
Applied Soft Computing 122 (2022) 108844

C
a

b

c

d

c
S

A

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Graph search and variable neighborhood search for finding constrained
longest common subsequences in artificial and real gene sequences
Marko Djukanović a,c,∗, Aleksandar Kartelj b, Dragan Matić c, Milana Grbić c,
hristian Blum d, Günther R. Raidl a
Institute of Logic and Computation, TU Wien, Austria
University of Belgrade, Faculty of Mathematics, Serbia
Faculty of Natural Sciences and Mathematics, University of Banja Luka, Bosnia and Herzegovina
Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain

a r t i c l e i n f o

Article history:
Received 22 April 2021
Received in revised form 8 March 2022
Accepted 5 April 2022
Available online 18 April 2022

Keywords:
Longest common subsequence
Beam search
Hybrid Methods
Variable neighborhood search
Computational biology

a b s t r a c t

We consider the constrained longest common subsequence problem with an arbitrary set of input
strings as well as an arbitrary set of pattern strings. This problem has applications, for example, in
computational biology where it serves as a measure of similarity for sets of molecules with putative
structures in common. We contribute in several ways. First, it is formally proven that finding a
feasible solution of arbitrary length is, in general, NP-complete. Second, we propose several heuristic
approaches: a greedy algorithm, a beam search aiming for feasibility, a variable neighborhood search,
and a hybrid of the latter two approaches. An exhaustive experimental study shows the effectivity and
differences of the proposed approaches in respect to finding a feasible solution, finding high-quality
solutions, and runtime for both, artificial and real-world instance sets. The latter ones are generated
from a set of 12681 bacteria 16S rRNA gene sequences and consider 15 primer contigs as pattern
strings.

© 2022 Elsevier B.V. All rights reserved.
S

1. Introduction

The longest common subsequence (LCS) problem asks for a
ommon subsequence of maximal length of a set of input strings
= {s1, . . . , sm}, where each si consists of letters from the

same finite set Σ . This problem is NP–hard for an arbitrary
number m > 1 of input strings, as it has been shown by a
reduction from the maximum clique problem [1]. The length of
the LCS of two or more input strings is a similarity measure
widely applied in evolutionary microbiology. The identification
of common subsequences of sequences of biological origin (such
as DNA, RNA, or protein sequences) is an essential step in se-
quence alignment and in pattern discovery. The existence of
long common subsequences may be a consequence of functional,
structural, or evolutionary relationships among the considered in-
puts [2]. Nowadays, there exist many variants of the original LCS
problem. Most of them are obtained by adding further constraints
and requirements to the original problem. Many of them were
studied intensively over the last two decades. Examples include
the longest common palindromic subsequence problem [3], the

∗ Corresponding author at: Institute of Logic and Computation, TU Wien,
ustria.

E-mail address: djukanovic@ac.tuwien.ac.at (M. Djukanović).
https://doi.org/10.1016/j.asoc.2022.108844
1568-4946/© 2022 Elsevier B.V. All rights reserved.
repetition-free longest common subsequence problem [4], and
the arc-preserving longest common subsequence problem [5].

In this work we consider a generalized variant of the con-
strained longest common subsequence (CLCS) problem [6], which
can be stated as follows. In addition to the m input strings from
, this problem requires a so-called pattern string p as input.

The goal of the CLCS problem is to find a longest common sub-
sequence of all strings in S which—at the same time—contains
pattern p as a subsequence. This problem is also NP-hard as it
includes the basic LCS problem as a special case in which the
pattern string is an empty string. In practice, it is interesting
to also be able to consider more than one pattern string that a
solution string has to contain as subsequences. In this paper we
therefore focus on the generalized CLCS problem, which is stated
as follows. Given a set of m > 1 input strings S = {s1, . . . , sm}
and a set of k ≥ 1 pattern strings P = {p1, . . . , pk}, the task is to
find a string s of maximum length that fulfills the following two
conditions:

1. String s is a subsequence of each string si ∈ S, and
2. string s contains each pj ∈ P as subsequence.

Note that any string s that fulfills these two conditions is hence-
forth called a feasible solution. Moreover, a feasible solution s is

called non-extensible, if appending any letter a ∈ Σ would turn s

https://doi.org/10.1016/j.asoc.2022.108844
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108844&domain=pdf
mailto:djukanovic@ac.tuwien.ac.at
https://doi.org/10.1016/j.asoc.2022.108844

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

1

C
S
b
M
r
a
t
s
b
l
t
a
t

i
c
p
m
l
l
s
p

1

a
d
F
i
v
o
m
a
a
c
t
a
a

Fig. 1. Example for the (m, k)–CLCS problem with three rRNA sequences and three pattern strings. Only the starting segments of the input strings are shown.
m

h
a
k
d
s
s
a
o
s
s
o

a
t
p

Fig. 2. Another segment of the same problem instance and the corresponding
part of the solution.

into an infeasible solution. In the context of this paper, we use the
notation (m, k)–CLCS to refer to this generalized CLCS problem,
with sets S and P of arbitrary sizes m > 1 and k ≥ 1, respectively.

.1. Example

Fig. 1 presents a (partially shown) example for the (m, k)–
LCS problem. The three input strings of this example (SEQ1,
EQ2, and SEQ3) are RNA sequences related to the Elusimicrobia
acterial phylum, with lengths 1395, 1424 and 1396, respectively.
oreover, three pattern strings are considered, shown in green,

ed, and blue. The solution string, as computed by one of our
pproaches presented later in the paper, is shown as ‘‘LCS’’ in
he middle of the figure. The ‘‘–’’ symbols in the three input
equences and in the solution string are introduced in order to
e able to visually align matched letters vertically. In the LCS,
etters matched with certain pattern strings are underlined with
he respective colors. The input strings of this example belong to
larger class of 165 bacterial rRNA gene sequences, used later for
he experimentation in Section 4.7.

From Fig. 1 one can already see that there exists a certain sim-
larity between the sequences, which can be expected, since the
hosen sequences belong to the same phylum. Although we dis-
lay only the beginning of each sequence, it can be observed that
any characters from the three patterns are already matched. In

ater parts of the input sequences one can find even significantly
arger similarities. To illustrate this, Fig. 2 shows input sequence
egments and the corresponding part of the LCS that start at
ositions 815, 828, and 830, respectively.

.2. Related work

Concerning the basic LCS problem, many
pproaches—especially heuristics—were proposed in the last
ecades. However, we first review the existing exact approaches.
irst, note that—for a fixed value of m the LCS problem is solvable
n polynomial time by dynamic programming (DP) [7]. The basic
ersion of this algorithm runs in O(nm) time, where n is the length
f the longest input string. However, with growing n and/or
, DP becomes quickly unpractical. Concerning parallel exact
pproaches, Liu et al. [8] proposed the parallel FAST_LCS search
lgorithm which is based on the use of a special data structure
alled successors table. Pruning operations are utilized to reduce
he computational effort. Wang et al. [9] proposed another par-
llel algorithm called QUICK-DP based on the dominant point

pproach employing a fast divide-and-conquer technique in order

2

to compute the dominant points. More recently, the so-called
Top_MLCS algorithm was suggested by Li et al. [10], based on a
directed acyclic layered-graph model. The latest exact approach,
by Djukanovic et al. [11], is an A∗ search. It was shown that
this algorithm performs best in terms of memory consumption,
running time, and the number of benchmark instances solved
to optimality. Nevertheless, exact approaches can generally only
solve small LCS instances up to m = 10 and n = 100, and their
ain issue is typically an excessive memory consumption.
In the context of larger LCS problem instances, researchers

ave therefore focused on the development of heuristic
pproaches. The Best-Next heuristic [12], for example, is a well
nown simple and fast construction heuristics. Among various
ifferent metaheuristic approaches, the beam search variant de-
cribed by Djukanovic et al. [13] has been shown to be the current
tate-of-the-art. This algorithm uses a special filtering method
nd a sophisticated search guidance based on an approximation
f the expected length of an optimal solution. Concerning the
ize of the largest LCS instances used in the literature which is
uccessfully tackled by the state-of-the-art metaheuristic is the
ne with m = 100 and n = 5000.
Concerning the CLCS problem, the version on two input strings

nd one pattern string ((2, 1)–CLCS) was intensively studied over
he last decade. Various efficient exact approaches were pro-
osed [6,14,15]. Recently, the (2, 1)–CLCS problem was tackled

with an A∗ search [16] which can be considered the new state-
of-the-art exact method for various real and artificial benchmark
sets. The A∗ could solve the (2, 1)–CLCS instances up to n =
1000. In [17], this A∗ search was adapted to the more general
(m, 1)–CLCS case with m ∈ N, but as one may expect, this
approach only scales well to small and medium sized instances
up to m = 10 and n = 100 with small alphabet size |Σ |
and some larger instances with up to m = 10 and n = 1000
when the pattern string is long w.r.t. n. Therefore, the authors
further describe a greedy heuristic and a beam search approach
to tackle large instances heuristically. The beam search is guided
by an approximate expected length calculation in the spirit of [13]
and was shown to be highly efficient in the case of rather short
pattern strings. For longer pattern strings, a beam search with a
probability-based guidance mechanism was observed to perform
significantly better. This beam search technique was able to suc-
cessfully tackle the instances with up to m = 100 and n = 1000
regardless of the sizes of |Σ | and the input pattern.

Concerning the generalized (m, k)–CLCS problem, we are only
aware of the exact algorithm based on an Automaton approach
from Farhana and Sohel [18]. Unfortunately, this approach is quite
limited for a practical use. In general, it is only efficient when
either the input sequences are short or the number of input
sequences is low. Otherwise, the amount of necessary memory
to store all the states of the intersection automaton is prohibitive.
Other known results for the (m, k)–CLCS problem include a proof
that no approximation algorithm can exist for this problem when
k may be arbitrarily large; see [19]. The (2, k)-CLCS problem with
an arbitrary number of pattern strings is NP-hard, which can

be proven by means of a reduction from 3-SAT. This already

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

i
(
o
s
w

1

f
a
t
a
m
g
T
a
w
t
f
g
t
r
w
W
w

u
M
u
o
f
t
g
T
r

o
u
R
r
a
r
a
i
a
a
r
o
s
b
m
t
s

p
b
a
s
c

p
l

T
C
a

P
t
a
p
n
h
n
s
b
o
s

s

o
s

s

o
a
z
i
d

e
q
t
l
o
i
(
P
i
e
p
c
i

3

p
a
c
y
a
l
i
t
i
a
t
S
d

mplies that the (m, k)–CLCS problem, as a generalization of the
2, k)–CLCS problem, is also NP-hard. Finally, we want to point
ut that the (m, k)–CLCS problem also is closely related to the
hortest common supersequence problem [20] and its variant
hich includes constraints [21,22].

.3. Our contributions

First of all, we provide a formal proof that already finding any
easible solution to the (m, k)–CLCS problem is NP-complete. As
lready finding any feasible solution can be challenging in prac-
ice, we put separate effort to this task by proposing dedicated
lgorithms with the aim of finding a feasible solution rather that
aximizing the solution length. More specifically, we present a
reedy method and two different versions of beam search (BS).
he way in which these approaches extend partial solutions aims
t deriving at least one feasible solution. In contrast to our earlier
ork on a BS proposed for solving the (m, 1)–CLCS problem [16],
he two new variants of BS work on the basis of a different search
ramework. Moreover, their search is guided by novel search
uidance functions that are developed as significant extensions of
hose already known for the (m, 1)–CLCS problem. In addition, a
estricted version of BS makes use of cutting off those extensions
hich have a lower chance to lead towards feasible solutions.
e emphasize that feasibility was not an issue in our earlier
ork [16].
We then propose a variable neighborhood search (VNS) that

tilizes two different neighborhood functions for local search.
oreover, we combine the previously developed BS with VNS by
sing the solution from the BS as initial solution of the VNS. In
rder to establish an efficient VNS, a partial calculation of the
itness function is employed by means of non-trivial data struc-
ures. As we will show in the experimental evaluation, VNS is
enerally able to significantly improve over those initial solution.
he practical effectivity of our approaches is analyzed on a wide
ange of artificially generated benchmark instances.

In practical applications, the possibility to consider more than
ne pattern string in the CLCS problem seems to be particularly
seful. For example, Tang et al. [23] consider the task of aligning
Nase sequences, requiring that each of the three active-site
esidues His(H), Lyn(K), and His(H) is present in the resulting
lignment. More generally, it is reasonable to assume that the
equirement of the appearance of a larger number of patterns in
n LCS solution can help biologists to gain meaningful insights
n the context of particular biological structures. Therefore, in
ddition to the experiments on artificial instances as mentioned
bove, we perform a case study and apply the proposed algo-
ithms on a set of real bacterial RNA sequences and a specific set
f patterns based on contig primer structures [24]. As it will be
hown in Section 4.7, obtained results indicate a high similarity
etween the considered sequences, even if many patterns and
any sequences are considered. A biological interpretation of

he obtained results is provided at the end of the experimental
ection.
In order to summarize the main differences between the CLCS

roblem variants and the respective leading algorithms, see Ta-
le 1. The stated time complexities are w.r.t. an exact solution
pproach based on dynamic programming. Moreover, to empha-
ize our new contributions and separate them from early work
oncerning the (m, 1)–CLCS problem, we refer to Table 2.
The rest of the paper is organized as follows. In Section 1.2

an overview of the existing literature is given for some variants
of the considered problem as well as closely related problems.
In Section 3, three heuristic approaches are proposed: a greedy
heuristic, a beam search, and a variable neighborhood search. In
Section 4 we present an exhaustive experimental evaluation of
the proposed methods. Section 5 draws conclusions and outlines
ideas for future work.
3

2. Hardness of finding a feasible solution

As the (m, k)–CLCS problem is a generalization of the classical
LCS problem with an arbitrary number of strings, the (m, k)–CLCS
roblem is also NP-hard. Moreover, even finding any feasible so-
ution is NP-complete, what is shown in the following theorem.

heorem 1. The decision problem of whether or not a given (m, k)-
LCS problem instance has a feasible solution is NP–complete for
rbitrary m, k ≥ 2, and |Σ | ≥ 2.

roof. Our proof builds upon results from Blin et al. [25] for
he classical LCS problem with arbitrary many strings. We utilize
reduction from the decision variant of the independent set
roblem asking if a simple undirected graph Ḡ = (V̄ , Ē) with
ode set V̄ = {1, . . . , n̄} and edge set Ē = {e1, . . . , em̄} ⊆ V̄ 2

as a subset of exactly k̄ nodes Ī ⊆ V̄ so that no pair of these
odes is connected by an edge. An instance of this independent
et problem is mapped to an (m, k)–CLCS problem instance on the
inary alphabet Σ = {0, 1} as follows. Let us denote repeated
ccurrences of some letter or substring s by the power function
i, e.g., 03

= 000 or (01)2 = 0101. Set S includes the single string

m̄+1 = (0n̄1)n̄ (1)

f length n̄2
+ n̄ and for each edge ei = {u, v} ∈ Ē, u < v, the

tring

i = (0n̄1)u−10n̄(0n̄1)v−u0n̄(0n̄1)n̄−v (2)

f length n̄2
+ 2n̄− 2. The pattern string set P includes string 0n̄

nd string 1k̄ and thus enforces a solution to contain at least n̄
eros and k̄ ones. Clearly, this mapping from an independent set
nstance to a corresponding (m, k)–CLCS problem instance can be
one in polynomial time.
Now, we rely on the fact that an independent set of size k̄

xists for graph Ḡ if and only if the strings in S have a subse-
uence of length n̄2

+ k̄, which was shown by Blin et al. [25] in
heir Proposition 1. More specifically, if such a subsequence of
ength n̄2

+ k̄ exists, it has to contain n̄2 zeros and the positions
f the ones indicate a selection of nodes corresponding to an
ndependent set of size k̄, as also argued in [25]. In case of our
m, k)–CLCS problem, we have the additional two pattern strings
that enforce the appearance of at least n̄2 zeros and k̄ ones

n a feasible solution. Therefore, an independent set of size k̄
xists for graph Ḡ if and only if the corresponding (m, k)–CLCS
roblem instance has a feasible solution. As the transformation
an be done in polynomial time and the solution can be checked
n polynomial time, this concludes our proof. □

. Algorithmic approaches

Let us first introduce notations commonly used throughout the
aper. Let nmax := maxi=1,...,m |si| and nmin := mini=1,...,m |si|. For
string s and 1 ≤ i ≤ j ≤ |s|, let s[x, y] = s[x] · · · s[y] be the
ontinuous (sub)string which starts at index x and ends at index
. If x > y, s[x, y] is the empty string ε. Note that the first index of
string s is one. By |s|a we denote the number of occurrences of

etter a ∈ Σ in string s. By θ⃗ = (θ1, . . . , θm), 1 ≤ θi ≤ |si|+1 for all
= 1, . . . ,m, we denote a so-called position vector with respect
o the input strings in S; each θi refers to either a specific position
n string si or at (one position after) the end of the string. Given
position vector θ⃗ , S[θ⃗] := {si[θi, |si|] | i = 1, . . . ,m} refers to

he respective suffix strings from the indicated positions onward.
imilarly, λ⃗ = (λ1, . . . , λk), 1 ≤ λj ≤ |pj| + 1 for j = 1, . . . , k,
enotes a position vector on the set of pattern strings P , and

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

j
p
N
c
d
e
o

i
i
a
p
a
t
c
a

3

t
T
c
t

Table 1
An overview of the CLCS problem variants considered in the literature with their (structural)
differences and leading practical solution approaches suitable for large instances. The last table
row refers to the contribution of this paper.
Problem Hardness General time complexity

(tight if ass. P ̸= NP)
Leading algorithms

(2, 1)–CLCS P O(n2
· |P|) A∗ search [16]

(m, 1)–CLCS NP–hard; finding a
feasible solution is in P

O(nm
|p1|), for fixed–size

S
BS guided by Ex
[17]

(m, k)–CLCS NP–hard; finding a
feasible solution is
NP–hard

O(nm ∏k
i=1 |pi|), for

fixed–size S and P
restricted–
BS&VNS
Table 2
An overview of the search spaces and the main search guidances for the CLCS problems addressed.
The last table row refers to the contribution of this paper.
Problem Search space Effective search guidances

(2, 1)–CLCS ⊂ N2
× N× N UB [16]

(m, 1)–CLCS ⊂ Nm
× N× N Ex, Prob [17]

(m, k)–CLCS ⊂ Nm
× N× Nk (restricted) and

{s | s ∈ (Σ ∪ {ε})n}: hybridized
Extended Prob for BS and new VNS
with incremental fitness value
calculation
M
t
S
c
b
t
m
m
s
s
G
Σ

g

s

P[λ⃗] := {pj[λj, |pj|] | j = 1, . . . , k} refers to the suffix pattern
strings from the positions indicated by λ⃗ onward.

Moreover, we make extensive use of the following table con-
structed during preprocessing. For each i = 1, . . . ,m, l =
1, . . . , |si|, and c ∈ Σ , Succ[i, x, c] holds the minimal index y
such that (i) x ≥ y and (ii) si[y] = c , i.e., the position of the
next occurrence of letter c in string si from position x onward.
If letter c does not appear in si starting from position l, we set
Succ[i, x, c] := −1. This data structure is built in O(m · n · |Σ |)
time.

Last but not least, table Embed[i, x, j] for all i = 1, . . . ,m,
= 1, . . . , k, and x = 1, . . . , |pj|+1 stores the right-most (largest)
osition y of si such that pj[x, |pj|] is a subsequence of si[y, |si|].
ote that when x = |pj| + 1 it follows that pj[x, |pj|] = ε. In this
ase Embed[i, x, j] is set to |si| + 1. In contrast to Succ, Embed
oes not need to be pre-computed on for the Greedy heuristic
xplained within the next section, where the needed values are
nly derived on demand and stored in a hash table.
Although the problem is defined on the domain of characters,

mplementations of the proposed algorithms use non-negative
ntegers. Therefore, the encoding procedure converts input strings
nd patterns to arrays of positive integers, while the decoding
rocedure (used at the end) converts numbers back to char-
cters. An empty character ε is encoded as number 0. Since
his is less important technical fact, we do not include the en-
oding/decoding procedures in the latter expose on proposed
lgorithms.

.1. Greedy heuristic

In the following we develop a greedy heuristic in the style of
he well-known Best–Next heuristic [12] for the LCS problem.
his algorithm starts with an empty partial solution s = ε. At each
onstruction step, exactly one letter is appended to s. There are
wo possibilities for algorithm’s outcome: (i) s which is a feasible
non-extensible solution or (ii) an empty solution ε since it is
detected that s cannot be extended into a feasible non-extensible
solution. At the start of the algorithm, the position vector θ⃗ is
initialized to the all-ones vector 1⃗ of length m, while the cover
position vector λ⃗ is initialized to the all-ones vector 1⃗ of length k.

Then, at each construction step, the following is done. First, the
set of feasible extensions Σs ⊆ Σ of the current partial solution
s is determined. Hereby, a letter c is part of Σs, if and only if the
following two conditions are fulfilled:
 i

4

• Condition 1: Letter c appears at least once in each of the
prefix strings si[θi, |si|], i = 1, . . . ,m.
• Condition 2: After appending c to s, the resulting partial

solution can still be feasibly extended. In this context, let
Ic := {j ∈ {1, . . . , k} | λj ≤ |pj| and pj[λj] = c} and Ic :=
{1, . . . , k} \ Ic . This condition holds if, for all i = 1, . . . ,m,
the following is true:

– For all j ∈ Ic it holds that θi + Succ[i, θi, c] + 1 ≤
Embed[i, λj + 1, c]

– For all j ∈ Ic it holds that θi + Succ[i, θi, c] + 1 ≤
Embed[i, λj, c]

oreover, we further reduce set Σs by removing dominated let-
ers. In this context, we say that letter a dominates b if and only if
ucc[i, θi, a] ≤ Succ[i, θi, b], for all i = 1, . . . ,m. The subset of Σs
onsisting only of non-dominated letters is henceforth denoted
y Σnd

s . Finally, note that this greedy heuristic is developed with
he primary aim of providing a feasible solution. One of the
easures to support this aim is the use of Embed. The second
easure is to further reduce set Σnd

s to only those letters c ∈ Σnd
s

uch that pj[λj] = c for at least one j ∈ {1, . . . , k}. This resulting
et is henceforth called Σnd,str

s , where ‘‘str’’ stands for strong.
iven a partial solution s, if Σnd,str

s ̸= ∅, a letter is chosen from
nd,str
s that minimizes the greedy function

(θ⃗ , c) =
m∑
i=1

Succ[i, θi, c] − θi + 1
|si| − θi + 1

. (3)

Otherwise, with the same greedy function a letter is chosen
from Σnd

s . In case Σnd
s = ∅, the solution construction stops

either because s is a feasible non-extensible solution, or because
s cannot be extended into a feasible non-extensible solution.
Note that the greedy function (3) is well known from the above
mentioned Best–Next heuristic for the standard LCS problem.

Let c∗ be the letter chosen at the current construction step.
After appending c∗ to s—that is, s← s · c∗—the following updates
are performed:

• θi ← θi + Succ[i, θi, c∗] + 1
• If pj[λj] = c∗ then λj ← λj + 1

Finally, note that O(k · m · n) time is required to check if a letter
atisfies Condition 2 above, that is, the condition that checks

f a certain extension of the current partial solution leads to a

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

(
T

{

c
c
h
s
t
(

G

3

n
C
N
e
w
A
o
d

f
s

T
i
w
e
t
d
a

a
w
a

c
s
o

p
c
c

w
r
c
a
l
v

a
i
a
t
t
t
c
b
o
R
c
o
t
h
β
R
F

3

R
c
R
t
a
d
u
b
i

n

U

S

T
i

partial) solution that can be further extended in a feasible way.
his is the cost for deriving the needed entries of table Embed.

We remark that when solving the real-world instances used in
our experimental studies, this runtime approximates just O(mn)
due to the instance characteristics. However, remember that the
proposed greedy heuristic cannot guarantee the construction of
a feasible solution. Consider, for example, problem instance S =
abbba, babb}, P = {bb, a}, and Σ = {a, b}. During the first
onstruction step of the greedy heuristic letters a and b are the
andidates to extend the initially empty solution. Their greedy
euristic values are equal. However, choosing b leads to an infea-
ible solution, as a second and third b would be chosen according
o our greedy function and finally pattern string a cannot be
feasibly) extended anymore.

A pseudocode of our greedy heuristic is given in Algorithm
reedy in the document on supplementary material.

.2. Defining a state graph

For the development of more advanced graph search tech-
iques, we define in the following a state graph for the (m, k)–
LCS problem in the form of a rooted, directed, acyclic graph.
ote that this definition will be based on a simplified way for
xtending partial solution as done in Greedy. In particular, we
ill make use of the values in the pre-computed Embed structure.
s a consequence, Condition 2 of the above definition of the set
f letters that can be used to extend a partial solution is here
irectly checked with help of the pre-processed Embed structure.
The principal component of our state graph are nodes of the

orm v = (θ⃗v, λ⃗v, lv), where θ⃗v is a position vector on the input
trings, λ⃗v a position vector on the pattern strings, and lv is the
length of a partial solution represented by node v. in general,
infeasible to produce the whole state graph before running an
algorithm, the state graph is partially discovered and searched on
the fly. That is, a partial solution s induces a node v = (θ⃗v, λ⃗v, lv)
in the following way.

• Position vector θ⃗v is defined such that si[1, θv
i − 1] is the

shortest possible prefix string of si of which s is a subse-
quence.
• Position vector λ⃗v is defined such that pj[1, λv

j − 1] is the
longest possible prefix string of pj which is a subsequence
of s.
• Length lv ← |s|

he root node of the state graph is r = ((1, . . . , 1), (1, . . . , 1), 0),
nduced by the empty partial solution ε. In the following, by Σnd

v

e denote the set of non-dominated letters that can be used to
xtend any solution represented by a node v. The way of deriving
his set is, as mentioned above, exactly the same as the one of
eriving set Σnd

s in the context of Greedy. For each letter c ∈ Σnd
v ,

successor node w of v is generated as follows:

• θw
i ← Succ[i, θv

i , a] + 1, for all i = 1, . . . ,m
• If pj[λv

j] = c then λw
j ← λv

j + 1; λw
j ← λv

j otherwise
• lw ← lv + 1.

Moreover, a directed arc vw is added from node v to node w

nd is labeled with the letter c , i.e., ℓ(vv′) = c. Note that no
eights are associated with our arcs as each arc corresponds to
n extension of a partial solution by exactly one letter.
A node v is called non-extensible if Σnd

v = ∅. Moreover, it is
alled feasible iff λv

j = |pi| + 1, for all j = 1, . . . , k, i.e., all pattern
trings are covered. A longest path (in terms of the number
f arcs) from the root node to a feasible non-extensible node
 c

5

represents an optimal solution of the (m, k)–CLCS instance. An
example of the state graph can be seen in Fig. 3.1

In the next two sections, a few graph search algorithms based
on the introduced state graph are described.

3.3. Beam search for the (m, k)–CLCS problem

Beam search (BS) is a well-known breadth-first-search (BFS)
heuristic [26]. On the basis of the state graph introduced in
the previous section, we devised the following BS variant for
the (m, k)–CLCS problem; see also Algorithm 1. Apart from a
roblem instance (S, P, Σ), the algorithm takes as input a so-
alled beam width β , a filtering parameter kbest ≥ 0, and a boolean
ontrol variable restricted ∈ {true, false}, which lets the user
choose between a restricted version of BS that aims at obtaining
any feasible solution with higher chances (when restricted
is set to true) and the standard BS targeted toward the overall
optimization problem. The former BS version is henceforth called
restricted-BS and the latter basic-BS.

Both versions start by initializing the best-found solution sbsf
to the empty string, that is, sbsf ← ε. Afterwards, the beam B,
hich contains the currently selected nodes, is initialized to the
oot node of the state graph (see lines 3 and 4 of the pseudo-
ode). Then, while B is not empty, the following is done at each
lgorithm iteration. For each v ∈ B, first, the set of non-dominated
etters (Σnd

v) that can be used to extend solutions represented by
is determined. Note that we henceforth call a letter c ∈ Σnd

v

that also belongs to Σnd,str
v ⊆ Σnd

v a strong extension of v. If Σnd
v is

empty, the solution s that is represented by v is derived and, if s is
feasible solution, the best-found solution sbsf is updated with s,

f appropriate. Otherwise—that is, if Σnd
v ̸= ∅ —a node v′ is gener-

ted that corresponds to the extension of v by c. Note that, in case
he algorithm is run in the restricted mode with restricted =
rue, this is only done if letter a is a strong extension. Node v′ is
hen added to a set Vext which collects all the extensions of the
urrent beam B. Finally, as Vext might contain dominated nodes,
ecause domination was so-far only checked w.r.t. extensions
f the same node v, dominated nodes are removed in function
emoveDominatedNodes(Vext, kbest). However, in order to de-
rease the computational burden of this operation, domination
f nodes is only checked w.r.t. the best kbest nodes from Vext w.r.t.
heir so-called h-values. Candidates of for the heuristic function
are discussed in the next two subsections. Finally, the best
nodes with respect to their h-values are selected in function

educe(Vext, β, h) and form the beam B of the next iteration (see
ig. 4).

.3.1. Upper bounds
The most common way for reducing set Vext in function

educe(Vext, β, h) of the BS algorithm is to use an upper bound
alculation as h-value of a node v ∈ Vext. Function
educe(Vext, β, h) then chooses those β nodes from Vext that have
he highest h-values. For implementing this option, we consider
combination of the most successful upper bounds that were
eveloped for the standard LCS problem in the literature. The
pper bound UB1 is derived by Blum et al. [27]. The second upper
ound UB2() is based on dynamic programming (DP) and was
ntroduced by Wang et al. [9].

As, in general, neither of the two bounds UB1 and UB2 domi-
ates the other one, we consider the combination of both, i.e.,

B(v) = min{UB1(v),UB2(v)}. (4)

More details about these two upper bounds can be found in
ection 2 of the document on supplementary material.

1 Note that it is not necessary to store actual partial solutions in the nodes.
o any node v a path of length lv from the root node can be efficiently derived
n a backward manner by iteratively following a predecessor for which the
orresponding lv-value decreases by one.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

{

i
d

3

a
a
o

c
a
a
a
P
s

P

I
C
s
(
t
h
o
F

p

D
a

Fig. 3. Example showing the full state graph in form of a directed acyclic graph for problem instance (S = {s1 = bcaacbdba, s2 = cbccadcbbd}, P = {cbb, ba}, Σ =

a, b, c, d}). It contains four non-extensible solutions. However, only one of them (marked by light-gray color) corresponds to a feasible solution s = bcacbb, which
s therefore also the optimal solution. The solution is represented by node v = (θ⃗v

= (9, 10), λ⃗v
= (4, 3), lv = 6). The corresponding path in the search space is

isplayed in blue.
a
a∑
j
(
o
n
t

r

j
i
t
t
t
t
s
p
I
t
v

H

.3.2. Heuristic guidance
In this section we propose a probability-based heuristic guid-

nce function as an alternative to the upper bound described
bove. Note that this function is an extension of the one devel-
ped for the (m, 1)-CLCS problem in [17].
In particular, we make use of a DP recursion from [28] for

alculating the probability Pr(r, q) that any string of length r is
subsequence of a random string of length q. These probabilities
re computed in a preprocessing step for r, q = 0, . . . , n. By
ssuming independence among the input strings, the probability
r(s ≺ S) that a random string s of length r is a common
ubsequence of all input strings is

r(s ≺ S) =
m∏
i=1

Pr(r, |si|). (5)

n order to make use of this probability in the case of the (m, k)–
LCS problem, we make the simplifying assumption that each
uch string s is extensible towards a feasible, non-extensible
m, k)–CLCS solution (that is, s has at least one feasible comple-
ion). Given Vext in some construction step of BS, the question is
ow to choose the value of r common to all nodes v ∈ Vext in
rder to take profit from the above formula in a reasonable way.
or this purpose, we first calculate
min
j = min

v∈Vext

(
|pj| − λv

j + 1
)
, j = 1, . . . , k. (6)

ue to our assumption suffixes pj[pmin
j , |pj|], j = 1, . . . , k, must

ppear as subsequences in at least one possible completion of
 a

6

ny of the nodes from v ∈ Vext. In practice, it may happen that
ny number of extensions in the range from maxj=1,...,k{pmin

j } to
k
j=1 p

min
j may be required in order to cover suffixes pj[pmin

j , |pj|],
= 1, . . . , k, and which are counted for safe common extensions
i.e., the extensions which must occur somewhere in the search)
f the partial solution of any node v ∈ Vext. Since in practice this
umber tends towards pmin

=
∑k

j=1 p
min
j , we heuristically choose

he r-value as

= pmin
+ min

v∈Vext

⌊
mini=1,...,m

{
|si| − θv

i + 1
}
− pmin

|Σ |

⌋
. (7)

The intention here is, first, to let the characters from pj[pmin
j , |pj|],

= 1, . . . , k, fully count, because they will have to appear for sure
n any possible extension due to our assumption. This explains
he first term (pmin) in Eq. (7). The second term is motivated by
he fact that an optimal (m, k)–CLCS solution becomes shorter if
he alphabet size becomes larger. Moreover, the solution tends
o be longer for nodes v whose length of the shortest remaining
tring from S[θ⃗v

] is longer than the one of other nodes. We em-
hasize that this is a heuristic choice which might be improvable.
f this calculation for r results in zero, it is set to one for breaking
ies. The final probability-based heuristic for evaluating a node
∈ Vext is

(v) =
m∏
i=1

Pr(r, |si| − θv
i + 1), (8)
nd those nodes with a larger H-value are preferred.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

1
1
1
1
1
1
1

1

1
1
2
2
2
2
2
2
2

h
m
o
h
o
f

V

g
s

a
t
U
a
l
a
f

Algorithm 1 Beam Search (BS) for the (m, k)–CLCS problem

1: Input: an instance (S, P, Σ), beam width β , heuristic function
h, filtering parameter kbest ≥ 0, restricted ∈ {true, false}

2: sbsf ← ε

3: Create root node r ← ((1, . . . , 1), (1, . . . , 1), 0)
4: B← {r} (B is called the beam)
5: while B is not empty do
6: Vext ← ∅

7: for each v ∈ B do
8: Determine Σnd

v

9: if Σnd
v = ∅ then

0: Derive the solution s represented by v

1: if s is a feasible solution and |s| > |sbsf| then
2: sbsf ← s
3: end if
4: else
5: for c ∈ Σnd

v do
6: if not restricted or (restricted and letter

c is a strong extension) then
7: Derive node v′ from node v by extension with

letter c
8: Vext ← Vext ∪ {v

′
}

9: end if
0: end for
1: end if
2: end for
3: Vext ← RemoveDominatedNodes(Vext, kbest)
4: B← Reduce(Vext, β, h)
5: end while
6: Output: best solution found sbsf (may be ε, which means: no

feasible solution found)

3.4. Variable neighborhood search

Variable neighborhood search (VNS) is a well known meta-
euristic that was proposed by Mladenović and Hansen [29]. Its
ain idea is the systematic change of neighborhood structures in
rder to escape from local optima. In the past two decades, VNS
as been proven to be a highly effective metaheuristic, by means
f numerous applications to complex optimization problems (see
or example [30,31] and references therein).

Beside its popularity, more specific reasons for selecting the
NS framework for the purpose here are as follows.

1. VNS can be very effective due to its nature of performing
a search in which multiple neighborhood structures are
utilized in combination. If a local optimum is reached in
one neighborhood, one of the other neighborhoods may
lead to further improvements.

2. Assuming well-chosen neighborhood structures, VNS is
known to be able to achieve an excellent balance between
exploitation and exploration in the search, and the balance
can be controlled by respective parameterization.

3. If an incremental solution evaluation is possible, as we
develop it in our approach, such a single-solution trajectory
metaheuristic can have substantial advantages concerning
speed in comparison to other prominent population-based
metaheuristics.

4. A local-search based metaheuristics such as the VNS in
some sense augments the construction based principle of
the BS in an orthogonal way.

Before outlining our VNS method, we first introduce a fine-
rained fitness function that evaluates both feasible and infeasible
olutions. This is important because our VNS is not restricted to
 t

7

Fig. 4. Example showing the restricted state graph for the problem instance
(S = {s1 = bcaacbdba, s2 = cbccadcbbd}, P = {cbb, ba}, Σ = {a, b, c, d}).
Note that in this case it becomes much easier to find a feasible solution (which
is here also equal to the optimum).

work in the feasible part of the search space. The VNS-related
fitness F (s) of a solution s is calculated as

F (s) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
si∈S

(|s| − |LCS(s, si)|)

+

∑
pj∈P

(|pj| − |LCS(pj, s)|) if s is infeasible,

nmin − |s|
nmin + 1

if s is feasible.

(9)

Hereby, LCS(s, s′) refers to the longest common subsequence be-
tween strings s and s′, computed by dynamic programming. Note
that for any feasible solution s it holds (a) that |s|−|LCS(s, si)| = 0
for all i = 1, . . . ,m and (b) that |pj| − |LCS(pj, s)| = 0, for all
j = 1, . . . , k. This is because a feasible solution s must be a
subsequence of each input string si, and each pattern string pj
must be a subsequence of s. Moreover, for any infeasible solution
s it holds that some of these terms are greater than zero. In
fact, we could say that—in such a case—F (s) counts the number
of feasibility violations on a per character basis. Finally, if a
solution s is feasible, nmin−|s|

nmin+1
evaluates to a value smaller than one.

Therefore, in case a solution s is infeasible, it holds that F (s) ≥ 1,
and F (s) < 1 otherwise. Moreover, for any two feasible solution s
nd s′ with |s| > |s′| it holds that F (s) < F (s′). The VNS algorithm
herefore aims to find a solution s that minimizes function F .
ntil a feasible solution is found, the algorithm will not aim to
dd new characters just for the sake of increasing the solution
ength. Instead, it will be focused on reaching feasibility as soon
s possible, either by adding or by removing characters. Once
easibility is reached, the fitness function will drive the algorithm
o increase the solution length.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

a
f
i
ε
i
f
s
i
s
l
s
t
A
f
i
s
n
s
κ
a
c
w
u
w
b
s
s
i

1
1
1
1
1

Algorithm 2 VNS for the (m, k)–CLCS problem.

1: Input: (S,P, Σ), problem instance; κmin, minimal neighbor-
hood size; κmax, maximal neighborhood size; itmax, maximal
number of iterations; itrep, maximal number of iterations
without improving (current) best solution; tmax, maximal ex-
ecution time; pmove, probability of accepting a solution of the
same quality; sinit, initial solution (may be empty).

2: sbsf ← sinit
3: if sbsf = ε then LocalSearch(sbsf, S, P, Σ) endif
4: it← 1
5: itimpr ← 1
6: κ ← κmin
7: while it ≤ itmax and (it − itimpr) < itrep and time limit tmax

not reached do
8: it← it+ 1
9: s← sbsf // copy best-so-far solution

10: if F (s) < 1 then // solution is feasible
11: Shaking_Delete(s, κ)
12: else
13: Shaking_Change(s, κ)
14: end if
15: rnum ← uniform random number ∈ [0, 1]
16: LocalSearch(s, S, P, Σ)
17: if F (s) < F (sbsf) or (F (s) = F (sbsf) and rnum ≤ pmove) then
18: sbsf ← s
19: if F (s) < F (sbsf) then itimpr ← it end if
20: κ ← κmin
21: else
22: κ ← κ + 1
23: end if
24: if κ > κmax then κ ← κmin end if
25: end while
26: if F (sbsf) > 1 then sbsf ← ε end if
27: output: sbsf (either a feasible solution or the empty string)

In the literature one can find different VNS variants. The vari-
nt adopted in this paper is shown in Algorithm 2 and works as
ollows. It starts with an initial solution sinit which is provided as
nput to the algorithm; note that sinit might be the empty string
. Then, at each iteration, first a so-called shaking procedure
s applied to a copy (s) of the best-so-far solution sbsf. If s is
easible (F (s) < 1), procedure Shaking_Delete(s, κ) is applied;
ee line 11. Otherwise, the alternative shaking procedure Shak-
ng_Change(s, κ) is used (line 13). The strength of the respective
haking procedure—which is determined by a parameter κ with a
ower limit κmin and an upper limit κmax—depends hereby on the
uccess of the previous iteration. In general, the diversification of
he search process increases with an increasing shaking strength.
fter shaking, local search is applied to the solutions obtained
rom shaking; see line 16. The aim of this local search procedure
s to systematically examine the quality of solutions within a
maller neighborhood of the solution suggested by shaking. Fi-
ally, if the new solution s is better than sbsf (F (s) < F (sbsf)),
bsf is set to s and the shaking strength is set to the lower limit
min. Moreover, the variable itimpr that stores the last iteration
t which sbsf was improved, is set to the current iteration index
alled ‘‘it’’. In addition, if F (s) = F (sbsf), sbsf is updated with s
ith a probability pmove. However, counter itimpr is obviously not
pdated in this case. Otherwise—that is, if sbsf is not updated
ith s—the shaking strength for the next iteration is increased
y one in line 22. If κ , however, surpasses the maximum shaking
trength κmax, it is set back to κmin. Finally, if sbsf is a feasible
olution, the algorithm returns sbsf. Otherwise, the empty string

s returned.

8

Algorithm 3 Function LocalSearch(s, S, P, Σ) of Algorithm 2

1: Input: s, solution; (S, P, Σ), problem instance
2: improved← true
3: while improved do
4: while improved and F (s) ≥ 1 do // only done if s is

infeasible
5: s′ ← Change-Based-LS(s, S, P, Σ)
6: if F (s′) < F (s) then s← s′ else improved← false end

if
7: end while
8: improved← false
9: s′ ← Insert-Based-LS(s, S, P, Σ)
0: if F (s′) < F (s) then
1: s← s′
2: improved← true
3: end if
4: end while

Termination of the algorithm is controlled by three parameters:
(i) itmax: the maximal number of allowed iterations; (ii) itrep:
the maximal number of allowed iterations without finding an
improved solution, and (iii) tmax: the maximal execution time (in
CPU seconds).

The algorithm terminates whenever one of the three stopping
conditions is fulfilled. Shaking, local search, and ways of mak-
ing the algorithm more efficient are outlined in the subsequent
sections.

3.4.1. Shaking
Shaking is realized in dependence on the feasibility of the

respective solution.
Shaking_Delete(s, κ): This procedure is applied if s is feasible. It
consists in randomly removing κ letters from s in order to move
away from the current solution. Especially for larger values of κ ,
this will tend to make solution s infeasible. The hope is that later,
during local search, s will be turned into an improved feasible
solution.
Shaking_Change(s, κ): This procedure is applied if s is infeasible.
It selects κ random positions in s and changes the letters at these
positions to randomly chosen letters from Σ .

The first shaking variant is likely to produce a higher level of
perturbation, i.e., it is suitable when feasibility is already achieved
and when it is therefore rather safe to diversify the search. The
second variant is more cautious and aims at reaching feasibility.

3.4.2. Local search
Local search (LS) is done by combining two first improvement

strategies with a time complexity of O(|s| · |Σ |) per LS iteration.
The details of LS are given in Algorithm 3.

Change-based local search (see line 5) is executed while the
current solution is infeasible. Once the solution becomes feasible
or in the case this local search cannot make an improvement,
insertion-based local search (see line 9) is performed until no
further improvement can be achieved. In the following these two
types of local search are described.
Change-Based-LS(s, S, P, Σ): First, the letters from Σ are stored
in a pre-defined order in a string σ . Moreover, a string σ ∗ is
generated by copying σ and by appending a dummy letter ∗. The
goal is to find a pair of indices (x, y), where x = 1, . . . , |s| and
y = 1, . . . , |σ ∗| such that s is improved by exchanging the letter
at position x of s by the letter σ ∗[y]. In case σ ∗[y] = ∗, this
means that the letter at position x of s is deleted from s. Once
the first pair of such indices is found, the solution resulting from

the corresponding change is immediately returned as a result.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

O
b
a
i
I

s
x
o
s

d

T
t
s
c
w

t
p
i
p
m
o
C
t
e
t
t
b
f

r
h

t
s
e
i
b
p
p
b
f

t
o
s
i
c
t
t

therwise, the input solution s is returned. In order to avoid a
ias that might arise from the order in which the positions of s
nd the letters are considered, the search for an improving pair of
ndices starts from a random position and from a random letter.
nsert-Based-LS(s, S, P, Σ): The goal of this local search is to find a
pair of indices (x, y), where x = 1, . . . , |s| + 1 and y = 1, . . . , |σ |
uch that s is improved by inserting letter σ [y] before position
in s. Again, the resulting solution is returned immediately,
nce the first pair of such indices is found. Otherwise, the input
olution s is returned. Moreover, as in the case of Change-Based-
LS(s, S, P, Σ), the search for an improving pair of indices starts
from a random position for insertion and from a random letter.

Pseudocodes of Change-Based-LS and Insert-Based-LS proce-
ures are shown by Algorithms Change-Based-LS and Insert-

Based-LS in the document on supplementary material.

3.4.3. Making the VNS more efficient
The computational bottleneck of our VNS algorithm is the

calculation of the fitness F (s) of a solution s as described in (9).
his is because m + k applications of dynamic programming for
he calculation of the LCS between s and the inputs strings, re-
pectively between s and the pattern strings, are required for the
alculation of F (s). In order to reduce the computational burden,
e developed an incremental way of calculating F (s′) from F (s) in

the case s′ is obtained from s by an insertion, a change, or a dele-
tion of a single letter. This incremental evaluation is only applied
within the two local search procedures Most importantly, this
incremental evaluation works without the application of dynamic
programming. It is based on a series of internal data structures
that must be initialized, updated, and maintained. On the down-
side, the resulting fitness value is only an approximation in some
cases, occasionally overestimating the real fitness function value.
Therefore, whenever an improved solution is found, the real value
of F (), and the content of the internal data structures, is calculated
based on dynamic programming. Due to the large amount of
technical details in the description of the aforementioned data
structures and the adaptive fitness value calculation, we refer the
interested reader to the source code at https://github.com/kartelj/
gclcs_public and restrict ourselves here to the presentation of
three illustrative examples.

Example 1. Given input strings s1 = aabcaabaad, s2 =
aaabcabada, patterns p1 = bcabaa, p2 = aabbaa and a
solution string s = abccada, the goal is to find a character to
be inserted into s and to find a position at which this character
is inserted into s such that the fitness function is improved. For
this purpose, first the rightmost LCS for each pair of strings in
{(s1, s), (s2, s), (p1, s), (p2, s)} must be determined. For example,
the rightmost LCS for the pair (s1, s) is constructed based on a
dynamic programming table DP as follows. The starting cell is the
cell DP[i, j] with i← |s| and j← |s1|. Then, the following is done
in an iterative way until either i = 0 or j = 0:

1. If s[i] = s1[j], include the character as a part of the LCS and
reduce both i and j by one;

2. Otherwise, compare the values stored in DP[i − 1, j] and
DP[i, j− 1] and move to the cell with the greater value or
to DP[i− 1, j] in case of equal values.

The rightmost LCS of (s1, s) is abcad.2 Similarly, the rightmost
LCS of (s2, s) is abcada, the rightmost LCS of (p1, s) is bcaa, and
the rightmost LCS of (p2, s) is abaa.

The next step consist in the determination of the left and
right mappings of each of the obtained LCSs to the corresponding

2 See Figure 1 in the supplementary material document for an illustration.
9

Table 3
Middle regions (shown with a light-gray background) for solution s = abccada
w.r.t. input strings and patterns.

input string, respectively pattern. The left mapping of a string
s to a string s′ is hereby done as follows. First, the position x1
of the first occurrence of letter s[1] in s′ is determined. This is
he position to which s[1] is then mapped. Subsequently, the
osition x2 of the first occurrence of letter s[2] in s′[x1 + 1, |s′|]
s determined. This is the position to which s[2] is mapped. This
rocess is continued until each letter of s is mapped. The right
apping is obtained by repeating the same process, but in the
pposite direction, i.e., both s and s′ are traversed backwards.
oncerning the left and right mapping of the corresponding LCSs
o the input strings, respectively pattern, middle regions are non-
mpty substrings bounded from the left by the left mapping of
he xth LCS letter (including the boundary) and bounded from
he right by the right mapping of the xth LCS letter (excluding the
oundary). Left and right mappings, along with all middle regions
or all input strings and patterns are shown in Table 3.

Let us consider only the mapping to s1, together with the cor-
esponding middle regions, and let us exemplary check what will
appen when s = abccada is extended to snew = abcc b ada.

Obviously, letter b will fall into the middle region aaba. The
crucial point here is that it is safe to insert any character found
inside the middle region. This is demonstrated in Table 4. Notice
that abc can be mapped to s1 according to the left part of the left
mapping (abc ad) and ad according to the right part of the right
mapping (abc ad) and neither of these mappings does consider
the middle region of the input string s1 = aabc aaba ad.

The next step is to check whether a fitness function value
improvement can be achieved by inserting a certain character at
a certain position x in the current solution s, obtained by shifting
he character currently found at the xth position, together with all
ubsequent characters, to the right. In order to quantify the total
ffect of this character insertion on the fitness function value,
t must be considered how this separately influences the LCSs
etween the new solution string and all input strings, respectively
atterns. This is done in the same manner as previously exem-
lified for s1. There are several possible improvements that can
e performed according to Table 3. Inserting character a at the
irst position (snew = a abccada) would increase the LCS w.r.t.
s1, s2, and p2. Therefore, the total effect will be a reduction of
he number of feasibility violations by one. Note that the number
f feasibility violations w.r.t. s1 and s2 will remain unchanged
ince they are calculated as |snew| − |LCS(si, snew)| (the LCSs are
ncreased, but snew as well). Also, there will be no effect when it
omes to p1, i.e., the number of feasibility violations will remain
he same. The second option would be to insert character a at
he fifth position (snew = abcc a ada). This will in total decrease
the number of feasibility violations by one, only that now the LCS
w.r.t. p will be improved instead of the one w.r.t. p . Finally, the
1 2

https://github.com/kartelj/gclcs_public
https://github.com/kartelj/gclcs_public
https://github.com/kartelj/gclcs_public

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

a
a
c
o

c
w

4

v

t
m
a
f
a
p
i
k

4

e
T

4

m
s
|

s
i
b

F
k

Table 4
Solution snew = abcc b ada w.r.t. input strings and patterns after insert.

s1 a a b c a a b a a d

Left part a b c
Middle part b
Right part a d

s2 a a a b c a b a d a

Left part a b c
Middle part b
Right part a d a

p1 b c a b a a

Left part b c
Middle part b
Right part a a

p2 a a b b a a

Left part a
Middle part b
Right part b a a

insertion of character b at the fifth position (snew = abcc b ada)
proves to be the best option, since this decreases the total number
of feasibility violations by two (see Table 4).

The reason why the presented approach enables a fast calcula-
tion of the LCSs after the insertion of a single character is because
there is no need to perform dynamic programming calculations
for each character/position probing. By maintaining appropriate
data structures concerning the region mappings, one can check
quickly whether a certain region is a candidate for an insertion
and, if this is the case, the region is scanned in linear time.

When it comes to single character edit/delete operations, we
will uniquely denote them as a change operation, since deletion
can be viewed as an edit operation in which the previous char-
acter is replaced with the empty string ε. Obviously, deletion
is focused on reducing the number of feasibility violations with
respect to the input strings, while a change operation may, in
general, reduce the number of feasibility violations with respect
to both input strings and patterns (9). The procedure for check-
ing the suitability of a change operation is similar to the one
described above. However, the newly calculated LCS lengths will
not always be correct, i.e., the LCSs obtained in this way may be
shorter than the real ones. This means that the fitness function
value obtained in this way is an upper bound for the exact fitness
function value. Obtaining an upper bound of the new exact fitness
function value quickly is nevertheless useful because, if it is better
(lower) than the previous known exact fitness function value, the
new exact fitness function value must also be better than the old
one.

Example 2. Given the same set of input strings, patterns, and
the solution string as in Example 1, the goal is to determine
efficiently a lower bound of the exact LCS lengths after a change
operation. The procedure is very similar to the one for insertion
operations described above. First, the middle regions between left
and right mappings are determined and subsequently there is
character/position probing. The only difference in comparison to
the insertion scenario is that the solution string is not changed by
inserting characters at certain positions but by changing already
existing ones. For example, changing s = abc c ada to snew =
bc b ada would lead to a feasibility violations decrease w.r.t.
ll input strings and all patterns—four in total. In this particular
ase, all efficiently calculated LCS lengths will match the exact
nes.
10
Example 3. Finally, we want to show a case in which the efficient
LCS calculation does not provide the exact LCS lengths but only
lower bounds. One of the situations in which this happens is
when changing characters that are included in the selected LCS.
For example, the change s = abcca d a to snew = abcca a a
is never considered in the efficient LCS calculation w.r.t. s1 and
s2, since d is not part of a middle region. However, notice that
hanging it to character awould produce LCS(s1, snew) = abcaaa,
hich has length six, which is an improvement by one.

. Experimental evaluation

We include the following five algorithms (resp. algorithm
ariants) in our experimental evaluation:

i. The Greedy procedure from Section 3.1 (Greedy);
ii. The basic variant of the BS in which all letters from Σnd

v

are used as extensions, denoted as basic-BS;
iii. The restricted version of BS targeted to maximize the

performance in finding any feasible solution, denoted as
restricted-Bs;

iv. The variable neighborhood search from Section 3.4 denoted
as VNS;

v. A hybrid BS&VNS in which restricted-BS is performed first
to find an initial solution which is then further optimized
by the VNS.

All algorithms were implemented in C++ using GCC 7.4, and
he experiments were conducted in single-threaded mode on a
achine with an Intel Xeon E5–2640 processor with 2.40 GHz
nd a memory limit of 16 GB for BS and restricted-Bs, and 4Gb
or VNS and BS&VNS. The maximal CPU time allowed for each run
nd each of our algorithm was set to 20 minutes, i.e., 1200 s. The
ublic repository with the source code of our implementations,
nstances and raw results can be found at https://github.com/
artelj/gclcs_public.

.1. Benchmark instances

We consider two different sets of benchmark instances for the
xperiments, a fully random set and a real-world instance set.
hese are described in the next sections.

.1.1. Random benchmark set
Properties of each instance set include the number of strings

, the length of the input strings n (all input string are of the
ame length), the number of pattern strings k, the alphabet size
Σ |, and the ratio p between n and the length of the pattern
trings (all pattern strings have the same length). The follow-
ng procedure has been used to generate this random type of
enchmark instances:

1. Pattern strings P1, . . . , Pk are generated uniformly at ran-
dom, all with length ⌊n/p⌋ (p · k < n).

2. Each input string si, i = 1, . . . ,m, of length n is generated
as follows in order to ensure the existence of a feasible
solution:

• For each pattern string pj, j = 1, . . . , k, ⌊n/p⌋ posi-
tions of si are randomly selected from {(j−1)·k, . . . , j·
k} without replacement.
• These selected positions in si are filled with the letters

of pattern string pj in the respective order.
• All remaining positions in si are filled with letters

selected uniformly at random from alphabet Σ .

or all combinations of m ∈ {2, 5, 10}, n ∈ {100, 500, 1000},
∈ {2, 5, 10}, p = n

|P0|
∈ {20, 50}, and |Σ | ∈ {2, 4, 20} ten

independent instances were generated, which gives in total 1620
instances. We call this set Random.

https://github.com/kartelj/gclcs_public
https://github.com/kartelj/gclcs_public
https://github.com/kartelj/gclcs_public

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

4

w
t
t
t
w
d
v
T
s
1

c
a
A
S
s

f
t
o
a

i
a
h

f
t
a
t
c
t
N
o
I
a
o
s

1

.1.2. Real-world benchmark set
This set uses 12,681 bacterial 16S rRNA gene sequences. The

hole set is divided into 49 classes, where each class contains
he sequences from one bacterial phylum. The cardinality of
hese classes varies. Ten classes contain only one sequence, so
hey are omitted here. Some classes contain only few sequences,
hile four classes contain thousands and more sequences. More
etailed information about the cardinality of each class is pro-
ided in Table 4 of the document on supplementary material.
his dataset is taken from the website that provides the Mothur
oftware package, one of the most widely used tools for analyzing
6S rRNA gene sequence data [32].
As pattern strings, we use continuous sequences of molecules,

alled ‘‘primer contigs’’, which are generated by the assembly of
ll of the primers reported for conserved regions of a sequence.
more detailed description of this benchmark set is provided in
ection 4.7 in conjunction with the analysis of the results. This
et of instances is labeled by Real.

4.2. Parameter tuning of the algorithms

We tuned the parameters of basic-BS, restricted-BS, and VNS
with the automated parameter configuration tool irace [33].

The outcome of the tuning experiments and the configura-
tions of our algorithms’ parameters used for the experimen-
tal evaluation can be found in Section 1.4 of the document on
supplementary material.

4.3. Results of methods with focus on feasibility on random in-
stances

In this section, we first focus only on finding any feasible
solutions to our Random benchmark instances. Consequently, we
compare Greedy, restricted-BS, and VNS, the latter two with
the parameter settings determined by the tuning described in
the previous section. While Greedy and restricted-BS were per-
formed once on each benchmark instance, VNS was performed
ten times due to its stochastic nature.

Tables 5–6 show the results of the aforementioned three al-
gorithms for |Σ | ∈ {4, 20}, respectively.3 In each table, the first
our columns indicate the instance characteristics followed by the
hree blocks reporting the results for each algorithm in the form
f the average solution length (|s|) of found feasible solutions, the
verage runtime (t[s]) and the percentage of instances for which

at least one feasible solution was found (feas[%]). For VNS, average
objective values of the best solutions among the ten runs per each
instance is additionally reported by column |smax|. Missing values
ndicate that an algorithm could not find a feasible solution in
ny of its runs. Best percentages of feasible solutions found are
ighlighted in bold font.
In order to check the statistical significance of observed per-

ormance differences of our algorithms, we perform a statistical
est as follows. Friedman’s test was executed on the results of
ll algorithms that are grouped w.r.t. alphabet size |Σ |. Given
hat, if the test rejected the hypothesis that the results of the
ompared algorithms on the same group of instances are (sta-
istically) equal, pairwise comparisons are performed using the
emenyi post-hoc test [34]. The outcome is shown by means
f so-called critical difference plots, for each group of results.
n short, each algorithm is positioned in the horizontal segment
ccording to its average ranking concerning the considered group
f instances. Then, the critical difference (CD) is computed for a
ignificance level of 0.05 and the performance of those algorithms

3 Additional results concerning the instances for |Σ | = 2 are given by Tables
–2 in the document on supplementary material.
11
that have a difference smaller than the CD are considered as
equal—that is, no difference of statistical significance can be de-
tected. This is indicated in the graphics by horizontal bars joining
the respective algorithms. Due to completeness, each CD plot
in this paper shows a comparison between all five algorithms.
The plots concerning this section are given by Fig. 6(a)–(b) and
the algorithms are evaluated according to number of instances
for which a feasible solution is successfully found. The following
conclusions can be drawn.

• For the instances with |Σ | = 4 (see Table 5) restricted-
BS can obtain feasible solutions for all these instances. This
also holds for VNS with a few exceptions (eight out of 5400
runs) and for Greedy (nine out of 540 runs), see also Fig. 7.
Concerning solution quality, VNS was able to outperform
the other approaches in particular on the instances with
smaller n. On most of the other instances, restricted-BS
yielded longer solutions than the other two approaches.
For example, relative improvements of restricted-BS over
Greedy for those instances where both algorithms could
find a feasible solution, are shown in Fig. 5(a) and range
from 10% to 13%. Further, the quality of solutions obtained
by VNS are better in average than the quality of solutions
obtained by Greedy.
• The instances with |Σ | = 20 (see Table 6) turn out to

be the most challenging ones in respect to finding any
feasible solution. For fixed n, when the alphabet size in-
creases, the corresponding search space gets more restricted
concerning the number of feasible versus infeasible nodes.
restricted-BS can nevertheless deal relatively well with
these instances: for 22 out of 48 instance groups a feasible
solution could be identified for all instances, and for just
one instance group no feasible solution could be found at
all. In comparison to the other two algorithms, this differ-
ence is substantial. In few cases Greedy could find more
feasible solutions than VNS, but not significantly more (see
respective plots in Fig. 8). The differences w.r.t. the number
of instances for which a feasible solution was found are
most pronounced for m = 10, where VNS was successful in
just around 4.2% of all runs, Greedy in around 25% (54 out
of 180 runs) but restricted-BS in around 80% (151 out of
180 runs). Concerning solution quality, average percentage
improvements of restricted-BS over Greedy are displayed
in Fig. 5(b). However, better solutions could not be found
in all cases. Differences are largest on the instances with
|Σ | = 20 and larger m, where Greedy was able to occa-
sionally outperform the results of restricted-BS. However,
this happens on a rather small amount of instances (the
common number of instances for which the two algorithms
find a feasible solution is 120; in 66 cases Greedy delivers
a better solution) in comparison to the size of the whole
benchmark set Random. The reason for this behavior on this
subset of instances lies in our probabilistic guidance of the
beam search, which focuses on finding any feasible but not
so much on solution quality. Here, it rarely occurs that each
node can be expanded towards a feasible solution.

4.4. Results of methods with focus on feasibility on real instances

In this section, we focus on finding any feasible solutions to
our Real benchmark instances. The same algorithm are compared
as those in Section 4.3. The numerical results are reported in Ta-
ble 7. Concerning the statistical difference w.r.t. finding a feasible
solution, the corresponding CD plot is provided in Fig. 11. Due
to completeness, all five approaches are shown in the plot, as
also used in the latter discussion. The following conclusion can

be drawn.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844
Table 5
Results of the algorithms with focus on finding any feasible solution; benchmark set Random, |Σ | = 4.
Instance Greedy restricted-Bs VNS

m n p k |s| t [s] feas [%] |s| t [s] feas [%] |smax| |s| t [s] feas [%]

100 20 2 49.90 0.10 100 54.00 0.16 100 63.00 62.45 2.09 100
100 50 2 55.60 0.12 100 58.50 0.23 100 62.70 62.44 2.09 100
100 20 5 54.30 0.08 100 56.40 0.91 100 63.20 62.81 2.34 100
100 50 5 55.40 0.10 100 59.60 0.26 100 62.90 62.42 2.31 100
100 20 10 63.50 0.09 100 61.90 2.72 100 67.70 67.50 3.01 99
100 50 10 56.80 0.10 100 61.00 0.35 100 63.20 62.84 2.94 100
500 20 2 259.50 0.09 100 293.00 30.41 100 315.10 306.53 49.41 100
500 50 2 276.90 0.14 100 306.30 32.61 100 309.70 302.95 44.34 100
500 20 5 270.40 0.11 100 305.20 35.15 100 314.90 305.77 59.39 100

2 500 50 5 279.20 0.09 100 313.20 35.33 100 313.50 304.46 53.55 100
500 20 10 299.50 0.11 100 324.00 37.73 100 325.20 314.58 70.81 100
500 50 10 289.70 0.09 100 318.50 35.69 100 314.30 306.25 65.71 100

1000 20 2 511.10 0.29 100 587.10 76.22 100 614.30 602.60 233.99 100
1000 50 2 555.00 0.19 100 624.40 84.69 100 619.60 605.29 254.74 100
1000 20 5 545.60 0.33 100 617.50 83.72 100 621.10 606.27 287.96 100
1000 50 5 560.60 0.30 100 629.60 80.28 100 615.70 602.91 271.09 100
1000 20 10 597.50 0.36 100 657.60 97.72 100 640.70 620.82 355.24 100
1000 50 10 573.20 0.24 100 637.60 101.18 100 618.10 605.92 382.46 100
100 20 2 35.80 0.10 100 39.80 4.66 100 42.70 41.61 1.72 100
100 50 2 36.50 0.09 100 40.10 5.67 100 41.70 40.46 2.09 100
100 20 5 37.90 0.10 100 41.40 5.43 100 44.30 43.14 1.85 99
100 50 5 36.50 0.07 100 40.70 5.68 100 42.60 41.29 2.06 100
100 20 10 46.50 0.10 80 50.00 6.86 100 53.00 52.79 2.66 99
100 50 10 37.30 0.08 100 42.00 6.14 100 43.60 42.62 2.34 100
500 20 2 179.90 0.12 100 209.10 39.45 100 212.60 207.05 78.62 100
500 50 2 187.70 0.09 100 217.40 47.38 100 211.40 206.98 68.26 100

5 500 20 5 190.10 0.11 100 221.20 46.08 100 219.30 212.15 83.12 100
500 50 5 191.30 0.10 100 218.80 45.09 100 212.60 206.15 76.22 100
500 20 10 208.40 0.12 100 253.20 54.96 100 253.50 234.68 112.12 100
500 50 10 194.70 0.11 100 223.50 53.95 100 214.60 209.48 84.56 100

1000 20 2 365.50 0.34 100 423.00 87.94 100 423.10 415.60 384.62 100
1000 50 2 382.60 0.24 100 439.40 95.50 100 422.10 413.48 386.03 100
1000 20 5 374.70 0.33 100 442.50 92.51 100 429.40 419.63 407.46 100
1000 50 5 385.90 0.23 100 446.20 102.24 100 423.10 414.22 411.43 100
1000 20 10 401.60 0.30 100 506.60 114.83 100 473.70 444.53 512.43 100
1000 50 10 392.80 0.29 100 451.30 103.43 100 425.70 415.47 442.96 100
100 20 2 29.11 0.11 90 32.80 4.28 100 34.50 33.20 1.82 100
100 50 2 28.70 0.09 100 33.20 5.46 100 33.80 32.69 2.26 100
100 20 5 32.62 0.12 80 35.10 5.19 100 37.40 35.89 1.94 98
100 50 5 29.30 0.09 100 33.60 5.25 100 34.60 33.49 2.10 100
100 20 10 41.38 0.09 80 45.90 7.07 100 50.20 50.17 2.98 97
100 50 10 31.44 0.08 90 34.90 5.79 100 36.00 34.98 2.47 100
500 20 2 155.20 0.13 100 175.50 38.22 100 172.90 168.42 95.43 100
500 50 2 159.00 0.13 100 179.50 44.20 100 171.60 167.98 99.90 100

10 500 20 5 161.30 0.12 90 185.90 42.89 100 180.00 174.68 106.31 100
500 50 5 160.20 0.12 100 182.60 44.24 100 172.70 169.06 103.08 100
500 20 10 186.40 0.12 100 235.40 55.07 100 251.00 246.14 170.76 100
500 50 10 164.50 0.12 100 188.50 47.65 100 176.80 171.78 111.34 100

1000 20 2 310.70 0.32 100 357.90 81.04 100 347.60 340.25 541.96 100
1000 50 2 324.10 0.35 100 367.50 88.58 100 346.30 339.25 532.82 100
1000 20 5 320.70 0.51 100 373.20 90.20 100 353.50 346.28 571.40 100
1000 50 5 328.30 0.32 100 372.70 89.02 100 348.40 340.76 515.36 100
1000 20 10 348.60 0.39 100 478.40 110.21 100 497.90 420.76 864.54 100
1000 50 10 334.40 0.29 100 381.80 93.83 100 351.30 334.81 556.73 100
Fig. 5. Improvements of restricted-BS over Greedy: benchmark set Random.
12

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844
Table 6
Results of the algorithms with focus on finding any feasible solution; benchmark set Random, |Σ | = 20.
Instance Greedy restricted-Bs VNS

m n p k |s| t[s] feas [%] |s| t[s] feas [%] |smax| |s| t[s] feas [%]

100 20 2 20.00 0.09 20 16.75 0.04 40 30.75 30.75 1.22 5
100 50 2 25.30 0.11 100 23.89 0.03 90 32.70 31.99 1.19 98
100 20 5 – – 0 24.89 0.87 90 – – 0
100 50 5 30.00 0.06 20 19.71 0.05 70 33.22 32.97 1.71 34
100 20 10 53.00 0.06 10 42.90 15.14 100 – – – 0
100 50 10 31.50 0.06 20 22.00 3.23 30 35.00 35.00 6.59 1
500 20 2 – – 0 72.00 4.96 30 – – – 0
500 50 2 100.12 0.11 80 111.60 5.60 100 163.00 161.30 34.48 7
500 20 5 – – 0 120.00 58.97 10 – – – 0

2 500 50 5 101.00 0.14 10 115.30 25.97 100 – – – 0
500 20 10 – – 0 209.43 130.80 70 – – – 0
500 50 10 – – 0 130.30 64.98 100 – – – 0

1000 20 2 – – 0 146.00 34.18 10 – – – 0
1000 50 2 202.33 0.22 90 236.40 54.77 100 – – – 0
1000 20 5 – – 0 231.50 85.87 20 – – – 0
1000 50 5 – – 0 237.80 73.79 100 – – – 0
1000 20 10 – – 0 415.89 285.97 90 – – – 0
1000 50 10 249.00 0.21 10 257.90 118.99 100 – – – 0

100 20 2 14.00 0.11 10 10.25 0.07 80 15.00 15.00 2.10 3
100 50 2 10.00 0.08 40 8.75 0.13 40 12.70 12.42 1.10 73
100 20 5 25.00 0.06 30 22.90 0.22 100 – – – 0
100 50 5 14.00 0.05 10 10.57 0.14 70 13.33 13.33 2.21 6
100 20 10 49.67 0.06 90 41.40 13.70 100 – – – 0
100 50 10 21.00 0.14 10 17.78 1.72 90 – – – 0
500 20 2 – – 0 – – 0 – – – 0
500 50 2 49.00 0.12 40 53.90 32.80 100 64.00 64.00 24.65 1

5 500 20 5 – – 0 114.60 67.76 100 – – – 0
500 50 5 – – 50 57.67 34.79 90 – – – 0
500 20 10 249.50 0.14 20 205.22 151.49 90 – – – 0
500 50 10 – – 0 83.57 67.90 70 – – – 0

1000 20 2 – – 0 98.50 57.62 20 – – – 0
1000 50 2 94.00 0.24 30 114.10 102.53 100 – – – 0
1000 20 5 – – 0 226.70 134.75 100 – – – 0
1000 50 5 – – 0 119.20 80.90 100 – – – 0
1000 20 10 499.00 0.34 20 411.67 339.50 90 – – – 0
1000 50 10 – – 0 166.17 132.29 60 – – – 0

100 20 2 10.40 0.06 50 9.80 0.01 100 11.50 11.5 1.46 2
100 50 2 6 0.05 20 5.71 0.08 70 7.70 7.48 1.36 63
100 20 5 25 0.08 80 22.30 0.15 100 – – – 0
100 50 5 – – 0 9.55 0.03 90 9.67 9.13 1.36 7
100 20 10 50 0.09 100 39.80 13.55 50 – – – 0
100 50 10 19.83 0.06 60 16.70 0.59 100 20.00 20.00 6.97 3
500 20 2 – – 0 49.25 22.29 80 – – – 0
500 50 2 37 0.07 10 39.80 28.57 100 – – – 0

10 500 20 5 125 0.13 10 112.30 72.37 100 – – – 0
500 50 5 – – 0 47.20 29.87 50 – – – 0
500 20 10 250 0.14 100 206.87 183.60 80 – – – 0
500 50 10 – – 0 83.29 75.95 70 – – – 0

1000 20 2 – – 0 97.70 67.75 100 – – – 0
1000 50 2 69 0.25 20 84.90 66.44 100 – – – 0
1000 20 5 – – 0 227.10 180.77 100 – – – 0
1000 50 5 – – 0 94.25 69.41 40 – – – 0
1000 20 10 500 0.58 90 409.78 313.57 90 – – – 0
1000 50 10 – – 0 164.78 120.27 90 – – – 0
Fig. 6. CD plots that compare finding a feasible solution: benchmark set Random.
13

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844
Fig. 7. Finding a feasible solution on benchmark set Random for |Σ | = 4.
Fig. 8. Finding a feasible solution on benchmark set Random for |Σ | = 20.
Table 7
Results on the real instance set with focus on finding any feasible solution.
Instance Greedy restricted-Bs VNS

|s| t[s] |s| t[s] |smax| avg |s| t[s]

Acidobacteria 168 3.88 217 108.17 265 260.20 1200.54
Actinobacteria 345 23.67 235 1200.23 382 337.20 1202.43
Aminicenantes 730 0.12 1336 57.01 1358 1209.20 1200.03
Aquificae 432 0.33 585 48.45 750 646.80 1200.08
Armatimonadetes 358 0.91 490 92.37 553 510.30 1200.34
Atribacteria 1247 0.07 1413 26.21 1499 1499.00 1200.03
Bacteroidetes 321 10.86 382 357.35 401 391.30 1201.41
BRC1 459 0.23 666 81.67 724 619.70 1200.02
Candidatus-Saccharibacteria 441 0.22 597 28.89 667 621.60 1200.06
Chlamydiae 489 0.15 761 99.86 935 843.40 1200.03
Chlorobi 489 0.17 736 31.97 803 747.00 1200.03
Chloroflexi 297 0.46 376 61.50 513 500.80 1200.09
Chrysiogenetes 743 0.12 1234 115.02 1146 1026.10 1200.02
Cyano Chloroplast 346 2.13 76 157.62 531 502.90 1200.45
Deferribacteres 527 0.10 789 98.83 969 812.10 1200.03
Deinococcus-Thermus 428 0.58 601 128.64 704 623.40 1200.21
Dictyoglomi 1293 0.14 1461 107.59 1522 1519.20 1200.02
Elusimicrobia 686 0.12 1115 102.11 1042 908.00 1200.02
Fibrobacteres 638 0.13 1099 107.65 1068 934.70 1200.02
Firmicutes 126 25.54 – – 122 110.80 1200.90
Fusobacteria 373 0.39 591 102.32 634 608.40 1200.11
Ignavibacteriae 778 0.34 1320 101.00 1323 1158.80 1200.03
Latescibacteria 457 0.16 690 83.10 694 610.40 1200.03
Lentisphaerae 645 0.18 1088 105.42 961 884.50 1200.01
Microgenomates 319 0.11 426 56.04 455 440.00 1200.02
Nitrospinae 1237 0.14 1389 105.03 1431 1431.00 1200.03
Nitrospirae 495 0.19 787 92.69 966 855.20 1200.03
Parcubacteria 312 0.48 433 67.27 564 483.50 1200.04
Planctomycetes 442 0.29 623 99.15 747 631.00 1200.07
Poribacteria 252 0.24 316 39.47 423 414.30 1200.02
Proteobacteria 165 31.34 – – 324 266.10 1203.38
Spirochaetes 393 0.52 471 105.28 569 534.10 1200.16
SR1 454 0.16 986 113.83 987 837.80 1200.03
Synergistetes 440 0.36 604 31.20 778 661.20 1200.07
Tenericutes 365 1.16 498 63.11 521 507.50 1200.30
Thermodesulfobacteria 554 0.16 1187 44.00 1192 1005.60 1200.03
Thermotogae 460 0.41 667 113.86 621 588.00 1200.05
Verrucomicrobia 127 0.38 174 22.33 247 208.20 1159.13
WPS-1 1097 0.12 1299 53.05 1301 1155.00 1200.02
All – – – – 113 102.60 1205.95
14

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844
Table 8
Results of algorithms whose performances are maximized towards finding high-quality solutions on random sets for |Σ | = 4.
Instance basic-BS BS&VNS

m n p k |s| t[s] feas [%] |smax | |s| t[s] feas [%]

100 20 2 63.00 0.53 100 63.00 62.38 1.77 100
100 50 2 62.70 0.07 100 62.70 62.69 1.71 100
100 20 5 63.20 1.54 100 63.20 63.1 2.01 100
100 50 5 63.00 0.13 100 62.90 62.76 2.03 100
100 20 10 67.70 1.51 100 67.60 67.50 2.59 100
100 50 10 63.20 0.42 100 63.20 63.11 2.48 100
500 20 2 322.40 11.66 100 319.50 318.43 30.51 100
500 50 2 319.00 11.78 100 318.70 318.36 24.64 100
500 20 5 323.50 11.72 100 322.10 321.71 35.21 100

2 500 50 5 322.70 13.27 100 322.00 321.76 29.85 100
500 20 10 337.70 14.74 100 336.10 334.55 42.78 100
500 50 10 325.10 12.74 100 324.10 323.26 37.85 100

1000 20 2 645.60 22.79 100 637.20 634.42 172.48 100
1000 50 2 648.70 23.62 100 646.70 645.14 130.15 100
1000 20 5 649.90 30.02 100 644.70 643.12 165.64 100
1000 50 5 646.20 27.69 100 642.30 641.62 138.95 100
1000 20 10 680.60 29.94 100 677.80 676.46 220.80 100
1000 50 10 649.90 28.28 100 648.50 648.07 163.12 100

100 20 2 42.90 4.36 100 42.70 42.39 1.41 100
100 50 2 41.90 3.72 100 41.40 41.27 1.55 100
100 20 5 44.40 4.38 100 43.90 43.44 1.35 100
100 50 5 42.70 4.07 100 41.80 41.71 1.55 100
100 20 10 53.00 5.10 100 53.00 52.97 2.10 100
100 50 10 43.90 4.87 100 43.30 43.09 1.85 100
500 20 2 223.90 23.31 100 220.60 219.02 47.19 100
500 50 2 224.30 27.63 100 223.70 223.01 42.70 100
500 20 5 231.40 24.26 100 228.70 227.24 51.67 100

5 500 50 5 223.80 24.61 100 222.30 221.71 42.77 100
500 20 10 263.20 27.19 100 263.00 262.19 67.57 100
500 50 10 227.30 24.80 100 226.60 225.73 51.26 100

1000 20 2 452.00 48.38 100 444.50 441.81 270.77 100
1000 50 2 451.50 44.68 100 449.60 448.00 207.94 100
1000 20 5 463.00 39.02 100 455.90 453.67 295.42 100
1000 50 5 454.10 44.43 100 451.70 450.62 220.61 100
1000 20 10 526.00 65.81 100 524.70 522.51 317.21 100
1000 50 10 458.30 56.00 100 455.30 454.29 221.03 100

100 20 2 35.00 3.50 100 34.30 34.03 1.29 100
100 50 2 34.30 3.50 100 33.70 33.51 1.70 100
100 20 5 37.70 3.30 100 37.20 36.49 1.45 100
100 50 5 35.00 3.71 100 34.50 33.96 1.57 100
100 20 10 50.20 6.52 100 50.20 50.20 2.59 100
100 50 10 36.50 3.64 100 35.90 33.54 1.77 100
500 20 2 184.50 19.52 100 180.90 179.58 58.32 100
500 50 2 184.00 22.05 100 182.50 181.84 54.48 100
500 20 5 194.40 20.62 100 190.40 188.66 73.56 100

10 500 50 5 185.90 21.13 100 184.30 183.66 56.95 100
500 20 10 251.00 42.46 100 251.00 250.9 89.32 100
500 50 10 191.10 21.10 100 189.40 188.79 61.40 100

1000 20 2 374.80 44.58 100 368.90 366.79 396.10 100
1000 50 2 374.50 33.75 100 371.70 370.75 311.03 100
1000 20 5 389.40 33.20 100 381.10 378.91 391.75 100
1000 50 5 377.50 45.55 100 374.50 373.67 287.50 100
1000 20 10 502.10 87.60 100 502.10 501.73 469.44 100
1000 50 10 386.10 46.11 100 382.70 382.44 284.51 100
• VNS was able to find a feasible solution to all 40 instances,
restricted-BS to 37. For Greedy, it was possible for 39 cases,
see Fig. 9.
• Concerning final solution quality, VNS delivers best solu-

tions in 37 out of 40 cases, whereas restricted-BS does it
in just 3 cases. However, running times of restricted-BS
are much lower than those of the VNS approach. Greedy
is clearly obtaining the worst results among the other com-
petitors, see Fig. 10 to check the improvements of
restricted-BS over Greedy, which is in average around 30%.
For statistical difference w.r.t. the number of instances for
which respective algorithms find a feasible solution, see
Fig. 11.
• VNS seems to benefit strongly from the distribution of the

instances from benchmark Real, that is, the high correlation
 i

15
between input strings where, in general, it gets easier to find
a feasible solution than in unrelated random strings.

4.5. Results of methods with focus on high-quality solutions on
random instances

In this section, we focus on finding high-quality solutions
on benchmark set Random. Consequently, we compare basic-
BS and BS&VNS. These algorithms use the parameter settings
determined by the tuning described in Section 4.2. While basic-
BS was performed once on each benchmark instance, BS&VNS
was performed ten times due to its stochastic nature. Tables 8–
9 present the respective results for |Σ | ∈ {4, 20}.4 Again, the

4 Complete results for the instances with |Σ | = 2 are provided in Tables 1–2
n the document on supplementary material.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

a
a
i
m

m
f

Table 9
Results of algorithms whose performances are maximized towards finding feasible solutions on random sets for |Σ | = 20.
Instance basic-BS BS&VNS

m n p k |s| t[s] feas [%] |smax
best | |s| t[s] feas [%]

100 20 2 33.75 0.75 40 32.33 32.22 0.97 43
100 50 2 32.14 0.22 70 32.70 32.20 0.91 99
100 20 5 38.50 3.43 40 33.33 31.58 0.77 90
100 50 5 33.20 2.46 50 33.00 32.94 1.04 79
100 20 10 53.10 7.12 100 53.10 52.55 1.26 100
100 50 10 35.60 4.80 50 34.67 34.37 0.91 30
500 20 2 – – 0 154.00 150.07 15.17 30
500 50 2 175.67 30.04 60 167.00 164.61 19.50 100

2 500 20 5 – – 0 176.00 171.60 17.09 10
500 50 5 179.00 39.26 50 169.30 166.43 18.88 100
500 20 10 263.83 58.61 60 263.43 256.31 17.63 70
500 50 10 189.67 49.59 30 177.70 174.09 16.64 100

1000 20 2 – – 0 293.00 289.60 52.80 10
1000 50 2 357.33 45.16 90 335.70 330.72 98.92 100
1000 20 5 – – 0 345.00 308.35 55.75 20
1000 50 5 358 77.40 50 334.00 329.72 71.05 100
1000 20 10 533 128.62 20 516.56 497.97 47.61 90
1000 50 10 364.67 91.46 30 347.10 343.04 64.46 100

100 20 2 14.50 2.32 40 10.50 10.41 0.43 80
100 50 2 13.60 1.74 50 12.10 11.96 0.81 84
100 20 5 25.10 4.71 100 23.40 23.25 0.59 100
100 50 5 14.67 2.88 30 12.00 11.93 0.50 70
100 20 10 50.00 7.67 100 50.00 49.62 1.44 100
100 50 10 20.40 3.87 100 19.89 19.48 0.65 90
500 20 2 – – 0 – – – 0
500 50 2 79.00 118.46 10 68.90 66.61 7.95 100

5 500 20 5 125.89 110.45 90 123.70 117.83 7.53 100
500 50 5 – – 0 68.78 67.27 8.07 90
500 20 10 250.00 86.39 100 250.00 247.68 18.57 90
500 50 10 102.80 89.27 100 99.86 97.50 12.72 70

1000 20 2 – – 0 113.00 99.95 9.19 20
1000 50 2 – – 0 139.90 137.06 36.15 100
1000 20 5 251.10 202.33 100 242.50 231.50 19.61 100
1000 50 5 – – 0 135.10 132.71 33.43 100
1000 20 10 500.00 215.65 100 497.33 478.23 54.15 90
1000 50 10 206.00 193.75 60 194.67 188.72 41.49 60

100 20 2 10.67 0.70 90 9.80 9.80 0.46 100
100 50 2 8.33 0.22 30 7.40 6.91 0.85 89
100 20 5 25.00 4.03 100 22.60 22.46 0.62 100
100 50 5 10.60 0.71 100 9.56 9.56 0.45 90
100 20 10 50.00 13.29 100 50.00 49.80 1.71 50
100 50 10 20.00 2.50 100 18.00 17.88 0.66 100
500 20 2 – – 0 49.50 49.30 3.59 80

10 500 50 2 – – 0 43.50 42.62 5.14 100
500 20 5 125.00 246.70 100 124.60 116.42 12.60 100
500 50 5 – – 0 52.00 49.48 6.83 50
500 20 10 250.00 145.06 100 250.00 247.26 27.41 80
500 50 10 100.00 164.45 100 99.86 98.51 13.79 70

1000 20 2 – – 0 99.00 97.83 12.49 100
1000 50 2 – – 0 93.90 92.30 30.17 100
1000 20 5 250.00 733.16 100 246.70 233.25 34.85 100
1000 50 5 – – 0 105.25 100.50 32.79 40
1000 20 10 500.00 333.85 100 500.00 484.83 89.76 90
1000 50 10 200.00 388.69 100 197.89 190.51 54.38 90
average solution quality (|s|), the average running time (t[s]),
nd the percentage of instances for which the algorithm found
feasible solution (feas[%]) are listed for each algorithm on each

nstance group. For BS&VNS, the average solution quality of the
aximum solutions (over 10 runs) (|smax|) and the averaged solu-

tion quality (of 10 runs) (t[s]) is additionally reported. Concerning
the statistical difference w.r.t. the obtained solution quality, the
corresponding CD plots are shown by Figs. 13(a)–(b). For the sake
of completion, all five algorithms are compared and shown in the
plots. For VNS and BS&VNS, the average solution quality of the
aximum solutions are taken in this comparison, i.e., the results

rom column (|smax|). The following conclusions can be drawn
from these results:
16
• For the instances with |Σ | = 4 (see Table 8) we observe that
in case of small n (n = 100), the obtained results of basic-
BS and BS&VNS outperform those of the other approaches.
BS&VNS improves the (initial) solutions of restricted-BS by
about three percent on average, see Fig. 12(a). Looking at the
broader perspective, basic-BS performs best and earns sig-
nificant advantages over BS&VNS, see Fig. 13(a). The largest
differences are pronounced in case of the instances with
larger n, and especially for those with n = 1000, where
basic-BS obtains substantially better results than BS&VNS
within much lower computation times.
• For the instances with |Σ | = 20 (see Table 9) it can be

noticed that the results of BS&VNS are significantly better
than those of restricted-BS where average improvements
lie above 10%, see Fig. 12(b). Concerning the task of finding

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

i

b
s
s
f
T

4

s
g
c
c
i
s
b
r
i
p
u
I

Fig. 9. Feasible solution findings on benchmark Real.

Fig. 10. Improvements of restricted-BS over Greedy: benchmark Real.

Fig. 11. CD plot that compare finding a feasible solution: benchmark set Real.

at least feasible solution, basic-BS was successful for 254 out
540 instances. Note that for restricted-BS it was possible in
416 cases. The hybrid BS&VNS found a feasible solution in
420 out of 540 instances. The solution is of the similar qual-
ity than the respective solution of BS&VNS, and difference is
small and statistically not relevant; see Fig. 13(b). On those
instances where it gets hard to find a feasible solution, the
best option thus is to apply restricted-BS for obtaining a
solution which is then further improved by VNS.
17
4.6. Results of methods with focus on high-quality solutions on real
nstances

In this section, we focus on finding high-quality solutions on
enchmark set Real. The results are shown in Table 10. The
tatistical differences w.r.t. the quality of obtained solutions is
hown by the CD plot in Fig. 15. Again, due to completeness, all
ive competitor algorithms are compared and drawn in the plot.
he following conclusions may be drawn for this instance set.

• It is obvious that the BS&VNS hybrid works extremely well,
in particular our VNS is able to improve the solution passed
by restricted-BS; the average percentage improvement is
about nine percent, see Fig. 14. The results of BS&VNS clearly
outperforms the results of basic-BS in 36 out of 40 cases.
Overall, the observed differences are statistically significant,
see Fig. 15. Note that basic-BS could not deliver any feasible
solution for five instances (the largest ones). For the largest
instance All, which has 12681 input strings, VNS is the only
algorithm able to produce a feasible solution.
• In overall, the results on benchmark set Real indicate the

high effectivity of VNS and its combination with BS. The
reason why BS&VNS fully outperforms basic-BS (which was
not usually the case on the Random instances) lie in high
similarity among the input sequences. It turns out that for
VNS it gets easy to find local optima of reasonable quality,
and, afterwards, by a carefully tuned amount of diversi-
fication, to jump from one local optima to another ones
quickly to get new incumbents. Hereby, the implemented
incremental evaluation plays a crucial role in exploitation,
keeping runtimes reasonably low.

.7. Analysis of the results obtained on the biological data

In this section we analyze in from a more biological per-
pective the results obtained on a class of bacterial 16S rRNA
ene sequences, which is commonly used in a wide range of
omputational in silico experiments. This 16S rRNA gene is a
ore component of the 30S small subunit of prokaryotes and it
s a marker and fingerprint for bacterial identification, i.e., its
equence differs among bacteria [35]. It is also used for phylogeny
uilding because of its slow rate of evolution. Ten conserved (C)
egions that are separated by variable (V) regions are contained
n this molecule [24]. Each region contains a certain number of
rimers, which are short single-stranded nucleic acid sequences
tilized by all living organisms in the initiation of DNA synthesis.
n the mentioned article [24], continuous sequences, called primer
contigs, are generated by the assembly of all of the primers
reported for each conserved region. Such configuration represents
a basis for further analysis of 16S rRNA sequences (see [24] for
further information).

Established contigs were used for evaluation of the conserva-
tion degree of the conserved regions separating the hypervariable
regions of the 16S rRNA gene in [36]. More precisely, for ev-
ery contig and every gene from the considered databases, the
longest common subsequence is calculated. The percentage of
conservation of the considered contig in the considered gene
was calculated by dividing the length of the longest common
subsequence by the length of the contig. The obtained results
show that the average conservation is not more than 60%.

In our research, we start from the assumption that each primer
contig is contained (as a subsequence) in bacterial 16S rRNA gene
sequences, and we seek the longest common subsequence which
also contains all the primer contigs. Such a sequence should con-
tain information of the common conserved parts of the starting

sequences and could be useful for further research.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

g
r

Fig. 12. Improvements of BS&VNS over restricted-BS: benchmark set Random.
Fig. 13. CD plots comparing solution quality: benchmark set Random.
Fig. 14. Finding a feasible solution on benchmark set Real.

Fig. 15. CD plots comparing solution quality: benchmark set Real.

For the purpose of our tests, we adapted a set of 16S rRNA
ene sequences and utilized a set of primer contigs from 16S
RNA gene as patterns generating a CLCS problem. Both types
18
of sequences, 16S rRNA gene sequences and primer contigs se-
quences, contain some of the degenerate bases R, Y, M, K, S,
W, H, D, B, V, and N. These degenerate bases can be replaced
with corresponding amino acids [36]. For each of them exist
two, three, or four possible amino acids. For example, M can be
replaced with A or C. In our research, we used only one variant
of these replacements. More precisely, we made the following
replacements: R with A, Y with C, M with A, K with G, S with
G, W with A, H with A, D with G, B with G, V with G and N with
A. More about these replacements can be found in [36].

The first goal is to find the longest common subsequence that
contains all the considered primer contigs for each phylum. The
second and more challenging goal is to find the longest common
subsequence also containing all the considered primer contigs,
which include all sequences from the 12681 known bacterial 16S
rRNA gene sequences.

The list of primer contigs used in this research and the system-
atized list of bacterial phyla together with the results obtained
by the proposed methods, are given by Tables 3 and 4 in the
document on supplementary material. The third column contains
the total number of sequences in the considered phylum. For
the sake of deeper insight into the obtained results, we included
the next three columns containing the information about the
minimum, average, and maximum length of a sequence in the
phylum, respectively. The last two columns contain the best re-
sult obtained among all the proposed methods (the length of the
CLCS |s|, containing all contig patterns as subsequences) and the
percentage calculated as a ratio between the length of the CLCS
and length of the shortest sequence in the considered phylum.

From Table 4 of the document on supplementary material
several conclusions can be drawn about the considered sequences
and the conserved parts of the sequence in different bacterial
phyla. If a phylum contains a small number of bacterial sequences
(see the lines numbered by 3, 6, 17, 22, 26 and 39), the length of

the CLCS is more than 90% of the minimal length in the phylum.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

t

s
m

Table 10
Results on instance set Real for the algorithms whose performance is maximized
owards finding best possible CLCS solutions.
Instance basic-BS BS&VNS

|s| t[s] |smax| |s| t[s]

Acidobacteria – – 259 253.70 1200.30
Actinobacteria 406 1039.95 388 381.10 1204.93
Aminicenantes 1365 16.65 1364 1364.00 1200.02
Aquificae 574 25.48 652 645.40 1200.09
Armatimonadetes 475 91.56 516 510.30 1200.21
Atribacteria 1499 5.27 1499 1499.00 1200.03
Bacteroidetes 375 822.18 424 416.90 1203.01
BRC1 635 36.67 693 682.50 1200.02
Candidatus-Saccharibacteria 561 30.19 634 622.70 1200.05
Chlamydiae 829 54.93 840 821.40 1200.03
Chlorobi 755 45.01 852 830.60 1200.04
Chloroflexi 351 34.55 533 495.10 1200.12
Chrysiogenetes 1139 58.36 1267 1266.20 1200.03
Cyano Chloroplast 457 143.52 532 524.90 1200.40
Deferribacteres 789 51.90 802 800.10 1200.06
Deinococcus-Thermus 640 109.36 706 654.30 1200.37
Dictyoglomi 1522 7.89 1522 1522.00 1200.02
Elusimicrobia 1141 67.34 1141 1141.00 1200.03
Fibrobacteres 1122 69.01 1123 1123.00 1200.03
Firmicutes – – 122 108.40 1201.21
Fusobacteria 547 61.61 658 651.20 1200.17
Ignavibacteriae 1353 24.69 1354 1354.00 1200.02
Latescibacteria 768 56.89 724 720.00 1200.03
Lentisphaerae 1112 69.93 1110 1108.30 1200.02
Microgenomates 432 25.44 473 456.50 1200.02
Nitrospinae 1431 5.31 1431 1431.00 1200.02
Nitrospirae 806 44.23 809 805.80 1200.03
Parcubacteria 426 34.96 557 538.70 1200.06
Planctomycetes 590 45.15 648 644.60 1200.06
Poribacteria 329 21.52 441 432.70 1200.04
Proteobacteria – – 256 206.90 1204.75
Spirochaetes 463 85.10 557 530.60 1200.21
SR1 980 97.43 1026 1022.90 1200.05
Synergistetes 634 18.23 671 643.10 1200.06
Tenericutes 501 174.55 530 526.80 1200.51
Thermodesulfobacteria 890 50.70 1241 1241.00 1200.04
Thermotogae 606 24.57 744 736.10 1200.23
Verrucomicrobia – – 248 245.90 1200.13
WPS-1 1358 11.53 1356 1356.00 1200.02
All – – 107 101.40 1209.39

This high percentage can be simply explained by the fact that
sequences of the bacteria belonging to the same phylum are very
similar. The largest set is Proteobacteria (line #31), containing
4543 sequences, with the shortest sequence of 471 nucleotides.
The CLCS for this phylum is rather long (324 nucleotides), which
is about 68% of the length of the shortest sequence. This is not
the case with other phyla containing many sequences, (see for
example lines 2, 7, and 20), where we see that the length of the
CLCS is rather small (less than 40%). The last row contains infor-
mation about the length of the CLCS obtained under the entire
set of 12681 sequences. From the feasibility of the result, one
can conclude that all 12 681 bacterial 16S rRNA gene sequences in
the dataset indeed contain each primer contig as a subsequence.
This result can be also considered as a specific success of the
proposed methods, since the starting set of sequences is very
large. Finally, this fact also confirms that there is a high level
of similarity among all the sequences in the set, since the best
reported result of the CLCS has length 113, which is about 35% of
the length of the shortest sequence.

5. Conclusions and future work

We presented several heuristic approaches to solve the con-
trained longest common subsequence problem with arbitrary
any input strings as well as arbitrary many pattern strings
19
((m, k)–CLCS). In contrast to many other variants of the LCS
problem, this problem is particularly challenging since already
the decision problem of finding any feasible string is NP–hard,
as formally proved here, and can also be challenging in practice.
With this aspect in mind, we first designed methods with the
particular focus of finding any feasible solution, disregarding the
objective of finding a longest possible string to a large extent.
Our restricted BS variant excelled in this respect, in particular,
on randomly created benchmark instance set. On the contrary,
when also considering the string length and aiming for high
quality solutions, the basic BS approach, whose search is guided
by a specially designed probability-based heuristic, works best for
smaller alphabet size (up to four). For larger alphabets (of 20), the
VNS turned out to be a better choice, especially when applied
in combination with the restricted BS for obtaining an initial
feasible solution. The incremental evaluation of solutions in the
local search neighborhoods plays a particularly important role to
achieve the high effectiveness in the VNS. On the considered real-
world benchmark sets we observed significantly different results,
primarily because the input strings are strongly related. Here, the
hybrid VNS is the only method which could find feasible solutions
in all cases. Also, best solutions are delivered by the proposed VNS
in combination with the restricted BS.

In future work it makes sense to concentrate on developing
more sophisticated methods to find first feasible solutions for
those instances where the proposed methods have not been
so successful. This is especially the case for our tight random
instances on a larger alphabet and rather short input strings in
comparison to the pattern string lengths. In order to possibly
further improve the BS with focus on solution quality, considering
alternative search guidance functions is also a promising next
step. For example, one may consider an approximate expected
length calculation in the spirit as it was already shown to be
successful for some other LCS problem variants [13]. Additionally,
the small to middle sized instances could be solved by exact
methods, such as A∗ search. Last but not least, considering any-
time variants of A∗ search [11,37] would also be interesting for
obtaining heuristic solutions in combination with dual bounds on
larger instances where the classical A∗ search cannot be applied
anymore and the complete search must be stopped early. Also,
studying a complementary problem of the (m, k)–CLCS problem,
so called the restricted LCS problem [38] where we aim at finding
an LCS between a set of input strings that does not contain any
string from a given set of restriction strings as its subsequences,
is a promising research direction to consider.

CRediT authorship contribution statement

Marko Djukanović: Writing – original draft, Implementing
parts of the research that concerns of Beam search and Greedy
heuristics, Experimental evaluation and description of the results.
Aleksandar Kartelj: Constructing VNS algorithm, its implemen-
tation, A description of this algorithm. Dragan Matić: Ensuring
benchmark sets, Describing the results on the biological bench-
mark set. Milana Grbić: Ensuring benchmark sets, Describing the
results on the biological benchmark set. Christian Blum: Writing
– review & editing, Supervision. Günther R. Raidl: Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

M. Djukanović, A. Kartelj, D. Matić et al. Applied Soft Computing 122 (2022) 108844

A

e
I
d
f
2
V
A
B
o

A

o

R

cknowledgments

This research was partially supported by Ministry for Sci-
ntific and Technological Development, Higher Education and
nformation Society, Government of Republic of Srpska, B&H un-
er the Project ‘‘Development of artificial intelligence methods
or solving computer biology problems’’, project no. 19.032/-961-
4/19. The first author was funded by the Doctoral Program
ienna Graduate School on Computational Optimization (VGSCO),
ustrian Science Foundation, project no. W1260-N35. Christian
lum was funded by project CI-SUSTAIN of the Spanish Ministry
f Science and Innovation (PID2019-104156GB-I00).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.asoc.2022.108844.

eferences

[1] D. Maier, The complexity of some problems on subsequences and
supersequences, J. ACM 25 (2) (1978) 322–336.

[2] D.W. Mount, Sequence and genome analysis, Bioinformatics: Cold Spring
Harbour Laboratory Press: Cold Spring Harbour 2 (2004).

[3] S.R. Chowdhury, M. Hasan, S. Iqbal, M.S. Rahman, Computing a longest
common palindromic subsequence, Fund. Inform. 129 (4) (2014) 329–340.

[4] S.S. Adi, M.D. Braga, C.G. Fernandes, C.E. Ferreira, F.V. Martinez, M.-F. Sagot,
M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi, Repetition-free longest
common subsequence, Discrete Appl. Math. 158 (12) (2010) 1315–1324.

[5] T. Jiang, G. Lin, B. Ma, K. Zhang, The longest common subsequence problem
for arc-annotated sequences, J. Discrete Algorithms 2 (2) (2004) 257–270.

[6] Y.-T. Tsai, The constrained longest common subsequence problem, Inform.
Process. Lett. 88 (4) (2003) 173–176.

[7] D. Gusfield, Algorithms on Strings, Trees, and Sequences, in: Computer
Science and Computational Biology, Cambridge University Press, 1997.

[8] W. Liu, L. Chen, A fast longest common subsequence algorithm for
biosequences alignment, in: D. Li (Ed.), Proceedings of CCTA 2007 – the 1st
Computer and Computing Technologies in Agriculture, Volume I, Springer
US, Boston, MA, 2008, pp. 61–69.

[9] Q. Wang, D. Korkin, Y. Shang, A fast multiple longest common subsequence
(MLCS) algorithm, IEEE Trans. Knowl. Data Eng. 23 (3) (2011) 321–334.

[10] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, J. Huang, A novel fast and memory
efficient parallel MLCS algorithm for long and large-scale sequences align-
ments, in: Proceedings of ICDE2019 – the 32nd International Conference
on Data Engineering, 2016, pp. 1170–1181.

[11] M. Djukanovic, G.R. Raidl, C. Blum, Finding longest common subsequences:
New anytime a∗ search results, Appl. Soft Comput. 95 (2020) 106499.

[12] K. Huang, C. Yang, K. Tseng, Fast algorithms for finding the common
subsequences of multiple sequences, in: Proceedings of ICS 2004 – the
3rd IEEE International Computer Symposium, 2004, pp. 1006–1011.

[13] M. Djukanovic, G.R. Raidl, C. Blum, A beam search for the longest common
subsequence problem guided by a novel approximate expected length
calculation, in: G. Nicosia, P. Pardalos, R. Umeton, G. Giuffrida, V. Sci-
acca (Eds.), Machine Learning, Optimization, and Data Science, Springer
International Publishing, Cham, 2019, pp. 154–167.

[14] S. Deorowicz, J. Obstój, Constrained longest common subsequence
computing algorithms in practice, Comput. Inform. 29 (3) (2012) 427–445.

[15] S. Deorowicz, Bit-parallel algorithm for the constrained longest common
subsequence problem, Fund. Inform. 99 (4) (2010) 409–433.
20
[16] M. Djukanovic, C. Berger, G.R. Raidl, C. Blum, An a∗ search algorithm for
the constrained longest common subsequence problem, Inform. Process.
Lett. (2021) 106041.

[17] M. Djukanovic, C. Berger, G.R. Raidl, C. Blum, On solving a generalized
constrained longest common subsequence problem, in: Proceedings of
OPTIMA 20 – XI International Conference Optimization and Applications,
in: LNCS, vol. 12422, Springer, 2020, pp. 55–70.

[18] E. Farhana, M.S. Rahman, Constrained sequence analysis algorithms in
computational biology, Inform. Sci. 295 (2015) 247–257.

[19] Z. Gotthilf, D. Hermelin, M. Lewenstein, Constrained LCS: hardness and
approximation, in: Proceedings of CPM2008 – the 17th Annual Symposium
on Combinatorial Pattern Matching, Springer, 2008, pp. 255–262.

[20] J. Liu, Y. Wang, Y. Chiu, Constrained longest common subsequences with
run-length-encoded strings, Comput. J. 58 (5) (2015) 1074–1084.

[21] R. Dondi, The constrained shortest common supersequence problem, J.
Discrete Algorithms 21 (2013) 11–17.

[22] K. Mangal, R. Kumar, A recursive algorithm for generalized constraint SCS
problem, Natl. Acad. Sci. Lett. 39 (4) (2016) 273–276.

[23] C.Y. Tang, C.L. Lu, M.D.-T. Chang, Y.-T. Tsai, Y.-J. Sun, K.-M. Chao, J.-M.
Chang, Y.-H. Chiou, C.-M. Wu, H.-T. Chang, et al., Constrained multiple
sequence alignment tool development and its application to RNase family
alignment, J. Bioinform. Comput. Biol. 1 (02) (2003) 267–287.

[24] M. Martínez-Porchas, F. Vargas-Albores, An efficient strategy using k-mers
to analyse 16s rRNA sequences, Heliyon 3 (7) (2017) e00370.

[25] G. Blin, L. Bulteau, M. Jiang, P.J. Tejada, S. Vialette, Hardness of longest com-
mon subsequence for sequences with bounded run-lengths, in: Proceedings
of CPM 2012 – the 21st Annual Symposium on Combinatorial Pattern
Matching, in: Lecture Notes in Computer Science, vol. 7354, Springer,
Berlin, Heidelberg, 2012, pp. 138–148.

[26] P.S. Ow, T.E. Morton, Filtered beam search in scheduling, Int. J. Prod. Res.
26 (1) (1988) 35–62.

[27] C. Blum, M.J. Blesa, M. López-Ibáñez, Beam search for the longest common
subsequence problem, Comput. Oper. Res. 36 (12) (2009) 3178–3186.

[28] S.R. Mousavi, F. Tabataba, An improved algorithm for the longest common
subsequence problem, Comput. Oper. Res. 39 (3) (2012) 512–520.

[29] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper.
Res. 24 (11) (1997) 1097–1100.

[30] P. Hansen, N. Mladenović, J.A.M. Pérez, Variable neighbourhood search:
methods and applications, 4OR 6 (4) (2008) 319–360.

[31] P. Hansen, N. Mladenović, J.A.M. Pérez, Variable neighbourhood search:
methods and applications, Ann. Oper. Res. 175 (1) (2010) 367–407.

[32] P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hol-
lister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl,
B. Stres, G.G. Thallinger, D.J. Van Horn, C.F. Weber, Introducing mothur:
Open-source, platform-independent, community-supported software for
describing and comparing microbial communities, Appl. Environ. Microbiol.
75 (23) (2009) 7537–7541.

[33] M. López-Ibáñez, L.P. Cáceres, J. Dubois-Lacoste, T. Stützle, M. Birattari, The
Irace Package: User guide, Technical Report TR/IRIDIA/2016-004, IRIDIA,
Université Libre de Bruxelles, Belgium, 2016.

[34] T. Pohlert, The pairwise multiple comparison of mean ranks package
(PMCMR), R Packag. 27 (2019) (2014) 9.

[35] E. Stackebrandt, B.M. Goebel, Taxonomic note: a place for DNA-DNA reas-
sociation and 16s rRNA sequence analysis in the present species definition
in bacteriology, Int. J. Syst. Evol. Microbiol. 44 (4) (1994) 846–849.

[36] O. Gursoy, M. Can, On the accuracy of the 16s-rRNA Gene Conserved
Regions, Southeast Eur. J. Soft Comput. 8 (1) (2019).

[37] M. Djukanovic, G.R. Raidl, C. Blum, Anytime algorithms for the longest
common palindromic subsequence problem, Comput. Oper. Res. 114 (2020)
104827.

[38] Z. Gotthilf, D. Hermelin, G.M. Landau, M. Lewenstein, Restricted LCS, in:
Proceedings of SPIRE 2010 – the 9th International Symposium on String
Processing and Information Retrieval, Springer, 2010, pp. 250–257.

https://doi.org/10.1016/j.asoc.2022.108844
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb1
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb1
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb1
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb2
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb2
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb2
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb3
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb3
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb3
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb4
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb4
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb4
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb4
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb4
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb5
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb5
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb5
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb6
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb6
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb6
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb7
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb7
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb7
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb8
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb9
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb9
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb9
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb11
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb11
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb11
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb13
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb14
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb14
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb14
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb15
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb15
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb15
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb16
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb16
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb16
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb16
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb16
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb17
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb18
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb18
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb18
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb19
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb19
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb19
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb19
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb19
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb20
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb20
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb20
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb21
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb21
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb21
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb22
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb22
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb22
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb23
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb24
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb24
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb24
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb25
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb26
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb26
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb26
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb27
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb27
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb27
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb28
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb28
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb28
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb29
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb29
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb29
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb30
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb30
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb30
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb31
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb31
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb31
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb32
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb33
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb33
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb33
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb33
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb33
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb34
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb34
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb34
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb35
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb35
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb35
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb35
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb35
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb36
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb36
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb36
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb37
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb37
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb37
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb37
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb37
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb38
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb38
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb38
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb38
http://refhub.elsevier.com/S1568-4946(22)00237-X/sb38

	Graph search and variable neighborhood search for finding constrained longest common subsequences in artificial and real gene sequences
	Introduction
	Example
	Related work
	Our contributions

	Hardness of finding a feasible solution
	Algorithmic approaches
	Greedy heuristic
	Defining a state graph
	Beam search for the (m,k)–CLCS problem
	Upper bounds
	Heuristic guidance

	Variable neighborhood search
	Shaking
	Local search
	Making the VNS more efficient

	Experimental evaluation
	Benchmark instances
	Random benchmark set
	Real-world benchmark set

	Parameter tuning of the algorithms
	Results of methods with focus on feasibility on Random instances
	Results of methods with focus on feasibility on Real instances
	Results of methods with focus on high-quality solutions on Random instances
	Results of methods with focus on high-quality solutions on Real instances
	Analysis of the results obtained on the biological data

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

