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a b s t r a c t

This paper describes a class of novel initializations in Deterministic Particle Swarm Optimization
(DPSO) for approximately solving costly unconstrained global optimization problems. The initializations
are based on choosing specific dense initial positions and velocities for particles. These choices tend to
induce in some sense orthogonality of particles’ trajectories, in the early iterations, in order to better
explore the search space. Our proposal is inspired by both a theoretical analysis on a reformulation
of PSO iteration, and by possible limits of the proposals reported in Campana et al. (2010); Campana
et al. (2013). We explicitly show that, in comparison with other initializations from the literature, our
initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is obtained
by imposing that the initial choice of particles’ position/velocity satisfies specific conjugacy conditions,
with respect to a matrix depending on the parameters of PSO. In particular, by an appropriate condition
on particles’ velocities, our initializations also resemble and partially extend a general paradigm in the
literature of exact methods for derivative-free optimization. Moreover, we propose dense initializations
for DPSO, so that the final approximate global solution obtained is possibly not too sparse, which might
cause troubles in some applications. Numerical results, on both Portfolio Selection and Computational
Fluid Dynamics problems, validate our theory and prove the effectiveness of our proposal, which
applies also in case different neighborhood topologies are adopted in DPSO.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we first consider the solution of the uncon-
trained global optimization problem

in
x∈Rn

f (x), (1)

where f : Rn
→ R is continuous and possibly nondifferentiable, so

hat derivatives are unavailable. In particular, we aim at detecting
global minimum x∗ of (1), satisfying f (x∗) ≤ f (x), for any x ∈ Rn.
s well known, the existence of a global minimum of (1) can
e often guaranteed under mild assumptions on f (x) (e.g., f (x)
s coercive, with lim∥x∥→∞ f (x) = +∞). Furthermore, in order
o motivate the use of an heuristic procedure to solve (1), in
lace of possibly more expensive exact asymptotic convergent
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methods, we also assume that the function f (x) is computation-
ally expensive and a fast approximate solution is sought. Observe
that in the last decade we have seen a fast increasing complexity
in applications, where optimization techniques are sought [1–3].
In particular, the demand of sophisticated and efficient meth-
ods which do not rely on the smoothness of the functions has
considerably speeded up, because of the abundance of problems
where derivatives are unavailable and the functions are only
accessible through black-boxes (see [4]). In this regard, Automatic
Differentiation [5] helps to exactly retrieve derivatives using only
function evaluations, but it needs the analytical expression of the
functions in hand. Conversely, two main derivative-free (DFO)
approaches have gained the attention in the last decades, both
with pros and cons. Direct Search methods, which exploit the
objective function information along a precise pattern of search
directions (see [6]), and Model Based DFO methods, which use
information of the function based on a local model (see [4]).
In particular, among recent advances we can find the class of

Mesh Adaptive Direct Search (MADS) algorithms [7,8], along with
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heir variants. They represent a natural evolution of Direct Search
ethods for nonsmooth constrained problems, and are based on
onsidering a dense set of search directions.
To our purposes in this paper we focus on the heuristic proce-

ure PSO, which is neither able to guarantee the convergence to
lobal minima nor it ensures global convergence (i.e. convergence
rom any starting iterate) to stationary points. PSO represents
n iterative method for the approximate solution of global op-
imization problems, based on updating a swarm of P particles
see [9–12] and therein references). The use of heuristic methods
n place of DFO globally convergent techniques is advisable in
hose cases where the function evaluation is rather expensive, or
he number of function evaluations, necessary for the solution of
he problem in hand, tends to increase. In this regard, heuristics
an offer a reasonable compromise between the accuracy of the
inal solution and the computational budget required to obtain it.
ach particle represents a vector (position) in Rn and iteratively
escribes a trajectory in Rn. At the kth iteration the jth particle

updates its position as

xk+1j = xkj + vk+1j , j = 1, . . . , P, (2)

where xkj ∈ Rn indicates its current position, vk+1j ∈ Rn is its
velocity and represents a search direction. Borrowing a standard
terminology from optimization, we have in general that vk+1j is
not gradient related. In other words, vk+1j might possibly be not
descent direction for f (x) at xkj , so that any small movement
long vk+1j might not yield a function decrease. As a natural
onsequence, we have that as already remarked, the global con-
ergence properties for PSO iteration (2) can be hardly proved
ithout further additional assumptions. Observe that some pa-
ers have been proposed in the literature, where PSO was paired
ith derivative-free globally convergent methods, based on both

inesearch methods (see [13,14]) and pattern search methods
see [15,16]). In the current paper our aim is limited to the
tudy of favorable variants of PSO initializations, without issuing
roblems related to global convergence.
In PSO, the original expression of vector vk+1j (see also [9]), for

particle j, was given by
k+1
j = vkj + cjrj ⊗ (pk

j − xkj )+ cgrg ⊗ (pk
g − xkj ), (3)

here cj and cg are constant parameters, while rj and rg are
uitable random vectors. Finally, the symbol ‘⊗’ represents a
component-wise product, and

pk
j ∈ argmin

0≤h≤k
{f (xhj )}, j = 1, . . . , P,

pk
g ∈ argmin

0≤h≤k, j=1,...,P
{f (xhj )},

(4)

being, at step k, pk
j the personal best position so far of particle

, and pk
g the global best position so far of the entire swarm,

espectively.
Relations (2)–(3) reveal that in PSO iteration, the current po-

ition of a particle depends on its lattermost position, but is also
ndependent of the other previous positions. Equivalently, PSO
an be viewed as a Markov chain. As usually reported in the
iterature, cj is the so called cognitive parameter, and multiplies
he contribution from the history of the jth particle. On the other
and, cg is the social parameter, and the vector cgrg ⊗ (pk

g − xkj )
n (3) attempts to balance the information from each particle’s
istory through a social contribution, summarized by the current
lobal best position in the swarm.
This paper is mainly focused on addressing the initialization

n PSO (for a partial analysis and a numerical experience on the
mpact of PSO initialization, the reader can refer to the recent pa-
er by [17] and therein references). Specifically, we first consider
2

a DPSO iteration as in [18]. From the latter paper we also borrow
the idea of routing the particles’ trajectories so that they possibly
follow nearly orthogonal patterns, in a sense which is specified
in Section 4. However, in this paper we also attempt to overcome
some limits in [18] and [19], as indicated in the following items.

(i) In [18] the authors tend to impose (at least in the early DPSO
iterations) the orthogonality of the entire trajectories of the
particles, in an extended search space. On the contrary, here
we provide analytical conditions to impose only orthogonal
velocities of particles, in the early iterations. The resulting
approach proves to be more efficient than the one in [18].

(ii) Similarly to [19] we first tend to impose the orthogonality
of particles’ velocities, in the early iterations. Then, unlike
in [19] we suitably recombine vectors obtained by solving an
intermediate symmetric eigenvalue problem, so that linear
independency among the velocities is finally pursued, at
least in the early iterations.

(iii) We can guarantee that, unlike [18,19], our proposal here
introduces ‘dense’ approximations for the initial positions
and velocities of particles. I.e., we guarantee that particles
initialization is not sparse, which may cause on some ap-
plications an undesired bias of the final results (see also
Section 5).

On the other hand, our approach takes into account the results
obtained in the landmark papers [9,20–23], along with [24–26],
where several relevant issues related to PSO initialization are
investigated. Note that in our numerical experience here, we are
not concerned with comparing our proposal with other efficient
initializations from the literature. This choice is motivated by
one fact, which definitely makes the latter comparison unfair. On
one hand, more standard initializations typically handle random
positions and velocities, so that they require a statistical analysis
in order to validate the results they provide. This turns to increase
the overall number of function evaluations, which might com-
promise efficiency. Since our proposal does not use any random
parameter, to some extent we might be possibly less flexible,
however no statistics on the numerical results is needed (see
also [17,27]). The latter fact turns to be an essential requisite on
our ship design problems, where each objective function evalua-
tion is often the result of a time consuming simulation. Hence,
we preferred to report our numerical experience in Section 7
including only deterministic initializations paired with DPSO.

For the sake of completeness, we also highlight that our deter-
ministic initialization can be hardly paired with non-deterministic
versions of PSO. Indeed, the presence of random parameters in
PSO might cause the matrix Q(k) in (9) to yield the inequality
(k) ̸= [Q(1)]k, which destroys the achievements in Sections 3
nd 4 .
Sections 2 and 3 briefly report a revised version of the proposal

y [18], while Section 4 contains both the first contribution of
his paper, along with some theoretical results. Sections 5 and
motivate a more specific initialization for DPSO, which is then

ested on a ship design problem in Section 7. Finally, Section 8 and
n Appendix will complete the paper, including some extensions
nd technical proofs.
We recall that with ‘det(A)’ we indicate the determinant of

atrix A. ‘I’ indicates the identity matrix of suitable dimension
nd ‘ei’ is the ith unit vector. To avoid a burdensome notation the
uclidean norm is simply indicated by ∥·∥, while ∥·∥p represents
he standard p-norm.

. PSO iteration as a linear dynamic system

In order to describe our novel initialization for a modified PSO
cheme, let us consider the next Assumption 1 (which character-
zes the so called Deterministic Particle Swarm Optimization —
PSO, see also [28]).
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ssumption 1 (DPSO). We assume in (3) that cj = c and rj = r,
for any j = 1, . . . , P . Moreover, we set cg = c̄ , rg = r̄, being
c, r, c̄, r̄ suitable positive constant coefficients.

Now, following the guidelines by [17], we also introduce in (3)
the real parameter χ (constriction factor) and choose r = r̄ = 1
in Assumption 1. Then, we may consider for the jth particle the
overall iteration of DPSO:⎧⎨⎩
vk+1j = χ

[
vkj + cj(pk

j − xkj )+ cg (pk
g − xkj )

]
, k ≥ 0,

xk+1j = xkj + vk+1j , k ≥ 0.
(5)

ithout loss of generality at present we focus on the jth particle
nd omit the subscript in the recurrence (5), so that for the sake
f simplicity we can set pk

j = pk, xkj = xk and vkj = vk.
With the latter position the iteration (5) is immediately equiv-

lent to the dynamic, linear and stationary system1

(k+ 1) =

[
χ I −χ (c + c̄)I

χ I [1− χ (c + c̄)] I

]
X(k)+

⎡⎣χ (cpk
+ c̄pk

g )

χ (cpk
+ c̄pk

g )

⎤⎦ ,

(6)

here c and c̄ are defined in Assumption 1 and

(k) =

⎡⎣vk

xk

⎤⎦ ∈ R2n, k ≥ 0.

he sequence {X(k)} identifies a trajectory in the state space
2n, and since (6) is a linear and stationary system, we may
onsider the free response XL(k) and the forced response XF (k) of
he trajectory {X(k)}. Then, considering (6) we explicitly obtain at
tep k ≥ 0 (see also [18,29])

(k) = XL(k)+ XF (k), (7)

here

L(k) = Q(k)X(0), XF (k) =
k−1∑
τ=0

H(k− τ )U(τ ), (8)

nd after some calculations, we obtain for the quantities in (8)
he expressions

Q(k) =

[
χ I −χ (c + c̄)I

χ I [1− χ (c + c̄)] I

]k

∈ R2n×2n, (9)

(k− τ ) =

[
χ I −χ (c + c̄)I

χ I [1− χ (c + c̄)] I

]k−τ−1

∈ R2n×2n, (10)

U(τ ) =

⎡⎣χ (cpk
+ c̄pk

g )

χ (cpk
+ c̄pk

g )

⎤⎦ ∈ R2n, (11)

eing the matrices Q(k), H(k− τ ) and U(τ ) in general dependent
n the iteration index k. As detailed hereafter, for our purposes
his last dependency does not represent a drawback, inasmuch
s Assumption 1 holds and Q(k) in (9) is the power of a constant
atrix. Also observe that in (9) the matrix Q(k) explicitly accounts

or the dependency of X(k) on X(0) (and not on the vectors pk,
k
g ). On the other hand, the matrices H(k− τ ) and U(τ ) uniquely
epend on pk, pk

g , i.e. they depend on the knowledge collected
uring the progress of the algorithm, and do not depend on the

1 The latter terminology is borrowed from [18,29], whose symbols are used
n this brief section, too.
3

initial condition X(0). Thus, H(k − τ ) and U(τ ) uniquely account
or the dependency of X(k) on pk, pk

g .
We want to specifically focus now on the free response XL(k),

o that we need to preliminarily study the main features of Q(k).
A remarkable observation from the latter formulae is that XL(k) in
(8) uniquely depends on the initial point X(0), being independent
of the vector pk

g . On the contrary, XF (k) in (8) is independent
of X(0), while it is strongly dependent on pk

g . This implies that
the quantities XL(k) and XF (k) can be separately computed. For
our analysis we need now to explicitly calculate the eigenpairs of
Q(k), in order to easily compute the free response XL(k).

3. Computation of the free response XL(k) and choice of DPSO
oefficients

Suppose that Assumption 1 holds, hereafter in order to sim-
lify the notation we introduce the following position in (9)

= χ (c + c̄). (12)

Then, before proceeding with our analysis, we recall (see
lso [18,21,24–26]) that in order to provide necessary condi-
ions which avoid divergence of the trajectories of particles, the
elations

0 < χ < 1

< ω < 2(χ + 1)
(13)

ust hold. In this regard other settings for DPSO parameters can
e chosen, as specified by [26]. In any case, the relations (13)
uarantee that all the eigenvalues of Q(k) have a modulus smaller
han one; moreover, relations (13) also ensure that

lim
→∞

XL(k) = 0

y the definition of free response. A keynote fact we use in this
aper is that (see [18]) the matrix Q(1) in (8) has just the two real
igenvalues λ1 and λ2 if

≤ 1+ χ − 2
√

χ or ω ≥ 1+ χ + 2
√

χ,

being λ1 and λ2 coincident if and only if ω = (1±
√

χ )2. In case
λ1 = λ2 then some care has to be considered in our analysis,
hich is beyond the scope of the present paper. Thus, we assume
hat the next condition holds, too.

ssumption 2. Let Assumption 1 hold. Given the quantities χ

nd ω in (12), we also assume that

̸= (1±
√

χ )2.

f Assumption 1 holds, the results by [18] can be applied, so that
he free response at step k, i.e. XL(k) = Q(k)X(0) = [Q(1)]k X(0),
an be computed by simply using the distinct eigenvalues λ1 and
2 of Q(1), being explicitly

L(k) = [Q(1)]k X(0) =

⎡⎣γ1(k)v0 − γ2(k)x0

γ3(k)v0 − γ4(k)x0

⎤⎦ , (14)

here, after some computations

1(k) =
λk
1(χ − λ2)− λk

2(χ − λ1)
λ1 − λ2

; γ2(k) =
ω(λk

1 − λk
2)

λ1 − λ2
;

3(k) =
(λk

1 − λk
2)(χ − λ1)(χ − λ2)
ω(λ1 − λ2)

; γ4(k) =
λk
1(χ − λ1)− λk

2(χ − λ2)
λ1 − λ2

.
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Fig. 1. Green points and blue squares represent trajectories of the particles j
nd h, respectively, in the extended space R2n . [18] impose the orthogonality

between the (entire) free responses XL(k)(j) and XL(k)(h) , in order to improve the
xploration of the search space.

. An attempt to improve the effectiveness for our DPSO ini-
ialization

This section is mainly devoted to study a possible improve-
ent for DPSO initialization, provided that Assumptions 1 and 2
old. Our proposal allows DPSO to

1. widely exploring the search space in the early iterations,
2. maintaining iteration (5),
3. possibly reducing the overall computational effort, when

measured throughout the number of function evaluations.

ote that as regards item 2., we are interested about improving
PSO basic iteration, rather than modifying it. That is why our
roposal is intended as an enhancement of an existing method,
ather than a proposal for a novel one. As regards item 3., it may
ave a dramatic impact on some applications, where each func-
ion evaluation requires a large CPU-time (e.g. design problems,
s better detailed in Section 7.2). On this purpose, we strongly
emark that exploiting our initializations both

– a few iterations of DPSO might potentially suffice to provide
a reasonable and satisfactory approximate solution of (1);

– the final solution provided is possibly dense, i.e. a large
number of its entries are nonzero.

e start our analysis using the reformulation in Section 2, in
rder to impose a novel condition (with respect to [18]) for
he choice of initial particles’ position/velocity (namely the next
elation (18)). Then, in Section 6 we will suitably update (18) in
rder to avoid sparsity on the final approximate solution.
To sketch our proposal we consider any two particles j and

, such that 1 ≤ j ̸= h ≤ P . Using the theory in Section 2,
long with the Assumptions 1 and 2, we consider their trajec-
ories in the space R2n, so that their initial position (X(0)(j) and
imilarly X(0)(h)) and free response (XL(k)(j) and similarly XL(k)(h))
re given by (14) (we only report results for particle j, but similar
xpressions immediately hold also for particle h)

(0)(j) =

⎡⎣v0j

x0j

⎤⎦ H⇒ XL(k)(j) = [Q(1)]k X(0)(j)

=

⎡⎣γ1(k)v0j − γ2(k)x0j

γ3(k)v0j − γ4(k)x0j

⎤⎦ . (15)

Borrowing the idea in Section 6 of [18], for a given value of
he index k we might consider to impose the orthogonality of
he free responses {XL(k)(j)} (and not necessarily the orthogonal-
ty of the vectors {X(k)(j)}) - see Fig. 1. This is not equivalent,
f course, to impose the orthogonality of particles’ trajectories.
 T

4

evertheless, as the numerical experience in [18] confirms, we
bserved an appreciable efficiency by setting the position and
elocity of P ≡ n particles, in such a way that the free responses
L(k)(j1), . . . ,XL(k)(jn) possibly satisfy at step k the P · (P − 1)
rthogonality conditions

XL(k)(ji)
]T [XL(k)(jh)

]
= 0, ∀ji, jh ∈ {j1, . . . , jn}, i ̸= h. (16)

ince the free responses of particles also satisfy, for any particle
, the condition

lim
→∞

XL(k)(j) = 0,

.e they tend to fade with the iterations, then it was reasonable
n [18] to impose the orthogonality conditions (16) at step k = 0,
.e. at the outset of the iterative process.

Here, we want to generalize the idea in [18], observing that
n order to scatter the particles in the search space what re-
lly matters is the orthogonality of the search directions of the
articles, and possibly not the orthogonality of the entire free
esponses as in (16). On this guideline, here we want to study the
nitial position and velocity of 2n particles, so that at step k = 0
i.e. at the very early iteration) the corresponding free responses
L(0)(j1), . . . ,XL(0)(j2n) satisfy for any 1 ≤ j ̸= h ≤ 2n (see (15))

γ1(1)v0j − γ2(1)x0j
]T [

γ1(1)v0h − γ2(1)x0h
]
= 0. (17)

.e., only the components corresponding to the velocity, in the
ree responses of particles j and h, are orthogonal. After some
omputation, relation (17) is equivalent to impose the initial
ondition

X(0)(j)
]T [σ1I σ2I

σ2I σ3I

]
X(0)(h) = 0, (18)

here

1 = [γ1(1)]2; σ2 = −γ1(1)γ2(1); σ3 = [γ2(1)]2.

bserve that the matrix

=

[
σ1I σ2I

σ2I σ3I

]
(19)

s symmetric and by (15) the condition (18) indicates that the
ectors

(0)(j), X(0)(h) (20)

ust be mutually A-conjugate (see also [30,31] for a reference on
onjugacy and its applications in optimization).

.1. Some theoretical results

The first relevant property induced by the introduction of the
-conjugacy in relation (18) is the linear independence, as stated
n the next result.

roposition 1. Let m ≤ 2n and consider relations (15). Suppose
he vectors

(0)(j) ∈ R2n, j = 1, . . . ,m, (21)

re mutually conjugate with respect to the symmetric non singular
atrix A ∈ R2n×2n in (19), i.e.

X(0)(i)
]T AX(0)(j) = 0, 1 ≤ i ̸= j ≤ m,

ith

X(0)(j)
]T AX(0)(j) ̸= 0, 1 ≤ j ≤ m. (22)

hen, the vectors (21) are linearly independent in R2n.



C. Leotardi, A. Serani, M. Diez et al. Applied Soft Computing Journal 104 (2021) 107121

P

w
i

v
o
(

T
e

t
c
l
d
h

P
(

X

b[
a

ε

roof. We directly have by the A-conjugacy and conditions (22)
that

det
[(

X(0)(1) · · · X(0)(m)
)T A (X(0)(1) · · · X(0)(m)

)]
=

det
[
diag1≤j≤m

{[
X(0)(j)

]T AX(0)(j)}] ̸= 0,

hich follows from (22). Thus, the vectors in (21) are linearly
ndependent. ♢

Now, the property in Proposition 1 suggests that in case the
ectors (21) are mutually conjugate, then not only the velocities
f the free responses of the particles, at step k = 1, are orthogonal
as stated in relation (17)), but the vectors (21) will be also suffi-
ciently well scattered in R2n (since they are linearly independent).
hus, the choice (21) also underlies a distribution of points in the
xtended space R2n.
To complete our analysis we need now to provide an au-

omatic and reliable procedure for generating the mutually A-
onjugate vectors (21), possibly having m = 2n, being 2n the
argest possible number of A-conjugate (and linearly indepen-
ent) vectors in R2n satisfying Proposition 1. To this purpose we
ave the following result.

roposition 2. Let m ≤ 2n and suppose the matrix A ∈ R2n×2n in
19) is symmetric positive definite. Let

(0)(1) ∈ R2n

e any vector such that

X(0)(1)
]T AX(0)(1) ̸= 0, (23)

nd let us set the parameter ε1 ∈ R such that

1 =
∥v01∥

2
+ ∥x01∥

2

σ1∥v01∥2 + σ3∥x01∥2 + 2σ2(v01)T (x
0
1)

, (24)

and the vectors s01 ∈ Rn, t01 ∈ Rn such that⎡⎣s01

t01

⎤⎦ = X(0)(1). (25)

Suppose σ1∥v0j ∥
2
+ σ3∥x0j ∥

2
+ 2σ2(v0j )

T (x0j ) ̸= 0, for j = 1, . . . ,m,
and consider the recurrences⎡⎣s0j

t0j

⎤⎦ =
⎡⎣s0j−1 − εj−1

(
σ1v0j−1 + σ2x0j−1

)
t0j−1 − εj−1

(
σ3x0j−1 + σ2v0j−1

)
⎤⎦ , j = 2, . . . ,m, (26)

ηj =
σ1(s0j )

T (v0j−1)+ σ2
[
(t0j )

T (v0j−1)+ (s0j )
T (x0j−1)

]
+ σ3(t0j )

T (x0j−1)
σ1∥v0j−1∥2 + σ3∥x0j−1∥2 + 2σ2(v0j−1)T (x

0
j−1)

,

j = 2, . . . ,m, (27)

X(0)(j) =

⎡⎣s0j − ηjv0j−1

t0j − ηjx0j−1

⎤⎦ , j = 2, . . . ,m, (28)

εj =
∥s0j ∥

2
+ ∥t0j ∥

2

σ1∥v0j ∥2 + σ3∥x0j ∥2 + 2σ2(v0j )T (x
0
j )

, j = 2, . . . ,m, (29)

in order to generate the sequence of m vectors{
X(0)(j)

}
k = 1,...,m.

(30)

Then, the m vectors in (30) are mutually A-conjugate.

Proof. The proof follows after some computations, applying the
Conjugate Gradient method in [30]. For the sake of brevity the
proof is omitted. ♢
5

Observe that Proposition 2 provides an efficient general itera-
tive tool in order to generate the mutually A-conjugate vectors

X(0)(j), j = 1, . . . ,m,

also considering that the linear algebra involved is reasonably
cheap, even for large values of m.

Remark 1. It is not difficult (though tedious) to verify that the
recurrence (23)–(29) is to some extent equivalent to apply the so
called method of Conjugate Gradient (CG, [30]), for the solution
of the linear system

Bw = b, where B = A, b = −

⎡⎣v01

x01

⎤⎦ .

The latter method is designed for symmetric positive definite linear
systems and generates the sequence {wk} of approximations to
the solution w∗. The CG is widely used to solve linear systems
within continuous optimization problems, since it is very stable
and computationally cheap, provided that the condition num-
ber of matrix A is reasonably bounded. However, note that in
our case what really matters is the generation of the sequence
(30), and not the pure investigation of possible solutions for the
linear system whose matrix is A. Moreover, the main assump-
tion in Proposition 2 (i.e. the positive definiteness of matrix A)
unfortunately cannot hold, as detailed in the next section.

4.2. A further improvement

After a careful reading of Proposition 2, we can observe the fol-
lowing couple of weaknesses which possibly discourage the ap-
plication of therein procedure, in order to compute the sequence
(30):

(i) Proposition 2 assumes that m mutually conjugate vectors
are generated, but it does not guarantee that m = 2n. Thus,
the procedure (23)–(29) generates a number of conjugate
vectors which is possibly inferior to 2n (by Proposition 1
it cannot exceed 2n), so that the advantages provided by
imposing condition (17) might be not fully exploited;

(ii) the denominator in the expression of the parameters {εj}
and {ηj} in (24), (27) and (29) might be possibly zero, since
in general the matrix A has not all positive eigenvalues. In-
deed, first observe that since A is symmetric, its eigenvalues
are all real. Moreover, we have for any λ ̸= σ1

[A− λI] =

[
σ1I− λI σ2I

σ2I σ3I− λI

]
=

⎡⎣ I 0

σ2
σ1−λ

I I

⎤⎦
×

⎡⎢⎣(σ1 − λ)I σ2I

0
(
σ3 − λ−

σ2
2

σ1−λ

)
I

⎤⎥⎦ ,

so that σ1 cannot be an eigenvalue of A and we have for the
secular equation

0 = det

[
σ1I− λI σ2I

σ2I σ3I− λI

]

= (σ1 − λ)n
[
σ3 − λ−

σ 2
2

σ1 − λ

]n
,

which is satisfied if and only if

λ2
− (σ + σ )λ+ (σ σ − σ 2) = 0.
1 3 1 3 2
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Thus, we obtain for the 2n eigenvalues of the (symmetric)
matrix in (19) only the two (real) distinct values

λ1,2 =
1
2

[
(σ1 + σ3)±

√
(σ1 + σ3)2 − 4(σ1σ3 − σ 2

2 )
]

.

Now, recalling that

σ1 = [γ1(1)]2 ; σ2 = −γ1(1)γ2(1) ; σ3 = [γ2(1)]2

we finally obtain the two eigenvalues⎧⎨⎩λ1 = 0

λ2 = [γ1(1)]2 + [γ2(1)]2 > 0,

each with algebraic multiplicity equal to n. Hence, the ma-
trix A is singular and only positive semidefinite, implying that
the procedure in Proposition 2 can stop prematurely, with
m possibly much smaller than 2n.

Nevertheless, to overcome the disadvantages in (i)–(ii), note that
if zi and zj are distinct eigenvectors of matrix A, respectively
associated to the eigenvalues λi and λj, then we simply have

zTi Azj = zTi (λjzj) = λjzTi zj = 0. (31)

Thus, the eigenvectors of a symmetric matrix are also mutually
conjugate directions with respect to that matrix. As a conse-
quence, in order to satisfy condition (18) it suffices to compute
the 2n eigenvectors z1, . . . , z2n of (19) and set the vectors

X(0)(1) , . . . , X(0)(2n)

as proportional to the latter eigenvectors.
After some computation we have for the corresponding 2n

eigenvectors zi, zn+i, i = 1, . . . , n, of the matrix A in (19) the
simple expressions

λ1 H⇒ zi =

⎡⎣− σ3−λ1
σ2

ei

ei

⎤⎦ =
⎡⎣ γ2(0)

γ1(0)
ei

ei

⎤⎦ ∈ R2n,

i = 1, . . . , n, (32)

2 H⇒ zn+i =

⎡⎣− σ3−λ2
σ2

ei

ei

⎤⎦ =
⎡⎣− γ1(0)

γ2(0)
ei

ei

⎤⎦ ∈ R2n,

i = 1, . . . , n. (33)

he last result implies that in order to satisfy the conditions (18),
or any 1 ≤ j ̸= h ≤ P ≤ 2n, at iteration k = 1, it suffices to set
the initial particle position and velocity (respectively of the ith
and (n+ i)th particle) according with the following initializations

X(0)(i) = ρ1
i zi, ρ1

i ∈ R \ {0}, i = 1, . . . , n (34)

and

X(0)(n+i) = ρ2
i zn+i, ρ2

i ∈ R \ {0}, i = 1, . . . , n. (35)

To sum up, in case the Assumptions 1 and 2 hold (which also
implies that no randomness is used in DPSO iteration), then

– when P ≤ 2n, the choice (34)–(35) of the particles’ position
and velocity guarantees that the components of velocity of the
free responses of the particles will be orthogonal at iteration
k = 1;

– in case P > 2n, the user can adopt the initialization (34)–
(35) of the particles position and velocity for 2n particles,
while for the remaining (P − 2n) particles the choice of
position and velocity is arbitrary.
6

We conclude this section by remarking that the choice of the
nonzero coefficients ρ1

i , ρ
2
i , i = 1, . . . , n in (34)–(35) is actually

arbitrary, so that they can be suitably set by the user and are
problem dependent. Anyway, for our numerical experience we
adopted the choice ρ1

i = ρ2
i = 0.5, for i = 1, . . . , n, in order

to maintain the feasibility of initial particles position (see also
Section 7).

5. Possible drawbacks: a simple example

Here we detail reasons for the fact that on several real prob-
lems the setting (34)–(35) for the initial DPSO population might
be still inadequate. This seems an important preliminary step
in order to justify the analysis in the second part of this pa-
per. To evaluate the effectiveness of the initial setting (34)–
(35), we first tested it on the solution of a linearly constrained
nondifferentiable portfolio selection problem, described below.

We consider a simplified version of the portfolio selection
model recently proposed in [32]. The model in [32] uses a coher-
ent risk measure based on the combination of lower and upper
moments of different orders of the portfolio return distribution.
Such a measure can manage non-Gaussian distributions of asset
returns, to reflect different investors’ risk attitudes. The simplified
model allows short-selling, i.e. the amount invested in each asset
can be possibly negative. In our model we used the following
parameters:

– N: number of possible assets (N = 20 in our numerical
example);

– rex: minimum expected return of the portfolio;
– ri: random variable indicating the return of the ith asset, for

i = 1, . . . ,N;
– p: index of the norm used in the risk measure of the port-

folio, with p ≥ 1 (p = 3 in our numerical example);
– a: parameter of the risk measure, with 0 ≤ a ≤ 1 (a = 0.5

in our numerical example).

Moreover, the variables in our model are described as follows:

– xi: (with xi ∈ R) quantity of the portfolio invested in the ith
asset, for i = 1, . . . ,N;

– r: portfolio return.

In addition, E[y] indicates the expected value of the random
argument y, while y− indicates max{0,−y} and y+ indicates
(−y)−. Finally, we use the symbol r̂i for E[ri]. Given the above
notation, the expected portfolio return E[r] is equal to

E[r] =
N∑
i=1

r̂ixi,

and our overall simplified constrained portfolio selection problem
is as follows

min
x

ρa,p(r) = a∥(r− E[r])+∥1 + (1− a)∥(r− E[r])−∥p

−E[r] (36)
s.t. E[r] ≥ rex (37)

N∑
i=1

xi = 1. (38)

In this formulation, the risk measure ρa,p(r) in (36) is coherent
(i.e. it satisfies some formal properties which are appealing for
investors) as proved by [33]. Observe also that the norm ∥ ·
∥1 makes ρa,p(r) nondifferentiable. The constraint (37) imposes
minimum desired expected return of the portfolio, while (38)
imposes a budget constraint but does not impede indeed short-
selling. As for the numerical instance, we considered daily prices
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Fig. 2. Fitness function P(x; ε) vs. the number of iterations, when the
initialization (34)–(35) is experienced.

of 20 assets in Italian FTSE MIB stock-exchange index. Finally,
details on the computation of ρa,p(r) using the daily prices can
be found in [32].

In order to approximately solving by DPSO the constrained
nonsmooth problem above, borrowing the idea by [32], we con-
sidered the following unconstrained reformulation of (36)–(38)

min
x∈RN

P(x; ε), (39)

here we used the exact penalty function

(x; ε) = ρa,p(r)+
1
ε

[
max

{
0, rex −

N∑
i=1

r̂ixi

}
+

⏐⏐⏐⏐⏐
N∑
i=1

xi − 1

⏐⏐⏐⏐⏐
]
(40)

and for simplicity we set the parameter ε = 10−4 in our nu-
merical experience (see also [32] for details on exact penalty
approaches). Note that the reformulation (39) is non differen-
tiable and admits in general several solutions, so that DPSO was
specifically adopted to provide fast approximate solutions on several
scenarios (unlike the shape design problem in Section 7, here a
few seconds of computation on a laptop are allowed). This is
indeed a typical application where tradesmen often claim for
a quick solution on different scenarios, rather than a unique
accurate solution to propose to their customers. In particular, the
initialization (34)–(35) was experienced, and in far less than 200
DPSO iterations it provided really effective results in terms of
fast minimization of the fitness function P(x; ε) and risk measure
a,p(r) (see Figs. 2 and 3 for a typical numerical instance), along
ith feasibility of the final solution. However, we also observed
hat the initialization (34)–(35) tends to provide a sparse solution,
hich reduces diversification and might be therefore of scarce

nterest for some investors. In particular, on different scenarios
he final solution provided by the initialization (34)–(35) yielded
portfolio including just 2–7 assets (depending on the scenario
onsidered), which is often too restrictive for many investors.
his was a consequence of the corresponding sparsity (i.e. a few
onzero entries of the vectors) of the initialization (34)–(35).
n the next section we discuss a suitable modification to the
nitialization (34)–(35), which takes into account and possibly

ixes the latter drawback.

7

Fig. 3. Risk measure ρa,p(r) vs. the number of iterations, when the initialization
(34)–(35) is experienced.

6. A dense modification

According with the discussion in the last section, here we
want to provide a modification of DPSO initialization (34)–(35),
with the specific aim to possibly pursue a dense final solution for
problem (1). We remark that the proposal in this section strongly
differs from [19] and the analysis in Section 4.2. Indeed, here
we specifically focus on the issue of density (i.e. avoiding a large
number of zero entries) for the final solution provided by DPSO.
On this purpose, let be given the 2n orthonormal eigenvectors zi,
i = 1, . . . , 2n, in (32)–(33) of the symmetric matrix A in (19). The
vectors z1 . . . , z2n are also mutually conjugate with respect to A,
i.e. conditions (31) hold. Now, let without loss of generality the
eigenvectors z1 . . . , z2n be associated respectively with the two
eigenvalues µ1 = 0 and µ2 = [γ1(1)]2 + [γ2(1)]2 > 0 of A, as

Azi = µ1zi, i = 1, . . . , n,

Azi = µ2zi, i = n+ 1, . . . , 2n.
(41)

Starting from the motivations suggested in Section 5, in place
of vectors z1, . . . , z2n we preliminarily consider the novel set of
(dense) vectors w1, . . . ,w2n as

wi = zi − α

n∑
j=1
j̸=i

zj − γ

2n∑
j=n+1

zj, i = 1, . . . , n,

α, γ ∈ R, (42)

wt = zt − β

2n∑
j=n+1
j̸=t

zj − δ

n∑
j=1

zj, t = n+ 1, . . . , 2n,

β, δ ∈ R. (43)

Then, we want to compute (if any) the values of α, β , γ and δ

such that the following conjugacy conditions hold

wT
hAwk = 0, for any 1 ≤ h ̸= k ≤ 2n.

Finally, we will use w1, . . . ,w2n in (42)–(43) in place of
z , . . . , z .
1 2n



C. Leotardi, A. Serani, M. Diez et al. Applied Soft Computing Journal 104 (2021) 107121

i

0

a
o

∀

S
k

0

a
n

β

T

t

N
s

∥

i
c

T
a

1

w

ε

S

1

w

ε

T
v
i

w

From (31), (41) and (42), and setting 1 ≤ h ̸= k ≤ n we can
mpose

= wT
hAwk =

⎡⎢⎣zh − α

n∑
j=1
j̸=h

zj − γ

2n∑
j=n+1

zj

⎤⎥⎦
T

×A

⎡⎢⎣zk − α

n∑
j=1
j̸=k

zj − γ

2n∑
j=n+1

zj

⎤⎥⎦
= −αzThAzh − αzTkAzk + α2

n∑
j=1
j̸=h,k

zTj Azj + γ 2
2n∑

j=n+1

zTj Azj

= −αµ1 − αµ1 + α2(n− 2)µ1 + γ 2nµ2,

nd recalling that µ1 = 0 the latter relations are satisfied if and
nly if

α ∈ R, γ = 0. (44)

imilarly, by (31), (41) and (43), and setting now n + 1 ≤ h ̸=
≤ 2n, we can impose

= wT
hAwk =

⎡⎢⎣zh − β

2n∑
j=n+1
j̸=h

zj − δ

n∑
j=1

zj

⎤⎥⎦
T

×A

⎡⎢⎣zk − β

2n∑
j=n+1
j̸=k

zj − δ

n∑
j=1

zj

⎤⎥⎦
= −βµ2 − βµ2 + β2(n− 2)µ2 + δ2nµ1,

nd recalling that µ2 > 0 the latter relations are satisfied for
> 2 if and only if

∈

{
0 ,

2
n− 2

}
, ∀δ ∈ R. (45)

Now, taken the vectors wi, for i ∈ {1, . . . , n} in (42), and wt , for
t ∈ {n+ 1, . . . , 2n} in (43) we have by (31), (44) and (45)

wT
i Awt =

⎡⎢⎣zi − α

n∑
j=1
j̸=i

zj

⎤⎥⎦
T

A

⎡⎢⎣zt −
2

n− 2

2n∑
j=n+1
j̸=t

zj − δ

n∑
j=1

zj

⎤⎥⎦
= −δzTi Azi + αδ

n∑
j=1
j̸=i

zTj Azj

= −δµ1 + (n− 1)αδµ1 = 0.

hus, taken the orthonormal eigenvectors z1, . . . , z2n of A in
(32)–(33), along with the values

α ∈ R \ {0}, β =
2

n− 2
, γ = 0, δ ∈ R \ {0}, (46)

hen the vectors w1, . . . ,wn,wn+1, . . . ,w2n in (42)–(43)

1. are mutually A-conjugate,
2. are dense, i.e. they contain a large number of nonzero

entries.

ow we are interested about finding the values εi, i = 1, . . . , 2n
uch that

εiwi∥ = 1, i = 1, . . . , 2n,

.e. {ŵi} (with ŵi = εiwi) provides a set of 2n unit mutually A-
onjugate directions ŵ , . . . , ŵ , using the vectors w , . . . ,w .
1 2n 1 2n

8

o this purpose we distinguish between the cases i ∈ {1, . . . , n}
nd i ∈ {n+ 1, . . . , 2n}. In case i ∈ {1, . . . , n} we have by (31)

= ∥εiwi∥ = εi

⎧⎪⎨⎪⎩
⎡⎢⎣zi − α

n∑
j=1
j̸=i

zj

⎤⎥⎦
T ⎡⎢⎣zi − α

n∑
j=1
j̸=i

zj

⎤⎥⎦
⎫⎪⎬⎪⎭

1/2

= εi

⎡⎢⎣∥zi∥2 + α2
n∑

j=1
j̸=i

∥zj∥2

⎤⎥⎦
1/2

= εi
[
1+ α2(n− 1)

]1/2
,

hich is satisfied by choosing

i =
1[

1+ α2(n− 1)
]1/2 .

imilarly, in case i ∈ {n+ 1, . . . , 2n} we have by (31)

= ∥εiwi∥ = εi

⎧⎪⎨⎪⎩
⎡⎢⎣zi −

2
n− 2

2n∑
j=n+1
j̸=i

zj − δ

n∑
j=1

zj

⎤⎥⎦
T

×

⎡⎢⎣zi −
2

n− 2

2n∑
j=n+1
j̸=i

zj − δ

n∑
j=1

zj

⎤⎥⎦
⎫⎪⎬⎪⎭

1/2

= εi

[
∥zi∥2 +

4
(n− 2)2

(n− 1)+ δ2n
]

= εi

[
1+

4
(n− 2)2

(n− 1)+ nδ2
]

= εi
n2
+ δ2n

(n− 2)2
,

hich is satisfied by choosing

i =
(n− 2)2

n2 + δ2n
.

o sum up, using (32)–(33) we explicitly report the following
ectors ŵ1, . . . , ŵ2n (i.e. the vectors in (42)–(43) after normal-
zation),

ˆ i =
1[

1+ α2(n− 1)
]1/2

⎡⎢⎣zi − α

n∑
j=1
j̸=i

zj − γ

2n∑
j=n+1

zj

⎤⎥⎦ (47)

=
1[

1+ α2(n− 1)
]1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α
γ2(0)
γ1(0)
+ γ

γ1(0)
γ2(0)

.

.

.

−α
γ2(0)
γ1(0)
+ γ

γ1(0)
γ2(0)

γ2(0)
γ1(0)
+ γ

γ1(0)
γ2(0)

−α
γ2(0)
γ1(0)
+ γ

γ1(0)
γ2(0)

.

.

.

−α
γ2(0)
γ1(0)
+ γ

γ1(0)
γ2(0)

−α − γ
.
.
.

−α − γ
1− γ
−α − γ

.

.

.
−α − γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i

← n+ i

, i = 1, . . . , n, (48)

ŵt =
(n− 2)2

n2 + δ2n

⎡⎢⎣zt − β

2n∑
j=n+1

zj − δ

n∑
j=1

zj

⎤⎥⎦ (49)
j̸=t
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=
(n− 2)2

n2 + δ2n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−δ
γ2(0)
γ1(0)
+ β

γ1(0)
γ2(0)

.

.

.

−δ
γ2(0)
γ1(0)
+ β

γ1(0)
γ2(0)

−δ
γ2(0)
γ1(0)
−

γ1(0)
γ2(0)

−δ
γ2(0)
γ1(0)
+ β

γ1(0)
γ2(0)

.

.

.

−δ
γ2(0)
γ1(0)
+ β

γ1(0)
γ2(0)

−δ − β
.
.
.

−δ − β
−δ + 1
−δ − β

.

.

.
−δ − β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← t − n

← t

, t = n+ 1, . . . , 2n, (50)

The vectors in (48)–(50) represent our final proposal of DPSO
initialization for unconstrained optimization. They have unit norm
and are A-conjugate, with the choice (46) of the coefficients
α, β , γ and δ. Now, we urge to prove that w1, . . . ,w2n (and
consequently ŵ1, . . . , ŵ2n) are uniformly linearly independent,
i.e. roughly speaking the angles among them remain sufficiently
bounded away from zero. This fact is of great relevance in the
light of scattering the particles in the search space, and it is
not immediately evident, since the matrix A is only positive
semidefinite.

On this purpose, for the sake of simplicity we prove below that

the quantity det(w1
... · · ·

... w2n) is sufficiently (and uniformly with
respect to n) bounded away from zero, which also implies that

det(ŵ1
... · · ·

... ŵ2n) is sufficiently bounded away from zero.

Proposition 3. Given the vectors w1, . . . ,w2n in (42)–(43), when
n ̸= 2 then

det(w1
... · · ·

... w2n) = (1+ α)n−1 [1− (n− 1)α]
(3n− 4)nn−1

(n− 2)n
.

(51)

roof. For the sake of clarity the proof is in Appendix. ♢

In Fig. 4 we show a plot of the quantity (3n− 4)nn−1/(n− 2)n
n (51) (which is independent of α), versus n ∈ {3, . . . , 100},
howing that for α satisfying

̸∈ [(−1− σ ), (−1+ σ )] ∪
[(

1
n− 1

− σ

)
,

(
1

n− 1
+ σ

)]
,

σ > 0,

the quantity det(w1
... · · ·

... w2n) is indeed uniformly bounded away
rom zero in this interval. Observe that the last limitation on α is
definitely a non-restrictive assumption.

As regards the results on the portfolio selection problem ana-
lyzed in Section 5, we compared the initialization (48)–(50) (using
the parameters α = 0.25, β = 2/(n − 2), γ = 0 and δ = 0.75)
vs. the initialization (34)–(35), obtaining analogous results in
terms of decrease of the fitness function P(x; ε) and risk measure
ρa,p(r) (i.e. pictures very similar to Figs. 2 and 3 are obtained,
with a slight preference for (34)–(35) with respect to (48)–(50)).
However, adopting (48)–(50) we drastically improved the density
of the final approximate solution, inasmuch as now almost all the
assets were included in the portfolio. The latter result should not
be surprising, since in (34)–(35) the initialization of any particle
9

Fig. 4. Plot of the quantity (3n−4)nn−1
(n−2)n (which is independent of α) versus n, as

reported in (51). Note that this quantity is uniformly bounded away from zero,
being limn→∞(3n− 4)nn−1/(n− 2)n = 3/e−2 ≈ 22.17.

contains just two nonzero entries, while in (48)–(50)) all the
entries of the vectors ŵi and ŵt are nonzero.

Of course, we have experienced different settings for the pa-
rameters α, β , γ and δ, along with the penalty parameter ε

in (40), obtaining similar results. In this regard, a change of
settings can cause a different final solution obtained, as expected
considering that in general there are different minimizers of (40).

7. Examples on analytic benchmark and ship design problems

Simulation-based design optimization (SBDO) paradigm sup-
ports the design process of complex engineering systems and re-
cently replaced the traditional expensive build and test approach.
SBDO integrates three key elements: computer simulations, de-
sign modification methods and optimization algorithms. Within
the context of ship/ocean applications global derivative-free algo-
rithms are widely used, since objective and constraint functions
– often provided by black box tools – are non convex and noisy,
their derivatives are not directly provided, and several different
local minima cannot be excluded a priori. Moreover, the concur-
rent use of global techniques and CPU-time expensive solvers
makes the optimization process computationally expensive, and
still represents an algorithmic and technological challenge. It
should be noted that several derivative-free global optimization
algorithms in the literature are probabilistic and use random
coefficients to enhance the dynamics of the swarm in the opti-
mization process. Therefore, statistically significant results can be
derived only through extensive numerical campaigns. Such an ap-
proach is often too expensive in SBDO for industrial applications,
especially when high-fidelity physics-based solvers are used as
analysis tools. For these reasons deterministic approaches, such
as DPSO, have been developed and successfully applied to SBDO,
including hydrodynamic problems, providing comparisons among
local methods [34] and/or random PSO [27,35].

Preliminarily to approach real-world ship design optimiza-
tion problems, a parametric analysis has been conducted here
on an analytic benchmark, including twelve test functions. This
small test set both contains continuous and discontinuous, dif-
ferentiable and non-differentiable, separable and non-separable,
unimodal and multimodal test functions, which are used in or-
der to assess the performances of the novel initialization pro-
posed. Specifically, four particles initializations, in terms of initial
position and velocity, have been compared corresponding to:
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1. Hammersly sequence sampling (HSS, [36]) distribution on
domain and bounds with non-null velocity for problems
with dimensionality n < 10 and distribution on domain
with non-null velocity for problems with dimensionality
n ≥ 10, defined as the most promising initialization in the
study provided by [17];

2. ORTHOint initialization, as suggested by [19];
3. ORTHOinit+, the novel initialization suggested herein (α =

0.25, β = 2/(6 − 2) = 0.5, γ = 0 and δ = 0.75), using
2n + 2n particles, being the first 2n particles initialized as
in (47)–(50), while the last 2n particles are initialized as in
(47)–(50) with a sign inversion;

4. ORTHOinit#, a combination of ORTHOint and ORTHOint+
(α = 0.25, β = 2/(6−2) = 0.5, γ = 0 and δ = 0.75), using
2n + 2n particles (the first 2n particles being initialized
using ORTHOinit and the last 2n particles initialized as in
ORTHOinit+).

he most promising DPSO implementation identified in the study
y [17] has been used for our numerical experience, which is
haracterized by: number of particles (P) equal to 4 times the
umber of design variables (n), set of coefficient defined by [37]
i.e., χ = 0.721, c1 = c2 = 1.655), and a semi-elastic wall-
ype approach for box constraints, in place of the exact penalty
pproach considered in Section 5. The algorithm showing the
emi-elastic wall-type approach is presented in Algorithm 1 and
n Fig. 5, for further details the reader can refer to [17].

Subsequently, the same DPSO and initialization sets have been
pplied to the ship design optimization problem.
Regardless of our theoretical analysis, we observe that propos-

ng a number of particles proportional to the scale n of the
roblem (i.e. P = 2n or P = 2n+2n) might appear unusual; how-
ver, it is suggested by a couple of additional considerations. First,
ote that a similar result also holds for Direct Search methods
see Section 1), and it is a crucial prerequisite in order to prove
heir global convergence properties. Second, design problems are
uite often numerically expensive, so that the computation of
ven coarse approximate solutions may require a relatively large
umber of function evaluations. This is a serious drawback which
uggested to preferably focus in this paper on the efficiency of the
verall method, as measured by the final number of function eval-
ations, rather than on the number of PSO particles introduced.
urely the latter statement might be questionable in case other
pplications were considered, where the number of particles can
lay a more relevant role (see e.g. [38]).
We want to show that the initializations ORTHOinit+ and

RTHOinit#, which take advantage of the theory developed in the
urrent paper, show a preferable performance on the proposed
est set.

Algorithm 1 Semi-elastic wall-type approach (SEW)

1: for j = 1, P do
2: for i = 1, n do
3: if (xki,j > ui) OR (xki,j < li) then
4: vk

i,j = −vk
i,j/[χ (c1 + c2)]

5: end if
6: end for
7: end for

7.1. Analytic test problems

The set of analytic functions (see Table 1), which represents
subset of the ones used by [39,40], has been recently used
 w

10
Fig. 5. Semi-elastic wall-type approach applied in the transition from kth to
(k+ 1)th PSO iteration [17].

by [27], to investigate the performances of random PSO and DPSO,
as formulated by [17].

In order to possibly avoid the introduction of any additional
bias in our numerical experience, following the approach in [17]
the next three absolute performance criteria have been used to
assess the initialization performances

∆x =

√1
n

n∑
i=1

(
xi,min − x⋆

i,min

Ri

)2

; ∆f =
fmin − f ⋆

min

f ⋆
max − f ⋆

min
;

∆t =

√
∆2

x +∆2
f

2
.

(52)

ere ∆x represents the normalized Euclidean distance between
he minimum position found by the algorithm xmin and the an-
lytic minimum position x⋆

min, and Ri = |ui − li| is the range of
he ith variable. ∆f is the normalized distance in the image space
here fmin is the minimum found by the algorithm, f ⋆

min is the
nalytic minimum, and f ⋆

max the analytic maximum of the function
(x) in the domain. ∆t is the combination of ∆x and ∆f and is
sed for the overall performances assessment.
Analytic test problems have been studied with dimensionality
= 6 (the same dimension of the real-world ship design prob-

em) and n = 50, using a total number of function evaluations
Nfeval) equal to 2400.

Table 2 shows the best performing initialization for each func-
ion and on average (on the twelve analytic test functions), with
espect to the three metrics, respectively for the problem with di-
ensionality n = 6 and n = 50. The averaged results summarized

or n = 6 indicate that the novel initialization ORTHOinit+ out-
erforms the others, both referring to the variable space (∆x) and
o the function space (∆f ). It might also be noted that ORTHOinit#
nitialization shows good performances in the variable space,
hereas HSS is less efficient, as observed in previous studies [19].
eferring to ∆t , ORTHOinit+ shows the best performance overall,
ollowed by ORTHOinit#. The averaged results for n = 50 indi-
ate that ORTHOinit# initialization outperforms the others, both
eferring to the variable space (∆x) and to the function space (∆f ).
t might also be noted that ORTHOinit+ initialization shows good
erformances both in variable and function space, whereas HSS
s less efficient initialization, as observed in previous studies [19].
eferring to ∆t , ORTHOinit# shows the best performance overall,
ollowed by ORTHOinit+.

Fig. 6 shows DPSO convergence history for each test function
ith dimensionality n = 50, conditional to the four initializations.
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Table 1
Analytic test functions.

Bounds Opt.
Name f (x) l ≤ x ≤ u f ⋆

min

Ackley f1(x) = 20e−0.2
√

1
n
∑n

i=1 x2i − e
1
n
∑n

i=1 cos(2πxi) + 20+ e −5.00 ≤ xi ≤ 4.00 0.00

Alpine f2(x) =
n∑

i=1

|xi sin(xi)+ 0.1xi| −9.00 ≤ xi ≤ 7.00 0.00

Dixon-Price f3(x) = (x1 − 1)2 +
n∑

i=2

[
i(2x2i − xi−1)2

]
−10.0 ≤ xi ≤ 10.0 0.00

Griewank f4(x) = 1+
n∑

i=1

xi
4000

−

n∏
i=1

cos(xi/
√
i) −100. ≤ xi ≤ 90.0 0.00

Levy n.5 f5(x) =
π

n

{
10 sin2(πy1)+

n−1∑
i=1

[
(yi − 1)2(1+ 10 sin2(πyi+1))

]
+ (yn − 1)2

}
−10.0 ≤ xi ≤ 10.0 0.00

with yi = 1+ 1
4 (xi − 1)

Mishra n.11 f6(x) =

⎡⎣ 1
n

n∑
i=1

|xi| −

(
n∏

i=1

|xi|

) 1
n
⎤⎦2

−10.0 ≤ xi ≤ 9.00 0.00

Rastrigin f7(x) = 10n+
n∑

i=1

[
x2i − 10 cos(2πxi)

]
−5.12 ≤ xi ≤ 4.12 0.00

Rosenbrock f8(x) =
n−1∑
i=1

[
100(xi+1 − xi)2 + (xi − 1)2

]
−5.00 ≤ xi ≤ 10.0 0.00

Sphere f9(x) =
n∑

i=1

x2i −5.00 ≤ xi ≤ 4.00 0.00

Styblinski–Tang f10(x) =
1
2

n∑
i=1

(
x4i − 16x2i + 5xi

)
+ 39.2n −5.00 ≤ xi ≤ 5.00 0.00

Trigonometric n.2 f11(x) =
n∑

i=1

8 sin2 [7(xi − 0.9)2
]
+ 6 sin2 [14(xi − 0.9)2

]
+ (xi − 0.9)2 −500. ≤ xi ≤ 500. 0.00

Zacharov f12(x) =
n∑

i=1

x2i +

(
1
2

n∑
i=1

ixi

)2

+

(
1
2

n∑
i=1

ixi

)4

−5.00 ≤ xi ≤ 10.0 0.00
w
t
n
∇

t
i

Once more, no statistic analysis was required for the results
resented. Indeed, no random parameters have been included
n the four DPSO-based schemes implemented here, inasmuch
s the paper focuses on the performance of a deterministic PSO
nitialization (see also comments in the previous section).

.2. Engineering problem: ship design optimization

In this subsection we present a real-word ship design opti-
ization problem, in order to steer the work of engineers. It
hould be noted that design problems often do not have a unique
olution, due to the intrinsic nature of the problems in hand.
hus, decision makers often prefer to have a number of possible
quivalent solutions for these problems, which possibly differ in
he values of design variables, in order to choose on the basis
f exogenous considerations. Specifically, the SBDO application
ddresses the hull-form optimization aimed at reducing the total
esistance of an USS Arleigh Burke-class destroyer ship, namely
he DTMB 5415 model, an early and open-to-public version of
he DDG-51, widely used for both experimental [41] and numer-
cal [42] investigations. Fig. 7 shows the 5.720 m length replica
f the DTMB 5415 model, used for towing tank experiments,
s seen at CNR-INM [41]. The DTMB 5415 has been also used
s a benchmark in NATO STO Task Groups AVT-204 Assess the
bility to Optimize Hull Forms of Sea Vehicles for Best Performance
n a Sea Environment [43], AVT-252 Stochastic Design Optimiza-
ion for Naval and Aero Military Vehicles [44]. Moreover, it was
sed as a test case in variable-accuracy multi-disciplinary design
ptimization studies, coupling the hydrodynamic analysis with
he rigid body equation of motion through multi-disciplinary
11
analysis [45]. Recently, the same problem has been investigated
by [46] addressing the dimensionality reduction of the design
space, based on Karhunen–Loève expansion technique. For the
current application the optimization has been performed on a
reduced six-dimensional design space, retaining up to 92% of the
original geometric variability, as shown by [46]. Since the purpose
of this work is to confirm the theoretical achievements described
in the previous sections, a linear potential flow solver developed
at CNR-INM [47], namely WARP (WAve Resistance Program), has
been used to evaluate the hydrodynamic performances. Specifi-
cally, the wave resistance computations – based on the double
model linear potential flow theory [48] – has been evaluated
with pressure integral, whereas the frictional resistance has been
estimated using a flat-plate approximation, based on the local
Reynolds number [49].

The single-objective shape design optimization problem for
DTMB 5415 has been formulated as
min
x∈Rn

f = RT (x)
s.t. Lpp(x) = Lpp,0

∇(x) = ∇0
|∆B(x)| ≤ 0.05B0
|∆T (x)| ≤ 0.05T0
V (x) ≥ V0

here x ∈ R6 is the design variable vector, RT : R6
→ R is the

otal resistance in calm water at 18 kn (corresponding to Froude
umber Fr = 0.25), Lpp is the length between perpendiculars,
is the displacement, B is the beam, T is the draft, and V is

he volume reserved for the sonar in the dome. Subscript ‘0’
ndicates parent hull values. Following the approach used by [13],
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nalytic test functions: average performances results.
f (x) Initialization n = 6 n = 50

∆x ∆f ∆t ∆x ∆f ∆t

f1(x)

HSS 8.869E−02 2.220E−01 1.690E−01 7.673E−02 2.692E−01 1.980E−01
ORTHOinit 9.786E−02 2.414E−01 1.842E−01 1.065E−01 2.630E−01 2.006E−01
ORTHOinit+ 7.777E−09 7.010E−08 4.987E−08 2.192E−03 7.358E−03 5.429E−03
ORTHOinit# 9.785E−02 2.414E−01 1.842E−01 1.729E−05 4.633E−05 3.497E−05

f2(x)

HSS 2.195E−01 0.000E−00 1.552E−01 4.605E−01 9.281E−03 3.257E−01
ORTHOinit 9.818E−02 0.000E−00 6.942E−02 9.816E−02 0.000E−00 6.941E−02
ORTHOinit+ 9.817E−02 0.000E−00 6.942E−02 3.103E−02 1.250E−02 2.366E−02
ORTHOinit# 9.816E−02 0.000E−00 6.941E−02 9.818E−02 0.000E−00 6.942E−02

f3(x)

HSS 2.837E−02 7.558E−07 2.006E−02 6.963E−02 4.460E−04 4.923E−02
ORTHOinit 2.978E−02 7.558E−07 2.106E−02 2.563E−02 1.186E−08 1.812E−02
ORTHOinit+ 1.061E−02 2.710E−07 7.499E−03 2.540E−02 1.355E−08 1.796E−02
ORTHOinit# 2.733E−03 6.177E−08 1.933E−03 2.563E−02 1.186E−08 4.924E−02

f4(x)

HSS 6.193E−02 1.300E−02 4.475E−02 3.823E−02 1.317E−02 2.859E−02
ORTHOinit 3.688E−02 1.565E−02 2.833E−02 3.543E−02 4.731E−03 2.527E−02
ORTHOinit+ 1.677E−10 9.518E−20 1.186E−10 4.945E−02 9.264E−03 3.558E−02
ORTHOinit# 3.042E−02 2.215E−02 2.661E−02 4.128E−06 1.236E−08 2.919E−06

f5(x)

HSS 1.736E−03 1.839E−06 1.227E−03 7.324E−02 5.080E−03 5.191E−02
ORTHOinit 8.539E−07 3.922E−13 6.038E−07 4.348E−02 4.565E−03 3.092E−02
ORTHOinit+ 0.000E−00 2.646E−16 1.871E−16 6.638E−02 2.066E−03 4.696E−02
ORTHOinit# 1.989E−06 4.150E−12 1.407E−06 1.056E−02 5.609E−05 5.191E−02

f6(x)

HSS 3.654E−02 8.427E−04 2.585E−02 6.517E−02 7.136E−03 4.636E−02
ORTHOinit 1.822E−04 6.919E−08 1.288E−04 5.969E−05 5.109E−10 4.221E−05
ORTHOinit+ 2.216E−09 1.772E−17 1.567E−09 2.082E−02 4.334E−05 1.472E−02
ORTHOinit# 3.768E−09 3.817E−17 2.665E−09 8.286E−08 1.861E−15 5.859E−08

f7(x)

HSS 1.296E−01 5.063E−02 9.840E−02 1.400E−01 1.544E−01 1.833E−01
ORTHOinit 9.836E−02 2.599E−02 7.194E−02 1.077E−01 3.429E−02 7.995E−02
ORTHOinit+ 1.088E−01 3.056E−02 7.915E−02 1.752E−02 6.597E−03 1.324E−02
ORTHOinit# 2.154E−01 1.222E−01 1.751E−01 6.809E−02 1.371E−02 4.911E−02

f8(x)

HSS 6.454E−02 1.373E−06 4.564E−02 6.806E−02 3.971E−05 4.813E−02
ORTHOinit 5.448E−03 3.410E−09 3.852E−03 6.527E−02 3.641E−06 4.615E−02
ORTHOinit+ 3.974E−09 5.172E−19 2.810E−09 6.554E−02 3.661E−06 4.634E−02
ORTHOinit# 0.000E−00 0.000E−00 0.000E−00 1.241E−03 4.248E−08 8.779E−04

f9(x)

HSS 2.588E−03 2.170E−05 1.830E−03 4.767E−02 7.362E−03 3.411E−02
ORTHOinit 2.218E−07 1.594E−13 1.568E−07 1.352E−05 5.919E−10 9.557E−06
ORTHOinit+ 2.653E−13 2.280E−25 1.876E−13 6.836E−06 1.514E−10 4.833E−06
ORTHOinit# 2.114E−10 1.447E−19 1.495E−10 2.595E−07 2.182E−13 1.835E−07

f10(x)

HSS 1.979E−04 4.968E−07 1.399E−04 1.778E−01 1.054E−02 1.259E−01
ORTHOinit 2.189E−01 1.278E−01 1.793E−01 2.827E−01 2.625E−01 2.728E−01
ORTHOinit+ 1.101E−05 0.000E−00 7.841E−06 2.841E−04 4.195E−07 2.009E−04
ORTHOinit# 2.146E−05 0.000E−00 1.520E−05 8.017E−02 2.024E−03 5.671E−02

f11(x)

HSS 4.254E−03 8.109E−05 3.009E−03 4.115E−02 6.772E−03 2.949E−02
ORTHOinit 2.738E−04 2.993E−07 1.936E−04 8.560E−04 2.721E−05 6.056E−04
ORTHOinit+ 1.192E−10 5.664E−20 8.429E−11 8.513E−03 2.919E−04 6.023E−03
ORTHOinit# 0.000E−00 0.000E−00 0.000E−00 2.612E−04 9.182E−07 1.847E−04

f12(x)

HSS 5.132E−04 7.905E−12 3.629E−04 1.211E−01 1.194E−12 8.566E−02
ORTHOinit 1.961E−03 1.135E−10 1.387E−03 1.535E−02 1.917E−14 1.085E−02
ORTHOinit+ 1.705E−09 8.870E−22 1.206E−09 8.932E−03 6.496E−15 6.316E−03
ORTHOinit# 1.445E−07 4.208E−19 1.022E−07 7.305E−03 4.341E−15 5.165E−03

Average

HSS 5.321E−02 2.388E−02 4.713E−02 1.15E−01 4.029E−02 9.754E−02
ORTHOinit 4.899E−02 3.424E−02 4.665E−02 6.510E−02 4.743E−02 6.290E−02
ORTHOinit+ 1.804E−02 2.547E−03 1.301E−02 2.467E−02 3.177E−03 1.804E−02
ORTHOinit# 3.705E−02 3.215E−02 3.811E−02 2.429E−02 1.320E−03 1.726E−02
the first two constraints have been automatically satisfied by the
geometric scaling, whereas constraints on B and T have been
andled using a penalty function method, since the relationship
etween B/T variations and design variables was not explicitly

provided by the orthogonal expansion and geometric scaling. The
main particulars of the DTMB 5415 model and the test conditions
considered for its optimal design are summarized in Table 3.

The simulations have been performed for the right demi-hull,
aking advantage of symmetry about the xz-plane. The computa-
ional domain for the free surface has been defined within 1 Lpp
pstream, 3 Lpp downstream and 1.5 Lpp sideways. The associated
ull grid (90 × 25 nodes) used (see Fig. 8) guarantees solution
onvergence. The validation of the potential flow analysis per-
ormed by WARP for the original hull versus experimental data
12
Table 3
DTMB 5415: main particulars and test conditions.
Description Symbol Unit Full scale Model scale

Displacement ∇ tonnes 8636 0.549
Length between perpendiculars Lpp m 142.0 5.720
Beam B m 18.90 0.760
Draft T m 6.160 0.248
Longitudinal center of gravity LCG m 71.60 2.884
Vertical center of gravity VCG m 1.390 0.056
Froude number Fr – 0.25 0.25
Reynolds number Re – 1.215E+09 9.824E+06

collected at CNR-INM [50] has been shown by [13]. The optimiza-

tion problem has been solved using the DPSO schemes presented
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Fig. 6. DPSO convergences conditional to the different initializations (n = 50).
Fig. 7. A 5.720 m length model of the DTMB 5415 (CNR-INM model 2340).
Fig. 8. Computational grid g0 used for numerical implementation of the generalized KLE and for the potential flow solution.
n Section 7 using again a total number of 2400 function evalu-
tions. Figs. 9(a) and (b) report the corresponding performances
nd final optimal design variables for the four initializations. The
our DPSO initialization variants have achieved the same objective
unction reduction (∆f ), as shown in Fig. 9a, showing equivalent
13
effectiveness. Specifically, ORTHOinit initialization has been the
most efficient, as it exactly relies on orthogonal vectors in order
to steer the particles. In other words, using the language of
Sections 2–4 , in ORTHOint the components of velocity in the free
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Fig. 9. Optimization results: DPSO convergence for the four initializations (left) and corresponding design vectors (right).
Fig. 10. Optimization results: the final hull obtained using ORTHOinit (left) and ORTHOinit+ (right). Red arrows indicate the differences.
Fig. 11. Optimization results: the final wave pattern generated by the hull obtained using ORTHOinit (top) and ORTHOinit+ (bottom). Dashed boxes evidence the
differences.
responses associated to the particles are exactly orthogonal at step
k = 1.

On the other hand, ORTHOinit+ is not endowed with the latter
orthogonality property, inasmuch as it requires the transforma-
tion indicated in (42)–(43), which guarantees uniform linear inde-
pendence of vectors in place of orthogonality. Thus, ORTHOinit+
seemed less efficient, but thanks to the dense initial positions (as
14
detailed in Section 6) it was able to provide noteworthy different
values of the 6 unknowns with respect to ORTHOinit (see the 2nd
and 3rd unknown in Fig. 9b), which is of great importance for
ship designers. Indeed, the capability to choose among several
scenarios allows for more freedom to build the ship hull, so that
issues related to costs can be duly considered. Fig. 10 reports the
final hull shapes obtained using ORTHOinit (left) and ORTHOinit+
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right). Similarly, Fig. 11 reports the wave pattern generated by
he hull obtained using ORTHOinit (up) and ORTHOinit+ (down):
RTHOinit+ shows an attenuated diverging bow wave, which is
ndeed a confirmation of the slightly better value of ∆f in Fig. 9,
btained adopting ORTHOinit+.
Finally, combining the effects of ORTHOinit and ORTHOinit+

i.e. the gray dotted line of ORTHOinit# in Fig. 9a) we improved
fficiency with respect to ORTHOinit+, and we still retained a
ense solution, with again a remarkable difference in the 2nd and
rd unknowns. This gives further evidence that the density issues
tudied in Section 6, which are a core subject of this paper, can
lay a noteworthy role. Also observe that HSS is on the overall
ess efficient than ORTHOinit#.

. Conclusions and future work

In this paper we have analyzed novel initializations for DPSO,
n order to better exploit the topology of the swarm in Rn, and
speed up in the early iterations the solution of unconstrained
optimization and bound-constrained optimization problems.

Unlike the proposal by [18], the theory in the current paper
yields a guideline for the choice of 2n particles’ initial posi-
tion/velocity, and not just n. Moreover, our initialization is dense
and tends to scatter the particles in the search space. The latter
fact was expected to provide a more powerful tool (as numerical
results seem to confirm) for widely exploring the search space.
Furthermore, our theoretical achievements yield a particles’ ini-
tialization in DPSO which is related to (i.e. parametrized with) the
real space of dimension n. Though no specific conclusion seems
to be drawn by the latter observation, we remark that most of
the exact derivative-free methods for smooth problems, as well as
gradient-based methods for continuously differentiable functions,
show noteworthy analogies. Indeed, for instance in the case of ex-
act derivative-free methods, typically the use of search directions
parallel to all the n coordinate axes helps improving efficiency,
and is definitely indispensable to prove global convergence. On
the other hand, observe that the gradient naturally summarizes
the sensitivity of the function along the n coordinate axes, so that
also gradient-based search directions rely on information referred
to the n coordinate axes.

In case the parameter ω in (12) possibly adaptively changes
at each iteration, the theory above does not hold anymore and
it should be reformulated from scratch. The circumstance under
which the parameter ω changes at each iteration is a key-aspect
in several cases, when PSO limits arise and the progress of the
algorithm is very slow. An example is provided when stagnation
arises, i.e. when eventually the best particle of the swarm does
not change its position. Unfortunately, the proposal in this paper
is unable to cope with the last relevant issue, which may have a
dramatic impact. Therefore, we are persuaded that such a limit of
our proposal might possibly represent a future issue for a fruitful
investigation. As a further limit of our theory, the reader may
include our relative rigid choice of DPSO coefficients, which is
imposed by Assumption 1. Indeed, we conjecture that a more
general setting of DPSO parameters, where each particle retains
its individual choice, may yield better results.

Finally, an adaptive criterion might be advisable, in order to
restart the position and velocity of some particles after a given
number of iterations. The adaptive criterion might for instance
monitor the norm ∥XL(k)(j)∥, j = 1, . . . , 2n (see also Section 5
of [18]), of the free response of particles. When the latter quantity
approaches zero, a restart would re-impose orthogonality among
the free responses of the particles, using the theory in Section 4.
15
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Appendix

Proof of Proposition 3. By (42), (43) and (46), along with a
simple computation, we have

det(w1
... · · ·

... w2n) = det(z1
... · · ·

... z2n)η,

where (53) as given in Box I
and since the vectors z1, . . . , z2n are orthonormal, by (53) we

have

det(w1
... · · ·

... w2n) = det(M1) det(M2), (54)

being (55) and (56) as given in Box II. Since M1 and M2 have
the same pattern, the computation of det(M1) and det(M2) has
the same difficulty. Thus, we focus without loss of generality on
computing det(M1), whose value is invariant after subtracting the
(i + 1)th column to the ith column of M1, for i = 1, . . . , n − 1.
After the latter arrangement we obtain det(M1) = det(Γn), where
(only the nonzero entries are reported)

Γn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1+ α −α

−(1+ α) 1+ α
...

− (1+ α)
. . .

...

. . . 1+ α −α

−(1+ α) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n.

(57)
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d

d
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η = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α · · · · · · −α −δ −δ · · · · · · −δ

−α 1 −α · · ·
... −δ

. . .
...

... −α 1
. . .

...
...

. . .
...

...
...

. . .
. . . −α

...
. . . −δ

−α · · · · · · −α 1 −δ · · · · · · −δ −δ

1 −2/(n− 2) · · · · · · −2/(n− 2)

−2/(n− 2) 1 −2/(n− 2) · · ·
...

0
... −2/(n− 2) 1

. . .
...

...
...

. . .
. . . −2/(n− 2)

−2/(n− 2) · · · · · · −2/(n− 2) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

Box I.
M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −α · · · · · · −α

−α 1 −α · · ·
...

... −α 1
. . .

...
...

...
. . .

. . . −α

−α · · · · · · −α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n, (55)

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2/(n− 2) · · · · · · −2/(n− 2)

−2/(n− 2) 1 −2/(n− 2) · · ·
...

... −2/(n− 2) 1
. . .

...
...

...
. . .

. . . −2/(n− 2)
−2/(n− 2) · · · · · · −2/(n− 2) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n. (56)

Box II.
T

d

R

omputing det(Γn) by the first row and using induction, recalling
hat Γ1 = 1, we have

et(Γ1) = 1

et(Γ2) = (1+ α)− α(1+ α) = 1− α2

et(Γ3) = (1+ α)2 + (1+ α)[−α(1+ α)− α(1+ α)]
(1+ α)2 − 2α(1+ α)2 = (1+ α)2(1− 2α)

...

det(Γh) = (1+ α)h−1[1− (h− 1)α],

so that by (57) we have for det(Γh+1), h < n

det(Γh+1) = det

⎡⎢⎢⎢⎢⎣
1+ α 0 · · · 0 − α

−(1+ α)
0
...

0

Γh

⎤⎥⎥⎥⎥⎦ .

olving again with respect to the first row, we obtain

et(Γh+1) = (1+ α) det(Γh)+ (−1)h+2(−α)[−(1+ α)]h
16
= (1+ α)h[1− (h− 1)α] + (−1)2h+3α(1+ α)h

= (1+ α)h[1− (h− 1)α − α] = (1+ α)h(1− hα).

hus, by (53), (54), (55) and (56)

et(w1
... · · ·

... w2n) =
{
(1+ α)n−1 [1− (n− 1)α]

}
×

{(
1+

2
n− 2

)n−1 [
1+ (n− 1)

2
n− 2

]}

= (1+ α)n−1 [1− (n− 1)α]
(3n− 4)nn−1

(n− 2)n
. ♢
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