23% 81.88% 80.98% 8.10 0.18 0.90 

With SIFT and STFT 95.88% 87.98% 82.32% 85.69% 81.56% 8.10 0.18 0.92 

Note that, the F1 Score is the 2*((precision*recall)/ (precision + recall)) which conveys the balance between 

the precision and the recall; it is a normal index for classification evaluation. 

 

From Fig. 12 (a) to (d), it shows that the preprocessed methods have important for the final accuracy, as from 

Fig. 12-(d), the final accuracy is 95.88% by using the preprocessed method as proposed in Sec. 2.2.1 and 

2.2.2. and also, these fusion matrices still show more robustness by inputting SITF and STFT preprocessed 

signals (the accuracy is from 93.88% to 95.88%). 



 
(a)                                                                                          (b) 

 
(c)                                                                                         (d) 

 

Fig. 12. The confusion matrix of the true class and the predicted class results for eight classification of 

acoustic signals with (a) the original FFT processed, (b) with MFCC LPC filtered (c) sift maps improved 

and (d) final results by using the proposed improved AlexNet based deep neural networks.  

And the final classification signals are shown in Fig. 13 

 

 



 

 
 

Figure 13. the final affective classified signals   

3.4 Discussion 
 

AlexNet based deep neural network was compared with other CNN and combinations of deep neural 

networks, such as AlexNet+SVM, Pre-trained AlexNet, R-CNN (recurrent convolutional neural network), 

fast R-CNN, GoogLeNet, VGG-16, scaled conjugate gradient CNN (SGC-CNN), and other linear traditional 

linear classifiers also were discussed such as decision table (DT), Bayesian inference (BI), artificial neural 

network (ANN), k-nearest neighbor (kNN), multi-classification support vector MCSVM, long short-term 

memory (LSTM). To perform the effectiveness of the proposed method, the same acoustic signals were 

preprocessed by the same algorithms which are introduced in Sec. 2. To deploy comparing analysis, some 

evaluation indices were adopted, such as, accuracy (A), sensitivity(S1), specific (S2), positive predictive (PP), 

negative predictive (NP), positive likely (P), negative likely (N), and f1-score (F1). Here we deployed a table 

for show the performance of the proposed models. Table 2 is for comparing analysis by using the SIFT and 

/or STFT preprocessed signals. The results show the dominance of the proposed improved AlexNet based 

deep neural network model in indices of accuracy, S1, PP, N, and F1. 

 

Table 2. Comparative analysis on the different classifiers and the proposed classification model for acoustic 

signal analysis with STFT preprocessed 
Classifier/ Evaluation 

metric 
A S1 S2 PP NP P N F1 

DT [46] 84.25% 73.54% 75.56% 82.35% 80.32% 8.21 0.25 0.91 

BI [47] 84.27% 85.25% 74.25% 81.52% 78.35% 8.31 0.24 0.91 

ANN [48] 84.30% 86.63% 76.36% 80.14% 79.63% 7.56 0.21 0.92 

kNN [49] 84.36% 84.25% 78.56% 85.54% 81.25% 7.53 0.15 0.92 

MCSVM [50] 84.78% 89.52% 80.25% 84.25% 82.74% 8.35 0.16 0.89 

LSTM [51] 86.37% 89.52% 77.58% 84.32% 79.655 8.25 0.20 0.91 

R-CNN [52] 87.62% 87.12% 81.25% 85.21% 86.35% 7.36 0.21 0.92 

Fast R-CNN [53] 87.64% 87.36% 81.635 85.25% 85.41% 7.89 0.19 0.92 

VGG-16 [54] 88.63% 87.35% 82.58% 84.21% 84.82% 8.36 0.20 0.92 

SGC-CNN [55] 89.63% 85.45% 82.36% 85.23% 79.85% 8.30 0.18 0.91 

GoogLeNet [56,57] 90.67% 87.32% 84.54% 85.30% 82.63% 7.88 0.20 0.91 

AlexNet+SVM [58] 90.68% 87.42% 78.69% 85.47% 82.34% 8.14 0.19 0.91 

Pretrained AlexNet [59] 93.63% 85.49% 82.56 85.62% 82.98% 8.20 0.18 0.92 

ADCNN (*) 95.88% 87.98% 82.32% 85.69% 81.56% 8.10 0.18 0.92 

 

 

 

 

 

 

 

 

 



4. Conclusions 

 
In general, the artificial neural network with multiple hidden layers is more stable for feature learning. The 

learned features have a more essential features of the data, which is conducive to visualization or 

classification; the difficulties to deep neural network may be initial (like layer-wise pre-training) to 

effectively overcome. In most researches, layer-by-layer initialization is achieved through unsupervised 

learning and shallow structure algorithm has its limitation lies in the limited ability to express complex 

functions in the case of limited samples and computing units, and its generalization ability is restricted to a 

certain extent for complex classification problems. Deep learning can achieve complex function 

approximation by learning a deep nonlinear network structure, characterize the distributed representation of 

input data, and demonstrate the powerful ability to learn the essential characteristics of the data set from a 

few sample sets. The benefit of multi-layer is that it can represent complex functions with fewer parameters. 

AlexNet carried forward LeNet’s ideas and applied the basic principles of CNN to a very deep and wide 

network; while data preprocessing is successfully applied in this research. By improving the structure and 

input of the AlexNet based network, and the unique processing method proposed, the classification of 

acoustic signals has a more accurate result (95.88%).  

 

The shortcomings of the research are that the feature calculation method affects the final recognition 

efficiency and performance, and the vary features of the acoustic signals and the different calculation 

processes still may eventually affect the overall accuracy of the recognition. In-depth adjustments to the 

training process and the network are required to meet actual needs. The algorithms proposed also came up 

with the following problems, which can be improved in the future, especially the features with the calculation 

of the number of features and the selection of the number of features; as the number of features increases, the 

network training speed will increase on a large scale; in addition, the algorithm selection of the preprocessing 

process needs to be improved in future works. Extracting affective information from acoustic signals is a 

very difficult process. As the amount of data increases, the accuracy of extraction will also increase, but at 

the same time, the number of layers of the network need to be considered; while the time consuming of the 

preprocessing also need to be improved in future. 
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