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P.A. Coolenb

aDepartment of Computer Science and
Artificial Intelligence

University of Granada, Granada, Spain
b Department of Mathematical Sciences

Durham University, Durham, United Kingdom

Abstract

Classifiers sometimes return a set of values of the class variable since there
is not enough information to point to a single class value. These classifiers
are known as imprecise classifiers. Decision Trees for Imprecise Classification
were proposed and adapted to consider the error costs when classifying new
instances. In this work, we present a new cost-sensitive Decision Tree for Im-
precise Classification that considers the error costs by weighting instances,
also considering such costs in the tree building process. Our proposed method
uses the Nonparametric Predictive Inference Model, a nonparametric model
that does not assume previous knowledge about the data, unlike previous
imprecise probabilities models. We show that our proposal might give more
informative predictions than the existing cost-sensitive Decision Tree for Im-
precise Classification. Experimental results reveal that, in Imprecise Classi-
fication, our proposed cost-sensitive Decision Tree significantly outperforms
the one proposed so far; even though the cost of erroneous classifications is
higher with our proposal, it tends to provide more informative predictions.
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1. Introduction

Classification algorithms often aim to minimize the number of instances
incorrectly classified. This approach would be optimal if all classification
errors had the same importance. Nevertheless, in practical applications,
classification errors usually have different costs. For example, in medical
diagnosis, the cost of incorrectly predicting that a patient does not have a
serious disease may be much higher than the cost of erroneously predicting
that the patient is ill [1, 2, 3]; in credit fraud detection, predicting that a
credit card is legal when it is fraudulent is likely to cause far higher eco-
nomical losses for banks and financial institutions than predicting a normal
credit card as fraudulent [4, 5, 6]; in software defect prediction, the cost of
non-defective modules predicted as defective is probably far lower than the
cost of defective modules predicted as non-defective [7, 8, 9]. For this rea-
son, classifiers that take the costs of errors into consideration, also called
cost-sensitive classifiers, have been developed. Examples are cost-sensitive
Decision Trees [10, 11, 12], cost-sensitive Naive Bayes [13, 14], cost-sensitive
K-Nearest Neighbors [15], and cost-sensitive Neural Networks [16, 17, 18].

In order to classify new instances, cost-sensitive and cost-insensitive clas-
sifiers tend to predict a single class value. However, in many cases, there is
not enough information available for a classifier to clearly point to a single
value of the class variable. In such situations, it is more logical that clas-
sifiers predict a set of class values rather than a single one. Predictions of
this type are called imprecise predictions, and classifiers that make imprecise
predictions are known as imprecise classifiers [19].

When an imprecise classifier is employed, a set of values of the class
variable may be obtained. It is composed of those class values that are
not “defeated” by another one according to an established criterion, usually
called dominance criterion. The obtained set of class values is known as the
non-dominated states set [19]. An evaluation metric for an imprecise predic-
tion has to consider whether the prediction is correct (the real class value
belongs to the non-dominated states set) and how informative the prediction
is, which is measured by the cardinality of the non-dominated states set.
Likewise, an evaluation metric for a cost-sensitive imprecise classifier must
take into account the costs of incorrect predictions and, when the predic-
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tions are correct, the number of non-dominated states, as a higher number
of non-dominated states implies a less informative prediction.

For developing Imprecise Classification algorithms, theories based on im-
precise probabilities are more suitable than classical Probability Theory [20].
Many imprecise probability theories have been developed in the literature.
Examples are credal sets, probability intervals, Choquet capacities, and lower
and upper probabilities. These theories are described in detail in [21].

So far, few methods for Imprecise Classification have been proposed. The
first one was the Naive Credal Classifier (NCC) [19, 22]. It utilizes the
Imprecise Dirichlet Model (IDM) [23] combined with the Naive assumption
(given the class variable, all features are independent) to provide imprecise
predictions. Afterwards, the first Imprecise Classification algorithm based on
Decision Trees was introduced by Abellán and Masegosa [20]. It was called
Imprecise Credal Decision Tree (ICDT). That method employs uncertainty
measures on credal sets (closed and convex sets of probability distributions)
for building the tree. At leaf nodes, it determines a probability interval for
each class value and applies a dominance criterion on these intervals to obtain
the non-dominated states set.

The ICDT algorithm was also adapted for cost-sensitive classification by
Abellán and Masegosa [20]. Such an adaptation uses the same building pro-
cess as the original ICDT method. At leaf nodes, it determines a risk interval
for each value of the class variable considering the costs of errors. Then, it
obtains the non-dominated states set via a strong dominance criterion on
these risk intervals. Abellán and Masegosa [20] also adapted NCC for cost-
sensitive classification. They experimentally show that the adaptation of
ICDT outperforms the adaptation of NCC since the former is more informa-
tive. The mentioned adaptations are the only algorithms proposed so far for
cost-sensitive Imprecise Classification.

ICDT uses the IDM in the building process and for the probability inter-
vals at leaf nodes. The IDM assumes previous knowledge about the data via
a parameter. Although the Representation Invariance Principle (RIP) [23]
establishes that inferences should not depend on the arrangement of the data,
each dataset has associated with it an optimal value of the IDM parameter in
classification [24]. This shortcoming is solved with the Nonparametric Pre-
dictive Inference Model (NPI-M) [25, 26]. This model does not make prior
assumptions about the data and is non-parametric. The NPI-M has obtained
equivalent results to the IDM with the best choice of the parameter in both
precise and imprecise classification [27, 28].
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It is important to remark that the adaptation of ICDT for cost-sensitive
classification proposed so far does not take the error costs into account in
the procedure to build the tree; it considers, in each step of the procedure,
that all instances have the same importance, regardless of their class values.
This is obviously not optimal in scenarios where different classification errors
lead to different costs. Hence, we consider, as in the Weighted Decision Tree
algorithm for precise classification (Weighted-DT) [10], that the instances
with a higher cost of error of the corresponding class value should have more
weight than the instances for which the error cost of their class value is lower.

In this research, we propose a new cost-sensitive Imprecise Credal De-
cision Tree that employs the NPI-M and considers weights for the train-
ing instances depending on the error costs of their class values, similar to
Weighted-DT. In this way, for calculating the uncertainty measures in the
split criterion and determining the probability intervals for the class values
at leaf nodes, the instances with a higher cost of error of their class value
have more importance. We also show that the criterion used by our new
cost-sensitive Imprecise Credal Decision Tree for classifying instances may
be more informative than the one of the existing cost-sensitive ICDT.

An experimental analysis is carried out in this work to compare the orig-
inal cost-sensitive ICDT using the IDM and the NPI-M and our proposed
cost-sensitive Imprecise Credal Decision Tree. Such an experimental study
highlights that the NPI-M obtains equivalent results to the IDM with the
recommended value of the parameter when both models are used in the ex-
isting cost-sensitive ICDT and that the new cost-sensitive Imprecise Credal
Decision Tree significantly outperforms the existing one; even though our
proposed method obtains higher misclassification costs than the existing cost-
sensitive ICDT, it is usually more informative and achieves a better trade-off
between low cost of incorrect classifications and informative predictions.

The remainder of this paper is structured as follows: Section 2 describes
the Weighted Decision Tree algorithm, the Imprecise Dirichlet Model, the
Nonparametric Predictive Inference Model, and the existing cost-sensitive
Imprecise Credal Decision Tree. In Section 3, our proposed cost-sensitive
Imprecise Credal Decision Tree is presented. Section 4 details the exper-
imental study carried out in this work. Conclusions and ideas for future
research are given in Section 5.
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2. Background

2.1. Weighted Decision Tree

In Decision Trees (DTs), each node corresponds to an attribute and has
a branch for each possible value. When inserting an attribute in a node does
not provide more uncertainty-based information about the class variable, or
there are no more attributes to insert, a leaf or terminal node is reached. A
class value is assigned to each terminal node.

Let C be the class variable and {c1, c2, . . . , cK} its set of possible values.
Let M be a non-null matrix of dimension K×K where the mij value indicates
the cost of predicting ci for a new instance when the real class value is
cj, ∀i, j ∈ {1, 2, . . . , K}. It always holds that mjj = 0, ∀j = 1, 2, . . . , K.

Weighted Decision Tree (Weight-DT) [10] estimates the cost of incorrectly
classifying an instance whose true class value is cj, ∀j = 1, 2, . . . , K. The
following cost estimate tends to be used [29]:

Cost(j) =
K∑
i=1

mij, ∀j = 1, 2, . . . , K. (1)

Using these costs, Weight-DT computes weights for the training instances
depending on their class values. Specifically, the weight of a training instance
whose real class value is cj is computed as follows:

wj = Cost(j)× Ntrain∑K
i=1 ntrain(ci)× Cost(i)

, ∀j = 1, 2, . . . , K, (2)

where Ntrain is the total number of instances in the training set and ntrain(ci)
is the number of training instances for which C = ci, ∀i = 1, 2, . . . , K.
We may note that the sum of all instance weights is equal to

∑K
j=1wj ×

ntrain(cj) = Ntrain.
When building a DT, the most important point might be the split crite-

rion, i.e. the criterion employed for selecting the attribute to split in each
node. Such a criterion is normally based on an uncertainty measure of the
class variable in the corresponding node. In classical probability theory, the
Shannon entropy [30] is a well-established uncertainty measure. It is defined
in the following way:

H(C) = −
K∑
j=1

p(cj) log2(p(cj)), (3)
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where p(cj) is the probability that C = cj in the corresponding node, ∀j =
1, 2, . . . , K.

Classical DTs often estimate such probabilities by using relative frequen-
cies. In contrast, Weighted-DT estimates these probabilities through propor-
tions of instance weights.

Formally, let n(cj) denote the number of instances in a certain node for
which C = cj and Wj the sum of weights of such instances:

Wj = n(cj)× wj, ∀j = 1, 2, . . . , K. (4)

Let W be the total sum of weights in the node:

W =
K∑
i=1

n(ci)× wi. (5)

The probability that C = cj in the node is estimated as follows:

p(cj) =
Wj

W
, ∀j = 1, 2, . . . , K. (6)

For classifying a new instance with Weighted-DT, a path from the root
node to a leaf node is made using its attribute values. The predicted class
value is the one with the highest probability at that leaf node according to
Equation (6). Consequently, at that terminal node, the instances whose class
value has a higher misclassification cost have more importance.

2.2. Imprecise probabilities models

In this subsection, we describe two mathematical models based on im-
precise probabilities that are useful to make inferences about the probability
distribution of a discrete variable. Let X be an attribute that takes values
in {x1, x2, . . . , xt}. Suppose that we have a sample of N independent and
identically distributed outcomes of X.

2.2.1. The Imprecise Dirichlet Model

According to the Imprecise Dirichlet Model (IDM) [23], the probability
that X takes its possible value xi belongs to the following interval:

Ii =

[
n(xi)

N + s
,
n(xi) + s

N + s

]
, (7)
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where n(xi) is the number of ocurrences of xi in the sample, ∀i = 1, 2, . . . , t,
and s > 0 a given parameter of the model.

The set of probability intervals given in Equation (7) is coherent and has
the following credal set (closed and convex set of probability distributions)
on C associated with it [31]:

PIDM(X) =

{
p ∈ P(X) | n(xi)

N + s
≤ p(xi) ≤

n(xi) + s

N + s
, ∀i = 1, 2, . . . , t

}
,

(8)
P(X) being the set of all probability distributions on X.

The selection of the s parameter is a crucial issue. We may note that IDM
intervals are wider as the s value is higher. The s parameter indicates the
estimated imprecision degree in the data. In [23], two values are suggested:
s = 1 and s = 2, and the value s = 1 is recommended, but it is not explained.

2.2.2. The Nonparametric Predictive Inference Model

The Nonparametric Predictive Inference Model (NPI-M) [25, 26] repre-
sents the data via a probability wheel. On it, a line from the center of the
wheel to its boundary is used for representing each outcome. The wheel is
partitioned into N equally sized slices. Each value of X can only be rep-
resented by a unique sector of the wheel. Thus, lines associated with the
same value must be positioned next to each other on the wheel. The basis
of the NPI-M is the circular-A(N) assumption [26], which establishes that
the next observation falls into any slice with equal probability 1

N
. It must be

decided which value of X represents each slice. If a slice is bordered by two
lines representing the same value, then such a value must be assigned to that
slice. When two lines representing distinct values border to a slice, any of
these two values, or anyone not observed yet, can be assigned to that slice.

Given a subset A ⊆ {x1, x2, . . . , xt}, the NPI-M obtains a probability
interval for A, where the lower (upper) bound is determined by the minimum
(maximum) proportion of slices that can be assigned to a value belonging to
A, among all possible configurations of the wheel.

The following example [26] illustrates the idea of the NPI-M:

Example 1. Let us assume that we have a discrete attribute, called Color,
whose set of possible values is {Yellow (Y), Blue (B), White (W), Green (G),
Red (R), Other (O)}.
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Figure 1: Two possible configurations of the probability wheel in Example 1.

Suppose that there are N = 9 observations about Color, arranged in the
following way:

Y − 2, B − 3, W − 0, G− 3, R− 1, O − 0.

Figure 1 allows us to see two possible configurations of the probability
wheel. In both of them, lines associated with the same color are positioned
next to each other.

In the first configuration, the slice bordered by a line that represents B
and another one corresponding to R is assigned to O (non-observed), the one
bordered by lines representing G and B is assigned to G, and the one bordered
by lines corresponding to Y and R is assigned to W (non-observed).

In the second configuration, the slices bordered by a line representing R
are assigned to R. The same occurs with B.

We may deduce that the first configuration is appropriate to obtain the
lower probability of {B} and {B,R, Y,G}, and the second configuration is
suitable for the upper probability of {B} and {B,R}.

Let n(xi) denote the number of ocurrences of xi in the sample, ∀i =
1, 2, . . . , t. For singletons {xi}, the NPI-M lower and upper probabilities are
determined as follows:

P ({xi}) = max

(
n(xi)− 1

N
, 0

)
, ∀i = 1, 2, . . . , t,

P ({xi}) = min

(
n(xi) + 1

N
, 1

)
, ∀i = 1, 2, . . . , t.
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In consequence, we have the following set of NPI-M probability intervals
for singletons:{[

max

(
n(xi)− 1

N
, 0

)
,min

(
n(xi) + 1

N
, 1

)]
, i = 1, 2, . . . , t

}
. (9)

This set of probability intervals is coherent and gives rise to a credal set
on X [32]. Furthermore, the NPI-M lower and upper probabilities for each
A ⊆ {x1, x2, . . . , xt} can be obtained from these intervals [32]. Nonetheless,
some probability distributions belonging to the credal set corresponding to
these intervals may not be consistent with the NPI-M. In fact, the set of
probability distributions compatible with the NPI-M is not convex [32].

By considering all the probability distributions compatible with the in-
tervals given in Equation (9), an approximate model, called Approximate
Nonparametric Predictive Inference Model (A-NPI-M), is obtained [32]. It
corresponds to the credal set associated with such intervals, i.e. the convex
hull of the set of probability distributions consistent with the NPI-M. Hence,
the A-NPI-M avoids considerable constraints of the exact model, notably
simplifying it. The NPI-M and the A-NPI-M have a similar behavior when
they are utilized in classification [27]. For these reasons, we use the A-NPI-M
in this work.

2.3. Cost-sensitive Imprecise Credal Decision Tree

The Imprecise Credal Decision Tree algorithm (ICDT), proposed by
Abellán and Masegosa [20], consists of an adaptation of the Credal Deci-
sion Tree method (CDT) [33] for Imprecise Classification. Both algorithms
use the same split criterion. In addition, the adaptation of ICDT for cost-
sensitive classification (CS-ICDT), also introduced by Abellán and Masegosa
[20], employs the same split criterion as the original ICDT algorithm.

Let D denote a subset of the training set in a certain node. Let C be
the class variable and {c1, c2, . . . , cK} its set of possible values. Let PD (C)
denote the credal set on C corresponding to D, obtained via an imprecise
probabilities model M. Let X be an attribute whose set of possible values
is {x1, x2, . . . , xt}.

The basis of the split criterion of the ICDT method is the maximum
entropy on PD (C) [34]:

H∗
(
PD (C)

)
= max

p∈PD(C)
H(p), (10)
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where H(p) is the Shannon entropy of the probability distribution p.
The split criterion used in ICDT is called the Imprecise Information Gain

(IIG) [33]. It is defined in the following way:

IIG(C,X) = H∗
(
PD (C)

)
−

t∑
i=1

PD(X = xi)×H∗
(
PD (C | X = xi)

)
, (11)

where PD(X = xi) is the probability that X = xi on D, estimated via
relative frequencies, and H∗

(
PD (C | X = xi)

)
is the maximum entropy on

the credal set on C on the partition of D composed of those instances for
which X = xi, ∀i = 1, 2, . . . , t. Such a credal set is also obtained with M.

The original ICDT algorithm and its adaptation for cost-sensitive classi-
fication (CS-ICDT) differ on the criterion utilized to classify new instances.
Let M be the matrix of error costs defined in Section 2.1.

For classifying a new instance at a leaf node, CS-ICDT uses a criterion
based on the Bayes decision rule proposed by Duda and Hart [35]. According
to that rule, the class value with the lowest expected posterior risk is selected,
i.e, the class value ct such that

ct = arg min
i=1,2,...,K

R(ci), (12)

where

R(ci) =
K∑
j=1

mij × p(cj), ∀i = 1, 2, . . . , K, (13)

p(cj) being the probability that C = cj, ∀j = 1, 2, . . . , K.
Let P (cj) and P (cj) be, respectively, the lower and upper probabilities of

the cj value at that leaf node, which are computed viaM. From these lower
and upper probabilities, CS-ICDT calculates, for each class value, the lower
and upper risk as follows:

R(ci) =
K∑
j=1

mijP (cj), R(ci) =
K∑
j=1

mijP (cj), ∀i = 1, 2, . . . , K. (14)

For determining the non-dominated states set, CS-ICDT uses a strong
dominance criterion on these risk intervals, according to which a class value
cj dominates another one ci if, and only if, R(cj) ≤ R(ci),
∀i, j ∈ {1, 2, . . . , K}. Such a criterion is the most utilized in the literature
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[36]. Therefore, the non-dominated states set predicted by CS-ICDT at that
leaf node is determined in the following way:{

ci | R(ci) < R(cj) ∀j ∈ {1, 2, . . . , K} \ {i}
}
. (15)

3. The new cost-sensitive Imprecise Credal Decision Tree

Our proposed cost-sensitive Imprecise Credal Decision Tree combines the
idea of weighing instances of the existing Weighted-DT for precise classi-
fication, exposed in Section 2.1, with the A-NPI-M. We call our proposed
method Weighted Imprecise Credal Decision Tree (Weighted-ICDT).

Let C be the class variable and {c1, c2, . . . , cK} its set of possible values.
Let M be the matrix of error costs defined in Section 2.1. Let Ntrain de-
note the number of training instances and ntrain(cj) the number of training
instances that satisfy C = cj, ∀j = 1, 2, . . . , K. Let us consider the A-NPI-
M lower and upper probabilities for each value of the class variable in the
training set:

lj = max

(
ntrain(cj)− 1

Ntrain

, 0

)
, ∀j = 1, 2, . . . , K,

uj = min

(
ntrain(cj) + 1

Ntrain

, 1

)
, ∀j = 1, 2, . . . , K.

We have the following set of A-NPI-M probability intervals:

IC = {[lj, uj] , j = 1, 2, . . . , K} . (16)

The following credal set corresponds to the intervals given by Equation
(16):

P (IC) = {p ∈ P (C) | lj ≤ p(cj) ≤ uj, ∀j = 1, 2, . . . , K} , (17)

P (C) being the set of all probability distributions on C. On this credal set,
uncertainty measures can be applied. The maximum entropy [34] is a well-
established uncertainty measure on credal sets that verifies good properties
[21].

Thus, we consider the arrangement of the training instances
(n̂train(c1), n̂train(c2), . . . , n̂train(cK)) for which the probability distribution
that reaches the maximum entropy on P (IC) is attained. If
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(p̂train(c1), p̂train(c2), . . . , p̂train(cK)) is the probability distribution that ob-
tains the maximum entropy on P (IC), then n̂train(cj) = Ntrain × p̂train(cj)
∀j = 1, 2, . . . , K. In order to compute such an arrangement, we use the algo-
rithm proposed in [37] for obtaining the probability distribution that reaches
the maximum entropy value on an A-NPI-M credal set.

Let Ktrain(r) be the number of class values for which there are r training
instances associated with them:

Ktrain(r) = |{cj | ntrain(cj) = r, 1 ≤ j ≤ K}| . (18)

Algorithm 1 lets us obtain the arrangement that gives rise to the maxi-
mum entropy value on P (IC). In such an algorithm, firstly, the arrangement
that attains the A-NPI-M lower probability is computed (Lines 2-9); the
value mass, computed in Line 10, indicates the remaining mass to distribute
among the class values. The class values that have only one observation and
the ones non-observed have the lowest A-NPI-M lower probability. If the
number of values of the class variable with one or zero observations is lower
or equal than mass, then the mass value is equally distributed between such
values (Lines 21-29). Otherwise, we sum 1 to each value with one or zero
observations, making the corresponding updates in the mass value (Lines
13-20). Then, the non-observed values have the arrangement that yields the
A-NPI-M upper probability and, between the rest of the class values, the
ones with one or two observations have the lowest probability. This process
is iteratively repeated until the mass is entirely distributed among the class
values (Lines 12-30).

The proposed Weighted-ICDT method considers weights for the instances
using the error costs, as Weighted-DT. However, while Weighted-DT uses the
relative frequencies in the training set, Weighted-ICDT employs the arrange-
ment that gives rise to the maximum entropy on P (IC).

Formally, Weighted-ICDT computes the weight of a training instance
with true class value cj via the following formula:

wj = Cost(j)× Ntrain∑K
i=1 n̂train(ci)× Cost(i)

, (19)

where Cost(j) is the cost of misclassifying an instance whose real class value
is cj, calculated by Equation (1), ∀j = 1, 2, . . . , K.

Let D denote the subset of the training set associated with a certain node,
N the number of instances in D, and n(cj) the number of instances in D for

12



1 Procedure Determine arrangement of maximum entropy on
P (IC)(frequencies of the class values in the training set
(ntrain(c1), ntrain(c2), . . . , ntrain(cK)))

2 for j = 1 to K do
3 if ntrain(cj) ≤ 1 then
4 n̂train(cj) = 0
5 end
6 else
7 n̂train(cj) = ntrain(cj)− 1
8 end

9 end
10 mass = |{cj | ntrain(cj) > 0, 1 ≤ j ≤ K}|
11 r = 0
12 while mass > 0 do
13 if (Ktrain(r) +Ktrain(r + 1)) < mass then
14 for j = 1 to K do
15 if ntrain(cj) = r or ntrain(cj) = r + 1 then
16 n̂train(cj) = n̂train(cj) + 1
17 mass = mass− 1

18 end

19 end

20 end
21 else
22 for j = 1 to K do
23 if ntrain(cj) = r or ntrain(cj) = r + 1 then
24 n̂train(cj) = n̂train(cj) + mass

Ktrain(r)+Ktrain(r+1)

25 end

26 end
27 mass = 0

28 end
29 r = r + 1

30 end
31 return (n̂train(c1), n̂train(c2), . . . , n̂train(cK))

Algorithm 1: Procedure to obtain the arrangement that attains the
maximum entropy on P (IC).
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which C = cj, ∀j = 1, 2, . . . , K. For the split criterion, Weighted-ICDT
considers the A-NPI-M credal set on C corresponding to D:

PD (C) =
{
p ∈ P (C) | lDj ≤ p(cj) ≤ uDj , ∀j = 1, 2, . . . , K

}
, (20)

where lDj = max
(
n(cj)−1

N
, 0
)

and uDj = min
(
n(cj)+1

N
, 1
)
, ∀j = 1, 2, . . . , K.

Let (n̂(c1), n̂(c2), . . . , n̂(cK)) be the arrangement of the class values in the
node that gives rise to the maximum entropy on PD (C). That arrangement
is obtained via a similar procedure to the one given in Algorithm 1.

Then, Weighted-ICDT estimates the probability of each class value in
that node through a weighted proportion of instances, as Weighted-DT. Nev-
ertheless, Weighted-ICDT uses the arrangement that reaches the maximum
entropy with the A-NPI-M, unlike Weighted-DT, which employs the relative
frequencies in the node. So, the probability of the cj value estimated by
Weighted-ICDT in that node is given by:

p̂(cj) =
wj × n̂(cj)∑K
i=1wi × n̂(ci)

, ∀j = 1, 2, . . . , K. (21)

In this way, with Weighted-ICDT, the uncertainty about the class vari-
able in that node is calculated via the Shannon entropy of the probability
distribution p̂, determined according to Equation (21):

ĤD (C) = −
K∑
j=1

p̂(cj) log2 p̂(cj). (22)

Let X be an attribute that takes values in {x1, x2, . . . , xt}. The split
criterion of Weighted-ICDT is called the Weighted Information Gain (WIG).
It is based on the entropy defined in Equation (22) and is given by:

WIGD(C,X) = ĤD (C)−
t∑
i=1

P̂D(X = xi)× ĤD (C | X = xi) , (23)

where ĤD (C | X = xi) is the entropy of C on the subset of D composed
of those instances for which X = xi and P̂D(X = xi) the probability that
X = xi on D, estimated via proportion of weights:

P̂D(X = xi) =

∑K
j=1 n(xi, cj)× wj∑K
j=1 n(cj)× wj

, ∀i = 1, 2, . . . , t, (24)
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n(xi, cj) being the number of instances in D that satisfy X = xi and C =
cj, ∀i = 1, 2, . . . , t, j = 1, 2, . . . , K.

Once the instance weights are computed by means of Equation (19), the
building process of the proposed Weighted-ICDT method can be summarized
in Algorithm 2.

1 Procedure Build Weighted-ICDT(Node N0, set of attributes L)
2 if L = ∅ then
3 Exit
4 end
5 Let D be the dataset corresponding to N0

6 α = maxX∈L
{
WIGD(C,X)

}
7 if α ≤ 0 then
8 Exit
9 end

10 Let Xl the attribute for which α is obtained
11 Assign Xl to N0

12 for xl possible value of Xl do
13 Add node Nl0 child of N0

14 Call Build Weighted-ICDT(Nl0, L \ {Xl})
15 end

Algorithm 2: Pseudo-code of building process of Weighted-ICDT.

For classifying a new instance at a leaf node, Weighted-ICDT computes,
for each value of the class variable, a probability interval based on the A-
NPI-M lower and upper probabilities that also takes the weight of the class
value into account.

Formally, let n(cj) be the frequency of the cj value at the leaf node,
∀j = 1, 2, . . . , K. We know that the A-NPI-M lower and upper probabilities
of cj at that leaf node are given by:

P (cj) = max

(
n(cj)− 1

N
, 0

)
, P (cj) = min

(
n(cj) + 1

N
, 1

)
, ∀j = 1, . . . , K,

(25)
where N is the number of instances in the terminal node.

Weighted-ICDT considers, for the lower (upper) probability, the propor-
tion of weights in an arrangement of the class values for which the A-NPI-M
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lower (upper) probability is attained. Hence, at that leaf node, we have the
following probability interval for each class value:[

max

(
wj × (n(cj)− 1)

W
, 0

)
,min

(
wj × (n(cj) + 1)

W
, 1

)]
, ∀j = 1, 2, . . . , K,

(26)
W being the sum of all weights at that leaf node, i.e, W =

∑K
i=1wi × n(ci).

Then, a dominance criterion is applied to these probability intervals to
obtain the set of non-dominated states. Our proposed Weighted-ICDT algo-
rithm utilizes a strong dominance criterion, known as stochastic dominance
[19], on these intervals. According to that criterion, a class value cj dominates
another one ci if, and only if,

max

(
wj × (n(cj)− 1)

W
, 0

)
≥ min

(
wi × (n(ci) + 1)

W
, 1

)
⇔

wj × (n(cj)− 1)

W
≥ wi × (n(ci) + 1)

W
⇔

wj × (n(cj)− 1) ≥ wi × (n(ci) + 1) , ∀i, j ∈ {1, 2, . . . , K} .

Consequently, the non-dominated states set predicted by Weighted-ICDT
at that leaf node is determined as follows:

{ci, 1 ≤ i ≤ K | wi × (n(ci) + 1) > wj × (n(cj)− 1) , ∀j = 1, 2, . . . , K} .
(27)

Algorithm 3 summarizes the procedure employed by Weighted-ICDT to
determine the non-dominated states set at a leaf node.

1 Procedure Classify Weighted-ICDT(Leaf node N0)
2 for j = 1 to K do
3 Compute a probability interval [P (cj), P (cj)] via Equation (25)
4 end
5 Determine the non-dominated states set at N0 by means of Equation

(27).

Algorithm 3: Procedure to determine the non-dominated states set
at a leaf node with Weighted-ICDT.
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3.1. Justification of our proposal

The most relevant issues of our proposed Weighted-ICDT method can be
summarized in the following way:

• Similar to Weighted-DT, Weighted-ICDT computes a weight for each
instance depending on the cost of misclassifying the corresponding class
value. Both methods estimate the costs in the same way. Nevertheless,
whereas Weighted-DT estimates the instance weights based on such
costs by using the class frequencies in the training set, Weighted-ICDT
utilizes the arrangement that reaches the maximum entropy on the
A-NPI-M credal set. Therefore, unlike Weighted-DT, Weighted-ICDT
considers that the training set is not totally reliable and employs the
well-established uncertainty measure on credal sets.

• In the split criterion, the existing CS-ICDT method considers that all
instances have the same importance, regardless of their class values. It
is oriented to minimize the number of classification errors but it neglects
varying costs of errors. In contrast, for computing the uncertainty
of the class variable in a certain node, Weighted-ICDT considers the
proportion of instance weights for each class value. In this way, in
Weighted-ICDT, the instances whose class value has a higher cost of
misclassification have more importance. For example, suppose that
we have two class values, c1 and c2, where the cost of erroneously
classifying an instance with real class value c1 is ten times the cost of
misclassifying an instance whose real class value is c2. Suppose that, in
a certain node, there are four instances whose true class value is c1 and
another four instances with real class value c2. In this case, for the split
criterion, CS-ICDT considers that there is total uncertainty about the
class variable, while our proposed Weighted-ICDT algorithm estimates
that, in that node, the uncertainty of the class variable is considerably
low. So, the uncertainty value estimated by our proposal is intuitively
far more reasonable than the one estimated by CS-ICDT because, if
that node were terminal, it would be quite logical to predict c1.

• Indeed, Weight-DT also considers that the importance of an instance
to calculate the uncertainty value depends on the error cost of the asso-
ciated class value. However, for estimating the probability of each class
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value, Weighted-ICDT employs the arrangement that obtains the max-
imum entropy with the A-NPI-M, whereas Weighted-DT uses the ar-
rangement associated with relative frequencies. In consequence, unlike
Weighted-DT, Weighted-ICDT considers that the dataset in a certain
node is not totally reliable and employs the well-established uncertainty
measure on the corresponding A-NPI-M credal set.

• To classify an instance at a leaf node, our proposed Weighted-ICDT
method considers, for each class value, a probability interval that de-
pends on the frequency of that class value in that terminal node and the
cost of incorrectly classifying an instance that has such a class value.
Consequently, as in the split criterion, the instances whose class value
has a higher cost of erroneous classification have more importance. In
contrast, CS-ICDT calculates the lower and upper probabilities for each
class value by considering that all instances have the same weight. Af-
terwards, it computes a risk interval for each class value in which the
lower (upper) risk is calculated taking into account the lower (upper)
probabilities of the remaining class values and the costs of predicting
that class value when the real class value is another one. Thereby, the
lower and upper probabilities of the corresponding class value do not
directly influence the computation of the risk interval, and the cost of
misclassifying an instance with that class value is also not taken into
account. Concerning the dominance criterion on the probability inter-
vals at leaf nodes, as CS-ICDT, Weighted-ICDT uses the stochastic
dominance criterion, the strongest dominance criterion on a given set
of probability intervals, and the one well-established in these cases [36].

For these reasons, the risk intervals computed by CS-ICDT might be
generally less informative than the probability intervals computed by
Weighted-ICDT. This issue is illustrated in Example 2.

• The original CS-ICDT method, proposed in [20], uses the IDM for the
uncertainty measures in the split criterion and for the lower and upper
probabilities at leaf nodes. In contrast, our proposed Weighted-ICDT
algorithm utilizes the A-NPI-M for estimating the instance weights, in
the split criterion, and for the probability intervals at leaf nodes. The
A-NPI-M is a more appropriate model than the IDM as it does not
assumes previous knowledge about the data via a parameter.
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Example 2. Suppose that we have a training set of Ntrain = 150 instances.
Let C the class variable and {c1, c2, c3} its possible values. Let M be the
matrix of error costs where mii = 0 ∀i = 1, 2, 3, mi1 = 1 for i = 2, 3,
mi2 = 2 for i = 1, 3, and mi3 = 3 for i = 1, 2.

The costs of misclassifying each class value are given by:

Cost(1) = m21 +m31 = 2,

Cost(2) = m12 +m32 = 4,

Cost(3) = m13 +m23 = 6.

Let us assume the following class frequencies in the training set: ntrain(c1) =
ntrain(c2) = ntrain(c3) = 50.

In this case, the arrangement that attains the maximum entropy with
the A-NPI-M coincides with the one corresponding to relative frequencies.
Therefore, the instance weights computed by Weighted-ICDT for the class
values are the following ones:

w1 = Cost(1)× Ntrain∑3
i=1Cost(i)× ntrain(ci)

=
2× 150

100 + 200 + 300
= 0.5,

w2 = Cost(2)× Ntrain∑3
i=1Cost(i)× ntrain(ci)

=
4× 150

100 + 200 + 300
= 1,

w3 = Cost(3)× Ntrain∑3
i=1Cost(i)× ntrain(ci)

=
6× 150

100 + 200 + 300
= 1.5.

Suppose that, at a certain leaf node, n(c1) = n(c2) = n(c3) = 3. In such a
case, according to the A-NPI-M, P (ci) = 2

9
and P (ci) = 4

9
, for i = 1, 2, 3.

The risk intervals determined by CS-ICDT for the class values are given by:

R(c1) = P (c2)m12 + P (c3)m13 =
10

9
, R(c1) = P (c2)m12 + P (c3)m13 =

20

9
,

R(c2) = P (c1)m21 + P (c3)m23 =
8

9
, R(c2) = P (c1)m21 + P (c3)m23 =

16

9
,

R(c3) = P (c1)m31 + P (c2)m32 =
6

9
, R(c3) = P (c1)m31 + P (c2)m32 =

12

9
.

In consequence, R(ci) > R(cj) ∀i, j ∈ {1, 2, 3} and, thus, any of the
class values is dominated under the stochastic dominance criterion on these
risk intervals.
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Regarding Weighted-ICDT, it holds that:

w1 × (n(c1)− 1) = 0.5× 2 = 1, w1 × (n(c1) + 1) = 0.5× 4 = 2,

w2 × (n(c2)− 1) = 1× 2 = 2, w2 × (n(c2) + 1) = 1× 4 = 4,

w3 × (n(c3)− 1) = 1.5× 2 = 3, w3 × (n(c3) + 1) = 1.5× 4 = 6,

Thereby, according to the stochastic dominance criterion utilized in Weighted-
ICDT, c1 is dominated by both c2 and c3. The non-dominated states set
predicted by Weighted-ICDT is {c2, c3}.

Hence, in this situation, the prediction made by Weighted-ICDT is more
informative and intuitive than the one made by CS-ICDT.

Table 1 summarizes the differences between Weighted-DT, the existing
CS-ICDT, and our proposed Weighted-ICDT. It should be noted that, in
the proposed Weighted-ICDT method, the weight of an instance for the split
criterion depends on the error cost of its class value, unlike CS-ICDT; the
criterion used by Weighted-ICDT to classify instances at leaf nodes may
be more effective than the one employed by CS-ICDT because the predicted
intervals are probably more informative. For these reasons, it is expected that
Weighted-ICDT performs better than CS-ICDT. This point is corroborated
in Section 4 with exhaustive experimentation.

Table 1: Summary of the differences between Weighted-DT, CS-ICDT, and Weighted-
ICDT.

Property Weighted-DT CS-ICDT Weighted-ICDT
Mathematical model precise probabilities IDM A-NPI-M

Error costs in
the split criterion yes no yes

Criterion to
classify instances precise prediction little informative very informative

4. Experimental analysis

In our experimentation, we aim to compare the performance of the CS-
ICDT algorithm with the IDM (CS-ICDT-IDM) and with the A-NPI-M (CS-
ICDT-NPI) and our proposed Weighted-ICDT method.
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4.1. Experimental setup

4.1.1. Datasets

For testing the performance of the algorithms considered in this experi-
mentation, the 34 datasets used in the experimental analysis carried out by
Abellán and Masegosa in [20] have been employed. All of them can be found
in UCI Machine Learning Repository [38]. They are diverse in terms of size,
number of values of the class variable, number of continuous and discrete
features, ranges of values of discrete attributes, etc. The datasets have been
selected so that they have at least three class values as, with only two pos-
sible values of the class variable, an imprecise classifier always predicts all
class values or only one. Table 2 shows the most important characteristics
of each dataset.

4.1.2. Procedure

Consistently with the experimental studies about Imprecise Classifica-
tion algorithms carried out in [20, 39], the datasets have been preprocessed
as follows: missing values have been replaced with mean values for contin-
uous attributes and with modal values for discrete features. Afterward, the
datasets have been discretized via Fayyad and Irani’s discretization method
[40]. The preprocessing has been applied to the training set and, then, it has
been translated to the test set. The filters given in the Weka software [41]
have been employed for the preprocessing.

Three algorithms have been used in this experimental analysis: CS-ICDT-
IDM, CS-ICDT-NPI, and Weighted-ICDT. Remark that the computational
complexity of these three methods is similar since they are Decision Trees
whose split criterion is based on the maximum entropy on a mathematical
model based on coherent probability intervals. We do not use more algo-
rithms because, as explained in the introduction, CS-ICDT-IDM and the
adaptation of NCC for cost-sensitive classification are the only methods for
cost-sensitive Imprecise Classification proposed so far, and, since the former
algorithm significantly outperforms the latter, considering the adaptation of
NCC could introduce noise in the statistical comparisons.

The implementation of the original ICDT algorithm provided in Weka
has been employed, and the required structures and methods for using CS-
ICDT-IDM, CS-ICDT-NPI, and Weighted-ICDT have been added to this
software. For CS-ICDT-IDM, the value s = 1, one of the values recommended

21



Table 2: Description of the datasets employed in our experiments. Column “N” is the number of

instances, column “Attr” is the number of attributes, column “Cont” is the number of continuous features,

column “Disc” is the number of discrete features, column “K” is the number of class values, and column

“Range” is the range of values of the discrete attributes.

Dataset N Attr Cont Disc K Range
anneal 898 38 6 32 6 2-10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22
balance-scale 625 4 4 0 3 -
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
dermatology 366 34 1 33 6 2-4
ecoli 366 7 7 0 7 -
flags 194 30 2 28 8 2-13
hypothyroid 3772 30 7 23 4 2-4
iris 150 4 4 0 3 -
letter 20000 16 16 0 26 -
lymphography 146 18 3 15 4 2-8
mfeat-pixel 2000 240 0 240 10 4-6
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10992 16 16 0 10 -
postop-patient-data 90 9 0 9 3 2-4
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2-7
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2
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in [23], has been used, as in the experimental analysis carried out in [20]1.
Consistently with such an experimental analysis, five cost matrices have been
employed, which we describe below.

Let σ : {1, 2, . . . , K} → {1, 2, . . . , K} be a permutation that yields a
decreasing order of the frequencies of the class values in the training set, i.e
ntrain

(
cσ(i)

)
≥ ntrain

(
cσ(j)

)
∀1 ≤ i ≤ j ≤ K. The cost matrices used in

this experimentation are the following ones:

• Cost Matrix 0/1: The costs of all erroneous predictions are equal to
1, i.e:

mij = 1 ∀i, j ∈ {1, 2, . . . , K} , j 6= i,

mjj = 0 ∀j = 1, 2, . . . , K.

• Cost Matrix (I): The cost of an incorrect prediction only depends
on the real class value. The class values with lower frequencies have
more cost than the ones with higher frequencies. Specifically, the cost
of misclassifying an instance whose real class value is the one with the
highest frequency is equal to one, the cost of misclassifying an instance
whose true class value is the one with the second-highest frequency is
equal to 2, and so on. Formally:

miσ(j) = j ∀i, j ∈ {1, 2, . . . , K} , σ(j) 6= i,

mjj = 0 ∀j = 1, 2, . . . , K.

• Cost Matrix (II): Only the predicted class value influences the cost of
an erroneous prediction. Again, the class values with lower frequencies
have more cost than the ones with higher frequencies. The cost of
erroneously predicting the class value with the highest frequency is
equal to 1, the cost of incorrectly predicting the class value with the
second-highest frequency is equal to 2, and so on:

mσ(j)i = j ∀i, j ∈ {1, 2, . . . , K} , σ(j) 6= i,

mjj = 0 ∀j = 1, 2, . . . , K.

1Experiments have been carried out with s = 2, but the obtained results are always
worse than with s = 1. So, they are not reported.
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• Cost Matrix (III): This cost matrix is equivalent to Cost Matrix (I),
but now the class values with lower frequencies have lower costs than
the class values with higher frequencies:

miσ(j) = K − j + 1 ∀i, j ∈ {1, 2, . . . , K} , σ(j) 6= i,

mjj = 0 ∀j = 1, 2, . . . , K.

• Cost Matrix (IV): It is similar to Cost Matrix (II). However, now
the class values with lower frequencies have lower costs than the class
values with higher frequencies:

mσ(j)i = K − j + 1 ∀i, j ∈ {1, 2, . . . , K} , σ(j) 6= i,

mjj = 0 ∀j = 1, 2, . . . , K.

For each preprocessed dataset and cost matrix, a cross-validation proce-
dure of 10 folds has been repeated 10 times.

4.1.3. Evaluation metrics

Since all the algorithms employed in our experimental analysis consider
costs of errors, an accuracy measure is not useful enough here. Instead, we
use the evaluation metric proposed in [20] for imprecise classifiers that take
the error costs into consideration. Such an evaluation metric, called MIC,
for misclassifications, takes the maximum cost of predicting a class value
belonging to the non-dominated states set into account. Also, for correct
predictions, MIC considers the number of non-dominated states.

Formally, let cti denote the real class value of the ith test instance, with
ti ∈ {1, 2, . . . , K}, and Ui the predicted non-dominated states set for such an
instance. For instances incorrectly classified, it is considered:

αti = max
cj∈Ui

mjti . (28)

Then, MIC is defined as:

MIC =
1

Ntest

×

(
−

∑
i:Correct

log2

|Ui|
K
− 1

K − 1
×
∑
i:Error

−αti × log2K

)
,

(29)
where Ntest is the number of test instances.
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This measure penalizes the errors in a strict sense. It reaches its optimal
value (log2(K)) when all predictions are correct and precise. When an im-
precise classifier always predicts all class values, the MIC value is equal to
0. It makes sense since, in such a case, the classifier is not informative.

The following metrics allow separately evaluating how informative the
predictions are and the costs of misclassifications:

• Determinacy: It indicates the proportion of test instances for which
a single class value is predicted.

• Indeterminacy size: It measures, among the test instances for which
there are two or more non-dominated states, the average number of
predicted values of the class variable.

• Single Cost: It indicates, among the test instances precisely classified,
the average cost of misclassification.

• Set Cost: It measures the average error cost between the test instances
for which more than a class value is predicted:

1

|{1 ≤ i ≤ Ntest | |Ui| ≥ 2}|
×

Ntest∑
i=1,|Ui|≥2∧i:Error

αti , (30)

where αti is given by Equation (28).

Determinacy and Indeterminacy size focus on how informative the pre-
dictions are, while Single Cost and Set Cost focus on the costs of incorrect
classifications.2

4.1.4. Statistical evaluation

Following the recommendations given in [42] for statistical comparisons
between the results obtained by three or more algorithms on many datasets,
the following statistical tests have been used with a level of significance of
α = 0.05 to compare the performance of the algorithms considered here:

2Single Cost and Set Cost are, respectively, the adaptations of the Single Accuracy and
Set Accuracy measures, proposed in [19], for cost-sensitive scenarios.
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• Friedman test [43]: This test is non-parametric and separately ranks
the algorithms for each dataset: the algorithm that achieves the best
result is assigned to position 1, the one that obtains the second-best
result to position 2, and so on. The null hypothesis of this test is that
all algorithms obtain equivalent results.

• Nemenyi test [44]: It compares all algorithms pairwise when the null
hypothesis of the Friedman test is rejected.

We use critical diagrams [42] to present the results of the Friedman and
Nemenyi tests. A critical diagram utilizes an enumerated axis for drawing the
average Friedman ranks of the methods. The algorithms are arranged so that
the ones with the highest rank are placed at the right-most side. Segments are
used to connect the algorithms for which there are no statistically significant
differences according to the Nemenyi test.

4.2. Results and discussion

Table 3 lets us observe the average Friedman rank obtained by each al-
gorithm for each cost matrix in MIC. The best result for each cost matrix
is marked in bold. Figures 2, 3, 4, 5, and 6 show the critical diagrams cor-
responding to Cost Matrices 0/1, (I), (II), (III), and (IV), respectively. In
Appendix A, the complete MIC results can be found.

Table 3: Average Friedman rank obtained by each algorithm in MIC for each cost matrix.
Cost Matrix

Algorithm 0/1 (I) (II) (III) (IV)
CS-ICDT-IDM 2.2794 2.0588 2.2353 2.0882 2.5588
CS-ICDT-NPI 2.5882 2.6324 2.5441 2.4559 2.6176

Weighted-ICDT 1.1324 1.3088 1.2206 1.4559 1.1765

We express the following comments about these results:

• As can be seen in Table 3 and Figures 2-6, CS-ICDT-IDM obtains a
lower average Friedman rank than CS-ICDT-NPI for all the cost matri-
ces considered in this experimentation. Nevertheless, as CS-ICDT-IDM
and CS-ICDT-NPI are connected via a segment in all critical diagrams
(Figures 2-6), there are no statistically significant differences according
to the Nemenyi test between these two algorithms for any of the five
cost matrices considered. In consequence, we could say that CS-ICDT-
NPI obtains statistically equivalent results to CS-ICDT-IDM.
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Figure 2: Critical diagram for the MIC measure with Cost Matrix 0/1. CD = Critical
Distance.

Figure 3: Critical diagram for the MIC measure with Cost Matrix (I). CD = Critical
Distance.

Figure 4: Critical diagram for the MIC measure with Cost Matrix (II). CD = Critical
Distance.

27



Figure 5: Critical diagram for the MIC measure with Cost Matrix (III). CD = Critical
Distance.

Figure 6: Critical diagram for the MIC measure with Cost Matrix (IV). CD = Critical
Distance.

• Table 3 shows that, for all cost matrices, the lowest average Friedman
rank is achieved by our proposed Weighted-ICDT method. In addition,
as can be seen in Figures 2-6, in the critical diagrams, Weighted-ICDT
is not connected with the other two algorithms via segments. Thus,
according to the Nemenyi test, Weighted-ICDT performs significantly
better than CS-ICDT-NPI and CS-ICDT-IDM for the five cost matri-
ces. So, we can state that Weighted-ICDT achieves, by far, the best
results.

For a deeper analysis, Table 4 presents, for each cost matrix considered
in our experimental analysis, the average results obtained by each algorithm
in Determinacy, Indeterminacy Size, Single Cost, and Set Cost. The best
result for each measure and cost matrix is marked in bold.

These results indicate the following points for each metric:

• Determinacy:

– CS-ICDT-IDM makes more precise predictions than CS-ICDT-
NPI since the average Determinacy value obtained by CS-ICDT-
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Table 4: Average values obtained by each algorithm in the individual evaluation metrics
for each cost matrix.

Cost Matrix
Measure Algorithm 0/1 (I) (II) (III) (IV)

CS-ICDT-IDM 0.7094 0.6248 0.6457 0.7159 0.5432
Determinacy CS-ICDT-NPI 0.6835 0.6070 0.6404 0.7025 0.5068

Weighted-ICDT 0.9002 0.8083 0.8756 0.8485 0.8685
CS-ICDT-IDM 0.0890 0.1739 0.6457 0.3625 0.1613

Single Cost CS-ICDT-NPI 0.0806 0.1598 0.1183 0.3584 0.1345
Weighted-ICDT 0.1521 0.4294 0.4156 0.9636 1.0995
CS-ICDT-IDM 8.6956 8.7030 3.6924 8.4671 3.4241

Indeterminacy Size CS-ICDT-NPI 8.8938 9.0162 4.4448 8.6728 3.9586
Weighted-ICDT 7.9228 7.1027 7.2984 7.0778 7.4300
CS-ICDT-IDM 0.0041 0.0145 0.3001 0.0220 0.8438

Set Cost CS-ICDT-NPI 0.0061 0.0087 0.2100 0.0355 0.6742
Weighted-ICDT 0.0075 0.0993 0.0636 0.1074 0.1528

NPI is lower than the one obtained by CS-ICDT-IDM for all cost
matrices.

– Our proposed Weighted-ICDT algorithm achieves, by far, the high-
est average Determinacy value for all cost matrices. Hence, this
method is, by far, the one that makes more precise predictions
among the ones considered in this experimentation.

• Indeterminacy Size:

– For imprecise predictions, CS-ICDT-NPI predicts more class val-
ues than CS-ICDT-IDM due to the average results obtained in
Indeterminacy Size. Thus, it can be stated that the predictions
made by CS-ICDT-IDM are more informative than the ones made
by CS-ICDT-NPI.

– The cost matrix influences the average Indeterminacy Size value of
Weighted-ICDT. For Cost Matrices 0/1, (I), and (III), Weighted-
ICDT obtains the lowest average Indeterminacy Size value. There-
fore, for such cost matrices, the imprecise predictions made by
Weighted-ICDT are the most informative ones. The opposite
happens with cost matrices (II) and (IV). Nonetheless, we must
remark that, with these cost matrices, the average Determinacy
value obtained by Weighted-ICDT is pretty high.

• Single Cost:
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– CS-ICDT-NPI obtains a better result than CS-ICDT-IDM con-
cerning the misclassification cost of precise predictions for all the
cost matrices considered here.

– Weighted-ICDT gets the highest average value of Single Cost for
the five cost matrices. Thereby, it obtains the highest misclassifi-
cation cost when predicting a single class value.

• Set Cost:

– For Cost Matrices 0/1, (I), and (III), CS-ICDT-NPI obtains a
higher average Set Cost value than CS-ICDT-IDM, while, for Cost
Matrices (II) and (IV), CS-ICDT-NPI achieves the lowest average
Set Cost value.

– Weighted-ICDT obtains the highest average Set Cost value for
Cost Matrices 0/1, (I), and (III). Thereby, for these cost matrices,
the cost of incorrect imprecise predictions with Weighted-ICDT
is higher than with the other algorithms. The contrary happens
with Cost Matrices (II) and (IV).

Summary of the results: The results obtained in this experimental
study can be summarized as follows:

• From a general point of view, our proposed Weighted-ICDT method
performs far better than the remaining ones considering the MIC mea-
sure, the most important metric used here. We can see in Table 3 and
Figures 2-6 that, for all cost matrices, the Friedman rank is notably
lower for Weighted-ICDT. About the rest of the metrics that we use in
the comparison (Table 4), the new proposal achieves the best results in
Determinacy and Indeterminacy size. Only the CS-ICDT-NPI outper-
forms the rest on Single cost. However, this method obtains the worst
results in Determinacy. The Size Cost value is more distributed among
all methods.

Considering comparisons method versus method, it can be remarked that:

• The predictions made by CS-ICDT-NPI are less informative than the
ones made by CS-ICDT-IDM. It is because, as shown in [37], given a
sample of outcomes of a discrete attribute, IDM probability intervals
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with s = 1 are contained in A-NPI-M probability intervals. Since the
predictions made by CS-ICDT-IDM are more precise than the ones
made by CS-ICDT-NPI, the risk of misclassification is higher with the
former algorithm and, therefore, the cost of incorrect classifications is
generally higher with CS-ICDT-IDM.

• The results obtained in MIC allow deducing that CS-ICDT-IDM and
CS-ICDT-NPI achieve an equivalent trade-off between informative pre-
dictions and low misclassification cost and, thus, they perform equiv-
alently. It is consistent with the experimental studies carried out in
[27, 28], where it was shown that the NPI-M obtains equivalent results
to the IDM with the recommended value of the parameter when both
models are utilized in precise and imprecise classification.

• Our proposed Weighted-ICDT method makes much more informative
predictions than the other algorithms, even though it leads to a higher
cost of incorrect predictions. Weighted-ICDT achieves the best trade-
off between informative predictions and low misclassification costs. It is
because, as argued in Section 3.1, the criterion employed by Weighted-
ICDT to classify instances at leaf nodes is probably more effective than
the one used by CS-ICDT as the predicted intervals may be more in-
formative and, unlike CS-ICDT, Weighted-ICDT considers the costs of
errors for the uncertainty measures in the split criterion.

• Hence, Weighted-ICDT is, by far, the algorithm that obtains the best
performance among the ones considered in this experimentation.

5. Conclusions and future work

Classification errors usually have different costs in practical applications.
Also, classifiers normally predict a single value of the class variable. However,
in some situations, there is not enough information available to point to a
unique class value. In these cases, it is more logical that classifiers predict a
set of values of the class variable. This is known as Imprecise Classification.
A Decision Tree for Imprecise Classification that takes the costs of errors into
account, called cost-sensitive Imprecise Credal Decision Tree, was introduced
a few years ago.

Based on the idea of an existing Decision Tree for cost-sensitive precise
classification, in this work, we have proposed a new cost-sensitive Imprecise
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Credal Decision Tree that weights the instances by taking the misclassifica-
tion cost of the corresponding class value into account. This new method con-
siders the error costs in the building process, unlike the existing cost-sensitive
Imprecise Credal Decision Tree, which only considers the error costs for clas-
sifying instances at leaf nodes. Thereby, for the split criterion, an instance
has more importance as the misclassification cost of the corresponding class
value is higher. In this sense, our proposal presents an advantage over the
existing cost-sensitive Imprecise Credal Decision Tree because the aim is to
minimize the cost of incorrect classifications and not the number of erroneous
predictions. Furthermore, our proposed cost-sensitive Imprecise Credal De-
cision Tree uses the Nonparametric Predictive Inference Model, whereas the
existing one employs the Imprecise Dirichlet Model. As explained before, the
former model is more suitable than the latter as it does not assume previ-
ous knowledge about the data via a parameter. We have also argued that
the criterion employed by our proposed algorithm to classify instances at
leaf nodes is probably more effective than the one used by the existing cost-
sensitive Imprecise Credal Decision Tree since the predictions made may be
more informative.

An experimental study has been carried out to check the performance of
the existing cost-sensitive Imprecise Credal Decision Tree using the Impre-
cise Dirichlet Model and the Nonparametric Predictive Inference Model and
our proposal. Such an experimental study has revealed that the Nonpara-
metric Predictive Inference Model obtains statistically equivalent results to
the Imprecise Dirichlet Model with the recommended value of the param-
eter when both models are utilized in the existing cost-sensitive Imprecise
Credal Decision Tree and, as expected, our proposed cost-sensitive Impre-
cise Credal Decision Tree performs significantly better than the existing one;
even though the cost of erroneous predictions of our proposed method is
higher, it is far more informative and achieves a better trade-off between low
misclassification cost and informative predictions.

Therefore, it can be concluded that our proposed cost-sensitive Imprecise
Credal Decision Tree is more suitable than the existing one for practical
applications where the misclassification costs are different and the available
information is not enough for classifiers to point to a unique class value.

As future research, other Decision Trees for cost-sensitive Imprecise Clas-
sification could be developed by considering weights for the instances in a
different way for the split criterion or through other criteria for classifying
instances at leaf nodes. Moreover, it would be interesting to develop ensem-
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ble methods for cost-sensitive Imprecise Classification that use our proposed
algorithm as the base classifier.
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Appendix A. Complete results

In this appendix, we show the complete experimental results correspond-
ing to the MIC measure. Best results are marked in bold font.
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[37] S. Moral-Garćıa, J. Abellán, Uncertainty-based information measures
on the approximate non-parametric predictive inference model, Inter-
national Journal of General Systems 50 (2) (2021) 159–181. doi:

10.1080/03081079.2020.1866567.

[38] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

40
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