
Multi-granularity Relabeled Under-sampling Algorithm for Imbalanced
Data

Qi Daia, Jian-wei Liua,∗, Yang Liub

aDepartment of Automation, College of Information Science and Engineering, China University of Petroleum ,
Beijing, Beijing, China

bCollege of Science, North China University of Science and Technology (NCST), Tangshan, China

Abstract

The imbalanced classification problem turns out to be one of the important and challenging problems

in data mining and machine learning. The performances of traditional classifiers will be severely

affected by many data problems, such as class imbalanced problem, class overlap and noise. When the

number of one class in the data set is larger than other classes, class imbalanced problem will inevitably

occur. Therefore, many researchers are committed to solving the problem of category imbalance and

improving the overall classification performances of the classifier. The Tomek-Link algorithm was

only used to clean data when it was proposed. In recent years, there have been reports of combining

Tomek-Link algorithm with sampling technique. The Tomek-Link sampling algorithm can effectively

reduce the class overlap on data, remove the majority instances that are difficult to distinguish, and

improve the algorithm classification accuracy. However, the Tomek-Links under-sampling algorithm

only considers the boundary instances that are the nearest neighbors to each other globally and ignores

the potential local overlapping instances. When the number of minority instances is small, the under-

sampling effect is not satisfactory, and the performance improvement of the classification model is

not obvious. Therefore, on the basis of Tomek-Link, a multi-granularity relabeled under-sampling

algorithm (MGRU) is proposed. This algorithm fully considers the local information of the data set

in the local granularity subspace, and detects the local potential overlapping instances in the data

set. Then, the overlapped majority instances are eliminated according to the global relabeled index

value, which effectively expands the detection range of Tomek-Links. The simulation results show that

when we select the optimal global relabeled index value for under-sampling, the classification accuracy

and generalization performance of the proposed under-sampling algorithm are significantly better than

other baseline algorithms.

Keywords: Imbalanced data; class overlap; under-sampling; tomek-link; Mahalanobis distance;

classification

∗Corresponding author
Email address: liujw@cup.edu.cn (Jian-wei Liu)

Preprint submitted to arXiv January 12, 2022

ar
X

iv
:2

20
1.

03
95

7v
1

 [
cs

.L
G

]
 1

1
Ja

n
20

22

1. Introduction

Imbalanced data is a special form of existence in the data mining field. It has high research value or

commercial significance in many application fields, for example, network intrusion detection [1, 2, 3],

fault detection [4], software defect prediction [5], spam review detection [6] and other fields. In a binary-

class imbalanced data set, the performances of traditional classifiers are easily affected seriously when

the number of instances in the negative (majority) class is overwhelmed the number of instances in

the positive (minority) class [7]. Traditional classifiers usually assume that the distribution of class

in the data set is balanced. In the process of imbalanced data classification, the overall classification

accuracy may be high, while classification accuracy of the positive classes is low [8]. Imbalanced data

has the two structural characteristics, i.e., imbalanced distribution and class overlap. The traditional

classification model cannot effectively handle the structural characteristics existing in imbalanced data.

It is difficult to determine the true classification boundary of the data set, resulting in low recognition

accuracy of positive instances [9].

In real world applications, positive instances often have higher value, while traditional classifiers

cannot effectively identify positive instances in imbalanced data, and lose the significance of classifica-

tion learning on imbalanced data sets [10, 11]. Till now imbalanced data mining algorithms roughly

contain three types of studying approaches: data-level [12, 13, 14], algorithm-level [15, 16] and hybrid

mining algorithms [17]. The data-level algorithms take different measures to change the data set dis-

tribution under classes to achieve data rebalance, thereby improving the classification performance of

the model. The dominant data-level algorithms comprise three sorts: under-sampling, over-sampling

and hybrid sampling [18, 19, 20]. The algorithm level algorithm is mainly to modify the existing clas-

sification algorithm, so that the classifier can adapt to the data structure of imbalanced data, enhance

the ability of the classifier to recognize positive instances, and improve the classification accuracy and

generalization ability of the model, such as ensemble learning algorithm or Fuzzy weighted support

vector machine, etc[21]. The hybrid mining algorithm uses both the data-level and the algorithm-level

algorithms at the same time to maximize the advantages of the two algorithms.

In imbalanced classification problems, when multiple types of instances share a specific area in the

data space, the phenomenon of class overlap will occur [22]. Since the different degree of overlap of

the data sets, the number of overlapping instances in the data sets also has significant differences.

And what makes things worse is that, although these instances belong to different categories, values

of their feature are similar, and this complexity is a major obstacle to be overcome for imbalanced

classification tasks [23]. What further increases the difficulty is that, overlapping instances are often

located near the decision boundary, and are likely to be incorrectly classified by the algorithm. In

sum up, the existence of overlapping instances is not conducive to the classification effectiveness of the

classifier and degrades the classification performance of the classifier.

2

In this paper, we will focus on sampling algorithms because they are simple and more flexible. In

1976, Tomek Ivan proposed a hybrid form of CNN [24] and Tomek-Link algorithms to delete data from

the data set. In recent years, many researchers have used the Tomek-Link algorithm for imbalanced

data sampling, but the proposed algorithm is often combined with other algorithms [25]. As far as

we know, few researchers use the Tomek-Link algorithm as a single sampling algorithm to balance

the data set. If the Tomek-Link algorithm is used as the sampling algorithm, this algorithm only

considers the boundary instances that are the nearest neighbors to each other globally and ignores the

potential local overlapping instances. Most of the class-overlap under-sampling algorithms proposed at

present are suggested to search for global overlap instances in the entire data set through the nearest

neighbor-based method. These algorithms must entail that the probability of feature overlap in the

data set is the same. However, for real-world data sets, the probability of feature overlap is rarely

the same. Therefore, if we simply consider the global overlapping instances, it is easy to ignore the

potential overlapping instances in the data set, it may turn out that, such classification models are

subjects to limited upgrading performance. To the best of our knowledge, our proposed algorithm is

the first to consider locally overlapping instances in a local granular subspace.

The main contributions of this paper are as follows:

(1) The proposed MGRU overcomes the problem that the UCBSS algorithm presented in [26]

cannot be accommodated for real data sets.

(2) We expand the detection range of the Tomek-Links algorithm for overlapping instances.

(3) MGRU is the first algorithm that considers potentially overlapping majority instances in a local

granularity subspace.

(4) We found that Mahalanobis distance and standardized Euclidean distance have little difference

in performance when discovering potential-overlap instances in a local granularity subspace, and they

can be used interchangeably.

The remainder of this manuscript is organized as follows. In Section 2, the relate work are briefly

reviewed, the framework of the algorithm is introduced in section 3, the proposed algorithm is presented

in Section 4, the experimental results and analyses are given in Section 5. Finally, Section 6 concludes

this paper.

2. Related work

This research mainly discusses sampling algorithms of imbalanced data. Therefore, the research

progress about sampling algorithms is mainly introduced in this section. The under-sampling algo-

rithm improves the performance of the classification algorithm by deleting redundant or overlapping

negative instances. Note that if negative instances are deleted indifferently, it may cause serious in-

formation loss on negative instances [27]. The oversampling algorithm enhances the ability of the

3

algorithm to identify positive instances by expanding the characteristics of positive instances. Al-

though the oversampling algorithm alleviates the influence of imbalanced data on the algorithm to a

certain extent, the oversampling algorithm may suffer from overfitting [28]. The hybrid sampling al-

gorithm combines the advantages of under-sampling and over-sampling algorithms to try to overcome

the impact of the disadvantages of sampling algorithm itself on the classification performance of the

algorithm [29]. Next, we will focus on the classic under-sampling and class overlap algorithms. With

the increasing maturity of sampling technology, random algorithms such as random under-sampling

are gradually replaced by other sampling algorithms due to their strong randomness and irrational

removal of instances [30]. The under-sampling technique is mainly to use the algorithm to reasonably

delete the redundant instances or overlap instances in the negative instance set, so that the model

classification surface gradually shifts to the positive class. However, the under-sampling algorithm

may suffer from the risk of unreasonably removing instances and loss of important information. Up to

now, a large number of under-sampling algorithms have been proposed. We can roughly divide it into

two categories: k-nearest neighbor-based algorithms and cluster-based algorithms [31]. Most under-

sampling algorithms remove majority instances based on k-nearest neighbors. Its purpose is to remove

redundant instances or overlapping instances. Kubat et al. [32] propose a one-sided selection (OSS)

algorithm, which is an improved algorithm based on Tomek-Links. Hart et al. [33] combine Tomek-

Links and propose a condensed nearest neighbor (CNN) algorithm, which treats majority instances in

Tomek-Links pairs as either borderline or noise. Meanwhile, they delete the majority instances that

are 1NN from each other in the majority instances, because they think such instances are redundant.

Different from the above algorithm, Laurikkala et al. [34] propose the neighborhood cleaning rule

(NCL) to remove majority instances based on the edited nearest neighbor (ENN) algorithm [35]. And

recently, related under-sampling algorithms have also been proposed. Devi et al. [36] combine nearest

neighbor and Tomek-Links under-sampling techniques, an improved under-sampling algorithm (TLUS)

is proposed to be employed in the pre-processing stage. Kumar et al. [37] propose an under-sampling

ensemble classification algorithm (TLUSBoost) based on TLUS, which further improved the classifi-

cation performances of TLUS under-sampling algorithm. Vuttipittayamongkol et al. [38] propose an

under-sampling framework to eliminate overlapping instances, which maximizes the visibility of mi-

nority instances and reduces the excessive elimination of data. They also propose four under-sampling

algorithms under this framework. Clustering algorithms are widely used by under-sampling algorithms.

Yen et al. [39] propose an under-sampling algorithm based on k-means clustering, which randomly

selects a sufficient number of instances from each cluster to effectively balance the training set. Lin

et al. [40] propose a new under-sampling algorithm (Cluster-NN) based on the clustering algorithm,

combined with 1NN technology to find the nearest neighbor instances of the cluster center. Ofek et al.

[41] propose a fast clustering under-sampling algorithm (Fast-CBUS), which can effectively improve

the prediction performance of the model. Hoyos-Osorio et al. [42] propose the RIUS under-sampling

4

algorithm. They also combined RIUS and CBUS to obtain a new variant of the CRIUS under-sampling

algorithm. The above algorithms use clustering algorithms to balance the class distribution of the data

set, and do not or rarely consider the problem of class overlap. Different from the above algorithm,

OBU [43] is a new class overlap undersampling algorithm. This algorithm uses soft clustering algorithm

to obtain the membership degree, and uses the global algorithm to determine the overlap area and

removes the instances. DBMUTE [44] uses a density clustering algorithm to detect overlapping areas,

and finds and underinstances overlapping negative instances from the overlapping areas. In addition to

the above two types of algorithms, there are other types of undersampling algorithms. Kang Qi er al.

[45] provide an under-sampling algorithm called NUS. This algorithm combines the advantages of noise

filters and under-sampling algorithm to achieve better classification performances. Liu et al. [46] use

the concept of information granules in granular computing and used different granularity algorithms

to construct information granules on most types of data sets to capture the data characteristics of

this type. Then, according to the quality of the information granule, the information granule with the

highest specificity value is selected to realize the under-sampling of the data set.

3. Motivation

Distance metrics is a common algorithm for calculating the differences between instances in the

field of machine learning, which including Euclidean distance [47, 48], Manhattan distance[49], cosine

similarity[50] , standard Euclidean distance and Mahalanobis distance[51, 52]. Among them, Euclidean

distance is the most common similarity metrics widely used in the field of imbalanced data mining.

Tomek-Links algorithm is a data cleaning and undersampling technique from condensed nearest neigh-

bor (CNN), which was proposed by Ivan Tomek [24]. The algorithm uses the Euclidean distance to

calculate the degree of similarity between instances, and improves the classification performance of

the algorithm by eliminating the boundary majority instances on the imbalanced training datasets.

Before using the Tomek-Links algorithm, we need to define the Tomek-Link pair concept, as shown in

Definition 1.

Definition 1 (Tomek-Link pairs) If a pair of minimally Euclidean distanced neighbors (xi,xj)

with xi belonging to the positive class and xj belonging to the negative class. Let dED(xi,xj) denote

the Euclidean distance between xi and xj . If there is no instance xp satisfies the following condition:

dED(xi,xp) < xi,xj) or dED(xj ,xp) < xi,xj) then the pair (xi,xj) , was called as Tomek-Link pair.

After oversampling, many researchers often use the Tomek-Links algorithm as an auxiliary algo-

rithm for class-overlap detection to prevent the generation of overlapping minority instances. Most

studies have shown that the classification performance of the classifier can be improved by deleting

the overlap majority instances, such as SMOTE + TL [53]. Unfortunately, the classic Tomek-Links

undersampling algorithm has the following shortcomings:

5

(1)When the number of minority instances is small, the overlapping instances detected by the

classic Tomek-Links algorithm are not comprehensive, and it is easy to ignore the potential overlapping

instances outside the boundary.

(2)The Tomek-Links algorithm uses the Euclidean distance to search the global information of the

data set, and does not consider the influence of some features on the class-overlap.

(3)Since the Tomek-Link under-sampling algorithm uses Euclidean distance to calculate the sim-

ilarity between instances, the calculated process doesn’t consider properties of data distribution, it

would turn out that, doesn’t accurately reflect the practical distance arrangement. When the data

set is large, the complexity of Tomek-Links undersampling algorithm is usually prohibitively high.

The unstable cuts-based instance selection (UCBSS) algorithm is a novel instance selection algorithm

proposed by Xing et al. in 2018 (for details, please refer to [26]). The relevant definitions of unstable

cut-points algorithm are as follows:

Definition 2 (Cut-point) [54] Let S be a complete dataset. Assuming that the features are all

numeric and the feature values are not repeated. When we sort the feature values in ascending order,

the midpoint of two adjacent feature values is defined as a cut-point on the features, denoted by T .

Definition 3 (Unstable cut-point) [54] Let S be a complete dataset,X be a feature set for inputs,y

be a class-label set for outputs in the data set. Considering the problem of binary classification, i.e.,

the class-labels is y = {y0, y1}.

Assuming that xi and xi+1 are adjacent instances after certain feature sorted.

(1)If xi ∈ y0, xi+1 ∈ y1 or xi ∈ y1, xi+1 ∈ y0, the cut point between adjacent instances is called

unstable cut point.

(2)If xi,xi+1 ∈ y0 or xi,xi+1 ∈ y1, the cut point between adjacent instances is called stable cut

point.

We need to note that there may be special circumstances. Suppose there are three adjacent in-

stances xi, xi+1 and xi+2 after certain feature sorted, if xi ∈ y0, xi+1,xi+2 ∈ y1 , at this time, the cut

point Ti between two adjacent instances of xi and xi+1 is a unstable cut point, and the cut point Ti+1

between two adjacent instances of xi+1 and xi+2 is a stable cut point. Therefore, the instance xi+1 in

the middle is re-labeled by the stable cut point and the unstable cut point at the same time.

The algorithm uses the imbalance ratio as the basis of instance selection, and realizes instance

selection from data set by presetting a threshold, thereby reducing the algorithm’s operation time

and improving the classification performance of the classifier. They argument that, for the feature

sequence, if the majority instance does not entail an unstable cut point with the minority instances as

a neighbor, then it is redundant. During the instance compression process, such redundant instances

will be deleted first. If we regard it as an under-sampling algorithm for imbalanced data, it can obtain

relatively favorable classification performance. Unfortunately, the algorithm has some shortcomings

that are difficult to make up in the instance compression process. For the imbalanced classifier, some

6

of the shortcomings may be fatal.

(1)The UCBSS algorithm proposed in [26] can effectively protect minority instances, but the re-

maining majority instances and minority instances are considered as the nearest neighbors to each

other. Therefore, there may be a large number of overlapping majority instances in the retained

instances, which are not conducive to improve the classification performance of the classifier.

(2)In the instance selection process, it must be assumed that the value of each feature is completely

different. In terms of real-world data sets, this assumption is rarely true, there are not many such data

sets.

(3)In addition, the UCBSS algorithm assumes that each feature is independent of each other, but

as we all know, there are often inextricable connections among features in the data set.

In order to mitigate the potential shortcomings of the above UCBSS and Tomek-Links algo-

rithms, inspired by the core ideas of Tomek-Links algorithm and UCBSS algorithm, we use the multi-

granularity learning framework in granular computing to fully consider the potential threat of local

class-overlap majority instances, a new multi-granularity relabeled undersampling algorithm is pro-

posed.

4. The Proposed Algorithm

Granular computing (GrC) has become an emerging concept and computing paradigm in infor-

mation processing [55]. Since granular computing was proposed, related models and theories have

basically taken shape. Granular computing is not a specific model that can be used for classification

or prediction, but a basic algorithm for simulating human thinking. It is a key step in data prepro-

cessing and the underpinning of other modeling algorithms. Through granular computing, we can get

the hidden information of the problem in different granularity subspaces, as well as different repre-

sentations [56]. Multi-granularity data analysis is an important research content in the field of data

mining. It conducts multi-angle and in-depth analysis and processing of data sets based on the idea of

multi-granularity, and mines the potential information or knowledge representations in the data sets

[57]. Our proposed algorithm uses a multi-granularity learning framework, which can effectively mine

the potential overlapping instances of the data set and improve the classification performance of the

model.

Before proposing the MGRU algorithm, we need to use the following definitions:

Definition 4 (Local Granularity Subspaces) For binary classification problem, assuming that

S = {x1,x2, ...,xn} is the training dataset, which contains n instances, each instances has m features

X = (a1, a2, ..., am) there is no feature vector with the same feature value and all zeros in the data

set. Where S−τ can be obtained by deleting a certain feature aτ , τ = 1, 2, ...,m.This subset is called

a local granularity subspace and can be written as a matrix form:

7

a1 a2 · · · am label

S−τ =


x1

x2

...

xn

 =


a11 a12 · · · a1m 0

a21 a22 · · · a2m 1
...

...
. . .

...
...

an1 an2 · · · anm 0


[n×(m−1)]+Y

(1)

Theorem 1 Let the Euclidean distance function be f(·, ·),and two instances xi and xj in the

data set S. Suppose the distance is f(x−αi ,x−αj) when the feature α is deleted, and the distance is

f(x−βi ,x−βj) when the feature β is deleted. If the feature values satisfy |aiα − ajα| 6= |aiβ − ajβ |, then

f(x−αi ,x−αj 6= f(x−βi ,x−βj).

Where the superscript α and β represent the local granularity subspace formed by removing the

α-th or β-th features, and the subscript i and j represent the i-th or j-th instances.

Proof: When feature α is deleted, the Euclidean distance between instances is f(x−αi ,x−αj), and

when feature β is deleted, the distance between instances is f(x−βi ,x−βj), and we need to prove that

f(x−αi ,x−αj) =
√∑m

l=1(x−αi − x−αj)2 6= f(x−βi ,x−βj) =
√∑m

l=1(x−βi − x−βj)2, i, j = 1, 2, ...,m.

Then we square the two sides and expand to eliminate the same terms, which can be written

as:|(aiα − ajα)2| 6= |(aiβ − ajβ)2|.

After removing the square, which can be written as |aiα − ajα| 6= |aiβ − ajβ |.

Therefore, if the feature values satisfy the inequality |aiα−ajα| 6= |aiβ−ajβ |, we have f(x−αi ,x−αj) 6=

f(x−βi ,x−βj).The conclusion holds.

When the covariance matrix is the same and is a unit matrix or
∑
i =

∑
j = 1, i, j = 1, 2, ...,m, the

Mahalanobis distance and the standardized Euclidean distance are equivalent to the classical Euclidean

distance. Therefore, the result of Theorem 1 still applies.

For Mahalanobis distance and standardized Euclidean distance, if the covariance matrix is not a

unit matrix and is not the same, or
∑
i 6=

∑
j , then the distance between the two instances may be

equal. But in the arranging process, only a few instances have the same distance value. Therefore,

this will not have a major impact on our overall ranking results.

In real-world data sets, there are very few cases where the features are exactly the same. Therefore,

it is feasible to construct a local granularity space by removing a certain feature, and to mine the

potential overlapping instances of the data set based on the data subset in the local granularity space.

In Section 4.1, we will introduce the proposed MGRU undersampling algorithm in detail.

4.1. MGRU Algorithm

The MGRU algorithm we proposed is mainly divided into four Phases. The algorithm flowchart

is shown as in Fig. 1. In the first phase, a local granularity subspace is formed by deleting some

features. In the second stage, we calculate the Mahalanobis distance or standard Euclidean distance

8

of all instances and rearrange them. In the third phase, we calculate the global relabeled index values

of all instances to form a global relabeled index vector. In the fourth phase, we merge the global

re-labeled index vector with the original data to form a re-labeled augmented data set to carry out

the under-sampling procedure.

Figure 1: Flowchart of MGRU under-sampling algorithm

Phase 1 Generating the local granularity subspaces

According to Theorem 1, it is not difficult to find that as long as the features we remove are not

the same, the local granularity subspaces formed are not the same. Therefore, we can derive a variety

of different combinations of local granularity subspaces. However, if the derived granularity subspaces

are too rough, it is difficult for us to mine local overlapping instances. If the devised granularity

subspaces are too fine, it may not be possible to mine more valuable local overlapping instances, but

it will greatly increase our computation complexity. Therefore, in our experiment, we only delete each

feature in the training data set one by one to formed a coarser local granularity subspace. Once the

local granularity subspaces are constructed, we will enter the second phase.

Phase 2 Calculating distances of all instances and getting the indicator vector

At this phase, we obtain the relabeled index value of each instance through a series of calculation

processes. The calculation process and related distance definitions are as follows.

Before introducing these measurement algorithms, we assume that there is a data set S with n

instances, each instance has m features, and µ = (µ1, µ2, ..., µm) is the mean vector of all instances.

Definition 5 (Standard Euclidean distance,dED): If xi and xj are instances in the data set S, the

standardized Euclidean distance dED is defined as follows:

dED =

√√√√ m∑
k=1

(
xik − xjk

Sk
)2, i, j = 1, 2, ..., n (2)

9

where sk is the standard deviation of the instances’ k-th component. If the reciprocal of the

standard deviation is regarded as a weight, this formula can be regarded as a weighted Euclidean

distance.

Indian statistician P. C. Mahalanobis [52] first proposed the Mahalanobis distance, introducing a

covariance matrix to calculate the similarity between instances in the data set.

Definition 6 (Mahalanobis distance,dMD) [52]: If xi is a instance in the data set S, and the

covariance matrix for data set S is
∑

= (σij), then the Mahalanobis distance of the instance xi is

defined as:

dMD =
√

(xi − µ)TΣ−1(xi − µ), i = 1, 2, ..., n (3)

Compared with Euclidean distance, Mahalanobis distance and standard Euclidean distance consider

the relationship between instance, and can more accurately show the structural differences between

instances. Therefore, in this study, the Mahalanobis distance or the standard Euclidean distance are

used to measure the similarity between instances in the local granularity subspace.

Next, we introduce the detailed calculation process. This phase is mainly divided into two steps.

The first step is to use the Mahalanobis distance or standardized Euclidean distance to calculate the

similarity between the instances. The second step is to re-label the instances’ indexes according to the

similarity, and obtain the indicator vector. More precise, it is divided into two step:

Step 1 We calculate the distance between instances and the instances’ mean according to Definition

5 or Definition 6, for the local granularity subspaces, we rearrange all instances in ascending order

according to their distances. When we choose the Mahalanobis distance for arranging, we can get

the multi-granularity Mahalanobis distance relabeled under-sampling algorithm (MGRU-MD), and

when we use the standardized Euclidean distance, we can obtain the multi-granularity standardized

Euclidean distance relabeling under-sampling algorithm (MGRU-SED).

Note that these two under-sampling algorithms only differ in the distance calculation steps, and

the calculation process is the same in the remaining phase, so in the remaining steps, we will uniformly

introduce the overall calculation process.

Step 2 After all the instances are rearranged, it will enter the re-labeled instance phase. The

detailed calculation process is as follows:

We sort the results according to distance and search for Tomek-Link pairs in the local granularity

subspaces. Then, we re-labeled the majority instances in the Tomek-Link pair, and calculate the

indicator value of each instance on each subspace, which is represented by λ−τj , where the superscript

−τ signifies the local granularity subspace formed by removing the τ -th (τ = 1, 2, ...,m) feature, and

the subscript j denotes the j-th (j=1,2,...,n) instances. When we have re-labeled, we combine the

re-labeled values of all instances to form the corresponding indicator vector, which is represented by

10

δ−τ = (λ−τ1 , λ−τ2 , ..., λ−τn).

Note that during the re-labeled process, the indicator value may be repeatedly obtained. If the

instance has repeated indicator values, we will only record the largest indicator value once.

Phase 3 Constructing indicator matrix and calculating global relabeled index values

for all instances

We merge all indicator vectors to form a corresponding indicator matrix, denoted by M = [δ−1, δ−2,

..., δ−m]T . And use formula (4) to calculate the global relabeled index value of the instances.

K(xj) =

m∑
τ=1

λ−τj (4)

In short, the global relabeled index value corresponding to each instance can be calculated as the

sum of each row in the indicator matrix. The vector formed by all re-labeled index values is called the

global re-labeled index vector, denoted by Φ = (K(x1),K(x2), ...,K(xn))T .

Phase 4 Data fusion and undersampling procedure

At this stage, we merge the re-labeled index vectors of the obtained instance with the original data

set to form a new re-labeled augmented data set. More specifically, assuming that the original training

data set is S, we incorporate the re-labeled index vector formed in the third stage into the training

set to form a re-labeled augmented training data set S+ = [S,Φ].

When the re-labeled augmented training data set is constructed, our preprocessing is basically

over. For the under-sampling algorithm, we only need to select certain index value in the global re-

labeled index vector as the threshold, and then delete instances less than or equal to the threshold to

complete the under-sampling step. Since there is no clear guidance algorithm for how to determine

the threshold at present, in the experimental part, we use the greedy search algorithm to select the

sub-optimal threshold.

4.2. Global relabeled index value selection

The global re-labeled index value indicates the number of times that majority instances form

Tomek-Links pairs in the local granularity subspaces. The more times it is re-labeled, it indicates

that the instance is more likely to be an overlapping instance. For our under-sampling algorithm, the

choice of global re-labeled index value is very important. If the selected value is large, overlapping

instances may be deleted incompletely, otherwise, it may cause excessive elimination. Therefore, in

our experiments, under the premise of ensuring that the data set partition remains unchanged, the

idea of greedy search is used to traverse each global relabeled index value K to obtain the best score

and the best global re-labeled index value of the model.

For the convenience of description, we might as well assume that F (K),K = 1, 2, ...,m is the score

of the classifier on a certain global relabeled index value.

11

If F (K) > F (K − 1), we save the score of the classifier when the value of F (K) , we save the

score of the classifier when the value of F (K − 1).In the next search, the global re-labeled index value

F (K − 1) will not be selected.

If F (K) ≤ F (K − 1), we will update the classifier score and at the same time update the optimal

relabeled index value. After traversing all the relabeled index values, there will be no search, and the

model outputs the optimal relabeled index value and the final score of the classifier. The pseudocode

for our proposed algorithm is shown in Algorithm 1.

Algorithm 1 Mulit-granularity Re-labeled under-sampling algorithm

Input: training set S, labels set y.

Output: data set S′ and y′ after the under-sampling

1: Initialize relabeled index vector Φ = {0, 0, ..., 0}

2: for each feature aτ in S do

3: Initialize indicator vector δ−τ = (λ−τ1 , λ−τ2 , ..., λ−τn ,)T

4: S−τ = S − aτ
5: Set µ = mean(S−τ)

6: Set dj = Mahalanobis distance or standardized Euclidean distance between xj and µ

7: QuickSort(dj)

8: if d−τ (xi,xj) = min then:

9: if xj = majority then:

10: λ−τj =1;

11: end if

12: end if

13: K(xj)+ = λ−τj

14: end for

15: set threshold value K

16: for every instance xj in S do

17: if K(xj) ≤ K then

18: delete xj

19: end if

20: end for

We use ten-fold cross-validation in the experiments to verify the stability of the model. In order

to better describe the classification performance of the model on a certain relabeled index value, we

choose the same index value on different fold data sets. Note that in the training process, there may

be cases where the relabeled index value of each fold does not exist, of course, the probability of this

situation is very small. When the data is concentrated and the amount of training data is large, this

12

situation can be ignored. Therefore, if this happens to a certain fold, we choose the nearest larger

relabeled index value for calculation.

Although this algorithm can obtain the best performance and the best index value of the classifier,

the amount of calculation is relatively large, and each index value needs to be traversed. Therefore, in

the next research, we will further explore the adaptive index value selection algorithm, use information

from the data set to calculate the optimal index value, and shorten the calculation time.

4.3. Algorithm Complexity

In this section, we derive the computational complexity of the proposed MGRU algorithm. Let the

data set be S, where the number of instances is n, the number of features is m, and the number of

categories is c. To analyze the computational complexity for the MGRU algorithm, first, we need to

delete the features in the data set one by one to form a de-featured subspace. This process is simple

and the calculation complexity is low, so we ignore it. Then, for the Mahalanobis distance, the time

complexity of calculating the instance mean µ is O(nc). For the instance covariance matrix, each

elements requires n times of multiplication and m times of addition, so its computational complexity

is O(n2m). Then, we need to consider the complexity of sorting process. In this paper, quick sort is

our choice. At this time, it is well known that the best sorting complexity is O(nlogn), and the worst

sorting complexity is O(n2). Finally, we need to calculate the relabeled index value of the instance, for

this aim, we only need to calculate the sum of n times, therefore, the time complexity is O(n). In our

calculation process, we need to traverse the results corresponding to each threshold in order to obtain

the sub-optimal results. Therefore, we need to calculate the whole process m times. Therefore, the

overall complexity of the MGRU algorithm is O(n2m×m).

Based on the above analysis, the dominant complexity of the MGRU algorithm is mainly affected

by the Mahalanobis distance calculation process and sorting algorithm. Of course, if we need relatively

low time complexity, we can use the squared Mahalanobis distance for sorting, or we can choose the

sorting algorithm with lower time complexity according to the size of the instance set.

5. Experiments framework

In this paper, we use Python 3.8 to implement algorithm simulation. We compared our proposed

algorithm with the state-of-the-art algorithm on 46 real-world data sets to verify the effectiveness of

the proposed algorithm. The hardware and software configuration of the experiment computer are

given in Table 1.

The rest of this section mainly introduces our experimental setup and the data set used. We

introduce the experimental setup and model in Section 5.1. The 20 real-world highly imbalanced data

sets used are briefly introduced in Section 5.2.

13

Table 1: The hardware and software configuration of the experiment computer

Items Configuration

Hardware configuration
CPU Intel(R) Core(TM) i7-6700

Memory 16GB

Software configuration

Hard disk Solid state disk(1TB)

Operating system Windows 10 Professional

Interpreter Python 3.8

5.1. Setup

In our experiments, all experiments use 10-fold cross-validation to verify the stability of the model.

The experimental results show in this paper are the average of the 10-fold cross-validation results. Note

that the unstable cuts-based instance selection (UCBSS) algorithm is used to label both the majority

class and the minority class instances. Therefore, when they compress instances, they keep instances

closer to the minority instances. In order to adapt the algorithm to the problem of class overlap, we

make minor changes to UCBSS on the basis of the original algorithm. The changes are as follows:

(1)In the UCBSS marking process, we also only mark the majority instances near the unstable cut

point, and not mark the minority instances.

(2)When there are the same values in the features, we arrange the instances in a random order.

In order to verify the effectiveness of the proposed algorithm, we compared the MGRU-MD and

MGRU-SED class-overlap undersampling algorithms with seven algorithms including UCBSS on 20

real-world highly imbalanced data sets. These algorithms include 5 resampling algorithms and 2

ensemble learning algorithms.

Null is our baseline comparison method without any pre-processing of the training set.

SMOTE [58] is a well-known oversampling method for imbalanced data pre-processing. In the

calculation process, it randomly selects minority instances and uses linear interpolation to synthesize

more minority instances.

Tomek-Links [24] algorithm is a class-overlap under-sampling algorithm proposed by Tomek. The

algorithm considers the majority instances in the Tomek-Link pair to be overlapping instances in the

data set. Therefore, in the under-sampling process, majority instances in the Tomek-Link pair are

deleted.

NB-TL [38] and NB-Comm [38] are under-sampling frameworks for processing overlapping in-

stances in data sets, proposed by Vuttipittayamongkol et al. Under this framework, they proposed

four k-nearest neighbor class-overlap under-sampling algorithms with different criteria. The experi-

mental results show that the performance difference between k = 3 and k = 5 is not obvious, and

the performance of NB-TL and NB-Comm is better than the other two algorithms. hence, below

14

we only compare our two algorithms with NB-TL and NB-Comm with k = 5. RUSBoost [59] is

a classic ensemble learning algorithm that uses undersampling as a preprocessing technique. In our

experiments, we use the optimal parameters in [59] to conduct experiments. Since RUS is a heuristic

algorithm, it has strong randomness in the calculation process, so its performance is not stable. SPE

[60] (Self-paced ensemble learning) is a new ensemble learning framework proposed by Liu et al. using

self-paced learning. Since they use self-paced learning to gradually eliminate majority instances in the

ensemble process, they can gradually balance the training set of subsequent classifiers. Therefore, it is

more in line with the requirements of our comparison algorithm. The above algorithms are all prepro-

cessing algorithms and ensemble learning frameworks independent of the classifier. Therefore, in our

experiment, we select Classification And Regression Tree (CART), Support Vector Machines (SVM)

and Gradient Boosting Decision Tree (GBDT) three classifiers as the base classifiers in the experiment.

In order to better highlight the performance of the preprocessing algorithm, in our experiments, these

three classifiers all use the default parameters in sklearn for experimentation, because this can keep the

parameters unchanged, thus highlighting the superiority of the preprocessing or integration framework.

5.2. Datasets

In our experiments, we collected 20 imbalanced binary data sets from the KEEL database. The

basic information of the data set is shown in Table 2 (in order of imbalance ratio from small to large).

The imbalance ratios (IR) of all instances are ranged from 1.87 to 129.44. The traditional sampling

algorithms maintain the balance between the negative and positive instances in the training set by

calculating, thereby improving the classification accuracy of the classification model. The imbalance

ratio is an important indicator to measure the imbalanced distribution on a data set, and its expression

is shown in Eq.(5):

IR =
|Nmaj |
|Nmin|

(5)

where |Nmaj | represents the number of instances in the majority (negative) class, and |Nmin|

represents the number of instances in the minority (positive) class.

6. Results and analysis

In this section, we will conduct a complete experimental analysis and verify the effectiveness of the

proposed algorithm through three experiments:

(1)First, we use the class-overlap complexity analysis proposed by Pascual-Triana et al. [61] to verify

that the algorithm can effectively reduce the complexity of the data set. For multiple comparisons

we use the Friedman test [62, 63] to detect statistical differences among a group of results, and then

utilize Holm post-hoc test [63] to find which algorithms are distinctive among a comparison (Section

6.1).

15

Table 2: Basic information of the data set

Datasets feature Instance Minority class IR

pima 8 768 268 2 1.87

glass0 9 214 70 2 2.06

haberman 3 306 81 2 2.78

vehicle1 18 846 217 2 2.9

vehicle0 18 846 199 2 3.25

ecoli1 7 336 77 2 3.36

ecoli2 7 336 52 2 5.46

yeast3 8 1484 163 2 8.1

page-blocks0 10 5472 559 2 8.79

yeast-2 vs 4 8 514 51 2 9.08

abalone9-18 8 731 42 2 16.4

winequality-red-4 11 1599 53 2 29.17

yeast5 8 1484 44 2 32.73

winequality-red-8 vs 6 11 656 18 2 35.44

abalone-17 vs 7-8-9-10 8 2338 58 2 39.31

abalone-21 vs 8 8 581 14 2 40.5

winequality-white-3 vs 7 11 900 20 2 44

abalone-20 vs 8-9-10 8 1916 26 2 72.69

poker-8-9 vs 5 10 2075 25 2 82

abalone19 8 4174 32 2 129.44

16

(2)Secondly, under the two evaluation metrics of the Area Under the ROC Curve (AUC) and the

Area Under the PR Curve (auPR), we compare and analyze the proposed MGRU algorithm with

other state-of-the-art algorithms to verify the effectiveness of the model, and use the same algorithms

in section 6.1 to verify the statistical significance of the model (Section 6.2).

(3)Finally, we will summarize and analyze the experimental results and discuss them in Section

6.3.

Note that the complexity measurement in the experiment is performed on the training set. There-

fore, when we choose the optimal AUC value, we also use to measure the complexity of the training

set after sampling.

6.1. Class-overlap complexity measurement after sampling

The data complexity measurement is an algorithm to evaluate the problem of feature overlap, linear

separability, and so on. On the basis of the complexity measure proposed by Ho et al. [64], many

researchers have further studied the problems of overlap, separability, geometry, topology and density.

Pascual-Triana et al. [61] proposed two new algorithms for the overlap complexity measurement of

datasets called ONBtot and ONBavg.The experimental results in [61] show that for the overlapped

imbalanced data set, whether using Euclidean distance or Manhattan distance, the ONBavg complex-

ity metric can effectively evaluate the degree of overlap of the data set. Since the used datasets is

characterized by continuous values, the use of Manhattan distance is easy to distort the data. There-

fore, in our experiment, the Euclidean distance is used as the metric function. The calculation process

of ONBavg is shown in Eq. (6). If the value of ONBavg is higher, it means that the degree of overlap

of the data set is higher, and the data is more complicated.

ONBavg =

∑
k
i=1

bi
ni

k
(6)

where bi is the number of balls for class i,ni is the number of elements of said class and k is the

number of classes.

ONBavg is a conservative class-overlap complexity metric. If we only delete the majority instances

covered by the overlapping hyperspheres, the problem of overlapping data sets cannot be eliminated.

At this time, since the mistaken deletion of majority instances, the number of denominators of ONBavg

decreases, but the numerator does not change at all, and the obtained ONBavg value does not decrease

but increases. According to the calculation process of ONBavg, if the number of overlapping instances

is not changed during the sampling process, but the number of instances is increased, the value of

ONBavg will also be significantly reduced. Since in the SMOTE and the other oversampling technique

of the interpolation algorithm, the nearest neighbors of the anchored instances are used in the training

set to synthesize new training instances. When the imbalance ratio of the data set is large, there are

more pseudo instances added, which will dilute the total number of samples in the overlapping area

17

of the data set. Even if we do not exclude the majority instances in any overlapping area, ONBavg

will decrease. Therefore, in the experiment, we did not consider comparing SMOTE with the under-

sampling algorithm. In addition, the two ensemble learning algorithms of SPE and RUSBoost differ

in the number of instances of majority classes eliminated by the base classifier during the training

process. Therefore, we cannot accurately calculate the class-overlap complexity corresponding to the

training set.

Based on above discussion, we only use the new proposed overlap and undersampling algorithms for

comparison, including Tomek-Links, NB-TL, NB-Comm and UCBSS. The description and parameters

of the algorithm are as described in section 5.1. In order to be consistent with the subsequent experi-

ments, we use ten-fold cross-validation. We use ONBavg to measure the complexity of the training set

after sampling on the corresponding training set. Then we calculate the mean value of all measurement

results and use it as the final experimental result. The entire complexity results of this section are

listed in Table 3. For the convenience of reading, we highlight the lowest ONBavg value corresponding

to each data set in bold. The average ONBavg complexity of each algorithm is shown in Fig. 2. The

average Friedman rankings of and APVs using Holm’s post-hoc test in ONBavg are shown in Table 4.

Figure 2: Average value of in the experimental datasets.

According to the results in Table 3, it can be observed that on most data sets, compared with

the overlapping complexity without sampling (null in the table represents the overlapping complex-

ity of data without sampling), our proposed algorithm can reduce the complexity of training data

sets. Compared with other state-of-the-arts class-overlap undersampling algorithms, MGRU-MD and

MGRU-SED algorithms do not significantly improve the complexity of training data on glass0, haber-

man, vehicle1, ecoli1, page-block0 and poker-8-9 vs 5, but the difference is not obvious.

18

Table 3: The class overlap complexity after sampling using as metric.

dataset Null Tomek-Links NB-TL NB-Comm UCBSS MGRU-MD MGRU-SED

pima 0.4129 0.3603 0.3083 0.3105 0.2846 0.2934 0.2641

glass0 0.2657 0.2462 0.2709 0.4702 0.3499 0.2859 0.2808

haberman 0.3758 0.3531 0.3255 0.3146 0.3052 0.3124 0.3317

vehicle1 0.1455 0.1436 0.1418 0.1522 0.1124 0.1325 0.1401

vehicle0 0.1455 0.1463 0.1681 0.1507 0.1357 0.1084 0.1426

ecoli1 0.2277 0.1744 0.1462 0.3653 0.2875 0.1957 0.1989

ecoli2 0.1608 0.1663 0.1921 0.3211 0.1729 0.1428 0.1547

yeast3 0.2141 0.2684 0.2382 0.2059 0.2238 0.1843 0.1965

page-blocks0 0.2623 0.2608 0.2231 0.2584 0.2408 0.2438 0.2362

yeast-2 vs 4 0.2162 0.1938 0.1471 0.2849 0.2712 0.2959 0.1227

abalone9-18 0.4154 0.4136 0.3362 0.3814 0.3744 0.3268 0.3105

winequality-red-4 0.4025 0.3854 0.4107 0.3956 0.3658 0.3121 0.3415

yeast5 0.2315 0.2031 0.2416 0.2635 0.2318 0.2033 0.1988

winequality-red-8 vs 6 0.4961 0.4494 0.4188 0.4264 0.3898 0.3631 0.3709

abalone-17 vs 7-8-9-10 0.3468 0.3536 0.3309 0.3605 0.3102 0.3264 0.2918

abalone-21 vs 8 0.3417 0.3415 0.3409 0.3783 0.3961 0.3489 0.3376

winequality-white-3 vs 7 0.3934 0.3928 0.3814 0.3655 0.3482 0.3356 0.3279

abalone-20 vs 8-9-10 0.4205 0.3826 0.4108 0.4622 0.3805 0.3527 0.3699

poker-8-9 vs 5 0.4848 0.4803 0.4626 0.4915 0.4822 0.4704 0.4655

abalone19 0.4903 0.4529 0.4684 0.4745 0.4328 0.3943 0.3933

Table 4: The class overlap complexity after sampling using as metric.

Result (ONBavg) Friedman ranking APVs

MGRU-MD 2.050 -

MGRU-SED 2.600 0.420752

UCBSS 3.700 0.031440

NB-TL 4.000 0.012931

Tomek-Links 4.500 0.001341

Null 5.400 0.000005

NB-Comm 5.750 0

19

Figure 2 shows the average value of the class-overlap complexity ONBavg after sampling for each

algorithm on all data sets. We can observe that the two algorithms we proposed have better overall

performance in reducing the ONBavg overlap-complexity. NB-Comm is a new class-overlap undersam-

pling algorithm using Tomek-Links. In the process of finding overlapping instances, the NB-Comm

believes that the common majority instances of all minority instances are overlapping instances. For

a highly imbalanced data set, there are not many minority instances in the data set. Therefore, this

algorithm is too conservative, and it is likely to ignore the potentially overlapping majority instances

of anchor instances. Therefore, this algorithm may render incomplete deletion, which causes the class-

overlap complexity ONBavg to increase after majority samples are deleted.

According to the results in Table 4, we observe that MGRU-MD and MGRU-SED achieve the best

Friedman rankings. Therefore, we believe that MGRU-MD and MGRU-SED are the best algorithms,

and MGRU-SED has more potential advantages. In addition, compared with other class-overlap

under-sampling algorithms, all APVs values calculated using Holm’s post-hoc test are lower than the

significant level (e.g.α = 0.05). Therefore, the null hypothesis of equality is rejected in all cases.

At the same time, the APVs of MGRU-MD and MGRU-SED are greater than 0.05. We believe

that the performance difference between MGRU-MD and MGRU-SED is not significant in reducing

class overlap complexity. Therefore, this also supports the conclusion that our proposed algorithm

is superior to other algorithms. Next, we will use the two metrics of AUC and auPR to verify the

effectiveness of the algorithms.

6.2. Compared with state-of-the-art algorithms

In this section, in order to further illustrate the effectiveness of our algorithm, we use two evaluation

metrics, AUC and auPR, to evaluate the performance difference between MGRU-MD and MGRU-SED

and other state-of-the-arts models. In the experiment, we use three advanced classifiers: CART, SVM

and GBDT as base classifiers. And we will compare the proposed MGRU-MD and MGRU-SED with

the seven state-of-the-arts algorithms ,i.e., SMOTE, Tomek-Links, NB-TL, NB-Comm, UCBSS, SPE

and RUSBoost. SPE is a state-of-the-arts ensemble learning framework proposed by Liu et al. [60]

in ICDE 2020. This algorithm eliminates majority instances one by one by using self-paced learning.

As an under-sampling algorithm in the ensemble framework, self-paced learning can effectively reduce

the imbalance ratio of the training data set. Of course, we regard it as a state-of-the-arts ensemble

learning algorithm combined with under-sampling algorithms. Note that we still use the mean of the

10-fold cross-validation as the final result of the model. The specific description of these algorithms

and the selection of parameters have been introduced in detail in Section 5.1.

In order to better display the experimental results, we arrange the data set in ascending order

of imbalance ratio, and the best results are highlighted in bold. Table 5-6 show the classification

performance of our three classifiers, CART, SVM, and GBDT, and seven comparison algorithms under

20

the two evaluation metrics of AUC and auPR. Fig. 3-5 show the average performance of the three

classifiers on all data sets, where the left ordinate represents AUC, the right ordinate represents

auPR, and the abscissa represents the corresponding algorithm. In addition, in order to evaluate the

performance of the algorithm with statistically significant differences, the results of the non-parametric

tests are given in Table 7. The second column is the Friedman ranking results of each algorithm on

all data sets. In the third column, we use Friedman’s test and Holm’s post-hoc test to calculate the

APVs between each algorithm. Note that in Table 8, we have retained six decimal places. Therefore,

when the value of APVs in the table is 0, it just means that the value is very small, approximately 0.

Figure 3: The mean value of CART on all experimental datasets.

Throughout the experiment, we will focus on the performance differences between the proposed

MGRU-MD and MGRU-SED algorithms and other baseline algorithms. According to Table 5 and

Table 6, we can make a simple statistics. When we choose CART as the base classifier, MGRU-MD and

MGRU-SED obtain the best AUC values on 6 data sets and 8 data sets, respectively. When we observe

the auPR evaluation metric, the number of data sets that MGRU-SED obtains the optimal value is

significantly more than that of MGRU-MD. However, the number of optimal values obtained by other

classification algorithms on all data sets is very small. When we continue to observe the performance

difference between the ensemble learning and the proposed two algorithms, we can conclude that the

baseline ensemble learning algorithm SPE is our main competitor. We simply count the number of

optimal values obtained by each algorithm on all data sets. SPE obtains the optimal AUC value on 6

data sets, and the optimal auPR value on 5 data sets. From the point of view of the optimal number

of values obtained from all data sets, the performance of the proposed MGRU-MD and MGRU-

SED is equivalent to that of SPE. RUSBoost is an ensemble learning algorithm based on random

21

Table 5: AUC of all algorithms in the collected datasets
dataset models Null SMOTE TL NB-TL NB-Comm UCBSS SPE RUSBoost MGRU-MD MGRU-SED

pima

CART 0.6626 0.6782 0.6896 0.7141 0.6881 0.7217 0.7175 0.6992 0.6983 0.7312

SVM 0.8156 0.8139 0.8099 0.8115 0.7999 0.8199 0.8117 0.7668 0.8146 0.8252

GBDT 0.8192 0.8231 0.8236 0.8143 0.8015 0.8124 0.8243 0.8271 0.8171 0.8334

glass0

CART 0.7729 0.8052 0.8157 0.7881 0.6924 0.8164 0.8301 0.8284 0.8212 0.8067

SVM 0.7186 0.3276 0.8177 0.7866 0.5672 0.8305 0.5845 0.2966 0.8386 0.8114

GBDT 0.9277 0.9265 0.9279 0.9028 0.7686 0.9282 0.9224 0.9214 0.9345 0.9223

haberman

CART 0.5573 0.5875 0.5249 0.5711 0.5719 0.6103 0.5738 0.6014 0.6275 0.5719

SVM 0.6438 0.7061 0.7116 0.7039 0.5634 0.6820 0.6806 0.3265 0.7223 0.7154

GBDT 0.6431 0.6339 0.6498 0.6427 0.6448 0.6551 0.6572 0.6258 0.6747 0.6551

vehicle1

CART 0.6889 0.7051 0.6856 0.7293 0.6784 0.7258 0.7884 0.7643 0.7368 0.7152

SVM 0.8389 0.7439 0.8021 0.7335 0.7365 0.8445 0.7163 0.3731 0.8459 0.8406

GBDT 0.8668 0.8754 0.8708 0.8539 0.8333 0.8885 0.8662 0.8647 0.8797 0.8702

vehicle0

CART 0.9073 0.9297 0.9084 0.9222 0.7668 0.9385 0.9523 0.9430 0.9443 0.9351

SVM 0.9117 0.9595 0.8993 0.8741 0.9224 0.9675 0.9088 0.8618 0.9698 0.9299

GBDT 0.9921 0.9941 0.9912 0.9913 0.9221 0.9941 0.9928 0.9908 0.9928 0.9931

ecoli1

CART 0.8489 0.8485 0.8758 0.8862 0.8576 0.8758 0.8297 0.8108 0.8921 0.8791

SVM 0.9122 0.9227 0.9229 0.9386 0.9373 0.9319 0.9334 0.8026 0.9503 0.9483

GBDT 0.9369 0.9414 0.9382 0.9439 0.9317 0.9425 0.9438 0.9433 0.9525 0.9543

ecoli2

CART 0.8632 0.8568 0.8596 0.8817 0.7666 0.8663 0.8692 0.8889 0.8811 0.8914

SVM 0.9446 0.9555 0.9439 0.9563 0.9553 0.9512 0.9444 0.8779 0.9611 0.9531

GBDT 0.9398 0.9561 0.9468 0.9501 0.9277 0.9347 0.9534 0.9549 0.9563 0.9648

yeast3

CART 0.8219 0.8617 0.8469 0.8704 0.8363 0.8971 0.8799 0.8607 0.9131 0.8889

SVM 0.9752 0.9727 0.9749 0.9674 0.9733 0.9575 0.9761 0.7851 0.9761 0.9763

GBDT 0.9615 0.9638 0.9596 0.9685 0.9544 0.9612 0.9625 0.9666 0.9682 0.9687

page-blocks0

CART 0.9219 0.9301 0.9293 0.9324 0.9267 0.9284 0.9503 0.9315 0.9393 0.9434

SVM 0.9079 0.8961 0.9089 0.9204 0.8631 0.9132 0.7696 0.3164 0.9273 0.9189

GBDT 0.9903 0.9914 0.9908 0.9896 0.9889 0.9919 0.9916 0.9904 0.9921 0.9915

yeast-2 vs 4

CART 0.8388 0.8695 0.8299 0.8216 0.9065 0.9105 0.8892 0.8374 0.9247 0.9452

SVM 0.9592 0.9574 0.9583 0.9636 0.9644 0.9683 0.9549 0.7821 0.9736 0.9765

GBDT 0.9821 0.9805 0.9812 0.9474 0.9713 0.9768 0.9768 0.9738 0.9814 0.9825

abalone9-18

CART 0.6422 0.6917 0.6271 0.6311 0.6905 0.7303 0.7118 0.7127 0.7442 0.6947

SVM 0.8987 0.8931 0.9007 0.9189 0.8377 0.9241 0.6759 0.2664 0.9105 0.9297

GBDT 0.8166 0.8344 0.8119 0.8305 0.8349 0.8066 0.7884 0.8294 0.8499 0.8424

winequality-red-4

CART 0.5485 0.5812 0.5372 0.5402 0.5735 0.6096 0.6564 0.5508 0.6898 0.6406

SVM 0.3242 0.5919 0.4069 0.4845 0.5364 0.6059 0.5705 0.3997 0.5914 0.6317

GBDT 0.7161 0.6996 0.7174 0.7186 0.6966 0.7288 0.7309 0.7172 0.7448 0.7415

yeast5

CART 0.8687 0.9126 0.8548 0.9356 0.8822 0.9253 0.8906 0.8862 0.9283 0.9685

SVM 0.9885 0.9883 0.9788 0.9784 0.7879 0.9813 0.9781 0.8386 0.9688 0.9885

GBDT 0.9686 0.9856 0.9866 0.9833 0.9668 0.9816 0.9791 0.9754 0.9856 0.9869

winequality-red-8 vs 6

CART 0.6617 0.6975 0.6859 0.6101 0.7389 0.7589 0.7679 0.7732 0.7669 0.7818

SVM 0.5623 0.6377 0.5406 0.5455 0.5621 0.7158 0.5439 0.3924 0.6488 0.6144

GBDT 0.8918 0.8279 0.8997 0.8911 0.8949 0.9066 0.8269 0.8336 0.9158 0.9047

abalone-17 vs 7-8-9-10

CART 0.6036 0.6372 0.6271 0.6731 0.6001 0.7224 0.8747 0.8456 0.7593 0.8304

SVM 0.9051 0.9401 0.9085 0.9417 0.7022 0.9442 0.8005 0.6894 0.9459 0.9467

GBDT 0.8925 0.9074 0.8991 0.9077 0.7959 0.9105 0.8998 0.8909 0.9075 0.9149

abalone-21 vs 8

CART 0.7947 0.8474 0.7938 0.7438 0.6088 0.8239 0.8262 0.8297 0.8598 0.8758

SVM 0.9152 0.9129 0.9152 0.8877 0.7805 0.8997 0.9156 0.4028 0.9156 0.9207

GBDT 0.9051 0.9122 0.9024 0.8899 0.6145 0.9012 0.8949 0.8861 0.9073 0.9213

winequality-white-3 vs 7

CART 0.6705 0.5619 0.6449 0.6693 0.6812 0.7432 0.7074 0.6835 0.6915 0.8023

SVM 0.7216 0.8511 0.7256 0.7341 0.8421 0.8789 0.7642 0.5449 0.8461 0.8839

GBDT 0.8185 0.8324 0.8293 0.8173 0.7926 0.8698 0.8776 0.7642 0.8213 0.8872

abalone-20 vs 8-9-10

CART 0.5778 0.6831 0.6364 0.6033 0.5021 0.7747 0.8199 0.6962 0.8144 0.7857

SVM 0.9439 0.9561 0.9551 0.9351 0.7547 0.9594 0.7633 0.2646 0.9575 0.9661

GBDT 0.9081 0.9071 0.8811 0.9008 0.5249 0.8931 0.8955 0.8862 0.9116 0.8988

poker-8-9 vs 5

CART 0.5844 0.5391 0.6106 0.6113 0.5621 0.7197 0.6428 0.7159 0.7223 0.6768

SVM 0.8942 0.8557 0.8986 0.8974 0.3472 0.8689 0.5766 0.3452 0.8155 0.8708

GBDT 0.8361 0.7681 0.8332 0.8721 0.7507 0.8731 0.7128 0.6763 0.8459 0.8874

abalone19

CART 0.5458 0.5488 0.5631 0.5403 0.4923 0.5675 0.6902 0.5831 0.6921 0.6926

SVM 0.5422 0.7398 0.5909 0.5159 0.3779 0.7081 0.7173 0.3108 0.7433 0.6772

GBDT 0.7961 0.7727 0.7977 0.7766 0.4632 0.7676 0.7741 0.7877 0.8198 0.8392

22

Table 6: suPR of all algorithms in the collected datasets
dataset models Null SMOTE TL NB-TL NB-Comm UCBSS SPE RUSBoost MGRU-MD MGRU-SED

pima

CART 0.5583 0.5974 0.6005 0.7041 0.6881 0.7017 0.6884 0.6311 0.6983 0.7112

SVM 0.7781 0.7779 0.7771 0.7758 0.7701 0.7786 0.7767 0.6161 0.7779 0.7874

GBDT 0.7774 0.7782 0.7787 0.7778 0.7751 0.7794 0.7782 0.7795 0.7769 0.7877

glass0

CART 0.6612 0.6991 0.7201 0.7238 0.7454 0.7674 0.7858 0.7645 0.7725 0.7401

SVM 0.6892 0.6286 0.7891 0.7792 0.7078 0.7818 0.7161 0.6393 0.7978 0.7859

GBDT 0.8065 0.8062 0.8079 0.8029 0.7791 0.8077 0.8056 0.7933 0.8168 0.8051

haberman

CART 0.5602 0.5655 0.5551 0.6244 0.6199 0.6925 0.7029 0.5938 0.6191 0.6032

SVM 0.7969 0.8022 0.8007 0.7997 0.7345 0.7839 0.7754 0.6099 0.7946 0.8118

GBDT 0.7856 0.7827 0.7882 0.7716 0.7836 0.7854 0.7968 0.7977 0.7893 0.8076

vehicle1

CART 0.6164 0.6571 0.6284 0.7301 0.6954 0.7115 0.7998 0.7999 0.7157 0.7953

SVM 0.8349 0.8311 0.8404 0.8281 0.8238 0.8457 0.8236 0.6356 0.8544 0.8449

GBDT 0.8485 0.8489 0.8486 0.8456 0.8441 0.8508 0.8482 0.8476 0.8485 0.8543

vehicle0

CART 0.8051 0.8309 0.8101 0.8308 0.8344 0.8316 0.8726 0.8543 0.8604 0.8414

SVM 0.8654 0.8695 0.8645 0.8625 0.8658 0.8715 0.8658 0.6388 0.8755 0.8704

GBDT 0.8715 0.8717 0.8715 0.8716 0.8668 0.8717 0.8716 0.8715 0.8716 0.8733

ecoli1

CART 0.7674 0.7724 0.7938 0.8282 0.8153 0.7937 0.8443 0.8439 0.8449 0.8509

SVM 0.8719 0.8708 0.8715 0.8718 0.8718 0.8734 0.8728 0.8105 0.8824 0.8825

GBDT 0.8726 0.8728 0.8724 0.8728 0.8714 0.8737 0.8719 0.8709 0.8831 0.8836

ecoli2

CART 0.8208 0.8010 0.8101 0.8435 0.8597 0.8715 0.8478 0.8587 0.8909 0.8402

SVM 0.9145 0.9166 0.9151 0.9159 0.9161 0.9162 0.9136 0.8776 0.9255 0.9159

GBDT 0.9151 0.9167 0.9159 0.9168 0.9161 0.9173 0.9168 0.9168 0.9261 0.9162

yeast3

CART 0.7862 0.8266 0.8136 0.8393 0.8536 0.9043 0.9001 0.9097 0.9134 0.9008

SVM 0.9411 0.9423 0.9424 0.9425 0.9423 0.9424 0.9424 0.7648 0.9436 0.9424

GBDT 0.9316 0.9417 0.9418 0.9416 0.9421 0.9423 0.9419 0.9422 0.9432 0.9422

page-blocks0

CART 0.8791 0.8935 0.8871 0.9036 0.9025 0.8889 0.9154 0.9102 0.9098 0.9224

SVM 0.9433 0.9427 0.9432 0.9443 0.9353 0.9432 0.9351 0.6291 0.9417 0.9468

GBDT 0.9469 0.9471 0.9461 0.9460 0.9469 0.9469 0.9469 0.9469 0.9451 0.9482

yeast-2 vs 4

CART 0.8039 0.8424 0.7938 0.7889 0.8894 0.9419 0.9287 0.9391 0.9433 0.9198

SVM 0.9469 0.9483 0.9481 0.9477 0.9481 0.9479 0.9475 0.8257 0.9498 0.9479

GBDT 0.9482 0.9483 0.9372 0.9472 0.9481 0.9425 0.9481 0.9483 0.9484 0.9483

abalone9-18

CART 0.6439 0.7176 0.6282 0.6306 0.7359 0.8011 0.9436 0.8659 0.8786 0.7778

SVM 0.9686 0.9685 0.9688 0.9692 0.9666 0.9693 0.9563 0.7508 0.9702 0.9693

GBDT 0.9663 0.9674 0.9661 0.9659 0.9665 0.9655 0.9555 0.9568 0.9689 0.9676

winequality-red-4

CART 0.5608 0.6107 0.5579 0.5586 0.6443 0.6954 0.8803 0.7684 0.8029 0.7429

SVM 0.9281 0.9149 0.9457 0.9487 0.9533 0.9526 0.9447 0.9071 0.9461 0.9541

GBDT 0.9764 0.9748 0.9725 0.9746 0.9742 0.9774 0.9761 0.9749 0.9765 0.9804

yeast5

CART 0.8576 0.9026 0.8451 0.9276 0.8925 0.9351 0.9103 0.9098 0.9301 0.9726

SVM 0.9849 0.9849 0.9849 0.9849 0.9231 0.9850 0.9849 0.7536 0.9851 0.9851

GBDT 0.9601 0.9849 0.9851 0.9849 0.9847 0.9850 0.9849 0.9726 0.9851 0.9849

winequality-red-8 vs 6

CART 0.6751 0.7251 0.6939 0.6281 0.8158 0.8642 0.9137 0.7219 0.9159 0.8645

SVM 0.9701 0.9772 0.9629 0.9776 0.8768 0.9691 0.9539 0.8978 0.9695 0.9306

GBDT 0.9821 0.9731 0.9851 0.9847 0.9845 0.9854 0.9839 0.9842 0.9855 0.9851

abalone-17 vs 7-8-9-10

CART 0.6016 0.6504 0.6262 0.6759 0.7035 0.8204 0.9118 0.9019 0.8053 0.9187

SVM 0.9868 0.9872 0.9868 0.9871 0.9321 0.9871 0.9852 0.8533 0.9871 0.9872

GBDT 0.9861 0.9871 0.9861 0.9868 0.9836 0.9868 0.9867 0.9866 0.9868 0.9769

abalone-21 vs 8

CART 0.7649 0.9164 0.7948 0.7465 0.8189 0.9079 0.9156 0.8914 0.9126 0.9164

SVM 0.9848 0.9864 0.9853 0.9838 0.9813 0.9855 0.9861 0.8739 0.9868 0.9849

GBDT 0.9842 0.9866 0.9841 0.9603 0.9788 0.9867 0.9852 0.9325 0.9861 0.9869

winequality-white-3 vs 7

CART 0.6705 0.5797 0.6501 0.6727 0.7406 0.7635 0.8571 0.8456 0.7405 0.8635

SVM 0.9179 0.9863 0.9539 0.9728 0.9869 0.9677 0.9388 0.7284 0.9871 0.9874

GBDT 0.8408 0.9864 0.8632 0.8657 0.9861 0.9817 0.9827 0.9856 0.9868 0.9876

abalone-20 vs 8-9-10

CART 0.5855 0.6957 0.6417 0.6089 0.6823 0.8513 0.8945 0.7051 0.8844 0.9095

SVM 0.9928 0.9931 0.9929 0.9929 0.9449 0.9931 0.9909 0.9435 0.9930 0.9931

GBDT 0.9922 0.9913 0.9912 0.9924 0.9871 0.9925 0.9926 0.9925 0.9923 0.9927

poker-8-9 vs 5

CART 0.5924 0.5606 0.6164 0.6174 0.6353 0.8152 0.9172 0.9339 0.8281 0.7905

SVM 0.9909 0.9431 0.9927 0.9931 0.9047 0.9929 0.9808 0.8971 0.9909 0.9932

GBDT 0.9928 0.9893 0.9928 0.9931 0.9920 0.9928 0.9853 0.9889 0.9922 0.9931

abalone19

CART 0.5517 0.5684 0.5676 0.5473 0.6275 0.7759 0.8956 0.8996 0.7957 0.7999

SVM 0.9892 0.9956 0.9927 0.9898 0.9868 0.9942 0.9948 0.9434 0.9958 0.9931

GBDT 0.9945 0.9952 0.9953 0.9953 0.9879 0.9947 0.9951 0.9951 0.9955 0.9958

23

Figure 4: The mean value of SVM on all experimental datasets.

Figure 5: The mean value of GBDT on all experimental datasets.

24

Table 7: Average Friedman rankings of and APVs using Holm’s procedure in AUC.

Result (AUC) Algorithm Friedman ranking APVs

CART

MGRU-MD 2.500 -

MGRU-SED 2.875 0.695299

SPE 3.400 0.694415

UCBSS 3.975 0.370252

RUSBoost 4.450 0.166717

NB-TL 6.550 0.000117

SMOTE 6.650 0.000088

Tomek-Links 7.925 0

NB-Comm 8.275 0

Null 8.400 0

SVM

MGRU-SED 2.325 -

MGRU-MD 2.650 0.734270

UCBSS 3.700 0.301925

SMOTE 5.100 0.011252

NB-TL 5.650 0.002060

Tomek-Links 5.875 0.001131

Null 5.900 0.001131

SPE 6.700 0.000034

NB-Comm 7.200 0.000003

RUSBoost 9.900 0

GBDT

MGRU-SED 2.275 -

MGRU-MD 2.650 0.695299

UCBSS 4.925 0.011286

SMOTE 5.150 0.008024

Tomek-Links 5.650 0.001736

SPE 5.700 0.001736

Null 6.150 0.000311

NB-TL 6.250 0.000231

RUSBoost 7.250 0.000002

NB-Comm 9.000 0

25

Table 8: Average Friedman rankings of and APVs using Holm’s procedure in auPR.

Result (auPR) Algorithm Friedman ranking APVs

CART

SPE 2.550 -

MGRU-MD 3.000 1

MGRU-SED 3.175 1

RUSBoost 3.800 0.575084

UCBSS 4.200 0.339287

NB-Comm 5.800 0.003438

NB-TL 6.950 0.000026

SMOTE 7.575 0.000001

Tomek-Links 8.750 0

Null 9.200 0

SVM

MGRU-MD 2.725 -

MGRU-SED 2.900 0.854969

UCBSS 3.700 0.617019

SMOTE 4.825 0.084840

NB-TL 5.125 0.048743

Tomek-Links 5.375 0.028215

Null 6.400 0.000743

SPE 6.800 0.000146

NB-Comm 7.250 0.000018

RUSBoost 9.900 0

GBDT

MGRU-SED 2.300 -

MGRU-MD 3.500 0.210075

UCBSS 4.100 0.120206

SMOTE 5.100 0.010350

SPE 6.000 0.000445

Tomek-Links 6.300 0.000157

RUSBoost 6.325 0.000157

NB-TL 6.500 0.000081

Null 7.000 0.000007

NB-Comm 7.875 0

26

undersampling, which has not obtained the optimal value on all data sets. Therefore, in terms of

obtaining the optimal number of values, the classification performance of RUSBoost is not as good as

our proposed algorithm.

Next, we can perform a brief analysis based on the mean results of each algorithm on all data

sets in Fig.3. For the AUC value, our proposed MGRU-SED is the best, followed by MGRU-MD,

and followed by SPE. However, under the auPR evaluation metric, the two algorithms we proposed

have a significant gap compared with SPE. The main reason is that the two algorithms we proposed

remove partially overlapping majority instances before training, which may lead to a decrease in the

accuracy of majority instances, resulting in a decrease in the overall auPR value of the model. On the

whole, we can draw a simple conclusion that our proposed algorithm is superior to other resampling

algorithms on most data sets. Compared with other ensemble learning algorithms, our algorithm has

a competitive advantage.

When we select SVM as the base classifier, the number of optimal values obtained on all data

sets in Table 5 and Table 6 or the mean value of algorithms on all data sets are depicted in Fig. 4,

we can conclude that the proposed MGRU-SED and MGRU-MD have better performance than the

state-of-the-art class-overlap under-sampling algorithm. SPE does not directly balance all training

data sets, but eliminates majority instances one by one through the use of self-paced learning. There-

fore, the SVM may not be able to obtain the optimal performance every time it is learned. When

the performance of the obtained SVM is poor, it will affect the final integrated performance of the

model. Many researchers believe that RUS may delete a large number of valuable majority samples.

In the random process, if valuable majority instances are deleted, the classification performance of

the model will be greatly reduced. Although RUSBoost, an ensemble learning algorithm based on

RUS, can effectively improve the classification performance of the model, it still cannot overcome this

shortcoming. Especially for SVM, if majority instances we delete are support vectors, the performance

will drop off a cliff. Compared with other resampling algorithms, although UCBSS has the highest

mean value under the AUC evaluation metric, the two algorithms we proposed follow closely behind,

and the gap is very small. Therefore, we can conclude that when we use SVM for classification, under

the two evaluation metrics of AUC and auPR, the performance of MGRU-SED and MGRU-MD is

better than or partly better than other resampling algorithms.

When we choose GBDT as the base classifier, according to the results in Table 5 and Table 6, we

can observe that the two algorithms proposed by us can obtain excellent classification performance

compared with other algorithms, whether in metrics of AUC or auPR. In particular, MGRU-SED has

better performance.

In order to verify the above analysis results, Tables 7 and 8 show the average Friedman rankings and

APVs values of all comparison algorithms under the two metrics of AUC and auPR. We can observe

that the two algorithms MGRU-SED and MGRU-MD can get the lowest value in most cases. When we

27

used the CART classifier, SPE obtained the lowest value under the evaluation index of auPR. Although

our proposed algorithm does not occupy an absolute advantage under the above circumstances, we

can still draw the conclusion that the two proposed algorithms are excellent in most cases according

to the Friedman ranking results.

Our further analysis of the results of Holm’s post-hoc test shows that for AUC, when CART

is selected for classification, the APVs values of the five algorithms of MGRU-MD, MGRU-SED,

SPE, UCBSS and RUSBoost are all greater than the commonly used significance level (e.g. α =

0.05). Therefore, we believe that in this case, there is no significant difference in the performance

of these five algorithms. When selecting SVM for classification, the APVs of the three algorithms of

MGRU-SED, MGRU-MD and UCBSS are greater than 0.05, so there is no significant difference in

performance between them. When we choose GBDT for classification, the APVs values corresponding

to all algorithms are lower than the significance level α = 0.05. Therefore, we believe that in this

case, the null hypothesis of equality is rejected, which also supports the conclusion of our proposed

algorithm is superior to other algorithms. For auPR, our conclusions are the same as those under the

AUC.

In summary, based on the experimental results and statistical test results, we know that the two

algorithms we proposed are superior to other classification algorithms in most cases. Similarly, the

Friedman ranking and holm’s post-hoc test results obtained in Tables 7 and 8 also support our con-

clusions.

6.3. Global analysis of results

Finally, we can make a global analysis of results combining the results offered by Tables from 3-7

and Figure from 2-5:

(1)When we use ONBavg to calculate the complexity of the training set after sampling, according

to the results in Table 3 and Fig. 2, we can conclude that the proposed MGRU-SED and MGRU-

MD are the best algorithms, and MGRU-SED is better. Therefore, we believe that the two proposed

algorithms can effectively reduce the class overlap complexity of the training set. Their performance

is better than other algorithms, and this hypothesis has been confirmed by non-parametric statistical

tests.

(2)ONBavg is a conservative measure of class-overlap complexity. When we measure the complexity

of oversampling algorithms such as SMOTE, we cannot accurately explain the exact overlap complexity

of such algorithms, and future work can still improve it. In addition, as described in [61], the process

of searching the hyperspheres in ONBavg is NP-hard. For moderately large datasets, the calculation

time is prohibitively long.

(3)According to the experimental results in Table 5-6, the two algorithms we proposed are superior

to other state-of-the-arts class-overlap undersampling algorithms in most cases. This conclusion was

28

confirmed by non-parametric statistical tests.

(4)When we choose CART as the base classifier, according to the experimental results in Fig. 3,

SPE’s auPR is superior to all class-overlap undersampling algorithms including our proposed algorithm,

and its performance is improved thanks to the use of an integrated learning framework. Of course, our

algorithm can also further improve the classification performance utilizing the MGRU class-overlap

under-sampling algorithms through ensemble learning.

(5)According to the results in Table 5-6 and Fig. 4, when we choose SVM as the base classifier, the

classification performance is better on a more balanced data set. In addition, for a highly imbalanced

dataset, RUSBoost deletes too many majority instances, which results in SVM not being able to better

obtain the knowledge in the training data set, so performance is significantly reduced.

(6)For GBDT, our proposed algorithm is significantly better than other state-of-the-arts class-

overlap undersampling algorithms. It is also better than the two ensemble learning methods of SPE

and RUSBoost. This conclusion is confirmed by the non-parametric statistical tests in Table 7-8. Since

our proposed algorithm has the ability to mine potential overlapping instances, it can eliminate the

potential overlapping majority instances that are difficult to find by other algorithms. Therefore, in

the learning process of GBDT, a classification model with excellent performance and robustness can

be obtained.

(7)From the overall results, the performance of our proposed algorithm is better and can effectively

improve the performance of the model. In some cases, TL, NB-TL and NB-Comm did not significantly

improve the overall classification performance of the model. On the contrary, it will cause the overall

performance of the classification model to decrease because of ignoring potential overlapping samples.

7. Conclusions and future works

The imbalanced data sets widely exist in various real-world data sets. For the problem of imbalanced

data classification, some data-level algorithms have been proposed to solve such problems. In this

paper, we consider the potential overlapping instances in the data set through the local subspace,

and propose two novel MGRU-MD and MGRU-SED class-overlap under-sampling algorithms. The

experimental results on 20 highly imbalanced datasets show that the AUC and auPR of the two

class-overlap under-sampling algorithms we proposed are better or partially better than other state-

of-the-arts resampling algorithms. Using the MGRU algorithm to preprocess the training set can

significantly improve the classification performance of the model. In addition, according to non-

parametric statistical tests, the performance difference between the two under-sampling methods,

MGRU-SED and MGRU-MD, is not significant. When the number of instances in the data set is less

than the number of features, we will not be able to calculate the Mahalanobis distance. Therefore, we

can preferentially choose MGRU-SED for under-sampling.

29

In the design process of the MGRU algorithm, we did not consider whether different feature com-

binations may dig out more potential overlapping instances. Therefore, in the future work we will

further explore whether there are potentially overlap instances in the local subspaces of different

feature combinations. Compared with the SPE ensemble learning algorithm, we can find that remov-

ing majority instances will lead to a decrease in the accuracy of majority instances. Therefore, we

can further combine the ensemble learning framework to propose an ensemble learning model under

multi-granularity local subspaces to prevent the deletion of class-overlap instances from reducing the

classification accuracy of majority instances. On the basis of our proposed algorithm, we can also

explore the class-overlap undersampling algorithms of multi-class imbalanced data. Due to the essen-

tial difference between the multi-class classification problem and the binary classification problem, in

future work, we can further apply this algorithm to the multi-class overlap problem to explore the

classification performance of our proposed method in multi-class classification problem.

Acknowledgements

This work was supported by the Science Foundation of China University of Petroleum, Beijing

(No.2462020YXZZ023).

References

[1] K.-C. Khor, C.-Y. Ting, S. Phon-Amnuaisuk, A cascaded classifier approach for improving de-

tection rates on rare attack categories in network intrusion detection, Applied Intelligence 36 (2)

(2012) 320–329.

[2] N. Garćıa-Pedrajas, J. Perez-Rodriguez, A. de Haro-Garćıa, Oligois: scalable instance selection

for class-imbalanced data sets, IEEE Transactions on Cybernetics 43 (1) (2012) 332–346.

[3] S. M. H. Bamakan, H. Wang, Y. Shi, Ramp loss k-support vector classification-regression; a robust

and sparse multi-class approach to the intrusion detection problem, Knowledge-Based Systems

126 (2017) 113–126.

[4] J. Kwak, T. Lee, C. O. Kim, An incremental clustering-based fault detection algorithm for class-

imbalanced process data, IEEE Transactions on Semiconductor Manufacturing 28 (3) (2015) 318–

328.

[5] Z. Sun, J. Zhang, H. Sun, X. Zhu, Collaborative filtering based recommendation of sampling

methods for software defect prediction, Applied Soft Computing 90 (2020) 106163.

[6] Z. Jin, Q. Li, D. Zeng, L. Wang, Filtering spam in weibo using ensemble imbalanced classification

and knowledge expansion, in: 2015 IEEE International Conference on Intelligence and Security

Informatics (ISI), IEEE, 2015, pp. 132–134.

30

[7] Y. Sun, A. K. Wong, M. S. Kamel, Classification of imbalanced data: A review, International

journal of pattern recognition and artificial intelligence 23 (04) (2009) 687–719.

[8] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, G. Bing, Learning from class-

imbalanced data: Review of methods and applications, Expert Systems with Applications 73

(2017) 220–239.

[9] Y. Sun, M. S. Kamel, A. K. Wong, Y. Wang, Cost-sensitive boosting for classification of imbal-

anced data, Pattern recognition 40 (12) (2007) 3358–3378.

[10] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Transactions on knowledge and data

engineering 21 (9) (2009) 1263–1284.

[11] Z. Chen, T. Lin, X. Xia, H. Xu, S. Ding, A synthetic neighborhood generation based ensemble

learning for the imbalanced data classification, Applied Intelligence 48 (8) (2018) 2441–2457.

[12] F. Shen, X. Zhao, G. Kou, F. E. Alsaadi, A new deep learning ensemble credit risk evaluation

model with an improved synthetic minority oversampling technique, Applied Soft Computing 98

(2021) 106852.

[13] G. Szlobodnyik, L. Farkas, Data augmentation by guided deep interpolation, Applied Soft Com-

puting 111 (2021) 107680.

[14] K. Borowska, J. Stepaniuk, A rough-granular approach to the imbalanced data classification

problem, Applied Soft Computing 83 (2019) 105607.

[15] Z. Zhu, Z. Wang, D. Li, W. Du, Multiple empirical kernel learning with majority projection for

imbalanced problems, Applied Soft Computing 76 (2019) 221–236.

[16] B. S. Raghuwanshi, S. Shukla, Class-specific kernelized extreme learning machine for binary class

imbalance learning, Applied Soft Computing 73 (2018) 1026–1038.

[17] L. Wang, Y. Chen, H. Jiang, J. Yao, Imbalanced credit risk evaluation based on multiple sampling,

multiple kernel fuzzy self-organizing map and local accuracy ensemble, Applied Soft Computing

91 (2020) 106262.

[18] W. W. Ng, J. Hu, D. S. Yeung, S. Yin, F. Roli, Diversified sensitivity-based undersampling for

imbalance classification problems, IEEE transactions on cybernetics 45 (11) (2014) 2402–2412.

[19] S. Wang, L. L. Minku, X. Yao, Resampling-based ensemble methods for online class imbalance

learning, IEEE Transactions on Knowledge and Data Engineering 27 (5) (2014) 1356–1368.

31

[20] S. Gazzah, A. Hechkel, N. E. B. Amara, A hybrid sampling method for imbalanced data, in: 2015

IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), IEEE, 2015,

pp. 1–6.

[21] C. Jian, J. Gao, Y. Ao, A new sampling method for classifying imbalanced data based on support

vector machine ensemble, Neurocomputing 193 (2016) 115–122.

[22] S. Das, S. Datta, B. B. Chaudhuri, Handling data irregularities in classification: Foundations,

trends, and future challenges, Pattern Recognition 81 (2018) 674–693.

[23] V. Garćıa, R. A. Mollineda, J. S. Sánchez, On the k-nn performance in a challenging scenario of

imbalance and overlapping, Pattern Analysis and Applications 11 (3) (2008) 269–280.

[24] I. Tomek, et al., Two modifications of cnn. (1976).

[25] D. Devi, B. Purkayastha, et al., Redundancy-driven modified tomek-link based undersampling: A

solution to class imbalance, Pattern Recognition Letters 93 (2017) 3–12.

[26] S. Xing, Z. Ming, A study on unstable cuts and its application to sample selection, International

Journal of Machine Learning and Cybernetics 9 (9) (2018) 1541–1552.

[27] M. Koziarski, M. Woźniak, B. Krawczyk, Combined cleaning and resampling algorithm for multi-

class imbalanced data with label noise, Knowledge-Based Systems 204 (2020) 106223.

[28] J.-H. Oh, J. Y. Hong, J.-G. Baek, Oversampling method using outlier detectable generative ad-

versarial network, Expert Systems with Applications 133 (2019) 1–8.

[29] M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, J. Santos, Cross-validation for imbalanced

datasets: avoiding overoptimistic and overfitting approaches [research frontier], ieee Computa-

tioNal iNtelligeNCe magaziNe 13 (4) (2018) 59–76.

[30] G. Cohen, M. Hilario, H. Sax, S. Hugonnet, A. Geissbuhler, Learning from imbalanced data in

surveillance of nosocomial infection, Artificial intelligence in medicine 37 (1) (2006) 7–18.

[31] X. Xie, H. Liu, S. Zeng, L. Lin, W. Li, A novel progressively undersampling method based on the

density peaks sequence for imbalanced data, Knowledge-Based Systems 213 (2021) 106689.

[32] M. Kubat, S. Matwin, et al., Addressing the curse of imbalanced training sets: one-sided selection,

in: Icml, Vol. 97, Citeseer, 1997, pp. 179–186.

[33] P. Hart, The condensed nearest neighbor rule (corresp.), IEEE transactions on information theory

14 (3) (1968) 515–516.

32

[34] J. Laurikkala, Improving identification of difficult small classes by balancing class distribution, in:

Conference on Artificial Intelligence in Medicine in Europe, Springer, 2001, pp. 63–66.

[35] I. Tomek, et al., An experiment with the edited nearest-nieghbor rule. (1976).

[36] D. Devi, B. Purkayastha, et al., Redundancy-driven modified tomek-link based undersampling: A

solution to class imbalance, Pattern Recognition Letters 93 (2017) 3–12.

[37] S. Kumar, S. K. Biswas, D. Devi, Tlusboost algorithm: a boosting solution for class imbalance

problem, Soft Computing 23 (21) (2019) 10755–10767.

[38] P. Vuttipittayamongkol, E. Elyan, Neighbourhood-based undersampling approach for handling

imbalanced and overlapped data, Information Sciences 509 (2020) 47–70.

[39] S.-J. Yen, Y.-S. Lee, Cluster-based under-sampling approaches for imbalanced data distributions,

Expert Systems with Applications 36 (3) (2009) 5718–5727.

[40] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, J.-S. Jhang, Clustering-based undersampling in class-imbalanced

data, Information Sciences 409 (2017) 17–26.

[41] N. Ofek, L. Rokach, R. Stern, A. Shabtai, Fast-cbus: A fast clustering-based undersampling

method for addressing the class imbalance problem, Neurocomputing 243 (2017) 88–102.

[42] J. Hoyos-Osorio, A. Alvarez-Meza, G. Daza-Santacoloma, A. Orozco-Gutierrez, G. Castellanos-

Dominguez, Relevant information undersampling to support imbalanced data classification, Neu-

rocomputing 436 (2021) 136–146.

[43] P. Vuttipittayamongkol, E. Elyan, A. Petrovski, C. Jayne, Overlap-based undersampling for im-

proving imbalanced data classification, in: International Conference on Intelligent Data Engineer-

ing and Automated Learning, Springer, 2018, pp. 689–697.

[44] C. Bunkhumpornpat, K. Sinapiromsaran, Dbmute: density-based majority under-sampling tech-

nique, Knowledge and Information Systems 50 (3) (2017) 827–850.

[45] Q. Kang, X. Chen, S. Li, M. Zhou, A noise-filtered under-sampling scheme for imbalanced classi-

fication, IEEE transactions on cybernetics 47 (12) (2016) 4263–4274.

[46] T. Liu, X. Zhu, W. Pedrycz, Z. Li, A design of information granule-based under-sampling method

in imbalanced data classification, Soft Computing 24 (2020) 17333–17347.

[47] J. Li, B.-L. Lu, An adaptive image euclidean distance, Pattern Recognition 42 (3) (2009) 349–357.

[48] F. Y. Shih, Y.-T. Wu, The efficient algorithms for achieving euclidean distance transformation,

IEEE Transactions on image processing 13 (8) (2004) 1078–1091.

33

[49] W.-Y. Chiu, B.-S. Chen, Mobile location estimation in urban areas using mixed manhat-

tan/euclidean norm and convex optimization, IEEE Transactions on Wireless Communications

8 (1) (2009) 414–423.

[50] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor analysis for speaker

verification, IEEE Transactions on Audio, Speech, and Language Processing 19 (4) (2010) 788–

798.

[51] R. De Maesschalck, D. Jouan-Rimbaud, D. L. Massart, The mahalanobis distance, Chemometrics

and intelligent laboratory systems 50 (1) (2000) 1–18.

[52] P. C. Mahalanobis, Experiments in statistical sampling in the Indian Statistical Institute, Statis-

tical Publishing Society, Kolkata, 1961.

[53] G. E. Batista, A. L. Bazzan, M. C. Monard, et al., Balancing training data for automated anno-

tation of keywords: a case study., in: WOB, 2003, pp. 10–18.

[54] U. M. Fayyad, K. B. Irani, On the handling of continuous-valued attributes in decision tree

generation, Machine learning 8 (1) (1992) 87–102.

[55] D. Wang, W. Pedrycz, Z. Li, Granular data aggregation: An adaptive principle of the justifiable

granularity approach, IEEE transactions on cybernetics 49 (2) (2018) 417–426.

[56] W.-Z. Wu, Y. Leung, J.-S. Mi, Granular computing and knowledge reduction in formal contexts,

IEEE transactions on knowledge and data engineering 21 (10) (2008) 1461–1474.

[57] G. Wang, J. Xu, Granular computing with multiple granular layers for brain big data processing,

Brain informatics 1 (1-4) (2014) 1–10.

[58] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: synthetic minority over-

sampling technique, Journal of artificial intelligence research 16 (2002) 321–357.

[59] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, A. Napolitano, Rusboost: A hybrid approach

to alleviating class imbalance, IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans 40 (1) (2009) 185–197.

[60] Z. Liu, W. Cao, Z. Gao, J. Bian, H. Chen, Y. Chang, T.-Y. Liu, Self-paced ensemble for highly

imbalanced massive data classification, in: 2020 IEEE 36th International Conference on Data

Engineering (ICDE), IEEE, 2020, pp. 841–852.

[61] J. D. Pascual-Triana, D. Charte, M. A. Arroyo, A. Fernández, F. Herrera, Revisiting data com-

plexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of

balls metrics and singular problems prospect, Knowledge and Information Systems (2021) 1–29.

34

[62] S. Garćıa, A. Fernández, J. Luengo, F. Herrera, A study of statistical techniques and performance

measures for genetics-based machine learning: accuracy and interpretability, Soft Computing

13 (10) (2009) 959.

[63] S. Garćıa, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple com-

parisons in the design of experiments in computational intelligence and data mining: Experimental

analysis of power, Information sciences 180 (10) (2010) 2044–2064.

[64] T. K. Ho, M. Basu, Complexity measures of supervised classification problems, IEEE transactions

on pattern analysis and machine intelligence 24 (3) (2002) 289–300.

35

	1 Introduction
	2 Related work
	3 Motivation
	4 The Proposed Algorithm
	4.1 MGRU Algorithm
	4.2 Global relabeled index value selection
	4.3 Algorithm Complexity

	5 Experiments framework
	5.1 Setup
	5.2 Datasets

	6 Results and analysis
	6.1 Class-overlap complexity measurement after sampling
	6.2 Compared with state-of-the-art algorithms
	6.3 Global analysis of results

	7 Conclusions and future works

