
Applied Soft Computing 109 (2021) 107492

a

b

c

n
a
h
t
o
T
d
u
s
t

t
c
i
e
w
t
t
o
w

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Search trajectory networks: A tool for analysing and visualising the
behaviour ofmetaheuristics
Gabriela Ochoa a,∗, Katherine M. Malan b, Christian Blum c

Computing Science and Mathematics, University of Stirling, Stirling, Scotland, UK
Department of Decision Sciences, University of South Africa, South Africa
Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain

a r t i c l e i n f o

Article history:
Received 20 July 2020
Received in revised form 12 March 2021
Accepted 5 May 2021
Available online 14 May 2021

Keywords:
Algorithm analysis
Search trajectories
Complex networks
Continuous optimisation
Combinatorial optimisation
Visualisation

a b s t r a c t

A large number of metaheuristics inspired by natural and social phenomena have been proposed in
the last few decades, each trying to be more powerful and innovative than others. However, there
is a lack of accessible tools to analyse, contrast and visualise the behaviour of metaheuristics when
solving optimisation problems. When the metaphors are stripped away, are these algorithms different
in their behaviour? To help to answer this question, we propose a data-driven, graph-based model,
search trajectory networks (STNs) in order to analyse, visualise and directly contrast the behaviour of
different types of metaheuristics. One strength of our approach is that it does not require any additional
sampling or algorithmic methods. Instead, the models are constructed from data gathered while the
metaheuristics are solving the optimisation problems. We present our methodology, and consider
in detail two case studies covering both continuous and combinatorial optimisation. In terms of
metaheuristics, our case studies cover the main current paradigms: evolutionary, swarm, and stochastic
local search approaches.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The last few decades have seen the introduction of a large
umber of ‘‘novel’’ metaheuristics inspired by different natural
nd social phenomena. Sörensen [1] argues that this development
as taken the field a step backwards, rather than forwards, and
hat instead of more new methods, we need critical evaluation
f established methods to reveal their underlying mechanics.
here have been attempts to describe algorithms using stan-
ard metaphor-free terminology [2,3]. Although this helps in
nderstanding the mechanisms of algorithms and in highlighting
imilarities and differences, it still does not provide insight into
he resulting search behaviour.

The behaviour of metaheuristics is often described in relation
o the level of exploration or exploitation, or the broader con-
ept of intensification/diversification (I&D) [4]. However, there
s no generally accepted understanding of this concept in the
volutionary computing research community [5] and no general
ay of analysing or measuring the level of I&D of metaheuris-
ics. Convergence analysis (measured through diversity of solu-
ions) of population-based algorithms is related to I&D and is
ne way of describing algorithm behaviour. However, knowing
hen a population converges ignores where in the search space

∗ Corresponding author.
E-mail address: gabriela.ochoa@stir.ac.uk (G. Ochoa).
ttps://doi.org/10.1016/j.asoc.2021.107492
568-4946/© 2021 Elsevier B.V. All rights reserved.
this is happening and hence whether convergence is premature
or not. Convergence analysis is also not applicable to single-point
metaheuristics.

Others have proposed techniques for visualising the behaviour
of search algorithms [6–9]. These approaches use dimensionality
reduction to map search spaces to two or three dimensions and in
this way track search progress. Our proposed STN model is similar
in aim to these approaches, except that STNs are graph objects
with nodes and edges that can be analysed and visualised, rather
than the full search space reduced to a visualisable Cartesian
plane.

Many natural and technological systems are composed of a
large number of highly interconnected units; examples are neu-
ral networks, biological and chemical systems, social interacting
species, the Internet and the World Wide Web. A key approach to
capture the global properties of such systems is to model them as
graphs whose nodes represent the units, and whose links stand
for the interactions between them. This simple, yet powerful
concept has been used to study a variety of complex systems
where the goal is to analyse the pattern of connections between
components in order to understand the behaviour of the system.
Once a system is modelled as a network, an extensive set of
mathematical and computational tools is available for analysing,
understanding and visualising the system [10,11]. We argue that
understanding and contrasting the behaviour of metaheuristics is

a complex task, and thus complex systems tools are paramount.

https://doi.org/10.1016/j.asoc.2021.107492
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107492&domain=pdf
mailto:gabriela.ochoa@stir.ac.uk
https://doi.org/10.1016/j.asoc.2021.107492

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

W
a

w
t
c
t
c
l
b
t
h
t
i
o

e therefore propose a data-driven network model to analyse
nd visualise the behaviour of metaheuristics.
We initially presented the concept of search trajectory net-

orks in a recent conference paper [12], where we modelled
he dynamics of two population-based algorithms when solving
ontinuous benchmark functions. Here, we extend and generalise
he concepts, methodology and computational experiments to
over not only population-based approaches, but also stochastic
ocal search methods (also called single-point metaheuristics) and
oth continuous and combinatorial optimisation. We emphasise
he use of this modelling technique to directly contrast the be-
aviour of different types of metaheuristics in a unified model
hat can be analysed quantitatively and visually. Since construct-
ng, analysing and visualising the networks are key contributions
f this article, our STNs repository1 provides the required source

code (R scripts) and example datasets to create, merge, analyse
and visualise the STN models for both continuous and discrete
optimisation problems.

The outline of this paper is as follows. Section 2 gives an
overview of related work. Section 3 gives the relevant definitions
behind search trajectory networks (STNs), describes the approach
to construct the data-driven models and presents a simple il-
lustrative example. Thereafter, two case studies are thoroughly
presented to illustrate the application of STNs to contrast and un-
derstand the behaviour of different types of metaheuristics when
solving continuous (Section 4) and combinatorial (Section 5) opti-
misation problems, respectively. Finally, our concluding remarks
and suggestions for future work are discussed in Section 6.

2. Related work

The initial inspiration for STNs came from the study of lo-
cal optima networks (LONs) [13,14], which are a compressed
model of fitness landscapes where nodes are local optima and
edges represent possible transitions between optima with a given
search operator. LONs in turn were inspired by network-based
models of energy landscapes in computational chemistry [15].
Disconnectivity graphs [16,17], also known as barrier trees [18],
are another graph-based modelling tool originated from the study
of energy landscapes, which has also been applied to model
the fitness landscapes of optimisation problems [19]. STNs differ
from these tools as the goal is not to model the structure of fit-
ness landscapes, but instead the search behaviour of optimisation
algorithms.

A recent body of work has used networks to understand the
dynamics of population based algorithms. The idea, as initially
proposed by Zelinka and Davendra [20], is to use graphs whose
connections represent interactions amongst the individuals dur-
ing all generations; vertices are individuals that are activated by
other individuals, incrementally from generation to generation.
Follow-up work has studied differential evolution [21,22] and
particle swarm optimisation methods using this approach [23,24],
where the emphasis is to model the communication or influence
of individuals (or particles) inside the population or swarm. These
network models have been shown to be useful for visualising the
behaviour and capturing the trade-off between exploration and
exploitation of the studied algorithms. STNs differ from these ap-
proaches as the main goal is not to model the interactions among
candidate solutions in the population, but instead to model the
trajectories of representative solutions across the search process.
Moreover, STNs can be applied to any metaheuristic, not only
to population-based ones, and merged STNs allow us to directly
contrast the behaviour of different metaheuristics.

1 https://github.com/gabro8a/STNs.git
2

In population-based algorithms, the way in which diversity
changes over time can be seen as an approach to characterise al-
gorithm behaviour. Bosman and Engelbrecht [25] proposed a sin-
gle numerical measure called diversity rate of change for charac-
terising the exploration–exploitation trade-off in particle swarms.
Their premise was that the profile of the reduction in diver-
sity (measured using the average Euclidean distance around the
centre of the swarm [26]) could be captured by the slopes of a
two-piecewise linear approximation of the diversity over time.
Although diversity provides one important view of algorithm
behaviour, it ignores where in the search space the population
is moving and hence whether convergence is premature or not.

In the domain of multi-objective optimisation involving more
than three objectives, there is a body of literature involving
the visualisation of Pareto front approximations [27]. These ap-
proaches involve dimensionality reduction techniques to show
algorithm progression in improving objective values over time.
Trace generation plots [28] are similar in that they show how the
hypervolume value changes over generations. Although these vi-
sualisation approaches can help in understanding and contrasting
algorithm behaviour, they differ from STNs as they are visualising
objective space, rather than solution space.

A different approach to tracking search dynamics is to map
multi-dimensional solutions into lower dimensions to visualise
how trajectories of solutions change over time. Dimensionality
reduction techniques that have been used for this aim include
principal component analysis [6], Sammon mapping [7], and t-
distributed stochastic neighbour embedding [8]. With this ap-
proach, the positions of solutions relative to each other and the
movement of individuals in a population can be visualised over an
algorithm run using a sequence of 2-D frames or a 3-D stacking of
2-D frames [9]. STNs are similar to these approaches in that they
also provide a visualisation of search dynamics and trajectories,
but the main difference is that the location information and
movement through the search space is captured in a graph object,
allowing the information to be analysed using a wealth of math-
ematical and visualisation tools. Our approach also includes the
ability to analyse the information at different levels of granularity
of the search space by simply changing the definition of a location
in the model.

3. Search Trajectory Networks (STNs)

3.1. Definitions

In order to define a network model, we need to specify the
nodes and edges. The relevant definitions are given below.

Representative solution. A solution to the optimisation problem
at a given time step that represents the status of the search algo-
rithm based on predefined criteria. For example, in a population-
based algorithm, the best solution in the population at the given
iteration might be chosen as the representative solution, whereas
in a single-point method the incumbent solution is the obvious
choice for a representative solution.

Location. A non-empty subset of solutions that results from
a predefined partitioning of the search space. Each solution in
the search space is an element of one and only one location.
Each location is assigned a representative objective value using
predefined criteria. In discrete search spaces, a location can be
modelled as a single solution.

Search trajectory. Given a sequence of representative solutions
in the order in which they are encountered during the search
process, a search trajectory is defined as a sequence of locations
formed by replacing each solution with its corresponding loca-
tion. The frequency of recording the representative solutions in
the trajectory is specified using predefined criteria.

https://github.com/gabro8a/STNs.git

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

N
b

E

S

ode. A location in a search trajectory of the search process
eing modelled. The set of nodes is denoted by N .

dges. Edges are directed and connect two consecutive locations
in the search trajectory. Edges are weighted with the number of
times a transition between two given nodes occurred during the
process of sampling and constructing the STN. The set of edges is
denoted by E.

earch Trajectory Network (STN). An STN is a directed graph
STN = G(N, E), with node set N , and edge set E as defined above.

3.2. Sampling and model construction

One strength of our approach is that it does not require im-
plementing any specific sampling or data gathering method to
construct the models. Instead, the data to construct the models is
gathered while the algorithm under study is running. Specifically,
the required output from a run of the algorithm is a list of
steps (edges) connecting two adjacent representative solutions
in the search process. Each search step (algorithm iteration) is
stored as an entry in a log file containing the two consecutive
representative solutions being linked with the step. Both the
encoding (solution vector) and evaluation (fitness value) of each
representative solution in a step are stored.

STN model. Once the data logs of a predefined number of runs
of a given algorithm-problem instance pair are gathered, a post-
processing step aggregates all the representative solutions and
transitions to construct a single network object. A mapping be-
tween the representative solutions and their unique locations
and objective values is required. For minimisation problems, the
representative objective value is the minimum objective value of
all solutions that visited a location across all runs. The mapping
from solutions to locations depends on the search space under
consideration. Examples of such mappings in continuous and
discrete search spaces are given in the case studies (Sections,
Sections 4 and 5), respectively. When constructing the network
models, counters are kept as attributes for both nodes and edges
to account the number of times they were visited during the
sampling process.

Merged STN model. Once the STN models for a set of algorithm–
instance pairs are constructed, we can proceed to merge the
STNs of different algorithms for a given problem instance. Let
us assume we have two algorithms. The merged STN model
of the two algorithms for a given instance is obtained by the
graph union of the two individual graphs for that instance. More
formally, let STNA = G(NA, EA) and STNB = G(NB, EB) be the STNs
of algorithms A and B for a given instance. We then construct
STNmerged as the union of the two graphs. Specifically, STNmerged =

G(NA ∪ NB, EA ∪ EB). The merged graph contains the nodes and
edges that are present in at least one of the algorithm graphs.
Attributes are kept for the nodes and edges indicating whether
they were visited by both algorithms or by one of them only.

3.3. Network metrics

Once a system is modelled as a graph, many structural prop-
erties can be computed. The most basic metrics are the number
of nodes and edges, but a variety of other metrics could be calcu-
lated such as the degree distribution, length of paths, community
structure, and centrality of nodes to name a few [10]. To keep
things simple we propose five straightforward network metrics
to assess the global structure of the trajectories, and thus bring
insight into the difficulty of the instances and the behaviour of

the metaheuristics modelled. These metrics are summarised in

3

Table 1. It is worth noting that additional metrics could also be
considered.

The justification of this selection of metrics is as follows. The
total number of nodes, ntotal, gives an idea of the amount of the
search space that was explored. The number of nodes with best-
found evaluation, nbest, indicates whether different locations of
the search space evaluate to best-found fitness. The number of
nodes at the end of trajectories (different than the best nodes),
nend, indicates how likely it is for trajectories to end up in sub-
optimal locations. The number of shared nodes, nshared, indicates
whether there are solutions or areas of the search space that tend
to attract the trajectories of different algorithms.

The degree of a node in a graph is simply the number of
edges connected to it. In directed graphs, such as STNs, we can
distinguish incoming and outgoing edges, and thus incoming and
outgoing degrees. Moreover, when edges are weighted such as in
STNs, it is customary to use the weighted degree of a node, also
called strength in graph theory terminology, which is based on the
number of edges connected to the node, but ponderated by the
weight of each edge.

Our final metric (best-strength) computes the incoming
weighted degree of the best node(s). When there is more than
one best node, this metric simply sums their incoming strengths.
In order to have values between zero and one, we normalise
this metric by the number of algorithm runs used to sample and
construct the STN model(s). This metric evaluates to one when all
runs end in a best found solution. Note that best-strength provides
a measure of the centrality and reachability of the best-found
solution(s). It is worth noting that the centrality of good solutions
has been found to correlate with search difficulty in the study of
local optima networks [29,30].

3.4. Network visualisation

Visualisation is a powerful tool that may allow us to appreciate
structural features which can be difficult to infer from the net-
work metrics alone. The most common visual representation of
a network, which we have used throughout this paper, is the so-
called node–edge diagram. Node–edge diagrams assign the nodes
to points in the two-dimensional or three-dimensional Euclidean
space, and connect adjacent nodes by straight lines or curves.
Arrowheads are used to indicate the direction of connections in
the context of directed graphs. Nodes are then drawn on top of
the edges using simple geometric shapes. Moreover, the most
important attributes of nodes and edges are assigned to visual
properties (such as size and colour) of the shapes and lines;
for instance, the area of a circle can be made proportional to
the degree of the node in order to highlight hubs (i.e. highly
connected nodes).

The graph visualisations in this paper were produced with
the igraph library [31] of the R programming language. We con-
sidered force-directed layout algorithms, such as Fruchterman–
Reignold [32] and Kamada–Kawai [33]. Force-directed layout al-
gorithms are based on physical analogies and do not rely on any
assumptions about the structure of the networks. These algo-
rithms strive to satisfy the following generally accepted crite-
ria [32]:

• Vertices are distributed roughly evenly on the plane (a circle
in the igraph implementation).

• The number of crossing edges is minimised.
• The lengths of edges are approximately uniform.
• The inherent symmetries in the networks are respected,

i.e., sub-networks with similar inherent structure are usually

laid out in a similar manner.

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492
Table 1
Description of network metrics.
ntotal Total number of nodes.

nbest Number of nodes with the best-found evaluation.
nend Number of nodes at the end of trajectories (other than the nodes with the best evaluation).
nshared Number of nodes visited by more than one algorithm.
best-strength Normalised incoming strength (weighted degree) of the best node(s).
a
t
u
s

s
t
i
t
S
o
s

4

4

o
p

Note that the R scripts for creating, visualising and analysing
the STN models presented in this paper are provided at https:
//github.com/gabro8a/STNs.git. The repository also contains ex-
ample datasets and a README file explaining the input format
and how to use the scripts provided.

3.5. Illustrative example

To illustrate the concept of an STN and how it is constructed,
we provide a simple example in continuous optimisation where
the search space can be visualised alongside the STN. Fig. 1(a)
shows the Schwefel 2.26 benchmark function, which is to be min-
imised, in two dimensions. The fitness landscape is multi-modal
with a multi-funnelled global structure [34]. The global optimum
is found at the upper right corner of the plot, approximately at
position (420, 420).

Fig. 1(b) shows the contour plot of the problem where areas
of higher fitness are shaded darker. The global optimum position
is shown in the contour plot as a red dot. The example con-
siders iterated local search (ILS) [35] – which is a simple, yet
powerful, search strategy combining a perturbation stage with a
hill-climbing (local search) process – and a version of differential
evolution (DE) [36]. Three runs of each algorithm were executed
on the problem and the trajectories are shown on the contour
plot in blue for ILS and orange for DE. Initial random positions
are shown as yellow filled-in squares and sub-optimal end points
are shown as black filled-in triangles. Each arrow indicates the
start and end of an improving iteration of ILS (perturbation from
previous position followed by local search) or a change in the best
individual of the DE population. The plot of the trajectories in
the actual search space is quite messy and difficult to interpret.
It is not that clear to see, but one of the three blue ILS runs
successfully finds the global optimum and two of the orange DE
runs also reach the global optimum. The two unsuccessful runs of
the ILS end in the same local optimum, approximately at position
(−300, 420), while the one unsuccessful DE run ends in the local
optimum in the bottom right corner.

Fig. 1(c) shows the merged STN constructed from the trajec-
tories visualised in Fig. 1(b). Nodes correspond to locations and
edges to transitions between them. As indicated in the legend,
the colour and shape of nodes reflect their type. Yellow squares
indicate the start of trajectories, while dark grey triangles the end
of trajectories. The red circle distinguishes the best-found location
(which in this case contains the global optimum). The remaining
intermediate nodes are circles coloured by the algorithm that
traversed them (orange for DE and blue for ILS). If a node is
traversed by more than one algorithm, it is painted in light grey.
Notice that in this small example there are no light grey nodes as
the only shared node is an end node (triangle in the middle of the
figure, just below the global optimum), and the decoration of end
nodes has precedence over that of shared nodes. The size of nodes
is proportional to their incoming strength (weighted degree).
The colour of an edge indicates the algorithm that traversed it.
Edges traversed by more than one algorithm are painted in grey.
However, this does not happen in this small example. The width
of an edge is proportional to the number of times it was traversed.

It can be seen in Fig. 1(c) that one of the ILS trajectories and

two of the DE trajectories end in the best location (red node). m

4

Table 2
STN metrics for the illustrative example representing the search process of ILS
and of DE on the Schwefel 2.26 benchmark function in two dimensions. A
description of the metrics can be found in Table 1.
STN model ntotal nbest nend nshared best-strength

Merged 33 1 2 2 0.5
DE 23 1 1 NA 0.67
ILS 12 1 1 NA 0.33

Table 3
Scalable benchmark functions (D is the dimension)
Function Definition and domain

Michalewicz f (x) = −
∑D

i=1 sin(xi)
(
sin(ix2i /π)

)2p
, xi ∈ [0, π]

Quadric f (x) =
∑D

i=1

(∑i
j=1 xj

)2
, xi ∈ [−100, 100]

Rana f (x) =
∑D

i=1 xi sin(α) cos(β) +
(
x(i+1)modD + 1

)
cos(α) sin(β),

D ≥ 2, α =
√

|xi+1 + 1 − xi|, β =
√

|xi + xi+1 + 1|,
xi ∈ [−512, 512]

Salomon f (x) = − cos
(
2π

√∑D
i=1 x

2
i

)
+ 0.1

√∑D
i=1 x

2
i + 1,

xi ∈ [−100, 100]
Schwefel 2.26 f (x) = −

∑D
i=1

(
xi sin(

√
|xi|)

)
, xi ∈ [−500, 500]

The two other ILS trajectories end in the same node (dark grey
triangle at the bottom of the figure), while the third DE trajectory
ends in a different location (dark grey triangle in the middle of the
figure). It is interesting to see that the unsuccessful DE run ends
in a location that is visited by the successful ILS trajectory before
escaping from it to reach the best node. This STN visualisation is
certainly a much clearer illustration of the search behaviour when
compared to 1(b).

Table 2 shows the metrics described in Table 1 for the merged
STN visualised in Fig. 1(c). The metrics of each individual algo-
rithm’s STN model are also shown. The ntotal metric indicates
that DE has longer trajectories than ILS, which may be a sign of
a wider exploration of the search space. The lower value of nend
nd the higher value of best-strength of the DE STN in comparison
o the ILS STN, respectively, indicate that DE is less likely to end
p in a sub-optimal solution and is more likely to reach the best
olution for this instance.
The simple example in Fig. 1 shows how an STN is an ab-

tract visual representation of search trajectories. Note that in
he context of discrete optimisation (or continuous optimisation
n more than two dimensions) it is not possible to visualise the
rajectories in the actual search space as was done in Fig. 1(b).
TNs, however, can be used to visualise the essential information
f search trajectories for any problem size to gain insight into the
earch behaviour of algorithms.

. Continuous optimisation case study

.1. Problem formulation

The continuous optimisation problems considered are single-
bjective, static, bound-constrained, multivariate minimisation
roblems. In general such a problem can be defined as:

n n
in f (x), f : R → R, x ∈ S ⊆ R ,

https://github.com/gabro8a/STNs.git
https://github.com/gabro8a/STNs.git
https://github.com/gabro8a/STNs.git

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

w
d
o
d
a

x

4

i
s

m
l
m

Fig. 1. Illustrative example of a merged STN representing the search process of ILS and of DE on the Schwefel 2.26 benchmark function in two dimensions.
here x is an n-dimensional candidate solution vector and S
efines the feasible sub-region of Rn as defined by the domains
f the variables within x. In this study, it is assumed that S is
efined by simple boundary constraints, which are the same for
ll components of the solution vector; that is,
min

≤ xi ≤ xmax
∀x ∈ S, 1 ≤ i ≤ n.

.2. Benchmark instances

A sample of five minimisation benchmark functions (defined
n Table 3) with different characteristics were chosen for demon-
trating the proposed STN model in continuous spaces.
Quadric (also known as Schwefel 1.2) [37] is the only uni-

odal problem. Michalewicz [38] is multimodal, but also has
arge plateaus at high fitness values. Schwefel 2.26 [37] is multi-
odal and also multi-funnelled. Both Salomon [36] and Rana [36]
5

are extremely rugged, but Salomon has a single-funnel global
structure, whereas Rana has a multi-funnel structure. For the
experimentation we used Rana and Salomon in 3 dimensions,
Michalewicz and Schwefel 2.26 in 5 dimensions and Quadric in
10 dimensions.

4.3. Metaheuristic algorithms

For demonstration purposes, we implemented three algo-
rithms for solving problems in continuous spaces: a swarm-based
algorithm, an evolutionary algorithm, and an iterated local search
(ILS) algorithm.

Particle swarm optimisation (PSO) was used for the swarm-
based algorithm and differential evolution (DE) for the evolution-
ary algorithm. The version of PSO used in the study was tradi-
tional global best PSO [39,40] with an inertia weight term [41],
50 particles, 1.496 for both the cognitive and social acceleration

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

c
c
c
p
w
0

t
a
t
l
(
B
i
r
t
e

r
s
r
n
i
S

4

s
s
i
h

i
t
1
o
r
t

o
s
d
f
(

onstants, and 0.7298 for the inertia weight (although the optimal
hoice of parameters is problem dependent, this is a common
hoice that works reasonably well for many problems [42]). The
articular version of DE used in the study was DE/rand/1 [43],
ith uniform crossover, a population size of 50, a scale factor of
.5, and a crossover rate of 0.5.
In the continuous domain, and particularly within the compu-

ational chemistry community, ILS is known as the basin-hopping
lgorithm [44]. Our implementation starts at a random loca-
ion and executes a local minimisation step using a run of the
imited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
L-BFGS) [45] — a quasi-Newton method that approximates the
FGS algorithm using limited memory. We used the L-BFGS
mplementation from the SciPy Python package [46]. From the
esulting local optimum, a random perturbation is performed and
he process is repeated until the budget of objective function
valuations has been reached.
We would like to clarify at this point that these three algo-

ithms (and their parameter settings) were chosen for demon-
tration purposes. It is not our intention to make claims about the
elative quality of the algorithms. Therefore, parameter tuning is
ot necessary. We are rather showing that if one search process
s more successful than another one on a particular problem, the
TN model can shed light on why this is the case.

.4. Search space partitioning

As defined in Section 3, a location is a non-empty subset of
olutions that results from a predefined partitioning of the search
pace. In this study, a continuous search space was partitioned
nto discrete hypercubes of a set length, defining a location as a
ypercube of solutions.
A partition factor parameter (PF) was used to portion the space

nto hypercubes with length 10PF . For example, if PF = −2,
hen the solution space was divided into hypercubes of length
0−2 and each location (node in the STN) was equivalent to
ne of these hypercubes. Solutions were mapped to locations by
ounding off all components of the position to the nearest 10PF

o determine the identity of the enclosing hypercube.
To extract meaningful insights from the STN model, the size

f partitions should be larger for larger search spaces. In this
tudy, (assuming that the domain of values is the same for each
imension of the problem) the value for PF was expressed as a
unction of the range of the domain (xmax − xmin) and dimension
D) of the problem as follows: PF is set to n − 2, where n is the
largest integer for which the following is true:

(xmax − xmin) × D ≥ 10n. (1)

For example, given a problem in three dimensions with domain
[−1, 1] in all dimensions, PF would be set to −2, since 2 ×

3 ≥ 100. For this problem, a location/node in the STN would be
equivalent to a unique 0.01×0.01×0.01 cube in the search space.

4.5. Experimental results

We implemented the three algorithms described in
Section 4.3. Ten independent runs were executed of each algo-
rithm on the five benchmark problems. Each run had a budget
of 5000 × D function evaluations. Representative solutions were
stored for each run to form the basis of the STN graphs. For the
population-based algorithms, the representative solutions were
the best solutions of every iteration (the best in the population),
whereas for the ILS, the representative solutions were the local
optima found at the end of each run of the local search. The ob-
jective value of solutions was also stored (as a difference in value
from the global optimum), rounded off to a precision of 10−8.
6

When generating the STN data, each solution was mapped to a
location using the search space partitioning approach described
in Section 4.4, resulting in PF values with associated partitions as
shown in Table 4.

Results and discussion. For discussion purposes, Table 5 gives
the performance of the three algorithms on the five problem
instances. For example, we see that the ILS algorithm performed
poorly on the Michalewicz problem (none of the 10 runs were
able to locate the global optimum), but performed very well on
Salomon (9 out of 10 runs located the global optimum). It can also
be seen that although DE achieved a 0% success rate on Salomon,
the average fitness difference from the origin was very low (0.06)
indicating that the runs came close to the optimal fitness value.

Fig. 2 shows the merged STNs for the Rana function (3D) at
three different levels of partitioning. On this instance, PSO, DE
and ILS achieved success rates of 0%, 80% and 40% respectively
(Table 5). The STN with medium partitioning in Fig. 2(a) shows
that all except two of the DE runs (in orange) converged on
the location of the best solution (which in this case contains
the global optimum), corresponding with the reported success
rate of 80%. Likewise, four ILS trajectories converge on the global
optimum, corresponding with the 40% success rate. The three
green PSO runs that appear in the cluster around the optimal
value, however, can be seen to share locations with successful
DE trajectories, but then end in sub-optimal locations (black
triangles). The remaining PSO runs mostly explored different
parts of the search space, shown as mostly unconnected green
trajectories.

Insights are less clear with too coarse and too fine partitioning.
In the case of the coarse partitioning in Fig. 2(b), locations are
defined as hypercubes with length 100 (resulting in a partitioning
of the space into 123

= 1728 locations). With the larger parti-
tions, a number of nodes in the graph merged and this results in
more overlap between trajectories. It is less clear at a glance to
see difference between the behaviours of the three algorithms. In
the case of the fine partitioning in Fig. 2(c), locations are defined
as hypercubes with length 0.1 (a partitioning of the space into
102403 locations). The fine partitioning results in a disjointed
STN, losing some of the information on trajectories overlapping
in the search space.

Table 6 provides the metrics for the merged STNs for all
problem instances and Fig. 3 shows the STN metrics per algorithm
as bar graphs. The metrics of merged STNs give an indication
of the features and relative difficulty of the problem instances.
For example, the maximal best-strength of Quadric with relatively
low nshared indicates that many different paths led to the best
solution. In contrast, the low best-strength of Rana with associated
high nend shows the presence of many local attractors in the
search space. The number of nodes in the individual algorithm
STNs (seen on the left in Fig. 3) gives an indication of the lengths
of the trajectories. For example, although all algorithms success-
fully solved Quadric, it can be seen that ILS reached the best
solution in far fewer steps than PSO and DE, reflected in the lower
number of nodes in the STN.

Considering the best-strength with the nend metric can also
shed light on the nature of the problem. For example, although
Michalewicz and Salomon have similar values for best-strength,
the value of nend is significantly lower for Salomon. This means
that many trajectories are ending in the same locations, indicating
the presence of fewer, but stronger local-optima attractors than
in the case of Michalewicz.

In most cases, best-strength corresponds with the success rate
of the algorithm, but not always. For example, in the case of
Salomon, the success rates of DE and ILS were 0% and 90%,
respectively (Table 5). However, in Fig. 3, it can be seen that the

best-strength of DE and ILS for Salomon are equal at 0.9. This

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

m
r
o
d
l

Table 4
Numeric benchmark instances with associated PF parameter values and partitions.
Instance Dimension Range PF value Partition

Michalewicz 5D xi ∈ [0, π] PF = −1 hypercubes of length 0.1
Quadric 10D xi ∈ [−100, 100] PF = 1 hypercubes of length 10
Rana 3D xi ∈ [−512, 512] PF = 1 hypercubes of length 10
Salomon 3D xi ∈ [−100, 100] PF = 0 hypercubes of length 1
Schwefel 2.26 5D xi ∈ [−500, 500] PF = 1 hypercubes of length 10
Table 5
Performance metrics for PSO, DE, and ILS: FD (mean fitness difference from the optimum) with standard deviation
(±σ) and SRate (percentage of runs finding the global optimum to within 10−4).
Instance PSO DE ILS

FD (±σ) SRate FD (±σ) SRate FD (±σ) SRate

Michalewicz 0.04 (±0.05) 40% 0.00 (±0.01) 90% 2.69 (±0.78) 0%
Quadric 0.00 (±0.00) 100% 0.00 (±0.00) 100% 0.00 (±0.00) 100%
Rana 150.28 (±95.75) 0% 7.65 (±16.90) 80% 83.42 (±85.36) 40%
Salomon 0.08 (±0.04) 20% 0.06 (±0.03) 0% 0.00 (±0.00) 90%
Schwefel 2.26 165.81 (±114.42) 20% 0.00 (±0.00) 100% 355.32 (±124.84) 0%
Fig. 2. Merged STNs for the Rana benchmark, showing three search space partitioning levels.
eans that although 90% of the runs for both algorithms are
eaching the partition containing the global optimum, the runs
f DE do not quite reach the global optimum (to within 10−4 as
efined for the success rate measure). This is also reflected in the
ow FD value for DE on Salomon in Table 5.
7

In contrast to Rana, the STN of Salomon in Fig. 4(a) provides
a different pattern of search behaviour. Although the landscape
of Salomon is very rugged, it has a single funnel global struc-
ture [36]. The STN shows that all algorithms are drawn in the
same direction towards the region of the global optimum. To

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

T
M
f

w
l
a
d
H
p

Fig. 3. Algorithm-specific metrics for the continuous problem instances. A description of the metrics is found in Table 1.
able 6
erged STN metrics for the continuous problem instances (using partition

actors as given in Table 4). A description of all metrics is found in Table 1.
ntotal nbest nend nshared best-strength

Michalewicz 288 1 14 10 0.67
Quadric 539 1 0 7 1.00
Rana 354 1 15 10 0.43
Salomon 260 1 4 22 0.77
Schwefel 2.26 376 1 10 8 0.57

better see the detail around the global optimum, Fig. 4(b) pro-
vides a zoomed visualisation of the STN, plotting the sub-graph
containing the set of the best 25% of the nodes. It can be seen that
there are many shared nodes between the different algorithms
(light grey nodes) and that although some runs end in the best lo-
cation, a number of runs end in the same sub-optimal end points
(black triangles). The landscape of Salomon has been described
as resembling ‘‘a pond with ripples’’ [36] around the global opti-
mum and Fig. 4(b) is showing the trajectories converging on the
‘‘ripples’’ around the optimum.

5. Combinatorial optimisation case study

5.1. Problem formulation

As a showcase for combinatorial optimisation we chose the
ell-known p-median problem, a classic facility location prob-

em [47]. In the p-median problem, the goal is to locate p facilities
mong n > p demand points. After locating the facilities, each
emand point is allocated to the closest (or cheapest) facility.
ereby, dij ≥ 0 is the distance (or travel cost) between demand
oints i, j ∈ {1, . . . , n}. The minimisation objective is to locate

the p facilities such that the sum of the distances (travel costs) is
minimised. The p-median problem can be expressed in terms of
an integer linear programme (ILP) in the following way.

min
n∑

i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 i = 1, . . . , n

xij ≤ yj i, j = 1, . . . , n
n∑

j=1

yj = p

xij ∈ {0, 1} i, j = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n ~

8

Algorithm 1 Solution construction (p-median problem)

1: S := ∅

2: while |S|< p do
3: j∗ := Choose(S)
4: S := S ∪ {j∗}
5: end while
6: output: S

Hereby, yj is a binary variable that indicates if a facility is located
in demand point j, j = 1, . . . , n. Moreover, xij is a binary variable
that indicates if, or not, demand point i is allocated to facility j.

5.2. Benchmark instances

The production and visualisation of STNs in the case of the
p-median problem is done using five problem instances from
the related literature. In particular we make use of instances
{pmed6, . . . , pmed10} from OR-Library, which is a well-known
collection of instances for a large number of problems.2 All five
problems have 200 demand points (n = 200) and request to open
a varying number of facilities (that is, p ranges from 5 in pmed6
to 67 in pmed10).

5.3. Metaheuristic algorithms

We implemented an ant colony optimisation (ACO) approach,
a biased random key genetic algorithm (BRKGA), and an iterated
local search (ILS) metaheuristic for solving the p-median prob-
lem. Note that ACO and BRKGA are population-based approaches,
while ILS is an algorithm based on local search. In all three cases
we implemented rather standard algorithm versions, because
the aim of this study is to demonstrate how the performance
of the algorithms can be compared by means of STNs, rather
than to develop high-performance versions of these algorithms.
In the following we provide a brief description of the algorithm
implementations.

Both ACO and BRKGA require a constructive procedure for
generating feasible solutions. In the case of ACO, this procedure
will be used for generating solutions at each iteration, while in
the case of BRKGA, this procedure will be used for translating
individuals into feasible solutions. In the following, let S with
|S| ≤ p be a subset of the n demand points. Note that such a
subset corresponds to a partial solution in case |S| < p, and

2 These instances can be downloaded from http://people.brunel.ac.uk/
mastjjb/jeb/info.html.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

c
i
p
a

p

S
i
d
c
t
v
d

I
f
i
f
s
p
o
i
C
f

Fig. 4. STNs for the Salomon benchmark.
s
m
0

I
a
s
a
p
c
f
a
r
t
l
{

t
s
p
s
r
i
c
a
s
o
s
t
v
t

5

c
c
f
a
t
a
d

to a complete solution otherwise. Let ji,min := argminj∈Sdij for
all i = 1, . . . , n. The objective function value f (S) of a (partial)
solution S can then be expressed as follows: f (S) :=

∑n
i=1 di,ji,min .

The basic procedure for constructing solutions to the p-median
problem is shown in Algorithm 1. It starts with an empty solution
S = ∅, and adds – at each iteration – exactly one demand point
from {1, . . . , n}\S to S until |S| = p. When used as a deterministic
greedy algorithm, function Choose(S) (see line 3 of Algorithm 1)
is implemented as follows. It chooses the demand point j∗ such
that j∗ := argminj∈{1,...,n}\S f (S ∪ {j}).

Implementation of ACO. We implemented a standard
MAX -MIN Ant System in the Hyper-cube Framework as de-
scribed, for example, in [48]. Only the pheromone model needs
to be described, together with the way in which the pheromone
values are used for constructing solutions at each algorithm iter-
ation. More specifically, the algorithm makes use of a pheromone
value τj ≥ 0 for each demand point j = 1, . . . , n. When
onstructing a solution with Algorithm 1, function Choose(S)
s implemented as follows. At each construction step, first, a
robability p(j | S) for choosing j ∈ {1, . . . , n} \ S is determined
s follows:

(j | S) :=
τj/f (S ∪ {j})∑

k∈{1,...,n}\S τk/f (S ∪ {k})

econd, a random value λ from [0, 1] is chosen. If λ ≤ drate, j∗
s chosen such that j∗ := argmaxj∈{1,...,n}\Sp(j | S), that is, the
emand point with the highest probability is deterministically
hosen. Otherwise, j∗ is determined by roulette wheel selec-
ion based on the probabilities. We chose a standard parameter
alue setting of 10 solution constructions per iteration, and a
eterminism rate (drate) of 0.7.

mplementation of BRKGA. The algorithm that was implemented
or the p-median problem is a standard BRKGA as described
n [49]. We only need to describe individuals and the procedure
or producing a solution on the basis of an individual. More
pecifically, an individual is an array π of length n in which each
osition πj (j = 1, . . . , n) is a value from [0, 1]. The procedure
f Algorithm 1 is used in the following way for translating an
ndividual into a solution. At each step of Algorithm 1, function
hoose(S) is implemented such that j∗ := argminj∈{1,...,n}\Sπj ·

(S∪{j}). For the experiments we used standard parameter values,
 s

9

uch as a population size of 100, 15% of elite individuals, 20% of
utants, and a probability of inheritance from the elite parent of
.6.

mplementation of ILS. The framework of an ILS (see, for ex-
mple, [35]) is rather unsophisticated. The algorithm requires a
tarting solution, a mechanism for perturbing the current solution
t each iteration, a local search procedure for improving the
erturbed solutions, and an acceptance criterion for choosing the
urrent solution for the next iteration. Our ILS implementation
or the p-median problem uses a randomly generated solution
s starting solution. The perturbation mechanism applies a se-
ies of x random demand point swaps, each one consisting of
he removal of a random demand point from the current so-
ution Scur and adding a randomly chosen demand point from
1, . . . , n} \ Scur. The size of x is discussed below. Concerning
he local search procedure, we use a first-improvement local
earch based on demand point swaps. Considering the demand
oints in the order given by their indices, the first improving
wap that is encountered is performed. In order to shorten the
unning time of a single local search run, each local search run
s stopped after at most ⌈p/2⌉ swaps. The acceptance criterion
hooses either the current solution Scur, or the solution obtained
fter applying perturbation and local search, to be the current
olution of the next iteration. Our ILS simply chooses the best
ne among the two solutions. Finally, the number of perturbation
waps (x) is determined in a dynamic way that is known from
he mechanism for choosing among different neighbourhoods in
ariable neighbourhood search (VNS) [50]. More specifically, x is
aken from {max{2, ⌊0.05p⌋}, . . . , ⌈0.5p⌉}.

.4. Search space partitioning

As shown before in the context of the continuous optimisation
ase study, the partitioning of the search space into locations
ontaining a non-empty subset of solutions is an important tool
or reducing the search trajectories of algorithms to their essential
spects. Remember that continuous search spaces were parti-
ioned into discrete hypercubes of a predefined length, defining
location as a hypercube of solutions; see Section 4.4. However,
ue to the different nature of a combinatorial search space, search

pace partitioning cannot be done in the same way. In fact, while

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

t
d
s
t
i

t
p
t
i
M
s

t

s
t
c
i
e
t
A
d

p
o
t
l
c

he partitioning in a continuous search space is done indepen-
ently from the generated search trajectories, in combinatorial
paces we found it more natural to apply a partitioning scheme
hat depends on the search trajectories. This scheme is outlined
n the following.

Henceforth we assume that we are given a set T of search
rajectories for the same problem instance, each one potentially
roduced by a different algorithm. Furthermore, we assume that
hese search trajectories refer to the original search space, that
s, each one consists of a sequence of representative solutions.
ore precisely, each search trajectory T ∈ T is a sequence

T
1, . . . , s

T
|T |

of representative solutions. Moreover, we assume that
each possible representative solution s is a string of characters
s[i], i = 1, . . . , |s|. Hereby, each position i of s can be seen as
a decision variable xi with a domain Di and s[i] ∈ Di. In the
case of the p-median problem, for example, a solution can be
represented as a binary string of length n in which a position i
(with domain Di = {0, 1}) indicates whether or not a facility is
located at demand point i. Given T , let S(T) be the set of unique
solutions contained in all the search trajectories of T . Based on
S(T) we can calculate the probability p(xi = d) that domain value
d ∈ Di appears at position i = 1, . . . , n of a solution:

p(xi = d) =
|{s ∈ S(T) | s[i] = d}|

|S(T)|
(2)

Intuitively, the less variability we find in the values taken by
a decision variable (position) in the solutions of set S(T), the
higher should be the chance to remove this variable from the
search space for the purpose of partitioning, and vice versa. The
variability in the values of a decision variable is a concept that
is formally covered by a measure from information theory called
Shannon entropy [51]. The Shannon entropy H(xi) of a discrete
random variable xi with domain Di is formally defined as follows:

H(xi) = −

∑
d∈Di

p(xi = d) log2 p(xi = d) (3)

In particular, in the case of the lowest variability – that is, when
p(xi = d) = 1 for some d ∈ Di, and p(xi = d′) = 0 for all d′

̸= d ∈

Di – the Shannon entropy H(xi) evaluates to zero. On the contrary,
in the case of the highest variability – that is, when p(xi = d) =

p(xi = d′) for all d, d′
∈ Di – H(xi) evaluates to one. Consequently,

we make use of the Shannon entropy (calculated on the basis of
S(T)) in order to produce a ranking L of all positions i = 1, . . . , n.
Note that the first entry in this list – that is, L[1] – contains the po-
sition whose Shannon entropy is greater or equal to the one of all
other positions. In order to partition the search space, we reduce
this list to the first z ≤ n positions, resulting in a reduced list Lz.
A location in the partitioned search space, obtained on the basis
of Lz, contains all those solutions from the original search space
that have the same value at all positions of Lz. Henceforth, let
the reduction of a solution s to the positions in Lz be denoted by
sz. Then, two solutions s and s′ from the original search space are
mapped into the same location of the partitioned search space in-
duced by Lz if and only if sz = s′z. Moreover, the objective function
value f (sz) of sz – in relation to set S(T) – is defined as follows:
f (sz) := min{f (s′) | s′ ∈ S(T), sz = s′z}.

3 In other words, the
objective function value of all solutions from S(T) that fall into
the same location of the partitioned search space, is determined
as the smallest objective function value of all these solutions.

Example 1 demonstrates combinatorial search space partition-
ing for a p-median problem with six demand points (n = 6)
and the request to open p = 3 facilities. Moreover, the example

3 This assumes a minimisation problem. In the case of maximisation one has
o replace min by max.
10
applies a list L for search space partitioning of size z = 2, that is,
the search space is partitioned based on two variables with the
highest Shannon entropy value.

Example 1: Combinatorial Search Space Partitioning
(p-median problem)

T1 =

⎛⎜⎜⎝
sT11 = 101010
sT12 = 001011
sT13 = 011010
sT14 = 010010

⎞⎟⎟⎠ T2 =

⎛⎝ sT21 = 111000
sT22 = 100011
sT23 = 011010

⎞⎠

S(T) = {sT11 , sT12 , sT13 , sT14 , sT21 , sT22 }

Note that sT23 does not appear in S(T) because it is equal
to sT13 . As we deal with solutions in terms of binary
strings, for each position i = 1, . . . , 6 of a solution, a
binary variable xi is introduced. Based on the strings in
S(T), the following probabilities for all domain values
{0, 1} can be calculated for each position.

Probabilities:

⎛⎜⎜⎜⎜⎜⎝
p(x1 = 0) = 3/6 p(x1 = 1) = 3/6
p(x2 = 0) = 3/6 p(x2 = 1) = 3/6
p(x3 = 0) = 2/6 p(x3 = 1) = 4/6
p(x4 = 0) = 1 p(x4 = 1) = 0
p(x5 = 0) = 1/6 p(x5 = 1) = 5/6
p(x6 = 0) = 4/6 p(x6 = 1) = 2/6

⎞⎟⎟⎟⎟⎟⎠

Shannon entropy values:

⎛⎜⎜⎜⎜⎜⎝
H(x1) = 1.0
H(x2) = 1.0
H(x3) = 0.918
H(x4) = 0.0
H(x5) = 0.650
H(x6) = 0.918

⎞⎟⎟⎟⎟⎟⎠
L = (1, 2, 6, 3, 5, 4). The order between 1 and 2, and
between 3 and 6, is randomly determined.
Lz=2 = (1, 2) (Example.: partitioning with z = 2)

Trajectories in the partitioned search space:

T1 =

⎛⎜⎜⎜⎝
sT11,z=2 = 10
sT12,z=2 = 00
sT13,z=2 = 01
sT14,z=2 = 01

⎞⎟⎟⎟⎠ T2 =

⎛⎜⎝ sT21,z=2 = 11
sT22,z=2 = 10
sT23,z=2 = 01

⎞⎟⎠
Note that sT13 and sT14 , for example, are mapped to the
same location in the partitioned search space, because
sT13,z=2 = sT14,z=2.

Note that an adequate value for z > 0 for the purpose of
earch space partitioning might not be easily found. Moreover,
his value might be dependent on instance characteristics. In the
ontext of the experimental evaluation we decided for the follow-
ng scheme. The graphics in Fig. 5 contain plots of the Shannon
ntropy values of the variables in the order of L, that is, from left
o right the Shannon entropy of the variables is non-increasing.
s an example, this is done for two p-median instances with
ifferent characteristics: pmed6 with (n = 200, p = 5), and

pmed10 (n = 200, p = 67). Both instances have 200 demand
oints (resulting in 200 variables) and a very different number
f facilities to be opened. The value of z > 0 that corresponds
o an X% search space partitioning is then determined as the
argest integer value in {1, . . . , n} such that the area below the
urve from the z + t-th variable to the last variable in L is at
least X% of the total area below the curve. In Fig. 5(a) a 70%
search space partitioning is obtained with z = 9 for instance

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

x

t
t
v
r
v
u
r
c
i
s
p

5

c
d
p
C
I
t
o

Fig. 5. Illustration of the way in which z-values for search space partitioning are derived based on the Shannon entropy values. The variables are ordered on the
-axis according to list L (from left to right). The two graphics show a 70% search space partitioning for two different problem instances.
Table 7
Performance metrics for ACO, BRKGA, and ILS: f (average objective function value) with standard deviation (±σ)
and SRate (percentage of runs finding a global optimum.
Instance ACO BRKGA ILS

f (±σ) SRate f (±σ) SRate f (±σ) SRate

pmed6 7824.0 (±0.0) 100% 7824.0 (±0.0) 100% 7824.0 (±0.0) 100%
pmed7 5631.0 (±0.0) 100% 5657.2 (±16.88) 10% 5631.0 (±0.0) 100%
pmed8 4450.9 (±9.42) 60% 4594.4 (±42.65) 0% 4445.0 (±0.0) 100%
pmed9 2753.9 (±2.13) 0% 2856.6 (±41.94) 0% 2734.0 (±0.0) 100%
pmed10 1286.7 (±12.09) 0% 1352.2 (±23.20) 0% 1255.0 (±0.0) 100%
a

Table 8
Merged STN metrics for the full (f) and the partitioned (p) search space.

ntotal nbest nend nshared best-strength

f p f p f p f p f p

pmed6 280 206 1 1 0 0 17 26 1.0 1.0
pmed7 423 312 2 2 9 9 5 13 0.7 0.8
pmed8 667 370 3 3 13 12 3 14 0.53 0.6
pmed9 816 243 10 2 20 16 0 11 0.33 0.43
pmed10 868 353 10 7 20 20 0 1 0.33 0.43

pmed6 and Fig. 5(b)) shows that the same partitioning is obtained
for pmed10 with z = 41. In other words, our scheme adapts
o instance/algorithm characteristics. In the case of pmed6, all
rajectories that were used to produce these Shannon entropy
alues quickly focus on a certain area of the search space. For this
eason there are many variables with very low Shannon entropy
alues. This is very different in the case of the search trajectories
sed for producing Fig. 5(b), which shows many variables with
ather high Shannon entropy values. In this second case, it would
ertainly not make sense to produce a search space partition-
ng based on very few variables. Finally, note that a 0% search
pace partitioning corresponds to not applying any search space
artitioning.

.5. Experimental results

The experimental setup in the context of this combinatorial
ase study is as follows. After implementing the three algorithms
escribed before, each one was applied 10 times to the five
roblem instances. The time limit for each run was set to 100
PU seconds. Table 7 provides the obtained performance metrics.
n particular, for each pair of a problem instance and an algorithm
he table provides the average objective function value obtained
ver 10 runs (f), together with the corresponding standard devi-

ation (±σ), and the success rate, that is, the percentage of runs
(out of 10) that ended up in a global optimum.

Results and Discussion. From a global perspective it can be
observed that the problem difficulty seems to increase steadily
11
from pmed6 (easiest) to pmed10 (hardest). This is shown by the
decreasing success rates of both ACO and BRKGA. ILS is clearly
the best-performing algorithm with a success rate of 100% for all
five instances. In addition to the performance metrics, the values
of the five metrics described in Section 3.3 were calculated on
the basis of the five merged STNs (one per problem instance).
The values of these metrics can be found in Table 8. In the
following we will interpret the results based on three sources
of information: the performance metrics, the STN metrics, and
visualisations of the merged STNs.

Fig. 6 shows merged STNs for p-median instance pmed9, which
has a p-value of 40. This means that the Shannon entropy value
distribution of the variables obtained by the algorithm trajec-
tories – calculated on the basis of solution set S(T) – can be
expected to resemble the one from Fig. 5(b). We decided to show
both the original STN – that is, without search space partitioning
– as well as the same STN for adequate and inadequate partition-
ing percentages.4 Fig. 6(a) displays the original STN for pmed9,
while the STN from Fig. 6(b) results from an adequate search
space partitioning of 90%, obtained by a limitation of the search
space to the z = 11 variables with the highest Shannon entropy
values. The remaining two STNs in this figure show that search
space partitioning of 60%, respectively 80%, are not sufficient yet
in order to be able to interpret the STN. Note that the graphics
in Figs. 6(a), 6(c) and 6(d) are produced with the Kamada–Kawai
(KK) layout [33], because this layout is better for separating
disconnected components. The following can be observed:

• The original (full-size) STN (Fig. 6(a)) does not show any
overlap between the algorithm trajectories, which holds
both for trajectories from the same algorithm and for tra-
jectories from different algorithms. This is verified by the
value of metric nshared in Table 8. In fact, the 10 ILS runs
converge to 10 different optimal solutions. In contrast, the
STN visualised after a search space partitioning of 90% (see

4 Remember that in the continuous optimisation case study, the notion of
n original STN is not applicable, as STNs must necessarily be displayed in a

partitioned search space.

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492
Fig. 6. Merged STNs for instance pmed9.
Fig. 6(b)) shows that all runs of ILS are attracted by the same
area of the search space. In fact, all ILS runs end up in the
same best-found location. This is also indicated by the value
1.0 of metric best-strength for the individual ILS STN in Fig. 8.
Furthermore, many runs of BRKGA are now, after search
space partitioning, interconnected. The same holds for ACO.
In fact, observe the value 11 of metric nshared in Table 8,
in comparison to value zero in the case of no search space
partitioning. As a side-comment, the two larger orange and
dark grey dots in the lower, right part of the full-size STN
show an oscillation or cycling behaviour of BRKGA between
two similar solutions of the same quality.

• In the upper part of Fig. 6(b) we can see several self-cycles
in the BRKGA trajectories. Even though visiting more solu-
tions than the other two approaches, as indicated by the
individual nodes metric for pmed9 in Fig. 8, this indicates
that BRKGA quickly gets trapped in different areas of the
search space. This also indicates that the length of a single
step in the full-size search space is rather small and that
BRKGA tends to converge to solutions rather close to the
initial solutions.

• Concerning inter-algorithm overlap, the STN after search
space partitioning (Fig. 6(b)) shows that runs of ILS and
BRKGA have some regional overlap during early stages of
12
the search process, while ILS and ACO show some regional
overlap in later stages of the search process (see the largest
dark-grey triangle close to the large red dot). Note that we
refer to regional overlap, because dots, squares and trian-
gles in Figs. 6(b)–6(d) correspond to locations in the search
space, rather than to single solutions.

• The best solutions are found by ILS (see the red dots). In
particular, the STN without search space partitioning shows
that ILS finds a different solution of the same quality in all
10 runs. Moreover, from the success rate of ILS in Table 7
we know that all these solutions are optimal. Nevertheless,
the STN after search space partitioning shows that these
solutions are very similar, because 9 final solutions (the ends
of 9 ILS trajectories) are merged into only one single location
of the partitioned search space. This is also confirmed by
metric nbest in Table 8.

As second example we consider a problem instance with dif-
ferent characteristics. Fig. 7 displays four STNs for p-median
instance pmed7, which has a p-value of 10. The distribution of
the Shannon entropy values of the variables can therefore be
expected to resemble the one from Fig. 5(a). The STN in Fig. 7(a)
is the original STN, the one in Fig. 7(b) is obtained after a search
space partitioning of 60%, while the remaining two are obtained
after search space partitioning of 50% (too few) and 80% (too

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

m
s
o
M
o
i
s
s
I
a
f
w
o
a
f

Fig. 7. STNs for instance pmed7.
uch), respectively. Table 7 shows that both ACO and ILS have a
uccess rate of 100% for this problem instance. Moreover, one run
f BRKGA (success rate of 10%) converges to an optimal solution.
etric nbest from Table 8 indicates that altogether two different
ptimal solutions are found. Moreover, value 9 of metric nend
ndicates that all the 9 BRKGA runs that do not find an optimal
olution converge to different solutions. One of them gets actually
tuck in the large dark-grey rectangle through which 9 out of 10
LS runs pass in order to reach an optimal solution. Note that the
dequate search space partitioning of 60% results in a reduction
rom an initial number of 200 variables to the z = 19 variables
ith the highest Shannon entropy values. The following can be
bserved when comparing the STN graphics between each other
nd also when contrasting them with the two graphics obtained
or problem instance pmed9:

• First of all, the STN without search space partitioning al-
ready shows some overlap between the trajectories of dif-
ferent algorithms, as indicated by the light grey dots and the
dark-grey triagle close to the two red dots. This observation
is confirmed by the value 5 of metric nshared in Table 8.

• In comparison to the results obtained for instance pmed7,
BRKGA seems to work better for instance pmed9. There is
one BRKGA trajectory that reaches one of the two optimal

solutions (red dots).

13
• Interestingly, the solutions to which the 30 algorithm runs
converge are so different from each other that they are
still mapped to different locations in the partitioned search
space. This is indicated by the values of metrics nbest and
nend in Table 8. In particular, the values do not change from
the original STN to the STN after search space partitioning.

• As already mentioned above, the algorithms found two op-
timal solutions (red dots). Interestingly, the STN when dis-
played in the partitioned search space (Fig. 6(b)) shows that
the left one of the two is mostly found by the ACO runs,
while the other one is mostly found by the ILS runs. In other
words, the two algorithms are attracted to different optimal
solutions of the same quality.

• The STN when shown in the partitioned search space
(Fig. 7(b)) shows regional overlap especially between the
BRKGA and the ILS runs. However, it becomes clear that
BRKGA, most of the time, converges before reaching solu-
tions of the highest quality. In particular, there is one BRKGA
run that converges to the large dark-grey triangle close to
the optimal solutions that is an attractor for the ILS runs.

6. Conclusion

We proposed search trajectory networks (STNs), a network-

based model to characterise and visualise the search behaviour

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492

o
g
c
t
t
a
n
i
a
i
(
t
d
o
w
t
o
b
i
b
t
t
n
t

a
a
s
e
t
o
p
w
s

C

V
W
t
o
c
W

D

c
t

Fig. 8. Algorithm specific STN metrics for the p-median instances. A description of the metrics is found in Table 1.
f metaheuristics. We showed that STNs can be applied to al-
orithms from the main metaheuristic paradigms: stochastic lo-
al search, evolutionary algorithms and swarm intelligence, and
o both continuous and combinatorial optimisation. We argue,
herefore, that STNs can be applied to analyse any metaheuristc
nd problem domain. One strength of our approach is that it does
ot require additional methods for sampling the search process,
nstead, the data to build the network models is collected from
number of runs of the algorithms under study. Our analysis

llustrates that the qualitative (visualisations) and quantitative
network metrics) analysis of STNs give interesting insight into
he convergence behaviour of algorithms and their performance
ifferences. STNs allow us to observe and quantify which portions
f the search space attract the process and thus act as traps in the
ay of locating the best solution. We can also identify frequently
raversed areas of the search space by a given algorithm or set
f algorithms, as well as the existence of cycling (oscillating)
ehaviour. We argue that this information gives new insights
nto understanding the dynamics of metaheuristics, and thus can
e used to improve their design and to inform the selection of
he most suitable algorithm for a given problem. By providing
he source code for constructing, visualising and analysing the
etwork models, we hope to provide an accessible new tool for
he analysis and comparison of metaheuristic algorithms.

Future work will analyse real-world optimisation problems
s well as scenarios where significant performance differences
mong algorithms are known to exist but are not well under-
tood. We will also study the impact on the trajectories of consid-
ring alternative search operators, as well as the relationship be-
ween the search trajectories and the fitness landscape structure
f the underlying optimisation problem. We argue that our pro-
osed approach will shed new light into these scenarios, which
ill have implications for algorithm selection and understanding
earch difficulty.

RediT authorship contribution statement

Gabriela Ochoa: Conceptualization, Methodology, Software,
alidation, Data curation, Investigation, Writing - original draft,
riting - review & editing. Katherine M. Malan: Conceptualiza-

ion, Methodology, Software, Validation, Investigation, Writing -
riginal draft, Writing - review & editing. Christian Blum: Con-
eptualization, Methodology, Software, Validation, Investigation,
riting - original draft, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
14
Acknowledgements

Christian Blum was funded by project CI-SUSTAIN of the Span-
ish Ministry of Science and Innovation (PID2019-104156GB-I00).
Katherine Malan was funded by the National Research Foundation
of South Africa (Grant Number: 120837).

References

[1] K. Sörensen, Metaheuristics-the metaphor exposed, Int. Trans. Oper. Res.
22 (2013) 3–18.

[2] P. Calégari, G. Coray, A. Hertz, D. Kobler, P. Kuonen, A taxonomy of
evolutionary algorithms in combinatorial optimization, J. Heuristics 5
(1999) 145–158.

[3] M.A. Lones, Mitigating metaphors: A comprehensible guide to recent
nature-inspired algorithms, SN Comput. Sci. 1 (2019).

[4] C. Blum, A. Roli, Metaheuristics in combinatorial optimization, ACM
Comput. Surv. 35 (2003) 268–308.

[5] A.E. Eiben, C.A. Schippers, On evolutionary exploration and exploitation,
Fund. Inform. 35 (1998) 35–50.

[6] T.D. Collins, Applying software visualization technology to support the use
of evolutionary algorithms, J. Vis. Lang. Comput. 14 (2003) 123–150.

[7] H. Pohlheim, Multidimensional scaling for evolutionary algorithms – vi-
sualization of the path through search space and solution space using
Sammon mapping, Artif. Life 12 (2006) 203–209.

[8] K. Michalak, Low-dimensional euclidean embedding for visualization of
search spaces in combinatorial optimization, IEEE Trans. Evol. Comput. 23
(2019) 232–246.

[9] A.D. Lorenzo, E. Medvet, T. Tušar, A. Bartoli, An analysis of dimensionality
reduction techniques for visualizing evolution, in: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, ACM, 2019.

[10] M.E.J. Newman, The structure and function of complex networks, SIAM
Rev. 45 (2003) 167–256.

[11] M.E.J. Newman, Networks: An Introduction, Oxford University Press,
Oxford, New York, 2010.

[12] G. Ochoa, K.M. Malan, C. Blum, Search trajectory networks of population-
based algorithms in continuous spaces, in: Applications of Evolutionary
Computation - 23rd European Conference, EvoApplications 2020, in:
Lecture Notes in Computer Science, vol. 12104, Springer, 2020, pp. 70–85.

[13] G. Ochoa, M. Tomassini, S. Verel, C. Darabos, A study of nk land-
scapes’ basins and local optima networks, in: Genetic and Evolutionary
Computation Conference, GECCO, ACM, 2008, pp. 555–562.

[14] S. Verel, G. Ochoa, M. Tomassini, Local optima networks of NK landscapes
with neutrality, IEEE Trans. Evol. Comput. 15 (2011) 783–797.

[15] J.P.K. Doye, The network topology of a potential energy landscape: a static
scale-free network, Phys. Rev. Lett. 88 (2002) 238701.

[16] O.M. Becker, M. Karplus, The topology of multidimensional potential
energy surfaces: Theory and application to peptide structure and kinetics,
J. Chem. Phys. 106 (1997) 1495.

[17] J.P.K. Doye, M.A. Miller, D.J. Wales, The double-funnel energy landscape of
the 38-atom Lennard-Jones cluster, J. Chem. Phys. 110 (1999) 6896–6906.

[18] C. Flamm, I.L. Hofacker, P.F. Stadler, M.T. Wolfinger, Barrier trees of
degenerate landscapes, Phys. Chem. 216 (2002) 155–173.

[19] J. Hallam, A. Prugel-Bennett, Large barrier trees for studying search, IEEE
Trans. Evol. Comput. 9 (2005) 385–397.

[20] I. Zelinka, D. Davendra, Investigation on relations between complex net-
works and evolutionary algorithm dynamics, Int. J. Comput. Inf. Syst. Ind.
Manag. Appl. 3 (2011) 236–247.

http://refhub.elsevier.com/S1568-4946(21)00415-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb20

G. Ochoa, K.M. Malan and C. Blum Applied Soft Computing 109 (2021) 107492
[21] P. Gajdo, P. Kromer, I. Zelinka, Network visualization of population
dynamics in the differential evolution, in: IEEE Symposium Series on
Computational Intelligence, pp. 1522–1528.

[22] L. Skanderová, T. Fabian, I. Zelinka, Small-world hidden in differen-
tial evolution, in: IEEE Congress on Evolutionary Computation, CEC, pp.
3354–3361.

[23] M. Oliveira, C.J.A. Bastos-Filho, R. Menezes, Towards a network-based
approach to analyze particle swarm optimizers, in: 2014 IEEE Symposium
on Swarm Intelligence, IEEE, 2014.

[24] L. Taw, N. Gurrapadi, M. Macedo, M. Oliveira, D. Pinheiro, C. Bastos-Filho, R.
Menezes, Characterizing the social interactions in the artificial bee colony
algorithm, in: 2019 IEEE Congress on Evolutionary Computation, CEC, IEEE,
2019.

[25] P. Bosman, A.P. Engelbrecht, Diversity rate of change measurement for
particle swarm optimisers, in: Swarm Intelligence, ANTS 2014, in: LNCS,
vol. 8667, Springer International Publishing, 2014, pp. 86–97.

[26] O. Olorunda, A.P. Engelbrecht, Measuring exploration/exploitation in parti-
cle swarms using swarm diversity, in: 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), IEEE,
2008.

[27] T. Tusar, B. Filipic, Visualization of pareto front approximations in evolu-
tionary multiobjective optimization: A critical review and the prosection
method, IEEE Trans. Evol. Comput. 19 (2015) 225–245.

[28] J.E. Fieldsend, T. Chugh, R. Allmendinger, K. Miettinen, A feature rich
distance-based many-objective visualisable test problem generator, in:
Proceedings of the Genetic and Evolutionary Computation Conference,
ACM, 2019.

[29] S. Herrmann, G. Ochoa, F. Rothlauf, Pagerank centrality for performance
prediction: the impact of the local optima network model, J. Heuristics 24
(2018) 243–264.

[30] G. Ochoa, N. Veerapen, Mapping the global structure of TSP fitness
landscapes, J. Heuristics 24 (2018) 265–294.

[31] G. Csardi, T. Nepusz, The igraph software package for complex network
research, InterJournal Complex Syst. (2006) 1695.

[32] T.M.J. Fruchterman, E.M. Reingold, Graph drawing by force-directed
placement, Softw. Pract. Exper. 21 (1991) 1129–1164.

[33] T. Kamada, S. Kawai, An algorithm for drawing general undirected graphs,
Inform. Process. Lett. 31 (1989) 7–15.

[34] A.M. Sutton, D. Whitley, M. Lunacek, A. Howe, PSO and multi-funnel
landscapes: how cooperation might limit exploration, in: Proceedings of
the 8th Annual Genetic and Evolutionary Computation Conference, pp.
75–82.
15
[35] H. Ramalhinho Lourenço, O.C. Martin, T. Stützle, Iterated Local Search:
Framework and Applications, Springer International Publishing, pp.
129–168.

[36] K.V. Price, R.M. Storn, J.A. Lampinen, Appendix A.1: Unconstrained uni-
modal test functions, in: Differential Evolution a Practical Approach to
Global Optimization, in: Natural Computing Series, Springer-Verlag, Berlin,
Germany, 2005, pp. 514–533.

[37] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans.
Evol. Comput. 3 (1999) 82–102.

[38] S.K. Mishra, Performance of Repulsive Particle Swarm Method in Global
Optimization of Some Important Test Functions: A Fortran Program,
Technical Report, 2006, Social Science Research Network (SSRN).

[39] R. Eberhart, J. Kennedy, A New Optimizer using Particle Swarm Theory, in:
Proceedings of the Sixth International Symposium on Micromachine and
Human Science, pp. 39–43.

[40] J. Kennedy, R. Eberhart, Particle Swarm Optimization, in: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948.

[41] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings
of the 1998 IEEE World Congress on Computational Intelligence, 1998, pp.
69–73.

[42] R. Eberhart, Y. Shi, Comparing Inertia Weights and Constriction Factors
in Particle Swarm Optimization, in: Proceedings of the IEEE Congress on
Evolutionary Computation, Vol. 1, pp. 84–88.

[43] R. Storn, K. Price, Minimizing the real functions of the ICEC’96 contest by
differential evolution, in: Proceedings of the International Conference on
Evolutionary Computation, pp. 842–844.

[44] D.J. Wales, J.P.K. Doye, Global optimization by basin-hopping and the
lowest energy structures of lennard-jones clusters containing up to 110
atoms, J. Phys. Chem. A 101 (1997) 5111–5116.

[45] D. Liu, J. Nocedal, On the limited memory bfgs method for large scale
optimization, Math. Program. 45 (1989) 503–528.

[46] P. Virtanen, R. Gommers, T.E. Oliphant, et al., SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nature Methods 17 (2020)
261–272.

[47] M.T. Melo, S. Nickel, F. Saldanha-Da-Gama, Facility location and supply
chain management–a review, European J. Oper. Res. 196 (2009) 401–412.

[48] C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization,
IEEE Trans. Syst. Man Cybern. B 34 (2004) 1161–1172.

[49] J.F. Gonçalves, M.G.C. Resende, Biased random-key genetic algorithms for
combinatorial optimization, J. Heuristics 17 (2011) 487–525.

[50] P. Hansen, N. Mladenović, J. Brimberg, J.A. Moreno Pérez, Variable
neighborhood search, Springer International Publishing, pp. 57–97.

[51] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J.
27 (1948) 379–423.

http://refhub.elsevier.com/S1568-4946(21)00415-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb51
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb51
http://refhub.elsevier.com/S1568-4946(21)00415-4/sb51

	Search trajectory networks: A tool for analysing and visualising the behaviour of metaheuristics
	Introduction
	Related work
	Search Trajectory Networks (STNs)
	Definitions
	Sampling and model construction
	Network metrics
	Network visualisation
	Illustrative example

	Continuous optimisation case study
	Problem formulation
	Benchmark instances
	Metaheuristic algorithms
	Search space partitioning
	Experimental results

	Combinatorial optimisation case study
	Problem formulation
	Benchmark instances
	Metaheuristic algorithms
	Search space partitioning
	Experimental results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

