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Abstract

Deep neural networks present impressive performance, yet they cannot reliably

estimate their predictive confidence, limiting their applicability in high-risk do-

mains. We show that applying a multi-label one-vs-all loss reveals classification

ambiguity and reduces model overconfidence. The introduced SLOVA (Single

Label One-Vs-All) model redefines typical one-vs-all predictive probabilities to

a single label situation, where only one class is the correct answer. The pro-

posed classifier is confident only if a single class has a high probability and other

probabilities are negligible. Unlike the typical softmax function, SLOVA natu-

rally detects out-of-distribution samples if the probabilities of all other classes

are small. The model is additionally fine-tuned with exponential calibration,

which allows us to precisely align the confidence score with model accuracy.

We verify our approach on three tasks. First, we demonstrate that SLOVA

is competitive with the state-of-the-art on in-distribution calibration. Second,

the performance of SLOVA is robust under dataset shifts. Finally, our ap-

proach performs extremely well in the detection of out-of-distribution samples.

Consequently, SLOVA is a tool that can be used in various applications where

uncertainty modeling is required.
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1. Introduction

Deep learning models frequently outperform human capabilities in typical

computer vision or natural language processing tasks. Despite their impressive

performance, neural networks tend to make overconfident decisions, which limits

their applicability in high-risk fields such as medical diagnosis [1], autonomous

vehicle control [2], or the financial and legal sector [3]. In other words, deep

learning models often cannot correctly quantify predictive uncertainty.

We focus on three aspects that are critical in predictive uncertainty estima-

tion. The first one is the in-distribution calibration, which says that the prob-

ability associated with the predicted class label should reflect its confidence.

Second, machine learning models should be robust under dataset shifts (small

data distortion) in terms of accuracy and confidence. Finally, the models should

make low confidence predictions on out-of-distribution (OOD) data. While all

of these issues are closely connected, there are not many models that deal with

all of them simultaneously.

In this paper, we propose a simple, yet remarkably effective approach, a

remedy for all of the described problems. Our idea relies on extending and

calibrating the multi-label One-Vs-All (OVA) classifier [4] to the single-label

case. In contrast to a typical softmax classifier designed to rank classes rather

than estimate confidence, OVA models use an individual scoring function for

each class. If the model assigns high scores to more than one class or returns

low predictions for all classes, it informs us about its uncertainty. Although OVA

has already been used for uncertainty estimation [5, 6], confidence was always

defined as the maximal class probability, which results in high confidence even

if two or more classes are very likely.

Following this reasoning, we construct a post hoc model, SLOVA (Single-

Label-One-Vs-All), which aggregates the predictive probabilities of a pretrained

OVA model. It returns high confidence if and only if a single class has a high

probability and other probabilities are negligible. See Figure 1 for a compari-
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Figure 1: Confidence score map of OVA and SLOVA for a two-class classification problem.

The axes p1, p2 represent the likelihood of the data-point belonging to each class while the

colors encode the score. Since OVA connects confidence with the maximal class probability,

it may return high confidence if two classes are equally likely. In contrast, SLOVA gives high

confidence if exactly one class has a high probability.

son with the typical OVA confidence in the two-class classification problem. We

prove that SLOVA is guaranteed to return low confidence for out-of-distribution

samples; see Theorem 3.1 and Figure 2. Finally, to precisely align the con-

fidence score with the model accuracy, we introduce exponential calibration.

This transformation is capable of approximating any monotonic function [7]

and, in consequence, fits perfectly for uncertainty estimation of in-distribution

and shifted data.

Since the performance of OVA on a single label problem is comparable to

the softmax model, SLOVA does not lead to a drop in accuracy. OVA is trained

using standard multi-label binary cross-entropy and thus does not require any

modification of the neural network architecture. The calculation of confidence

scores and the calibration of SLOVA is performed as a post-processing step, so

the training procedure remains precisely the same; see Figure 3 for the model

diagram. The implementation and usage of the proposed technique can be done

with minimal effort.

We conduct extensive experiments on computer vision tasks following recent

benchmarks [8] [9]. We demonstrate that SLOVA is competitive with the state-

of-the-art on in-distribution calibration, robustness under dataset shifts, and

detection of out-of-distribution data. An additional ablation study shows the
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Figure 2: Confidence score across the plane spanned by 3 randomly selected test CIFAR-

10 samples, parametrized by two variables α, β. These parameters are picked so that the

plane passes through a single sample point at the center of each plot, resulting in a high

confidence score at that point. The color indicates the confidence score of OVA (left) and

SLOVA (right) averaged over 100 sample triplets. We see that SLOVA returns low confidence

on OOD samples (far from the image center), while OVA predictions are close to 1.

impact of the aggregation scheme and model calibration on overall performance.

Our contribution can be summarized as follows:

• We introduce SLOVA – a post hoc method for uncertainty modeling, which

can be applied at test time to a OVA classifier. Our theoretical result

shows that the confidence score of SLOVA is close to 0 for samples that

are sufficiently far from in-distribution data.

• We construct a novel and powerful exponential calibration to align SLOVA

confidence with model accuracy. The introduced technique allows us to

obtain more reliable confidence estimates on in-distribution data.

• Experimental results demonstrate that SLOVA obtains performance com-

parable to state-of-the-art methods on three fundamental uncertainty tasks:

in-distribution calibration, robustness under dataset shift, and uncertainty

prediction on OOD data.

The paper is organized as follows. First, in Section 2 we describe the rele-

vant literature. Then, in Section 3, we discuss the main features of the proposed

model. We introduce the SLOVA confidence score, explain its application to out-

of-distribution tasks, and describe the exponential calibration. In Section 4 we
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discuss SLOVA performance in three experiments – the in-distribution classifica-

tion, robustness under dataset shift, and the identification of out-of-distribution

data. The experiments contain a discussion of the results, a statistical analysis

of the performance of the SLOVA model, and an ablation study that focuses on

identifying the most significant elements of the model. The work is concluded

in Section 5 with a discussion and future work recommendations.

2. Related Work

The topic of uncertainty estimation is extensive, with a vast amount of pub-

lished literature. A complete survey on uncertainty modeling in neural networks

can be found in [10]. Below, we recall the papers that are the most closely re-

lated to our approach. In particular, we focus on the Bayesian approach as the

most theoretically sound but not scalable, the role of calibration methods, al-

ternative approaches to out-of-distribution detection, and the relevance of OVA

models.

2.1. Bayesian methods

One group of methods uses the Bayesian framework, which naturally ex-

presses the uncertainty of the prediction [11]. The main idea relies on estimating

the probability distribution on the weights of the neural network, making the

model robust to perturbations. Since exact Bayesian inference on the weights

of a neural network is intractable, several approximations have been introduced

[12]. Although theoretically attractive, these methods do not scale easily to

larger models [13]. Gal and Ghahramani [14] propose using dropout as an ap-

proximation of Bayesian inference to obtain uncertainty estimates. In contrast

to Bayesian neural networks, this approach achieves a similar effect at no addi-

tional cost. Maddox et al. [15] improve this even further by approximating the

posterior with averaged SGD (stochastic gradient descent) iterates. More pre-

cisely, by making use of the information contained in the SGD trajectory, this

model approximates the posterior distribution over the weights of the neural
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network in the form of a Gaussian distribution. Although the above Bayesian

approaches obtain good results, they require significant modifications to the

training procedure and are computationally expensive compared to standard

(non-Bayesian) neural networks.

Lakshminarayanan et al. [16] proposed an alternative to Bayesian methods,

which is based on creating an ensemble (committee) of neural networks. If the

base models are sufficiently diverse, their aggregated predictions significantly

improve the uncertainty estimates. The method can be additionally improved

using adversarial training. An approximate Bayesian version of ensembling was

introduced by Pearce et al. [17]. Although the ensemble methods still achieve

state-of-the-art results in most benchmarks [8] [18], it should be noted that

training and evaluating many models is also computationally demanding.

2.2. Calibration methods

It is possible to use a standard model and then add a post-processing step

to calibrate the outputs (which aligns predictive probabilities with model ac-

curacy). Gao et al. [19] show that modern neural networks are highly mis-

calibrated and explore multiple calibration methods. One class of methods

considered there learns a logit transformation applied before they are fed to

the softmax function. Temperature scaling, where a single scalar multiplicative

factor is trained, stands out among multi-class calibration methods evaluated

for its results, surpassing both vector scaling and matrix scaling. Kull et al. [20]

introduce a method to directly calibrate the softmax outputs instead. Zhang

et al. [21] propose to create an ensemble of calibration transformations of the

same type and additionally suggest composing it together with a non-parametric

calibration method. It is also possible to use a function approximated by a neu-

ral network as a parametric calibration method, provided that it preserves the

internal order of the predictions [22]. Finally, Gaussian processes were also

examined as calibration methods [23] [24].

Another recent approach to uncertainty estimation relies on replacing the

conventional cross-entropy function by focal loss [25]. The idea behind focal loss
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is to direct the network’s attention to samples for which it is currently predicting

a low probability for the correct class. Seo et al. [26] enhance the typical

cross-entropy loss between predictions and ground truth with the cross entropy

between the predictions and the uniform distribution, forcing the network to

construct as uniform distribution as possible. Kumar et al. [27] design a kernel-

based function, which can be optimized during training and serves as a surrogate

for the calibration error.

2.3. Out-of-distribution detection

Although calibration allows for aligning predictive probabilities with model

accuracy on in-distribution data, this technique may not be adequate for de-

tecting OOD data [28]. It was shown that out-of-distribution examples can

have higher maximum softmax probabilities than in-distribution samples [29].

Multiple methods attempt to correct that by using postprocessing to adjust

softmax outputs [30, 31]. Alternative approaches integrate generative models,

such as Generative Adversarial Networks (GANs) or Variational Autoencoders

(VAEs), into the training procedure to discriminate in-distribution from OOD

data [32, 33]. It was later argued that generative models might return high con-

fidence for inputs outside of the class they are supposed to model [34, 35]. To

avoid uncertain decisions, a rejection option was introduced into the classifier

[36, 37]. In the case of images, the authors of [9] enforce low confidence on OOD

inputs with a procedure similar to adversarial training. These authors addition-

ally prove that ReLU networks with softmax output produce high-confidence

predictions far away from the training data. A detailed survey of OOD detec-

tion methods can be found in [38].

2.4. One-vs-all models

One-vs-all classification models are promising in estimating uncertainty pre-

diction because they naturally encode the ”none of the above” class. In most

cases, the confidence score of an OVA classifier is calculated as the maximum
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class probability [39, 40, 5]. Our paper shows that inspecting the probabil-

ity of a single class is not sufficient for quantifying uncertainty because a high

probability of at least two classes leads to overall high confidence of OVA. To

reduce this negative effect, the authors of [6] build an ensemble of OVA and

softmax models. As in a typical ensemble approach, the confidence is high only

if both models agree on the predictions. OVA classifier can also be combined

with distance-based logits [5] which take the density of data into account and,

in consequence, work better for detecting OOD samples [41].

In contrast to these works, we combine the predictive probabilities of all

classes to define the confidence score. The proposed confidence score represents

the probability that the model returns a given class and does not return other

classes. Consequently, the confidence is high if and only if one class has a

high probability and the others are close to zero. To deal with in-distribution

samples, we additionally introduce exponential calibration, which is capable of

approximating any monotonic function.

3. Model Description

In this section, we provide a detailed description of the SLOVA method.

First, we formulate the classification task and explain the issues that arise when

the distribution of the dataset changes. Then, we briefly describe the building

blocks of the SLOVA approach. The next subsection demonstrates how the

proposed method outputs desirable confidence in out-of-distribution datasets.

The last subsection describes exponential calibration as the final postprocess-

ing step that aims to correct both the overconfidence of the classifier and the

underestimation arising from a multiplicative form of the SLOVA confidence

score.

3.1. Problem statement

We consider a multi-class classification problem, in which every example

x ∈ RD is associated with a class y ∈ {1, . . . ,K}. Given the input x, we use
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a neural network to model the predictive distribution pθ(y|x) over the classes,

where θ are the parameters of the neural network. Throughout the paper, we

drop the index θ to simplify the notation.

In practice, the neural network is trained on a subset Xin ⊂ RD, which

represents the in-distribution (domain) data. In consequence, during training

the model learns the in-domain distribution p(y|x, x ∈ Xin), which might not

generalize well to the out-of-distribution (OOD) images Xout. Even if the model

is evaluated on the in-distribution data, we frequently observe overconfidence,

which means that the model is not well calibrated. In other words, the confi-

dence of the model related to the predictive distribution significantly exceeds

its accuracy.

We are interested in constructing a model whose predictive distribution

is well calibrated to the model accuracy. This distribution has to be robust

to dataset (covariate) shifts. Consequently, the predictive distribution should

translate into a confidence score that indicates whether the model can make the

correct decisions. Such a property allows one to deal with OOD data.

Figure 3: SLOVA is a post hoc method consisting of a OVA classifier of choice (for example a

pretrained neural network) and a post-processing step where the OVA predictive probabilities

are transformed to SLOVA calibrated probabilities. The SLOVA probabilities reflect the

confidence of in-distribution and out-of-distribution data.

9



3.2. Model overview

To achieve these goals, we propose the SLOVA model shown schematically

in Figure 3. It is a two-stage post hoc method consisting of: a) a One-Vs-All

(OVA) classifier and b) a postprocessing step that transforms OVA into SLOVA

probabilities.

Firstly, we employ the OVA classification model, in which the predictive

distribution of a given class is independent of other classes. OVA obtains com-

parable accuracy to softmax models but is much more flexible and can be used

in multi-label classification problems, where the example can be labeled with

more than one class. Since we are working in a single-label situation (only

one class is correct), we redefine the predictive probabilities of OVA. Secondly,

SLOVA transforms the probabilities by compensating for values of other classes,

reducing certainty when the model returns multiple classes or does not return

any class (as depicted in Figure 1). In Theorem 3.1, we prove that SLOVA

improves the confidence score on OOD data.

While the introduced upgrade allows us to return low confidence for OOD

data, we additionally need to calibrate the returned probabilities to match the

model confidence with its accuracy. For this purpose, we introduce the expo-

nential calibration function, whose form suits well the multiplicative form of

SLOVA predictive probabilities.

The following parts describe the details of the proposed model.

3.3. Multi-label One-Vs-All classifier

Let us recall that the predictive probabilities in OVA are described by K

sigmoid functions:

p(k|x) =
1

1 + exp(−fk(x))
,

where f(x) = [f1(x), . . . , fK(x)] represents the network embedding of data point

x ∈ RD into K-dimensional logit space. The k-th sigmoid defines an individual

Bernoulli distribution representing the probability that x belongs to the k-th

class. Since OVA allows for encoding more than one positive label for a given
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example, it is commonly used in multi-label problems. In the case of a typical

single-label classification, where exactly one label is correct, OVA is trained by

minimizing the standard cross-entropy function:

L(x, y) = − log

p(y|x)
∏
k 6=y

(1− p(k|x))


= − log p(y|x)−

∑
k 6=y

log(1− p(k|x)),

(1)

for input (x, y).

The confidence score of the softmax model (or other single-label models)

is usually defined as the maximal class probability [19]. Following this idea

directly, previous approaches to using OVA for uncertainty estimation [5, 40]

define OVA confidence by

confOVA(x) = max
k=1,...,K

p(k|x). (2)

Observe, however, that the above formula does not take into account the fact

that precisely one label is correct for every example. As mentioned, OVA suits

well to multi-label situations and can return a high probability for more than one

class. If more than one class has a high probability in single-label classification,

then the model confidence should be low because the model is unsure which

class to pick. Nevertheless, the formula (2) ignores such a situation and returns

high confidence if at least one class is highly probable.

3.4. SLOVA confidence

Motivated by the above reasoning, we calculate the correct value of the

probability that x belongs to the k th class in the single-label case. This is

the probability that the model assigns x to the k-th class and not to any other

classes, which is given by:

PSLOVA(k|x) = p(k|x)
∏
j 6=k

(1− p(j|x)). (3)

This formula uses the information that we work in a single-label case and is

consistent with the loss function (1). Consequently, the SLOVA confidence
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score is defined by:

confSLOVA(x) = max
k=1,...,K

PSLOVA(k|x). (4)

This score is high if only one class has high probability while the others are

negligible.

Remark 3.1. Our idea of confidence for an OVA classifier can also be extended

to the multi-label case. Recall that the OVA classifier returns a positive label at

the k-th position if p(k|x) ≥ 1/2. As a consequence, the confidence score in

multi-label situation can be naturally defined by:∏
k:p(k|x)≥1/2

p(k|x) ·
∏

j:p(j|x)<1/2

(1− p(j|x)).

In the extreme case, the OVA classifier may not return any label if p(k|x) < 1/2

for all k = 1, . . . ,K. The probability that ”none class is correct” is thus given

by:

PSLOVA(none|x) =

K∏
k=1

(1− p(k|x)).

We leave the further discussion on quantifying the confidence in multi-label

case for future work.

In the next subsection, we continue with a theoretical analysis which shows

that the SLOVA method correctly outputs low confidence scores when evaluated

on the out-of-distribution data.

3.5. Theoretical analysis on OOD data

It is well known that softmax models tend to have overconfident predictions

[19], especially for examples far away from the data distribution. In particular,

it was shown that the confidence of neural networks with ReLU activation and

softmax output converges to 1 for OOD data [9, Theorem 3.1]. It partially fol-

lows from the fact that the softmax model always spreads the whole probability

mass to all classes because there is no event like ”none class is correct”.

We show that such a limiting behavior does not hold for SLOVA (4), but is

likely to occur for the typical OVA confidence score (2).
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Theorem 3.1. Let f be a neural network with ReLU activation functions on

hidden layers and sigmoid output implementing K-class OVA model. We as-

sume that the distribution of classes is uniform.

Then for almost all x ∈ RD, we have confSLOVA(αx) → 1 with probability

1
2K , as α → ∞. In the same case, confOVA(αx) → 1 with probability 1 − 1

2K ,

as α→∞.

Proof. Let us first recall that a feedforward neural network f : RD 3 x →

(f1(x), . . . , fK(x)) ∈ RK that uses piecewise affine activation functions (e.g.

ReLU, leaky ReLU) and is linear in the output layer, can be rewritten as con-

tinuous piecewise affine functions. Thus there exists a finite set of polytopes

{Ql}Rl=1 such that
⋃R
l=1Ql = RD and f(x) = V lx + al is the piecewise affine

representation of the output of a ReLU network on Ql.

By [9, Lemma 3.1], there exists a region Qt with t ∈ {1, . . . , R} and β such

that for all α ≥ β we have αx ∈ Qt. Let f(x) = V tx+ at be the affine form of

the ReLU classifier f on Qt. By making use of [9, Theorem 3.1] and the fact

that the sigmoid is a special case of the softmax function for two classes, we

get that the sigmoid output p(k|αx) is arbitrarily close either to 1 or 0, for all

k = 1, . . . ,K and sufficiently large α.

Observe that confSLOVA(αx) → 1 iff. there exists exactly one k such that

p(k|αx) → 1 and p(i|αx) → 0, for all i 6= k, as α → ∞. Assuming a uniform

distribution of classes, this situation occurs with probability 1
2K . On the other

hand, confOVA(αx) → 1, as α → ∞, with probability 1 − 1
2K , because the

probability that all K sigmoids converge to 0 equals 1
2K .

To illustrate the implications of the above result, let us consider a typical task

with 10 classes such as the CIFAR-10 dataset. For OOD data x ∈ Xout, which

are sufficiently distant from in-distribution samples, we have confSLOVA(x) ≈ 1

with probability 1
210 < 0.001. To construct such OOD samples it is sufficient

to select almost any direction z ∈ RD and put x = αz, where α ∈ R is a

sufficiently large scalar. For analogical OOD samples, confOVA(x) → 1 with

probability greater than 0.999. Consequently, a typical OVA classifier behaves
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Figure 4: Confidence scores of OVA and SLOVA on OOD data illustrating Theorem 3.1. We

show both the mean and the standard deviation of confidence scores for both models evaluated

at an input x+αxrand composed of a CIFAR-10 test point x and a random vector xrand. The

α parameter plotted on the horizontal axis controls the strength of the distributional shift.

In contrast to OVA, whose confidence saturates at high values of α, the confidence of SLOVA

converges to 0 on OOD data as expected.

analogously to a softmax classifier, while SLOVA does not inherit this drawback.

Figure 4 shows the mean confidence of OVA and SLOVA for inputs localized

on a fixed 1-dimensional affine subspace x + αxrand. The middle point α =

0 is a test sample x, which represents the in-distribution data. The plot is

averaged over many random subspaces xrand. It is evident that OVA, on average,

returns high confidence for large α, while SLOVA converges to a small value.

Observe the rapid drop of confidence around the test point for OVA and SLOVA,

which is caused by the decrease in the predictive probability of the dominant

class (the probabilities of other classes are still small). Next, the predictive

probabilities of some other classes are increasing, resulting in a slight increase of

SLOVA confidence. Finally, we observe a decrease of SLOVA confidence because

predictive probabilities of most classes converge to 0 while others converge to

1. OVA confidence converges to 1 since it relies only on the dominant class.

Analogical comparison for the two-dimensional subspace is presented in Figure

2.

3.6. Exponential calibration

We now describe calibration as the final postprocessing step of the SLOVA method.

Using PSLOVA(k|x) as predictive probabilities for k = 1, . . . ,K reduces the over-

confidence of a typical OVA classifier when more than one class has a high prob-
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ability. However,
∑K
k=1 PSLOVA(k|x) ≤ 1 because various multi-label events are

additionally encoded; see Remark 3.1. As a consequence, there exists a discrep-

ancy between the predicted probabilities (confidence) and the true probabilities

(accuracy). The middle point in Figure 4 illustrates the underestimation of

SLOVA predictive probabilities on in-distribution data. Rather than normal-

izing the obtained predictive probabilities, which is only a partial solution, we

instead use calibration techniques that align the expected confidence with ac-

curacy.

To formally define the calibration, let p̂(k|x) be the probability that the

model returns the class k for the input example x and let P be the true prob-

ability of classes. We say that the model is calibrated if the true probability P

of class k given the output probability p̂ coincides with the output probability

for that class:

P (k|p̂(x)) = p̂(k|x), for k ∈ {1, . . . ,K}. (5)

A typical way to calibrate the classification model relies on transforming the

output probabilities p̂ into calibrated ones p. Based on the multiplicative form

of PSLOVA, we use the exponential calibration, which, we argue in Appendix A,

is capable of ”inverting” the multiplications. Formally, we use the following

parametric transformation:

pk = c(p̂k) =

M∑
i=1

βip̂
αi

k , (6)

where αi > 0, βi ∈ (0, 1) are trainable parameters such that
∑M
i=1 βi = 1. Due

to the choice of αi, βi in the above ranges, the introduced transformation is

monotonic and is a map on the unit interval. In the Appendix A we argue that

the exponential map is a natural choice to invert the multiplicative character

of SLOVA probabilities. Moreover, it was shown that the above exponential

transformation is capable of approximating any completely monotonic function

[7, 42].

To calibrate SLOVA, we form a calibration training set Xcal from the vali-

dation dataset Xval. For each example (x, y) ∈ Xval, we gather all K pairs of
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uncalibrated output probabilities and their corresponding one-hot encoded bi-

nary labels (PSLOVA(k|x), δk,y) ∈ Xcal, which results in |Xcal| = K|Xval| pairs

in total.

Next, we sort the pairs by the output probabilities PSLOVA: P := sort(PSLOVA(k|x)),

D := sortPSLOVA(k|x)(δk,y),
, k ∈ (1...K), (x, y) ∈ Xval;

and apply sliding windows of size n to compute moving averages of the sorted

data:

πi =
1

n

i+n−1∑
j=i

Pj , bi =
1

n

i+n−1∑
j=i

Dj .

This results in N = |Xcal| − n+ 1 averaged points, and we fix the window size

n = |Xcal|/100 so that there are enough points within each window. Intuitively,

bi is the fraction of positive labels, while πi represents the average confidence

of the model in that window. Lastly, we select an equally spaced subset of the

averaged pairs (π, b) so that the total number of pairs in the dataset is nb. The

parameters α, β from (6) are directly optimized by minimizing the mean square

error:
nb∑
i=1

(c(πi)− bi)2.

Note that calibration methods are normally trained and evaluated on in-

distribution data. This means that calibration usually does not improve and

can actually increase confidence on out-of-distribution data. To prevent this, we

additionally augment Xval with random noise samples that are labeled ”none”,

that is, δk = 0 for k ∈ (1..K) (only zeros in one-hot representation). We use

[0, 1] uniform distribution for the image data as we find that it works adequately

and add b0.1|Xval|c of such samples.

The choice of hyperparameter M affects the capacity and computational

cost of the transformation. Note, however, that the cost is negligible compared

to the cost of the forward pass of the base model. In Appendix B we provide

stability studies of exponential calibration as we vary the number of adjustable

parameters M and the size of the calibration dataset nb.
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4. Experiments

To evaluate both the confidence calibration and the out-of-distribution as-

pects of uncertainty estimation, we focus on three tasks presented in the follow-

ing sections. First, we measure the model calibration on in-distribution data.

Then we repeat the same experiment under distribution shift. We then proceed

to examine the behavior of our model on out-of-distribution data. Lastly, we

analyze the significance of the calibration step in the final section.

4.1. In-distribution and shifted data

Setup. To examine the model calibration on in-distribution and distorted data,

we follow a recent benchmark [8] and compare SLOVA with the following base-

lines:

• Softmax : Maximum softmax probability [43],

• Temp Scaling : Softmax with calibration defined by the temperature scal-

ing [19],

• Dropout : Monte Carlo Dropout [14],

• Ensembles: Ensemble of M neural networks trained independently on the

entire dataset [16],

• SVI : Stochastic Variational Bayesian Inference for deep learning [11, 44],

• LL SVI : Mean field stochastic variational inference on the last layer only

[45],

• LL Dropout : Dropout applied only to activations before the last layer [45],

• OVA DM : OVA classifier with distance-based logits [5].

In this setting, we train all models on the CIFAR-10 train set and sub-

sequently calibrate them on the validation set. In-distribution calibration is

evaluated on the original test set. To investigate the robustness under dataset

shift, we follow Hendrycks & Dietterich [43] and use CIFAR-10-C produced by
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applying 16 types of distortions to CIFAR-10 images, each taken with 5 degrees

of intensity.

We use the ResNet20 architecture [46] that achieves state-of-the-art results

on typical computer vision tasks, but is otherwise an arbitrary choice to compare

methods. We train it with the Adam optimizer [47] for 250 epochs with batch

size 512. The train dataset is augmented by random crops and rotations, the

learning rate is piecewise constant with two 0.1 drops in epochs 125 and 185.

Before training, we perform a random hyperparameter search of 20 trials with

learning rates sampled uniformly from an interval [10−3, 1], momentum β1 ∈

[0.85, 0.99], and stability parameter ε ∈ [10−8, 10−5]. Calibration was performed

for M = 20 parameters trained for 20 epochs with the size of the calibration

dataset nb = 4000.

Metrics. We investigate the classification accuracy as well as three calibration-

related metrics. The Expected Calibration Error (ECE) [48] measures the dis-

crepancy between predicted probabilities and empirical accuracy by grouping

model predictions into M interval bins B1, . . . , BM and calculating the expected

difference between the accuracy acc(Bi) and confidence conf(Bi) over the bins:

ECE =

M∑
i=1

|Bi|
M
|acc(Bi)− conf(Bi)|.

We also consider the Brier score [49] – the squared error of the predicted prob-

ability vector and the one-hot encoded true response; and the negative log-

likelihood (NLL), which is also a proper scoring rule [50], but a less objective

one, because it can overemphasize tail probabilities [51].

Results. The results presented in Figure 5 demonstrate that SLOVA gives com-

parable accuracy and calibration scores to vanilla softmax on in-distribution

data, but is more robust to dataset shifts. At the same time, it presents a notable

improvement over softmax and its calibrated variant (Temperature Scaling) on

highly distorted data in terms of all metrics. In the case of high intensity dataset

shifts (level 4 and 5), the calibration scores (ECE, NLL, Brier) of SLOVA are
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Figure 5: Accuracy and three uncertainty-aware metrics: ECE, NLL, and Brier score for

the CIFAR-10 and its distorted version. On the horizontal axis we group model outputs

with 5 degrees of shift intensity constructed following Hendrycks & Dietterich [43]. Despite

its simplicity, SLOVA retains high accuracy and low Brier score across all shift intensities

while ECE and NLL are comparable to more complex state-of-the-art models. Based on

these results, in Figure 6 we conduct a statistical performance test which ranks SLOVA as

the second-best giving up the place only to the computationally demanding ensembles. The

proposed model is especially robust for higher values of shift severity where other models, in

general, are prone to larger drops of performance.
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frequently better than the ones obtained by ensembles, which is currently con-

sidered the state-of-the-art method in uncertainty modeling. Note that complex

methods, such as Ensemble, are significantly more computationally demanding

than SLOVA. While SLOVA relies on using a single OVA model, Ensemble

requires training and evaluation of multiple classifiers, which are also trained

using adversarial examples.

The advantage of SLOVA on highly distorted data can be explained by the

fact that SLOVA is designed not only to improve predictive uncertainty but

also to detect OOD data. Strong shifts pushed the data far away from the true

data distribution, which is similar to creating OOD samples. This experiment

confirms our thesis that most methods are created to solve only one particular

problem – in-distribution calibration, robustness under dataset shifts, or OOD

detection. In contrast, SLOVA is the only method that gives satisfactory results

on all of these tasks.

It is also worth noting that SLOVA compares favorably with OVA DM,

which is an upgraded version of the OVA classifier. OVA DM performs poorly

for the in-distribution data (drops in accuracy observed both in our experiments

and in the original article [5]), a weakness that our method does not share.

Nevertheless, in the case of high intensity dataset shifts, the performance of

OVA DM is still lower than SLOVA, which works well in all cases.

Figure 6: Visualization of statistical comparison performed on in-distribution calibration and

dataset shifts. Methods which lie inside the critical distance around SLOVA are statistically

indistinguishable.
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Statistical analysis. To support our analysis, we perform statistical tests to

verify the statistical difference between algorithms. Specifically, we combine

the nonparametric statistical Friedman test with the Bonferroni-Dunn post hoc

analysis [52]. To this end, we aggregated the results of all the methods from

Figure 5, giving 81 in total. Next, we ranked the methods according to their

performance. Given this ranking, the analysis consists of two steps:

• The null hypothesis is made that all methods perform equally and the

observed differences are merely random. The hypothesis is tested by the

Friedman test, which follows a χ2 distribution.

• Having rejected the null hypothesis, the differences in ranks are analyzed

by the Bonferroni-Dunn test. The Bonferroni-Dunn tests are applied only

between SLOVA and other methods.

Figure 6 visualizes the results for a significance level of α = 0.05. The x-axis

shows the mean rank for each method. The thick horizontal line illustrates the

critical distance. Methods for which the difference in mean rank is lower than

the critical distance are statistically indistinguishable.

It is evident that the mean rank of SLOVA is comparable to Dropout and

Temp Scaling. Since the distance between their mean ranks is lower than the

critical distance, the difference between these methods is statistically insignifi-

cant. At the same time, SLOVA is statistically better than other models, except

Ensemble, which performs best across all cases.

4.2. Out-of-distribution data

Setup. We train a classification model on one dataset for the OOD experiment

and then evaluate it on other out-of-distribution datasets. We reuse the setup

from [9] and compare SLOVA with the following methods:

• Softmax : Maximum softmax probability,

• CEDA: Softmax network trained with an additional loss term that penal-

izes non-uniform answers on additional OOD train data [35, 9],
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• ACET : Softmax network also trained with the same loss term, but with

OOD examples being generated adversarially [9],

• ReAct : Softmax network with penultimate activations being clipped to a

threshold in evaluation [53].

A ResNet model is trained on each of the three commonly used datasets:

CIFAR-10, CIFAR-100, and SVHN. Random crops are used for all datasets

for training, while random mirroring is additionally used for CIFAR-10 and

CIFAR-100. We evaluate each model on the two remaining datasets along with

the LSUN (classroom subset) and the ImageNet datasets. All inputs are 32x32

pixels except for the ImageNet dataset, where the images are scaled to 224x224

pixels. For ReAct, we follow the original authors and set the threshold c so that

it corresponds to the value of the 90-th percentile of all activations from the

penultimate layer [53].

For SLOVA we slightly tune the original hyperparameters of the softmax

model to avoid a large drop in the accuracy of the OVA model. This is easily

achieved by altering the learning rate and the weight decay hyperparameter λ

- we use the learning rate 0.02, 0.03, 0.02, and λ 0.01, 0.02, 0.01 for CIFAR-

10, CIFAR-100, and SVHN, respectively. The remaining hyperparameters are

exactly the same as in the setup from [9].

Metrics. Similarly as in [9], we report the test error and the mean maximal

confidence (MMC) for each model. MMC is defined as the mean of maximal

model predictions taken over all data points. In the case of SLOVA, MMC

is evaluated using maxk=1,...,K PSLOVA(k|x), averaged over all x. Low MMC

means low confidence, which is expected on OOD data.

Results. The results reported in Table 1 demonstrate that SLOVA gives signif-

icantly lower MMC scores than the typical softmax classifier on OOD detection

task. It is interesting that ReAct, a recent OOD detector, performs only slightly

better than softmax. At the same time, it is inferior to SLOVA in all cases and
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Table 1: Mean Maximum Confidence for the out-of-distribution (OOD) experiment. Low

confidence on OOD data is desired and SLOVA produces top results on 9 out of 12 cases.

Method Error Mean Maximum Confidence

SVHN CIFAR-10 CIFAR-100 LSUN ImageNet

Softmax 3.53% 0.732 0.730 0.722 0.568

CEDA 3.50% 0.551 0.527 0.364 0.736

ACET 3.52% 0.435 0.414 0.148 0.421

ReAct 3.77% 0.671 0.676 0.673 0.489

SLOVA 3.29% 0.376 0.387 0.338 0.146

CIFAR-10 SVHN CIFAR-100 LSUN ImageNet

Softmax 8.87% 0.800 0.764 0.738 0.864

CEDA 8.87% 0.327 0.761 0.735 0.660

ACET 8.44% 0.263 0.764 0.745 0.242

ReAct 9.19% 0.725 0.733 0.689 0.713

SLOVA 7.68% 0.644 0.640 0.566 0.180

CIFAR-100 SVHN CIFAR-10 LSUN ImageNet

Softmax 31.97% 0.570 0.560 0.592 0.878

CEDA 32.74% 0.290 0.547 0.581 0.542

ACET 32.24% 0.234 0.530 0.554 0.601

ReAct 37.64% 0.426 0.448 0.510 0.667

SLOVA 32.01% 0.407 0.402 0.386 0.098

has a significant reduction in classification accuracy for the model trained on

CIFAR-100.

Notably, ACET gives impressive scores in a few variants (SVHN/LSUN,

CIFAR-10/SVHN, CIFAR-100/SVHN), but its results are very unstable. In

particular, ACET trained on CIFAR-10 is able to almost perfectly detect SVHN

and ImageNet samples, but it is unaware of examples from the CIFAR-100

and LSUN datasets. This behavior can be explained by the fact that ACET

is trained using adversarial examples, which is a complex and quite difficult

procedure to apply in practice. In this case, it performs even worse than CEDA,

a similar method that uses noise instead of adversarial examples.

In terms of OOD detection, SLOVA outperforms other methods in 9 out
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of 12 cases. Furthermore, this experiment shows that OVA classifiers provide

accuracy comparable to that of softmax models in typical classification tasks.

This is an important conclusion because most neural networks are based on

softmax. Since SLOVA performs similarly to softmax but is better in OOD

detection and predictive uncertainty, it is safe to replace the softmax model

with a SLOVA classifier.

Figure 7: Visualization of statistical comparison performed on OOD detection. The difference

between SLOVA and other methods are statistically significant, which is indicated by the

critical distance.

Statistical analysis. We repeat the statistical analysis for the OOD detection.

Namely, we conduct the non-parametric statistical Friedman test with the Bonferroni-

Dunn post hoc analysis for 12 combinations of datasets reported in Table 1.

As can be seen in Figure 7, SLOVA received a rank close to 1, which confirms

that it was superior in most cases. More importantly, the difference between

SLOVA and other models is statistically significant.

4.3. Ablation study

We perform the following ablation study to analyze the impact of the pro-

posed confidence score and the calibration separately. We group all the cases

of in-distribution data and distributional shifts together (including shift inten-

sities). First, we examine the standard OVA classifier, then SLOVA without

exponential calibration, and finally the complete SLOVA model. For compari-

son, we also report the vanilla softmax model.

The results reported in Figure 8 confirm that subsequent modifications do

not affect accuracy. This is expected behavior because both SLOVA predictive
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Figure 8: Ablation study on CIFAR-10-C testsets. It is evident that each step of our method

successively improves the uncertainty estimation while preserving the model accuracy.

probabilities and exponential calibration do not change the order of probability

scores. As a consequence, the accuracy of the OVA model is preserved.

It is evident that subsequent modifications of the OVA probabilities pro-

duced by SLOVA successively improve the ECE score. The impact on the Brier

score is smaller, but there is a slight positive trend. In the case of NLL, there

is no evident trend, but a complete SLOVA model obtains the best result with

the lowest variance.

The most significant difference observed in the case of the ECE metric can

result from the fact that the exponential calibration was optimized using a type

of ECE objective. Although all calibration metrics are related, the selected op-

timization objective is crucial for the final performance. In most studies, the

ECE is considered the most reliable calibration metric, which motivated our

selection. It is worth emphasizing that many methods (including temperature

scaling) use log-likelihood to select calibration parameters because its optimiza-

tion is significantly easier.
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5. Conclusion

5.1. Summary

In this work, we presented SLOVA, a simple and effective method of trans-

forming OVA probabilities into reliable uncertainty predictions. Since OVA can

be used in multi-label classification tasks, it has a natural ability to detect OOD

samples by labeling them as ”none of the above classes”. As a consequence,

SLOVA goes beyond the properties of a typical softmax predictor and is bet-

ter suited for modeling the distribution of OOD samples. We confirmed this

claim theoretically. To quantify the uncertainty of the extended OVA classifier

on in-distribution and shifted data, we introduced the exponential calibration,

which allows us to align predictive probabilities with the accuracy of the model.

To support our theses, we experimentally demonstrated that SLOVA compares

favorably against state-of-the-art methods on common benchmark tasks.

5.2. Discussion and limitations

The problem of uncertainty estimation can be divided into at least three

separate tasks: in-distribution calibration, robustness under dataset shifts, and

detection of OOD samples. Although all of these tasks are closely related, most

methods focus on solving only one or two of them. We showed that combining

exponential calibration with appropriate treatment of the OVA classifier gives a

model that presents satisfactory performance on all of these problems. In par-

ticular, SLOVA is one of the three best-performing methods on in-distribution

calibration with optional dataset shifts. At the same time, it outperforms state-

of-the-art baselines on OOD detection in most cases. In consequence, SLOVA

is a method that performs well in diverse applications, while other methods are

directly designed only for a particular task.

It is not obvious whether SLOVA can be applied to the case of extreme clas-

sification. SLOVA confidence score is defined as a product of OVA predictive

probabilities. When the number of classes is high, but only one is correct, a

single mistake can result in inaccurate or incorrect predictions. Such a disad-

vantage disappears in the multi-label classification, where more than one label
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is correct and we select the most probable combination of labels. A possible

remedy in a single-label situation would be to project the class vector to a

lower-dimensional space as it is commonly done in extreme classification [54].

One could argue that a classification neural network implemented with the

use of a softmax function is the standard approach that gives state-of-the-art

performance. As a consequence, most of the available pre-trained models are

softmax models. This is a considerable limitation, as even though SLOVA is a

post hoc method, it requires an OVA model. However, OVA classifiers usually

give performance comparable to softmax, and both models can be trained effec-

tively. In consequence, SLOVA can be an alternative to softmax in applications

where reliable uncertainty modeling is a desirable property.

Finally, observe that Theorem 3.1 states that for ReLU activations, there is

a 1
2K probability of selecting a direction for which the network is overconfident

with arbitrarily high α. In practice, OOD samples can be distributed closer to

in-distribution samples than αx with saturated confidence. Despite the limita-

tions of these theoretical results, our experiments confirm that SLOVA performs

particularly well across several OOD benchmark tasks, strongly suggesting that

the proposed method is useful for real-life use cases.

5.3. Future works

We showed that the predictive probability returned by the OVA classifier

can be used to define confidence score in a single-label classification. As dis-

cussed in Remark 3.1, we can formulate an analogical confidence measure in a

multi-label situation. In future work, we plan to explore this idea and verify it

experimentally.

Uncertainty estimation plays a crucial role in many areas of machine learn-

ing, including active learning, semi-supervised learning, or conditional compu-

tation. It would be interesting to verify whether the application of SLOVA in

these areas improves performance.

An interesting direction for future work would be to improve the method by

combining it with approaches that are orthogonal, and thus could be applied
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simultaneously. For example, it is well known that constructing an ensemble of

networks improves the uncertainty scores [16], yet the question of whether this

fact is also true for SLOVA remains unanswered. Another simple way to improve

OOD detection performance is to expose the model to some OOD samples in

the training process [35], and one could augment SLOVA with this approach.
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Appendix A. Justification of the exponential calibration

We justify a particular form of the exponential calibration (5) whose aim is to

”invert” the multiplication of many probabilities or to counteract the contractive

character of this multiplication. We start off from an (uncalibrated) output of
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the SLOVA model given in (3) for a generic input x:

P̂ = p̂1(1− p̂2)...(1− p̂K),

where we introduce a succinct notation for the uncalibrated probabilities p̂(i|x)→

p̂i, P̂SLOVA(1|x)→ P̂ . Without loss of generality, we pick out the first probabil-

ity as the ”correct” one. In general, since all p̂i’s are numbers between zero and

one, the multiplicative SLOVA probability P̂ becomes, as K increases, more

likely to reach zero. For single-label examples, p̂1 ≈ 1 and p̂i6=1 ≈ 0, which

results in a (relatively small) drift away from 1. However, it quickly becomes

unacceptably large when the number of classes K grows.

We consider this multiplication-induced drift in a tractable, yet artificial case

of complete ignorance where each partial probability p̂i ∼ U(0, 1) is drawn from

an independent uniform distribution. A simple calculation using the Mellin

transform results in the distribution over SLOVA probabilities:

Puncal(P̂ ) =
1

(K − 1)!

(
log

1

P̂

)K−1

(A.1)

which becomes highly concentrated around P̂ ∼ 0 even for a moderate number

of classes K = 10.

On the other hand, calibration (6) is a functional relation P = c(P̂ ) that

maps between the uncalibrated P̂ and calibrated probabilities P . In the special

case (A.1), a valid calibration c is conceptualized as a function that reverts back

to a form of complete ignorance, i.e., the initial uniform probability density:

Pcal(P ) =

∫
dP̂ δ(P − c(P̂ ))Puncal(P̂ ) = 1, for P ∈ (0, 1).

With the usual properties of the Dirac delta function, a transform achieving

this is simply the cumulative distribution function:

c(P̂ ) =

∫ P̂

−∞
Puncal(P̂ ′)dP̂ ′. (A.2)

Then, in the fully random case, the calibration map is the incomplete gamma

function c(P̂ ) = Γ(K,log 1/P̂ )
(K−1)! . Now, we look for an approximation of this form
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Figure A.9: Calibration curve in the fully random case. The black solid line is the exact

calibration curve (A.2) while the thin dashed line is its exponential approximate form. We

use K = 3.

in terms of elementary functions. The resulting calibration curve is shown in

Figure A.9. To this end, we expand the incomplete Gamma function around

P̂ = 1 resulting in c(P̂ ) ∼ 1 − (1−P̂ )K

(K−1)! and then ensure that the approxima-

tion is properly normalized P ∈ (0, 1). The simplified calibration curve reads

cappr(P̂ ) = 1−(1− P̂ )K . We show both exact and approximate curves in Figure

A.9.

This simple argument justifies the exponential form of the calibration curve

cappr(P̂ ) ∼ P̂α. At the same time, it is based on a generic example and needs

further generalization resulting in formula (5) where we make a linear combina-

tion of exponential terms and train both the linear coefficients β as well as the

exponents α.
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Appendix B. Calibration stability

The exponential calibration proposed in this work is an integral and novel

part of the SLOVA approach. Therefore, to assess any shortcomings of the

method, we inspect it under changes in the number of adjustable parameters M

and the size of the calibration dataset nb.
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Figure B.10: Stability of the calibration method under changes in the number of adjustable

parameters M and in the size of the calibration dataset nb. We inspect variability of the NLL,

ECE, Brier score as we change M ∈ (1, 50) and nb ∈ (20, 10000) and identify a stable region

of parameters for M > 10 and nb > 400.

The number of parameters M refers to the pairs of weights (αi, βi) where

i = 1, . . . ,M as defined in (6). The size of the calibration dataset nb is in turn

discussed in Section 3.6. We assess the robustness of the calibration algorithm

in Figure B.10 by calculating ECE, NLL, and Brier score metrics across changes

in M ∈ (1, 50) and nb ∈ (20, 10000).

In the case of adjustable parameters M , after a brief instability period when

M < 10, we enter the regime with M > 10 where the metric values do not

change appreciably. Similarly, a similar stability region is found if the size of

the dataset nb is greater than 400. In conclusion, the calibration method is

robust with respect to these parameter changes.
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Appendix C. Table of metrics for the dataset shift experiment

The tables below report quartiles of Brier score, negative log-likelihood, and

ECE in the dataset shift experiment considered in Section 4.1 where quartiles

are computed over all corrupted variants of the dataset.

method SLOVA Dropout Ensemble LL Dropout LL SVI

Brier Score (25th) 0.215 0.217 0.160 0.258 0.241

Brier Score (50th) 0.299 0.365 0.294 0.412 0.405

Brier Score (75th) 0.553 0.657 0.556 0.746 0.735

ECE (25th) 0.021 0.012 0.018 0.089 0.075

ECE (50th) 0.027 0.039 0.024 0.151 0.137

ECE (75th) 0.103 0.211 0.107 0.313 0.291

NLL (25th) 0.507 0.452 0.334 0.619 0.572

NLL (50th) 0.709 0.811 0.636 1.070 1.062

NLL (75th) 1.383 1.743 1.529 2.377 2.368

method SVI Temp Scaling Softmax OVA DM

Brier Score (25th) 0.245 0.228 0.242 0.300

Brier Score (50th) 0.371 0.382 0.412 0.398

Brier Score (75th) 0.635 0.649 0.733 0.702

ECE (25th) 0.034 0.014 0.074 0.063

ECE (50th) 0.074 0.049 0.133 0.079

ECE (75th) 0.214 0.140 0.284 0.166

NLL (25th) 0.520 0.475 0.574 0.534

NLL (50th) 0.839 0.850 1.012 0.731

NLL (75th) 1.714 1.589 2.219 1.294
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