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Abstract

Predictive Maintenance (PdM) is a critical area that is benefiting from the
Industry 4.0 advent. Recently, several attempts have been made to apply
Machine Learning (ML) to PdM, with the majority of the research studies
assuming an expert-based ML modeling. In contrast with these works, this
paper explores a purely Automated Machine Learning (AutoML) modeling
for PdM under two main approaches. Firstly, we adapt and compare ten
recent open-source AutoML technologies focused on a Supervised Learning.
Secondly, we propose a novel AutoML approach focused on a One-Class (OC)
Learning (AutoOneClass) that employs a Grammatical Evolution (GE) to
search for the best PdM model using three types of learners (OC Support
Vector Machines, Isolation Forests and deep Autoencoders). Using recently
collected data from a Portuguese software company client, we performed
a benchmark comparison study with the Supervised AutoML tools and the
proposed AutoOneClass method to predict the number of days until the next
failure of an equipment and also determine if the equipments will fail in a
fixed amount of days. Overall, the results were close among the compared
AutoML tools, with supervised AutoGluon obtaining the best results for
all ML tasks. Moreover, the best supervised AutoML and AutoOneClass
predictive results were compared with two manual ML modeling approaches
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(using a ML expert and a non-ML expert), revealing competitive results.

Keywords: Automated Machine Learning, Predictive Maintenance,
Supervised Learning, One-Class Learning.

1. Introduction

The Industry 4.0 phenomenon allowed companies to focus on analyzing
historical data to obtain valuable insights. In particular, Predictive Mainte-
nance (PdM) is a crucial application area that emerged from this context,
where the goal is to optimize the maintenance and repair process of equip-
ments through the usage of Machine Learning (ML) algorithms [1]. Indeed,
some ML studies try to anticipate the failure of equipments (typically, man-
ufacturing machines), aiming to reduce the costs of repairs [2, 3, 4, 5]. Other
approaches [6, 7, 8, 9] use ML algorithms to predict the behavior of the
manufacturing process.

Despite all potential Industry 4.0 benefits, many organizations do not
currently apply ML to enhance maintenance activities. Furthermore, for
those who rely primarily on Data Science experts, the ML models are tuned
manually, often requiring several trial-and-error experiments. In contrast
with the human ML design approach, in this paper we focus on an Automated
Machine Learning (AutoML), aiming to automate the ML modeling phase
and thus reduce the data to maintenance insights process cycle. Moreover, we
apply AutoML using real-world data collected from the client of a Portuguese
software company in the area of maintenance management.

The AutoML was explored for two specific prediction tasks: the number
of days until an equipment fails and if the equipments will fail in a fixed
number of days. We designed a large set of computational experiments to
assess the AutoML predictive performance of ten open-source tools focused
on a Supervised Learning. Additionally, we propose AutoOneClass, a novel
AutoML approach for One-Class (OC) Learning that uses a Grammatical
Evolution (GE) optimization. Finally, to provide a baseline comparison, we
compare the best AutoML and AutoOneClass results with two manual ML
analyses, based on a non-expert ML modeling made previously by one of
the company’s professionals and an external (non paper author) ML expert
design. The comparison favors the supervised AutoML and AutoOneClass
results, thus attesting to the potential of the AutoML approach for the PdM
application domain.
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This work comprises a rather extended version of our previous work [10],
thus including several new elements. Firstly, we perform an updated survey
of the state-of-the-art works regarding the application of ML in PdM (Sec-
tion 2). Secondly, we introduce and describe the new AutoOneClass frame-
work (Section 3.2). Thirdly, the PdM dataset is presented with more depth
(Sections 3.3 and 3.4), including information about missing and unique values
and output target distributions. Fourthly, we perform additional computa-
tional experiments with more supervised AutoML tools and the proposed
AutoOneClass method (Sections 4.1 and 4.2).

The main contributions of our work are summarized as follows:

(i) We propose AutoOneClass, an AutoML framework that focuses on OC
Learning using three algorithms: deep Autoencoders (AE), Isolation
Forests (IF), and One-Class Support Vector Machines (OC-SVM). Au-
toOneClass uses GE to optimize the search for the best OC ML algo-
rithm and its associated hyperparameters for a given dataset;

(ii) For the AutoOneClass method, we assume a single or multi-objective
search. The single-objective approach only uses the predictive per-
formance to select the best ML model, while the multi-objective vari-
ant considers two objectives simultaneously, predictive performance and
training time;

(iii) We use two validation setups for AutoOneClass: unsupervised and su-
pervised validation. The purely unsupervised method uses unlabeled
data during validation and anomaly scores to evaluate the ML mod-
els. The supervised validation (using a labeled validation set) uses the
Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) to assess model performance;

(iv) We conduct a large set of experiments, predicting equipment failures
in different time windows (e.g., 3 days, 5 days) and compare the re-
sults from the new AutoOneClass with ten AutoML tools, focused on
classical ML and Deep Learning.

The paper is organized as follows. In Section 2, we present the related
work. Next, Section 3 describes the supervised AutoML tools, the proposed
AutoOneClass approach, and the analyzed PdM dataset. Then, Section 4
shows and discusses the experimental results. Finally, Section 5 presents the
main conclusions and future work directions.
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2. Related Work

Table 1 summarizes the related works that mention the usage of ML
within the PdM domain in terms of the following columns: Year – the year
in which the study was first published; Ref. – the study reference; ML
Algorithms – which ML algorithms were used in the study (since some
studies and tools do not disclose details to distinguish between shallow and
deep structures, we adopt in this paper the DL acronym to refer to both types
of neural architectures); FP – if the study is applied to failure prediction (i.e.,
trying to identify when an equipment is going to fail); Real Data – if the
study experiments analyze real-world data; and ML Design – the adopted
ML modeling approach.

The related works are quite recent. In effect, Table 1 includes 16 studies
published since 2017, including five works published in 2020 and three in
2021. Most works use real-world data and apply existing ML techniques
to solve specific PdM tasks. Typically, classical supervised ML algorithms
(e.g., Linear Regression, Decision Trees) are employed. Only five of the
studies use Deep Learning (DL), but none of these use this type of ML
algorithm exclusively. Moreover, only four studies adopted unsupervised ML
algorithms [11, 12, 13, 18]. This is a relevant issue for the PdM domain, since
data labeling is often costly, requiring a manual effort.

Most studies aim to predict equipment failures, which is expected since
it is one of the main challenges found in the PdM domain. Only two works
did not try to predict when an equipment will fail: [16] tries to classify the
condition of the equipment (e.g., excellent, good) and [21] uses ML to suggest
the type of maintenance needed for an equipment.

It terms of the ML modeling, the majority of the studies rely on a manual
algorithm selection and hyperparameter tuning (Expert-based). There are
only two works apart from this study that use AutoML: [19] is based on an
existing AutoML framework (Auto-Sklearn), while [14] proposed an adapta-
tion of the ML-Plan framework for PdM. In contrast with this paper, none
of these studies compared more than one supervised AutoML tool. More-
over, the two works did not approach an unsupervised OC Learning, which is
valuable for the PdM domain and that is here handled by using the proposed
AutoOneClass method.
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Table 1: Summary of the related work (ML applied to PdM).

Year Ref. ML Algorithms FP Real Data ML Design

2017 [2] ARIMA � � Expert-based

2017 [3]
LR, LoR, DL,
DT, RF, GBM

� � Expert-based

2018 [7]
GLM, RF
GBM, DL

� n.d. Expert-based

2018 [11] K-means � � Expert-based

2018 [4] RF � � Expert-based

2018 [12] EM � � Expert-based

2018 [13] IF, LOF, OC-SVM � � Expert-based

2020 [14]
AdaBoost
RF

� AutoML

2020 [15]
SVM
LogR

� Expert-based

2020 [16]
DL
SVM

� Expert-based

2020 [17]
GBM
RF

� � Expert-based

2020 [18] DL, OC-SVM, XGB � � Expert-based

2021 [19]
Classical ML
DL
Ensembles

� �* AutoML

2021 [20]
SVM, LDA, RF,
DT, KNN

� � Expert-based

2021 [9]
RF, XGB, GBM,
MLP, SVM, Adaboost

� � Expert-based

2022 [21] DT � Expert-based

2022 This work
Supervised and
OC Learning

� � AutoML

ARIMA - Autoregressive Integrated Moving Average; DL - Deep Learning; DT - De-
cision Tree; EM - Expectation-Maximization; IF - Isolation Forest; GBM - Gradient
Boosting Machine; GLM - General Linear Model; KNN - K-nearest Neighbors; LDA
- Linear Discriminant Analysis; LOF - Local Outlier Factor; LR - Linear Regression;
LogR - Logistic Regression; MLP - Multilayer Perceptron; n.d. - not disclosed; OC-SVM
- One-Class SVM; RF - Random Forest; SVM - Support Vector Machines; XGB - XG-
Boost; �* - mixed data (both real and simulated).
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3. Materials and Methods

3.1. Supervised AutoML Tools

In this article, we compare ten recent open-source AutoML tools for su-
pervised classification and regression tasks. Most of the selected tools were
explored on a recent benchmark study performed in [22]. In order to achieve
a more fair comparison, we did not tune the hyperparameters of the AutoML
tools. Table 2 summarizes the main characteristics of the ten supervised Au-
toML tools, namely the base framework (Framework), the available API
languages (API), if the tool uses DL algorithms (DL), if the tool supports
GPU usage (GPU), and the version that we used in our experiments (Ver-
sion). Additional details are provided here:

Table 2: Description of the supervised AutoML tools (adapted from [10]).

Tool Framework API DL GPU Version

Auto-Keras Keras Python �(only) � 1.0.18

Auto-PyTorch PyTorch Python �(only) � 0.1.1
Auto-Sklearn Scikit-Learn Python - - 0.14.6

AutoGluon Gluon Python � � 0.2.0

H2O AutoML H2O Java, Python, R � �(partial) 3.32.1.3

MLJar
CatBoost, Keras,

Python � - 0.11.2
Scikit-Learn, XGBoost

PyCaret Scikit-Learn Python - �(partial) 2.3.10
rminer rminer R - - 1.4.6

TPOT Scikit-Learn Python - �(partial) 0.11.7
TransmogrifAI Spark (MLlib) Scala - - 0.7.0

• Auto-Keras is an AutoML Python library based on Keras [23]. It
is designed to automate the construction on DL algorithms, usually
named Automated Deep Learning (AutoDL) or Neural Architecture
Search (NAS). Auto-Keras automatically tunes hyperparameters of
Neural Networks, such as the number of layers and neurons, activa-
tion functions, or dropout values.

• Auto-PyTorch is another AutoDL tool, based on the PyTorch frame-
work. Auto-PyTorch uses multi-fidelity optimization with portfolio
construction to automate the construction of DL networks [24].
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• Auto-Sklearn is an AutoML library based on the popular Scikit-Learn
framework. It uses Bayesian optimization, meta-learning, and Ensem-
ble Learning modules to automate algorithm selection and hyperpa-
rameter tuning [25].

• AutoGluon is an AutoML toolkit based on the Gluon framework [26].
In this work, we only considered the tabular data module, which runs
several algorithms and returns a Stacked Ensemble with multiple layers
[27].

• H2O AutoML is the AutoML module from the H2O framework. H2O
AutoML runs several algorithms from H2O and several Stacked Ensem-
bles, with subsets of the trained ML models [28].

• MLJar provides an AutoML framework that includes algorithm se-
lection, hyperparameter tuning, feature engineering, feature selection,
and Explainable AI (XAI) capabilities. From the three available modes
of MLJar, we used the “Perform” mode , since it is considered the most
appropriate mode for a real-world usage [29].

• PyCaret is an open-source ML Python library that automates ML
workflows using low code functions. PyCaret provides an AutoML
function (compare models) to automate the choice algorithms by com-
paring the performance of all available algorithms [30].

• rminer is a library for the R programming language, focused on fa-
cilitating the usage of ML algorithms [31]. Rminer also provides Au-
toML functions that can be highly customized. This paper used the
"automl3" template, which runs several ML algorithms and one Stacked
Ensemble.

• TPOT is a Python AutoML tool that uses Genetic Programming to
automate several phases of the ML workflow. It uses the Python Scikit-
Learn framework to produce ML pipelines [32].

• TransmogrifAI is an end-to-end AutoML library written in Scala that
runs on top of Apache Spark. It was created to increase ML efficiency
through automation and an API that ensures compile-time type safety,
modularity, and reuse [33].

7



3.2. AutoOneClass: Automated One-Class Learning
All the AutoML tools described in Section 3.1 apply Supervised Learn-

ing techniques (e.g., binary classification, regression). However, as explained
in Section 2, there are PdM studies that focus on an Unsupervised Learn-
ing (e.g., [34, 12]). In particular, we focus on an OC Learning, such as
adopted in [13, 18]. OC Learning is often employed in anomaly detection
tasks, where the ML algorithms are only trained with normal examples, pro-
ducing learning models that tend to trigger high anomaly scores when faced
with abnormal records (outside the learned normal input space) [35]. OC
Learning is valuable for PdM, since the associated classification tasks are
often extremely unbalanced. Indeed, a large majority of the PdM records
are related with a normal equipment functioning, thus these records can be
more easily collected without a high data labeling cost.

While there is currently a large list of AutoML frameworks, these so-
lutions typically only focus on Supervised Learning. Indeed, as argued in
[36, 37], very few works have explored AutoML outside the Supervised Learn-
ing domain, thus this is still a current research challenge for AutoML. Follow-
ing this research gap, in this paper we propose AutoOneClass, an AutoML
framework that focuses on a OC Learning. AutoOneClass uses GE to opti-
mize the search for the OC ML algorithm and its associated hyperparameters
for a given dataset.

Furthermore, AutoOneClass can assume a single or multi-objective search.
The single-objective approach only uses the predictive performance to select
the best ML model, while the multi-objective variant considers two objec-
tives, predictive performance and training efficiency (measured by compu-
tational training time). For the multi-objective setup, we adopt a Pareto
optimization that performs a simultaneous optimization of both objectives,
resulting in a final Pareto front that contains a set of non-dominated solu-
tions, where each solution constitutes a different predictive performance vs
training efficiency trade-off. As such, there is no a priori definition of fixed
weights between the two objectives. We note that the AutoOneClass multi-
objective variant was developed in order to allow the selection of lighter ML
models, even if they have a slightly lower performance, since these types of
models are valuable when handling big data. However, the dataset analyzed
in this work is relatively small.

AutoOneClass is mainly designed for anomaly detection tasks, where
there is a distinction between “normal” instances and “anomalies”, in partic-
ular when “normal” records represent most of the dataset. Given that Au-
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toOneClass implements OC Learning algorithms, the ML models are trained
using only data from one of the classes (typically, the “normal” class). In all
our experiments related to AutoOneClass, we only used normal data for the
learning (i.e., training) phase.

However, the AutoOneClass validation (which will impact the GE opti-
mization) can be executed using two setups: unsupervised validation, where
the model performance is evaluated only using unlabeled data (e.g., through
an anomaly score); or supervised validation, where there is access to a labeled
validation set to assess the model performance using Supervised Learning
metrics (e.g., AUC). This means that, in our AutoOneClass experiments,
for the unsupervised validation setup, the validation set was composed only
of normal data; for the supervised validation setup, we used validation sets
comprised of labeled data (with normal and abnormal records). Neverthe-
less, independently of the validation setup, the AutoOneClass method only
uses normal data during training, thus only dealing with an OC Learning
training.

Given the different validation strategies, we use distinct fitness functions
as the predictive objectives for the GE optimization. In the cases where su-
pervised validation is used, we consider the maximization of the validation
AUC as our predictive objective. For the predictive objective of the unsuper-
vised validation, we minimize an anomaly score, which was set to vary within
the range [0,1] for all OC Learning methods, thus allowing its interpretation
as an anomaly score probability.

We note that under the unsupervised validation assumption, there is no
access to labeled data (i.e., abnormal examples) to perform a model selection,
thus the AUC computation is not feasible in this scenario. Since a model
selection criterion is needed (e.g., to select the best AE configuration), we
assume the anomaly score minimization as a proxy for the AUC. The ra-
tionale is that if a model provides a low anomaly score when trained with a
large set of normal data, then it should be capable of triggering high anomaly
scores for abnormal data, which should reflect on a good enough ROC curve.
Nevertheless, to correctly benchmark the unsupervised validation scenario,
we used labeled data on the test set, allowing us to compute the ROC curves
and their AUC measures, which are then compared with the ones obtained
when using the supervised validation scenario.
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3.2.1. One-Class Learning Algorithms

AutoOneClass uses three popular OC Learning algorithms: AE, IF, and
OC-SVM. This means that, for a given dataset, AutoOneClass selects one
of these three algorithms at the end of the GE optimization. The AEs were
implemented through the TensorFlow library (using the Keras submodule)
[38], while both IF and OC-SVM were implemented using the Scikit-Learn
framework [39].

AEs are a DL type that encode the input into a compressed representation
(the latent space) and then decodes it back in order to reconstruct the original
input as similar as possible to the original data [40]. AEs are used for several
applications, such as dimensionality reduction or removing noise from data.
AEs can be applied to OC Learning scenarios, where the AE is trained with
normal data and attempts to produce outputs similar to the inputs. For
each input instance, there is an associated reconstruction error, where higher
reconstruction errors represent a higher probability of being an anomaly [35].
Fig. 1 shows an example of an AE.

Figure 1: Example of an AE (the input data is encoded into a compressed representation
and then it is decoded).

IF was proposed in 2008 [41] and it works by isolating “anomalies” in-
stead of identifying “normal” instances. In order to isolate the instances, IF
recursively generates partitions on the training data by randomly selecting
an attribute and then selecting a split value for that attribute. This strategy
is based on two main assumptions regarding anomalies: they are a minority
of the data and very different from the normal instances. This way, since
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anomalies are few and different, they are easier to “isolate” compared to
normal points. Fig. 2 exemplifies the IF partitioning on a dataset with two
attributes. In the figure, x0 is an anomaly (since it is easily isolated) and xi

is a normal point.

Figure 2: IF partitioning: x0 is an anomaly (easily isolated) and xi is a normal point
(adapted from [41]).

OC-SVM is an extension of the Support Vector Machine (SVM) algorithm
for unlabeled data [42, 43]. OC-SVM learns a decision function from the
training data (composed only of normal instances) and can classify new data
as similar or different than the training data. Instead of using a hyperplane
to separate two classes (such as the traditional SVM), OC-SVM uses the
hyperspace to include all training instances.

3.2.2. Grammatical Evolution

GE is an evolutionary algorithm proposed in 2001 [44]. Unlike Genetic
Programming (GP), GE performs the evolutionary process on a provided
grammar instead of on the actual programs. A GE execution starts by creat-
ing an initial population of solutions (usually randomly), where each solution
(usually named individual) corresponds to an array of integers (or genome)
that is used to generate the program (or phenotype) [45].

For each generation, the evolutionary process of GE includes two main
phases. The first phase is the evolution, where the algorithm generates new
solutions using operations, such as crossovers and mutations. During the
crossover operation, pairs of individuals are picked as parents and their ge-
netic material is swapped to generate new individuals (children). The mu-
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tation operation is applied after the crossover to the children individuals,
usually consisting of randomly changing their genome to maintain genetic
diversity. The second phase is the evaluation, where the population of in-
dividuals is evaluated using a fitness function. GE applies the evolution
directly to the genome, while the evaluation is applied to the phenotype,
which is obtained from the genome using a mapping process.

The GE mapping process uses the genome values to select production
rules, usually in a Backus–Naur Form (BNF) notation. This notation consists
of terminals (items that can appear in language, such as the symbols + or
−) and non-terminals (variables that include one or more terminals). An
example of a BNF grammar is shown in Fig. 3.

Figure 3: Example of a BNF grammar to generate strings.

In this paper, we built AutoOneClass using PonyGE2, an open source
implementation of GE in Python [46] that allows the usage of Python BNF
(PyBNF), in which the production rules can include Python code. For the
AutoOneClass framework, we developed a PyBNF grammar that can tune
the hyperparameters of the One-Class Learning algorithms described in Sec-
tion 3.2.1. The grammar was then adapted to allow two types of optimiza-
tion: All - in which the GE execution generates one of the three algorithms
for each solution (individual); and separate mode, in which the GE only gen-
erates one family of algorithms for all individuals (e.g., AEs). The PyBNF
grammar we used in this work is shown in Fig. 4.

In practice, the usage of PyBNF allowed us to generate snippets of Python
code that allow GE to generate different types of ML models. For example,
the IF and OC-SVM grammars were implemented by creating the respective
Scikit-Learn class and adding the hyperparameters as terminals and non-
terminals.

This process was more complex for the AEs, since the TensorFlow API
requires the definition of a variable number of layers. To achieve this, we
defined the grammar to generate only the encoder: first, generate an input
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Figure 4: The PyBNF grammar used in this work.

layer with the same number of nodes as the number of attributes of the
dataset and then add a variable number of hidden layers. Since the decoder is
symmetrical to the encoder, this component is not included in the grammar.
Also, given that in a typical AE, the subsequent encoder layers have fewer
nodes than the previous layer, we defined the layer nodes as a percentage
(between 0% and 100%) of nodes of the previous layer instead of a fixed
number. Finally, we defined an auxiliary function get model from encoder,
which translates the generated phenotype to a functional Keras AE.
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3.3. Data

The data used in this work was provided by a Portuguese software com-
pany focused on maintenance management and presents a real historical
record from one of the company’s clients. The company has many PdM
datasets, detailed in Fig. 5.

Figure 5: Entities and relationships between the datasets (adapted from [10]).

For the context of this work, we assume a tabular dataset composed of the
aggregation of several attributes from each entity. Overall, the data includes
2,608 records and 21 input attributes. Each record represents an action (e.g.,
a work order) related to one of the company’s equipments (e.g., an industrial
machine). In addition, each record includes diverse input attributes, such as
the machine’s tasks, material consumption, and meter readings.

Table 3 details the input and output variables (Attribute), their descrip-
tion (Description), data type (Type), number of levels (Levels), domain
values (Domain), and example values from one of the records (Example).
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Table 3: Description of the equipment maintenance dataset attributes (adapted from [10]).

Attribute Description Type Levels Domain Example

RecordType Type of record String 5 - Failure
Brand Brand of the equipment String 2 - Rossi
WOType Type of work order String 4 - Corrective
PriorityLevel Priority Level of the work order String 4 - Urgent
Responsible Responsible for the work order String 3 - R4
Employee Employee that performed the action String 12 - E100
TotalTime Duration of the action (in hours) Float 17 [0, 8] 8
Quantity Consumption quantity Float 32 [0, 300] 90
Part Part that was consumed String 161 - T-1073
Meter Meter associated to meter reading String 11 - L-0002
MeterCumulative

Cumulative reading of meter Float 1477 [0, 73636] 22767
Reading
IncrementValue Increment compared to last reading Float 475 [0, 54570] 168
MaintenancePlan Maintenance Plan associated to task String 5 - P-000011
Task Executed task String 5 - T-0001
AssetWithFailure Identification of the equipment String 15 - A577

ParentAsset
Parent equipment of

String 11 - LINHA2
AssetWithFailure

Day Day of the month of the record Integer 31 [1, 31] 4
DayOfWeek Day of the week of the record Integer 7 [1, 7] 6
Month Month of the record Integer 12 [1, 12] 2
Year Year of the record Integer 6 [2015, 2019] 2019
DaysAfterPurchase Age of the equipment (in days) Integer 852 [0, 6309] 4479

DaysToNext Number of Days until the
Integer 1015 [0, 1550] 3

Failure next failure of the equipment

FailOn3Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 3 days

FailOn5Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 5 days

FailOn7Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 7 days

FailOn10Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 10 days

Half (12) of the 21 input attributes are categorical. Among these, most
present a low cardinality (e.g., RecordType, Brand). However, some at-
tributes present a very high cardinality (e.g., Part). The dataset includes
five target variables for regression or binary classification tasks. The regres-
sion task target (attribute DaysToNextFailure) describes the number of days
between that record and the failure of the respective equipment. As for the
binary classification targets (attributes FailOnxDays), these describe if the
equipment will fail or not in a certain amount of days (e.g., in three days).

Fig. 6 shows the histogram for the regression target and the balancing of
classes for the binary classification targets. Regarding the regression target
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Figure 6: Balancing of the binary classification targets and histogram of the regression
target.
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(attribute DaysToNextFailure), the available equipments will fail between
0 and 1550 days. However, many records (956) present a value between 0
and 155 days until the next failure. On the other hand, only a small num-
ber of records present a number of days until failure (e.g., only 89 records
present a value larger than 1240). Fig. 6 also shows that all four binary
classification targets present highly imbalanced classes, with the majority
of the records corresponding to “normal” situations. Only a tiny percent-
age of the equipments will fail on the respective interval (between 3 and
10 days, depending on the target). The most imbalanced target column is
FailOn3Days, with only 2.53% of records that will present failures in 3 days.
As expected, the larger the interval being considered, the larger the percent-
age of the “failure” class. However, even the least unbalanced target column
(FailOn10Days) presents 7.82% of records that will have failures. As other
studies show (e.g., [47]), imbalanced datasets are very prevalent in the PdM
domain since failures are frequently sporadic compared to health situations.

3.4. Data Preprocessing

Since several data attributes are of the type String (as shown in Table 3),
which is not accepted by some AutoML tools, we opted to encode all String
attributes into numerical types. To decide the most appropriate techniques to
transform the textual attributes into numerical, we first analyzed the number
of records and corresponding percentage for missing and unique values, which
are presented in Table 4.

For the String attributes that presented a low cardinality (five levels or
less), we applied the known One-Hot encoding. For the columns that had
missing values, we replaced the missing value with zero, which is assumed as
a numeric code value for the “unknown” level. Since the One-Hot encoding
method creates one binary column for each level of the original attribute, we
applied a different transformation for the columns with a higher cardinality.

Indeed, for the categorical variables with more than five levels, we used
the Inverse Document Frequency (IDF) technique, available on the Python
CANE module [48]. This method converts a categorical column into a nu-
merical column of positive values based on the frequency of each attribute
level. IDF uses the function f(x) = log(n/fx), where n is the length of x
and fx is the frequency of x. The benefit of IDF, compared with One-Hot
Encoding, is that the IDF technique does not generate new columns, which
is useful for attributes with high cardinality (e.g., the attribute Part has 161
levels).
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Table 4: Missing values and unique values of the datasets.

Attribute
Missing Values Unique Values

No. % No. %

RecordType 0 0 5 <1
Brand 203 8 2 <1
WOType 1801 69 4 <1
PriorityLevel 1801 69 4 <1
Employee 2228 85 12 <1
TotalTime 0 0 - -
Quantity 32 1 - -
Part 2338 90 161 6
Meter 0 0 11 <1
MeterCumulative 0 0 - -
IncrementValue 0 0 - -
MaintenancePlan 2228 85 5 <1
Task 2228 85 5 <1
AssetWithFailure 0 0 15 <1
ParentAsset 0 0 11 <1
Day 0 0 31 1
DayOfWeek 0 0 7 <1
Month 0 0 12 <1
Year 0 0 6 <1
DaysAfterPurchase 0 0 - -

DaysToNextFailure 0 0 - -
FailOn3Days 0 0 2 <1
FailOn5Days 0 0 2 <1
FailOn7Days 0 0 2 <1
FailOn10Days 0 0 2 <1

The remaining attributes (of Integer and Float types) were not altered
because most AutoML tools already apply preprocessing techniques to the
numerical columns (e.g., normalization, standardization). Furthermore, we
did not replace the missing values for the only numerical column that pre-
sented missing values (Quantity), since the AutoML tools usually perform
an imputation task before running the algorithms. After applying the trans-
formations, the final dataset had 42 inputs and five target columns.
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3.5. Evaluation

In order to evaluate the results from the AutoML tools and AutoOneClass,
we adopted a similar approach to the benchmark developed in [22]. For every
predictive experiment, we divided the dataset into 10 folds for an external
cross-validation and adopted an internal 5-fold cross-validation (i.e., over the
training data) for the AutoML tools, to select the best algorithm and hy-
perparameters (executed automatically by the AutoML tools). To evaluate
the test set (from external 10-fold validation) predictions we used the Mean
Absolute Error (MAE) (∈ [0.0,∞[, where 0.0 represents a perfect model) for
the regression task and the AUC analysis (∈ [0.0,1.0], where 1.0 indicates an
ideal classifier) for the binary classification targets. We also used MAE and
AUC for the internal validation, responsible for choosing the best ML model.

For all ten AutoML tools, we defined a maximum training time of one
hour (3,600 seconds) and an early stopping of three rounds, when available.
The maximum time of one hour was chosen since it is the default value
for most of the AutoML tools. We computed the average of the evaluation
measures on the test sets of the 10 external folds to provide an aggregated
value. Additionally, we use confidence intervals based on the t-distribution
with 95% confidence to verify the statistical significance of the experiments.
In order to identify the best results for each target, we chose the AutoML
tool with the best average predictive performance (with maximum precision
of 0.01). All experiments were executed using an Intel Xeon 1.70GHz server
with 56 cores and 64GB of RAM, without a GPU.

4. Results

4.1. AutoML Results

The first comparison focused on the supervised AutoML tools detailed in
Section 3.1. For each AutoML tool, we executed five experiments, one for
each target variable (DaysToNextFailure and FailOnxDays). Table 5 shows
the average external test scores for all 10 folds and the respective confidence
intervals (near the ± symbol). For the best models of each target, we also
apply the nonparametric Wilcoxon test for measuring statistical significance
[49].

The best tool for the regression task (DaysToNextFailure) was Auto-
Gluon, which produced the lowest average MAE. Besides AutoGluon, the
two best tools were H2O AutoML and Auto-Sklearn. For this task, the max-
imum predictive difference among all tools was 79.07 points (days). On the
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Table 5: Average predictive results obtained by the AutoML tools, best values for each
target in bold (adapted from [10]).

Targets
Days Unitl
Next Failure

Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

MAE AUC AUC AUC AUC

AutoDL
Tools

Auto-Keras 84.02±37.55 0.72±0.12 0.74±0.05 0.79±0.05 0.79±0.03
Auto-PyTorch 12.75±6.45 0.76±0.10 0.74±0.07 0.78±0.13 0.79±0.13

AutoML
Tools

Auto-Sklearn 6.20±0.50 0.82±0.10 0.84±0.08 0.90±0.05 0.91±0.04
AutoGluon 4.95a±0.57 0.98b±0.02 0.97c±0.02 0.98c±0.01 0.99c±0.01
H2O AutoML 5.53±0.62 0.98b±0.01 0.96±0.03 0.98c±0.01 0.98±0.01
MLJar 8.32±0.62 0.77±0.12 0.82±0.06 0.85±0.07 0.89±0.05
PyCaret 7.91±1.20 0.77±0.11 0.80±0.07 0.86±0.05 0.89±0.04
rminer 8.89±0.75 0.95±0.05 0.93±0.04 0.97±0.03 0.98±0.02
TPOT 7.05±0.57 0.97±0.03 0.96±0.02 0.98c±0.01 0.99c±0.01
TransmogrifAI 17.34±1.23 0.92±0.04 0.94±0.03 0.96±0.02 0.98±0.01

aStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, Auto-Sklearn, MLJar, PyCaret, rminer, TPOT, and TransmogrifAI.
bStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, MLJar, PyCaret, and TransmogrifAI.
cStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, MLJar, and PyCaret.

other hand, the worst tool was Auto-Keras, which produced an average MAE
of 84.02 days, a significantly higher value when compared to the remaining
AutoML and AutoDL tools.

As for the binary classification, AutoGluon was the best tool for all four
binary classification targets, followed by H2O AutoML and TPOT (best in
two targets each). The binary classification results show that the AutoDL
tools (Auto-Keras and Auto-PyTorch) performed significantly worse than the
AutoML tools, obtaining lower AUC results than all these tools. Nonetheless,
the predictive test set results also present significant discrepancies between
tools: maximum difference of 26 percentage points (pp) for FailOn3Days, 23
pp for FailOn5Days, 20 pp for FailOn7Days, and 20 pp for FailOn10Days.
However, when excluding the AutoDL tools, these differences are smaller:
maximum difference of 21 pp for FailOn3Days, 17 pp for FailOn5Days, 13
pp for FailOn7Days, and 10 pp for FailOn10Days. Even though the AutoDL
tools show, in general, worse results, they obtained similar results between
each other, with the maximum predictive difference of 4 pp (for the target
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FailOn3Days) between Auto-Keras and Auto-PyTorch.
Additionally, we analyzed the training times (average of the external 10

folds) and respective confidence intervals of the AutoML tools, shown in
Table 6. The slowest tool was Auto-Sklearn, which always required the max-
imum allowed training time (3,600 s), followed by Auto-Keras (average of
2,550 s per external fold and dataset) and MLJar (average of 2,015 s). On
the other hand, PyCaret presented the lowest average value (206 s), best in
two datasets; AutoGluon - second best average value (396 s), best in three
datasets; rminer - third best average (440 s).

Table 6: Average training times (in seconds) obtained by the AutoML tools, best values
for each target in bold).

Targets
Days Unitl
Next Failure

Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoDL
Tools

Auto-Keras 2532±1137 2579±516 3374±2135 3209±1233 1055±291
Auto-PyTorch 1514±116 1450±161 1262±107 1524±111 1334±155

AutoML
Tools

Auto-Sklearn 3600±0 3600±0 3600±0 3600±0 3600±0
AutoGluon 130±9 143±12 146±17 264±243 1296±291
H2O AutoML 643±573 495±180 635±310 831±596 2764±613
MLJar 1519±57 1607±42 1653±46 2066±413 3232±770
PyCaret 178±9 193±4 200±5 208±19 253±41
rminer 329±10 355±4 361±6 378±22 776±721
TPOT 1552±770 1936±1020 2032±774 1839±804 1903±1206
TransmogrifAI 656±10 688±6 710±16 739±7 777±3

The overall results suggest that AutoML tools that focus on classical ML
algorithms (e.g., Decision Trees, Random Forest) are best suited to help the
Portuguese company to predict failures for their equipments. Nonetheless,
the AutoDL predictive results might be justified by the small size of the
analyzed dataset (which contains only 2,608 records) since it is generally
accepted that DL tends to produce better results with large datasets [50].
Also, since the experiments did not use GPU, the maximum training time
of one hour might have not allowed the AutoDL tools to perform enough
computation to achieve competitive results.

4.2. AutoOneClass Results

The second predictive comparison considers the AutoOneClass method,
proposed and described in Section 3.2. Given that the method only works
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for binary classification tasks, the regression task was not considered in these
predictive tests. Instead, we performed several experiments with different
parameters, such as the type of validation, the used algorithms, and the
type of optimization (single or multi-objective). We executed all the Au-
toOneClass experiments with an initial population of 10 individuals and 10
generations (GE parameters). The summary of the different parameters used
in the experimental evaluation is shown in Table 7. We note that we adopted

Table 7: Parameters used for the AutoOneClass experiments and respective values.

Parameter Used Values

Population Size 10
Number of Generations 10
Crossover Variable Onepoint with 75% crossover probability (PonyGE2 default)
Mutation Int Flip Per Codon with 100% mutation probability (PonyGE2 default)

Validation Type
Supervised
Unsupervised

Algorithm

Autoencoder
Isolation Forest
One-Class SVM
All (the three algorithms simultaneously)

Optimization Type
Single-objective
Multi-objective

Predictive Objective
Maximize Validation AUC (for supervised validation)
Minimize Reconstruction Error (for AE unsupervised validation)
Minimize Anomaly Score (for IF and OC-SVM unsupervised validation)

Effiency Objective
None (for single-objective)
Training Time (for multi-objective)

Targets

FailOn3Days
FailOn5Days
FailOn7Days
FailOn10Days

the default PonyGE2 values for crossover and mutation, namely: Variable
Onepoint crossover (selection of a different point on each parent genome
for crossover to occur) with a crossover probability of 75%; and Int Flip Per
Codon mutation (random mutation of every individual codon in the genome)
with a mutation probability of 100%.

Table 8 shows the average test results of the 10 folds and the respective
confidence intervals. The table also shows the type of validation (Valida-
tion) that was used, which algorithms were considered (Alg.), and which
of the two available optimization modes (single-objective or multi-objective)
was chosen (Opt.). For comparison reasons, the table also shows, for each
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binary classification target, the best AutoDL and AutoML results (from Ta-
ble 5). For the best models of each target, we apply the nonparametric
Wilcoxon test for measuring statistical significance.

It is worth mentioning that, for the single-objective executions, the aver-
age test results shown on the table represent the average of the best models
(one model per fold) since this type of optimization only considers the pre-
dictive performance of the ML models and is able to identify one “leader”
model. On the other hand, for the multi-objective optimization, the average
results include several models per fold (all that belong to the Pareto front),
since it considers two objectives (predictive performance and training time).
Therefore it generates more than one optimal model per fold.

Table 8: Average predictive results (AUC) obtained by the proposed AutoOneClass
method, best values obtained by AutoOneClass for each target in bold.

Targets

Validation Alg. Opt.∗
Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoOneClass

Supervised AE SO 0.73±0.01 0.67±0.00 0.72±0.01 0.71±0.01
Supervised AE MO 0.67±0.05 0.64±0.01 0.71±0.01 0.69±0.01
Supervised IF SO 0.79±0.01 0.80b±0.02 0.80b±0.01 0.80c±0.02
Supervised IF MO 0.77±0.02 0.77±0.02 0.79±0.01 0.77±0.01
Supervised OC-SVM SO 0.70±0.01 0.67±0.01 0.70±0.01 0.67±0.01
Supervised OC-SVM MO 0.68±0.02 0.66±0.01 0.67±0.02 0.67±0.02
Supervised All SO 0.80a±0.05 0.76±0.06 0.77±0.04 0.77±0.03
Supervised All MO 0.76±0.06 0.77±0.06 0.77±0.05 0.75±0.03
Unsupervised AE SO 0.71±0.02 0.64±0.01 0.71±0.01 0.69±0.01
Unsupervised AE MO 0.67±0.05 0.63±0.02 0.71±0.01 0.69±0.01
Unsupervised IF SO 0.70±0.05 0.68±0.04 0.71±0.03 0.69±0.02
Unsupervised IF MO 0.66±0.06 0.69±0.04 0.71±0.04 0.67±0.07
Unsupervised OC-SVM SO 0.62±0.06 0.60±0.07 0.55±0.06 0.65±0.06
Unsupervised OC-SVM MO 0.60±0.08 0.57±0.06 0.55±0.06 0.63±0.08

Best NAS/AutoDL result 0.76±0.10 0.74±0.07 0.79±0.05 0.79±0.03
Best AutoML result 0.98±0.01 0.97±0.02 0.98±0.01 0.99±0.01

∗SO - Single-objective; MO - Multi-objective.
aStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/IF/SO and Supervised/IF/MO.
bStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/All/MO.
cStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/All/SO.
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The results show that, on average, the executions that used a supervised
validation (using a labeled validation set) achieved better results than those
with unsupervised validation sets (using unlabeled validation data). While
the supervised validation achieved an average 0.73 of AUC (across all algo-
rithms and optimization types), the unsupervised validation obtained 0.66
points, on average. Regarding the previously discussed topic related to the
usage of the anomaly scores as a proxy for the AUC for the unsupervised val-
idation (mentioned in Section 3.2), we note that these experimental results
have shown that the improvement of the supervised validation is relatively
small (average of 7 percentage points), thus backing the usage of the anomaly
score minimization criterion for the unsupervised validation scenario.

When comparing the types of algorithms considered in these experiments
(AEs, IF, OC-SVM, or the three simultaneously), the mode with all three
algorithms simultaneously generated the best results, with an average AUC
of 0.77. Next, the second best algorithm was IF (average of 0.74 AUC),
followed by AE (average of 0.69 AUC), and the OC-SVM algorithm obtained
the worst results, with 0.64 of average AUC.

Another interesting result was that the single-objective executions only
achieved slightly better predictive results than the multi-objective ones. In-
deed, grouping the results by type of validation and algorithm, the average
difference between the single-objective and multi-objective results was 0.02
pp. These differences can be further analyzed in Fig. 7.

Similar to the previous experiment, we also analyze the average training
times for the AutoOneClass results, shown in Table 9. The results show
that the average training times of AutoOneClass when using AEs were much
higher than the other algorithms (average training time of 2,732 s across
all folds and datasets). On the other hand, OC-SVM presented the lowest
average training time (85 s), followed by IF (194 s) and lastly the setup which
uses all algorithms (538 s).

A comparison between the predictive results achieved by the proposed
AutoOneClass method (shown in Table 8) and the AutoML results (shown in
Table 5) shows that none of the AutoOneClass executions outperformed the
best AutoML tools on all four binary classification targets. However, when
comparing the AutoOneClass results only with AutoDL tools, AutoOneClass
generated at least one result better than all of the AutoDL tools (Auto-Keras
and Auto-PyTorch).

It should be stressed that the AutoOneClass method requires much less
labeled data to train the ML models (only uses labeled data for the super-
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Figure 7: AutoOneClass results aggregated by validation type, algorithm, and optimiza-
tion type, both globally (left) and per target (right).

vised validation), when compared with the supervised AutoML tools, which
typically require a labeled dataset with a balanced ratio of normal and ab-
normal records. In many real-world PdM scenarios, there is a huge number
of normal records and anomaly records might not always be available. Thus,
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Table 9: Average training times (in seconds) obtained by the proposed AutoOneClass
method, best values obtained by AutoOneClass for each target in bold.

Targets

Validation Alg. Opt.∗
Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoOneClass

Supervised AE SO 2349±945 3151±1250 3215±1566 2352±928
Supervised AE MO 4747±2265 3053±1186 2242±888 3109±1220
Supervised IF SO 157±49 177±71 191±86 255±100
Supervised IF MO 123±45 213±75 87±32 159±64
Supervised OC-SVM SO 136±53 115±45 106±42 93±37
Supervised OC-SVM MO 108±43 116±45 96±39 84±33
Supervised All SO 571±209 464±188 598±239 609±238
Supervised All MO 729±243 491±189 416±161 422±151
Unsupervised AE SO 2700±1073 2563±1005 2352±918 2430±921
Unsupervised AE MO 2418±931 2396±965 2282±874 2348±911
Unsupervised IF SO 468±207 365±153 229±104 146±56
Unsupervised IF MO 94±42 168±62 198±75 71±30
Unsupervised OC-SVM SO 74±28 67±26 59±22 66±26
Unsupervised OC-SVM MO 63±24 63±23 48±21 64±25

Best NAS/AutoDL result 1514±116 1450±161 1262±107 1334±155
Best AutoML result 130±9 143±12 146±17 208±19

∗SO - Single-objective; MO - Multi-objective.

AutoOneClass could be valuable in PdM use cases, when most of the data is
comprised by normal data and where anomaly records are costly to be col-
lected and labeled (e.g., equipment condition monitoring, failure detection).

We note that these experiments had some limitations that might present
disadvantages for the AutoOneClass method. First, the training time of one
hour might have been insufficient for tools that rely on DL algorithms (e.g.,
AEs, AutoDL tools), in particular since no GPU is used. Second, the usage of
a larger dataset could have improved both AutoOneClass and AutoDL pre-
dictive results. Third, GE optimization used fixed values (PonyGE2 default)
for some of the parameters, such as the crossover and mutation operators.

4.3. Comparison With a Human ML Modeling

Finally, we compare the best AutoML results for each target with the best
result achieved by two examples of a human ML modeling, as performed by a
non-ML expert belonging to the analyzed Portuguese software company and
an external ML expert. Table 10 compares the prediction results achieved
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using the manual ML design and best AutoML tools. For each AutoML tool,
Table 10 includes the algorithm (Alg.) that was most often the leader across
the external folds (in rounded brackets). For the human modeling, Table 10
shows the best obtained result and the used algorithm.

Table 10: Comparison between the best AutoML results, AutoOneClass results, and hu-
man ML modeling results (expert and non-expert) for each target, best values in bold
(adapted from [10]).

Target Measure
Best Results

AutoML AutoOneClass
Human

(Non-expert)
Human
(Expert)

Score Tool (Alg.) Score Alg. Score Alg. Score Alg.

DaysToNextFailure MAE 4.948
AutoGluon
(Ensemble)

- - 68.361 RF 6.510 RDT

FailOn3Days AUC 0.979
H2O AutoML

(GBM)
0.795 IF 0.500 RF 0.764 DT

FailOn5Days AUC 0.971
AutoGluon
(Ensemble)

0.800 IF 0.529 RF 0.794 RF

FailOn7Days AUC 0.982 TPOT (RF) 0.804 IF 0.581 RF 0.830 KNN

FailOn10Days AUC 0.988
AutoGluon
(Ensemble)

0.797 IF 0.563 RF 0.865 RF

DT - Decision Tree; IF - Isolation Forest; KNN - K-Nearest Neighbors; GBM - Gradient Boosting Ma-
chine; RF - Random Forest; RDT - Randomized Decision Trees

It should be noted that the human non-ML expert used a distinct prepro-
cessing procedure, since it applied the One-Hot encoding to all categorical
attributes (and not IDF for the high cardinality ones, as we adopted for the
AutoML tools). However, the external ML expert used the same preprocess-
ing adopted by the AutoML tools.

The comparison clearly favors the AutoML results for all predicted target
variables. For regression, the non-expert modeling achieved an average error
of 68.36 days, which was only better than Auto-Keras (which obtained an
average MAE of 84.02). On the other hand, the best expert modeling result
was an MAE of 6.51, which was only surpassed by three AutoML tools (Au-
toGluon, H2O AutoML, and Auto-Sklearn). As mentioned in Section 3.2,
the AutoOneClass method was not applied to the regression target since it
is only performs a binary classification.

For the binary classification task, all AutoML tools achieved results that
can be considered excellent (AUC higher than 0.90). On the other hand, the
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non-expert modeling achieved slightly better results than a random model,
while the expert’s modeling achieved good results, with AUCs between 0.764
and 0.865. The AutoOneClass method also produced good predictive results,
surpassing the human expert modeling in two of the four binary classification
tasks (targets FailOn3Days and FailOn5Days).

These results suggest that supervised AutoML can be a valuable to au-
tomate the modeling phase when applying ML to PdM tasks. The usage
of AutoML has several benefits, such as the ability to surpass human ML
modeling, accelerate the creation of good ML models, and free the ML ex-
pert to focus on other essential ML phases, such as Data Understanding and
Data Preparation. As for the proposed AutoOneClass method, the results
demonstrate that OC Learning can also be used for binary PdM tasks, being
particularly valuable the labeling anomaly data is costly. While outper-
formed by some of the supervised AutoML tools, AutoOneClass has shown
competitive results when compared with using human experts or AutoML
tools focused only on DL.

5. Conclusions

PdM is a crucial industrial application that is being increasingly enhanced
by the adoption of ML. However, most ML related works assume an expert
ML model design that requires manual effort and time. In this paper, we
explore the potential of AutoML to automate PdM ML modeling. We used
real-world data provided by a Portuguese software company within the do-
main of maintenance management to predict equipment malfunctions.

Our goal was to anticipate failures from several types of equipments (e.g.,
industrial machines), using two ML tasks: regression - to predict the number
of days until the next failure of the equipment; and binary classification -
to predict if the equipment will fail in a fixed amount of days (e.g, in three
days).

For the ML modeling and training, we relied on two main approaches.
First, we explored ten recent state-of-the-art Supervised AutoML and Au-
toDL tools: Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O
AutoML, MLJar, PyCaret, rminer, TPOT, and TransmogrifAI. Second, we
propose AutoOneClass, a novel AutoML method focused on an OC Learning
that uses a GE optimization.

Several computational experiments were held, assuming five predictive
tasks (one regression and four binary classifications). When comparing the
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supervised learning results, AutoGluon presented the best average results
among the AutoML tools. The AutoOneClass results were also satisfac-
tory, surpassing the AutoML tools focused on DL. The AutoML and Au-
toOneClass results were further compared with two human ML designs, per-
formed by a non-expert and an ML expert. The comparison favored all
AutoML tools, which provided better average results than both manual ap-
proaches. Overall, the best results were achieved iby the Supervised AutoML
tools. However, the AutoOneClass surpassed the expert human modeling in
two predictive targets and the performed OC Learning is quite useful when
anomalous PdM labeling is costly. These results confirm the potential of the
Supervised AutoML modeling and the proposed AutoOneClass approach,
which can automatically provide high-quality predictive models. This is par-
ticularly valuable for the PdM domain since industrial data can arise with
a high velocity. Thus, the predictive models can be dynamically updated
through time, reducing the data analysis effort.

In future work, we intend to perform experiments with more datasets
from the domain of PdM to verify further consistency with our results. We
also intend to experiment with AutoML technologies that can automatically
perform other ML phases apart from modeling, such as feature engineering
and selection. Furthermore, regarding the AutoOneClass method, we plan
to develop a benchmark with a more significant number of OC Learning
algorithms (e.g., Local Outlier Factor, Gaussian Mixture Model, recently
proposed OC Learning algorithms [51, 52, 53, 54, 55]) and datasets, including
big data ones that should favor its multi-objective variant. Additionally, we
aim to experiment different values for crossover, mutation and training time
to assess their impact on the GE optimization. Also, for the multi-objective
mode, we intend to analyze in more depth the correlation between the AUC
and the anomaly scores when using a supervised validation. Finally, we wish
to add more functionalities to AutoOneClass, such as the usage of other
performance objectives (apart from training time) or the application of an
early stopping to the GE optimization.
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[20] M. Çakir, M. A. Güvenç, S. Mistikoglu, The experimental application
of popular machine learning algorithms on predictive maintenance and
the design of iiot based condition monitoring system, Comput. Ind. Eng.
151 (2021) 106948. doi:10.1016/j.cie.2020.106948.

32



[21] S. Arena, E. Florian, I. Zennaro, P. Orrù, F. Sgarbossa, A novel de-
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Abstract

Predictive Maintenance (PdM) is a critical area that is benefiting from the
Industry 4.0 advent. Recently, several attempts have been made to apply
Machine Learning (ML) to PdM, with the majority of the research studies
assuming an expert-based ML modeling. In contrast with these works, this
paper explores a purely Automated Machine Learning (AutoML) modeling
for PdM under two main approaches. Firstly, we adapt and compare ten
recent open-source AutoML technologies focused on a Supervised Learning.
Secondly, we propose a novel AutoML approach focused on a One-Class (OC)
Learning (AutoOneClass) that employs a Grammatical Evolution (GE) to
search for the best PdM model using three types of learners (OC Support
Vector Machines, Isolation Forests and deep Autoencoders). Using recently
collected data from a Portuguese software company client, we performed
a benchmark comparison study with the Supervised AutoML tools and the
proposed AutoOneClass method to predict the number of days until the next
failure of an equipment and also determine if the equipments will fail in a
fixed amount of days. Overall, the results were close among the compared
AutoML tools, with supervised AutoGluon obtaining the best results for
all ML tasks. Moreover, the best supervised AutoML and AutoOneClass
predictive results were compared with two manual ML modeling approaches
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(using a ML expert and a non-ML expert), revealing competitive results.

Keywords: Automated Machine Learning, Predictive Maintenance,
Supervised Learning, One-Class Learning.

1. Introduction

The Industry 4.0 phenomenon allowed companies to focus on analyzing
historical data to obtain valuable insights. In particular, Predictive Mainte-
nance (PdM) is a crucial application area that emerged from this context,
where the goal is to optimize the maintenance and repair process of equip-
ments through the usage of Machine Learning (ML) algorithms [1]. Indeed,
some ML studies try to anticipate the failure of equipments (typically, man-
ufacturing machines), aiming to reduce the costs of repairs [2, 3, 4, 5]. Other
approaches [6, 7, 8, 9] use ML algorithms to predict the behavior of the
manufacturing process.

Despite all potential Industry 4.0 benefits, many organizations do not
currently apply ML to enhance maintenance activities. Furthermore, for
those who rely primarily on Data Science experts, the ML models are tuned
manually, often requiring several trial-and-error experiments. In contrast
with the human ML design approach, in this paper we focus on an Automated
Machine Learning (AutoML), aiming to automate the ML modeling phase
and thus reduce the data to maintenance insights process cycle. Moreover, we
apply AutoML using real-world data collected from the client of a Portuguese
software company in the area of maintenance management.

The AutoML was explored for two specific prediction tasks: the number
of days until an equipment fails and if the equipments will fail in a fixed
number of days. We designed a large set of computational experiments to
assess the AutoML predictive performance of ten open-source tools focused
on a Supervised Learning. Additionally, we propose AutoOneClass, a novel
AutoML approach for One-Class (OC) Learning that uses a Grammatical
Evolution (GE) optimization. Finally, to provide a baseline comparison, we
compare the best AutoML and AutoOneClass results with two manual ML
analyses, based on a non-expert ML modeling made previously by one of
the company’s professionals and an external (non paper author) ML expert
design. The comparison favors the supervised AutoML and AutoOneClass
results, thus attesting to the potential of the AutoML approach for the PdM
application domain.
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This work comprises a rather extended version of our previous work [10],
thus including several new elements. Firstly, we perform an updated survey
of the state-of-the-art works regarding the application of ML in PdM (Sec-
tion 2). Secondly, we introduce and describe the new AutoOneClass frame-
work (Section 3.2). Thirdly, the PdM dataset is presented with more depth
(Sections 3.3 and 3.4), including information about missing and unique values
and output target distributions. Fourthly, we perform additional computa-
tional experiments with more supervised AutoML tools and the proposed
AutoOneClass method (Sections 4.1 and 4.2).

The main contributions of our work are summarized as follows:

(i) We propose AutoOneClass, an AutoML framework that focuses on OC
Learning using three algorithms: deep Autoencoders (AE), Isolation
Forests (IF), and One-Class Support Vector Machines (OC-SVM). Au-
toOneClass uses GE to optimize the search for the best OC ML algo-
rithm and its associated hyperparameters for a given dataset;

(ii) For the AutoOneClass method, we assume a single or multi-objective
search. The single-objective approach only uses the predictive per-
formance to select the best ML model, while the multi-objective vari-
ant considers two objectives simultaneously, predictive performance and
training time;

(iii) We use two validation setups for AutoOneClass: unsupervised and su-
pervised validation. The purely unsupervised method uses unlabeled
data during validation and anomaly scores to evaluate the ML mod-
els. The supervised validation (using a labeled validation set) uses the
Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) to assess model performance;

(iv) We conduct a large set of experiments, predicting equipment failures
in different time windows (e.g., 3 days, 5 days) and compare the re-
sults from the new AutoOneClass with ten AutoML tools, focused on
classical ML and Deep Learning.

The paper is organized as follows. In Section 2, we present the related
work. Next, Section 3 describes the supervised AutoML tools, the proposed
AutoOneClass approach, and the analyzed PdM dataset. Then, Section 4
shows and discusses the experimental results. Finally, Section 5 presents the
main conclusions and future work directions.

3



2. Related Work

Table 1 summarizes the related works that mention the usage of ML
within the PdM domain in terms of the following columns: Year – the year
in which the study was first published; Ref. – the study reference; ML
Algorithms – which ML algorithms were used in the study (since some
studies and tools do not disclose details to distinguish between shallow and
deep structures, we adopt in this paper the DL acronym to refer to both types
of neural architectures); FP – if the study is applied to failure prediction (i.e.,
trying to identify when an equipment is going to fail); Real Data – if the
study experiments analyze real-world data; and ML Design – the adopted
ML modeling approach.

The related works are quite recent. In effect, Table 1 includes 16 studies
published since 2017, including five works published in 2020 and three in
2021. Most works use real-world data and apply existing ML techniques
to solve specific PdM tasks. Typically, classical supervised ML algorithms
(e.g., Linear Regression, Decision Trees) are employed. Only five of the
studies use Deep Learning (DL), but none of these use this type of ML
algorithm exclusively. Moreover, only four studies adopted unsupervised ML
algorithms [11, 12, 13, 18]. This is a relevant issue for the PdM domain, since
data labeling is often costly, requiring a manual effort.

Most studies aim to predict equipment failures, which is expected since
it is one of the main challenges found in the PdM domain. Only two works
did not try to predict when an equipment will fail: [16] tries to classify the
condition of the equipment (e.g., excellent, good) and [21] uses ML to suggest
the type of maintenance needed for an equipment.

It terms of the ML modeling, the majority of the studies rely on a manual
algorithm selection and hyperparameter tuning (Expert-based). There are
only two works apart from this study that use AutoML: [19] is based on an
existing AutoML framework (Auto-Sklearn), while [14] proposed an adapta-
tion of the ML-Plan framework for PdM. In contrast with this paper, none
of these studies compared more than one supervised AutoML tool. More-
over, the two works did not approach an unsupervised OC Learning, which is
valuable for the PdM domain and that is here handled by using the proposed
AutoOneClass method.

4



Table 1: Summary of the related work (ML applied to PdM).

Year Ref. ML Algorithms FP Real Data ML Design

2017 [2] ARIMA � � Expert-based

2017 [3]
LR, LoR, DL,
DT, RF, GBM

� � Expert-based

2018 [7]
GLM, RF
GBM, DL

� n.d. Expert-based

2018 [11] K-means � � Expert-based

2018 [4] RF � � Expert-based

2018 [12] EM � � Expert-based

2018 [13] IF, LOF, OC-SVM � � Expert-based

2020 [14]
AdaBoost
RF

� AutoML

2020 [15]
SVM
LogR

� Expert-based

2020 [16]
DL
SVM

� Expert-based

2020 [17]
GBM
RF

� � Expert-based

2020 [18] DL, OC-SVM, XGB � � Expert-based

2021 [19]
Classical ML
DL
Ensembles

� �* AutoML

2021 [20]
SVM, LDA, RF,
DT, KNN

� � Expert-based

2021 [9]
RF, XGB, GBM,
MLP, SVM, Adaboost

� � Expert-based

2022 [21] DT � Expert-based

2022 This work
Supervised and
OC Learning

� � AutoML

ARIMA - Autoregressive Integrated Moving Average; DL - Deep Learning; DT - De-
cision Tree; EM - Expectation-Maximization; IF - Isolation Forest; GBM - Gradient
Boosting Machine; GLM - General Linear Model; KNN - K-nearest Neighbors; LDA
- Linear Discriminant Analysis; LOF - Local Outlier Factor; LR - Linear Regression;
LogR - Logistic Regression; MLP - Multilayer Perceptron; n.d. - not disclosed; OC-SVM
- One-Class SVM; RF - Random Forest; SVM - Support Vector Machines; XGB - XG-
Boost; �* - mixed data (both real and simulated).
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3. Materials and Methods

3.1. Supervised AutoML Tools

In this article, we compare ten recent open-source AutoML tools for su-
pervised classification and regression tasks. Most of the selected tools were
explored on a recent benchmark study performed in [22]. In order to achieve
a more fair comparison, we did not tune the hyperparameters of the AutoML
tools. Table 2 summarizes the main characteristics of the ten supervised Au-
toML tools, namely the base framework (Framework), the available API
languages (API), if the tool uses DL algorithms (DL), if the tool supports
GPU usage (GPU), and the version that we used in our experiments (Ver-
sion). Additional details are provided here:

Table 2: Description of the supervised AutoML tools (adapted from [10]).

Tool Framework API DL GPU Version

Auto-Keras Keras Python �(only) � 1.0.18

Auto-PyTorch PyTorch Python �(only) � 0.1.1
Auto-Sklearn Scikit-Learn Python - - 0.14.6

AutoGluon Gluon Python � � 0.2.0

H2O AutoML H2O Java, Python, R � �(partial) 3.32.1.3

MLJar
CatBoost, Keras,

Python � - 0.11.2
Scikit-Learn, XGBoost

PyCaret Scikit-Learn Python - �(partial) 2.3.10
rminer rminer R - - 1.4.6

TPOT Scikit-Learn Python - �(partial) 0.11.7
TransmogrifAI Spark (MLlib) Scala - - 0.7.0

• Auto-Keras is an AutoML Python library based on Keras [23]. It
is designed to automate the construction on DL algorithms, usually
named Automated Deep Learning (AutoDL) or Neural Architecture
Search (NAS). Auto-Keras automatically tunes hyperparameters of
Neural Networks, such as the number of layers and neurons, activa-
tion functions, or dropout values.

• Auto-PyTorch is another AutoDL tool, based on the PyTorch frame-
work. Auto-PyTorch uses multi-fidelity optimization with portfolio
construction to automate the construction of DL networks [24].
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• Auto-Sklearn is an AutoML library based on the popular Scikit-Learn
framework. It uses Bayesian optimization, meta-learning, and Ensem-
ble Learning modules to automate algorithm selection and hyperpa-
rameter tuning [25].

• AutoGluon is an AutoML toolkit based on the Gluon framework [26].
In this work, we only considered the tabular data module, which runs
several algorithms and returns a Stacked Ensemble with multiple layers
[27].

• H2O AutoML is the AutoML module from the H2O framework. H2O
AutoML runs several algorithms from H2O and several Stacked Ensem-
bles, with subsets of the trained ML models [28].

• MLJar provides an AutoML framework that includes algorithm se-
lection, hyperparameter tuning, feature engineering, feature selection,
and Explainable AI (XAI) capabilities. From the three available modes
of MLJar, we used the “Perform” mode , since it is considered the most
appropriate mode for a real-world usage [29].

• PyCaret is an open-source ML Python library that automates ML
workflows using low code functions. PyCaret provides an AutoML
function (compare models) to automate the choice algorithms by com-
paring the performance of all available algorithms [30].

• rminer is a library for the R programming language, focused on fa-
cilitating the usage of ML algorithms [31]. Rminer also provides Au-
toML functions that can be highly customized. This paper used the
"automl3" template, which runs several ML algorithms and one Stacked
Ensemble.

• TPOT is a Python AutoML tool that uses Genetic Programming to
automate several phases of the ML workflow. It uses the Python Scikit-
Learn framework to produce ML pipelines [32].

• TransmogrifAI is an end-to-end AutoML library written in Scala that
runs on top of Apache Spark. It was created to increase ML efficiency
through automation and an API that ensures compile-time type safety,
modularity, and reuse [33].
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3.2. AutoOneClass: Automated One-Class Learning
All the AutoML tools described in Section 3.1 apply Supervised Learn-

ing techniques (e.g., binary classification, regression). However, as explained
in Section 2, there are PdM studies that focus on an Unsupervised Learn-
ing (e.g., [34, 12]). In particular, we focus on an OC Learning, such as
adopted in [13, 18]. OC Learning is often employed in anomaly detection
tasks, where the ML algorithms are only trained with normal examples, pro-
ducing learning models that tend to trigger high anomaly scores when faced
with abnormal records (outside the learned normal input space) [35]. OC
Learning is valuable for PdM, since the associated classification tasks are
often extremely unbalanced. Indeed, a large majority of the PdM records
are related with a normal equipment functioning, thus these records can be
more easily collected without a high data labeling cost.

While there is currently a large list of AutoML frameworks, these so-
lutions typically only focus on Supervised Learning. Indeed, as argued in
[36, 37], very few works have explored AutoML outside the Supervised Learn-
ing domain, thus this is still a current research challenge for AutoML. Follow-
ing this research gap, in this paper we propose AutoOneClass, an AutoML
framework that focuses on a OC Learning. AutoOneClass uses GE to opti-
mize the search for the OC ML algorithm and its associated hyperparameters
for a given dataset.

Furthermore, AutoOneClass can assume a single or multi-objective search.
The single-objective approach only uses the predictive performance to select
the best ML model, while the multi-objective variant considers two objec-
tives, predictive performance and training efficiency (measured by compu-
tational training time). For the multi-objective setup, we adopt a Pareto
optimization that performs a simultaneous optimization of both objectives,
resulting in a final Pareto front that contains a set of non-dominated solu-
tions, where each solution constitutes a different predictive performance vs
training efficiency trade-off. As such, there is no a priori definition of fixed
weights between the two objectives. We note that the AutoOneClass multi-
objective variant was developed in order to allow the selection of lighter ML
models, even if they have a slightly lower performance, since these types of
models are valuable when handling big data. However, the dataset analyzed
in this work is relatively small.

AutoOneClass is mainly designed for anomaly detection tasks, where
there is a distinction between “normal” instances and “anomalies”, in partic-
ular when “normal” records represent most of the dataset. Given that Au-
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toOneClass implements OC Learning algorithms, the ML models are trained
using only data from one of the classes (typically, the “normal” class). In all
our experiments related to AutoOneClass, we only used normal data for the
learning (i.e., training) phase.

However, the AutoOneClass validation (which will impact the GE opti-
mization) can be executed using two setups: unsupervised validation, where
the model performance is evaluated only using unlabeled data (e.g., through
an anomaly score); or supervised validation, where there is access to a labeled
validation set to assess the model performance using Supervised Learning
metrics (e.g., AUC). This means that, in our AutoOneClass experiments,
for the unsupervised validation setup, the validation set was composed only
of normal data; for the supervised validation setup, we used validation sets
comprised of labeled data (with normal and abnormal records). Neverthe-
less, independently of the validation setup, the AutoOneClass method only
uses normal data during training, thus only dealing with an OC Learning
training.

Given the different validation strategies, we use distinct fitness functions
as the predictive objectives for the GE optimization. In the cases where su-
pervised validation is used, we consider the maximization of the validation
AUC as our predictive objective. For the predictive objective of the unsuper-
vised validation, we minimize an anomaly score, which was set to vary within
the range [0,1] for all OC Learning methods, thus allowing its interpretation
as an anomaly score probability.

We note that under the unsupervised validation assumption, there is no
access to labeled data (i.e., abnormal examples) to perform a model selection,
thus the AUC computation is not feasible in this scenario. Since a model
selection criterion is needed (e.g., to select the best AE configuration), we
assume the anomaly score minimization as a proxy for the AUC. The ra-
tionale is that if a model provides a low anomaly score when trained with a
large set of normal data, then it should be capable of triggering high anomaly
scores for abnormal data, which should reflect on a good enough ROC curve.
Nevertheless, to correctly benchmark the unsupervised validation scenario,
we used labeled data on the test set, allowing us to compute the ROC curves
and their AUC measures, which are then compared with the ones obtained
when using the supervised validation scenario.

9



3.2.1. One-Class Learning Algorithms

AutoOneClass uses three popular OC Learning algorithms: AE, IF, and
OC-SVM. This means that, for a given dataset, AutoOneClass selects one
of these three algorithms at the end of the GE optimization. The AEs were
implemented through the TensorFlow library (using the Keras submodule)
[38], while both IF and OC-SVM were implemented using the Scikit-Learn
framework [39].

AEs are a DL type that encode the input into a compressed representation
(the latent space) and then decodes it back in order to reconstruct the original
input as similar as possible to the original data [40]. AEs are used for several
applications, such as dimensionality reduction or removing noise from data.
AEs can be applied to OC Learning scenarios, where the AE is trained with
normal data and attempts to produce outputs similar to the inputs. For
each input instance, there is an associated reconstruction error, where higher
reconstruction errors represent a higher probability of being an anomaly [35].
Fig. 1 shows an example of an AE.

Figure 1: Example of an AE (the input data is encoded into a compressed representation
and then it is decoded).

IF was proposed in 2008 [41] and it works by isolating “anomalies” in-
stead of identifying “normal” instances. In order to isolate the instances, IF
recursively generates partitions on the training data by randomly selecting
an attribute and then selecting a split value for that attribute. This strategy
is based on two main assumptions regarding anomalies: they are a minority
of the data and very different from the normal instances. This way, since
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anomalies are few and different, they are easier to “isolate” compared to
normal points. Fig. 2 exemplifies the IF partitioning on a dataset with two
attributes. In the figure, x0 is an anomaly (since it is easily isolated) and xi

is a normal point.

Figure 2: IF partitioning: x0 is an anomaly (easily isolated) and xi is a normal point
(adapted from [41]).

OC-SVM is an extension of the Support Vector Machine (SVM) algorithm
for unlabeled data [42, 43]. OC-SVM learns a decision function from the
training data (composed only of normal instances) and can classify new data
as similar or different than the training data. Instead of using a hyperplane
to separate two classes (such as the traditional SVM), OC-SVM uses the
hyperspace to include all training instances.

3.2.2. Grammatical Evolution

GE is an evolutionary algorithm proposed in 2001 [44]. Unlike Genetic
Programming (GP), GE performs the evolutionary process on a provided
grammar instead of on the actual programs. A GE execution starts by creat-
ing an initial population of solutions (usually randomly), where each solution
(usually named individual) corresponds to an array of integers (or genome)
that is used to generate the program (or phenotype) [45].

For each generation, the evolutionary process of GE includes two main
phases. The first phase is the evolution, where the algorithm generates new
solutions using operations, such as crossovers and mutations. During the
crossover operation, pairs of individuals are picked as parents and their ge-
netic material is swapped to generate new individuals (children). The mu-
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tation operation is applied after the crossover to the children individuals,
usually consisting of randomly changing their genome to maintain genetic
diversity. The second phase is the evaluation, where the population of in-
dividuals is evaluated using a fitness function. GE applies the evolution
directly to the genome, while the evaluation is applied to the phenotype,
which is obtained from the genome using a mapping process.

The GE mapping process uses the genome values to select production
rules, usually in a Backus–Naur Form (BNF) notation. This notation consists
of terminals (items that can appear in language, such as the symbols + or
−) and non-terminals (variables that include one or more terminals). An
example of a BNF grammar is shown in Fig. 3.

Figure 3: Example of a BNF grammar to generate strings.

In this paper, we built AutoOneClass using PonyGE2, an open source
implementation of GE in Python [46] that allows the usage of Python BNF
(PyBNF), in which the production rules can include Python code. For the
AutoOneClass framework, we developed a PyBNF grammar that can tune
the hyperparameters of the One-Class Learning algorithms described in Sec-
tion 3.2.1. The grammar was then adapted to allow two types of optimiza-
tion: All - in which the GE execution generates one of the three algorithms
for each solution (individual); and separate mode, in which the GE only gen-
erates one family of algorithms for all individuals (e.g., AEs). The PyBNF
grammar we used in this work is shown in Fig. 4.

In practice, the usage of PyBNF allowed us to generate snippets of Python
code that allow GE to generate different types of ML models. For example,
the IF and OC-SVM grammars were implemented by creating the respective
Scikit-Learn class and adding the hyperparameters as terminals and non-
terminals.

This process was more complex for the AEs, since the TensorFlow API
requires the definition of a variable number of layers. To achieve this, we
defined the grammar to generate only the encoder: first, generate an input
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Figure 4: The PyBNF grammar used in this work.

layer with the same number of nodes as the number of attributes of the
dataset and then add a variable number of hidden layers. Since the decoder is
symmetrical to the encoder, this component is not included in the grammar.
Also, given that in a typical AE, the subsequent encoder layers have fewer
nodes than the previous layer, we defined the layer nodes as a percentage
(between 0% and 100%) of nodes of the previous layer instead of a fixed
number. Finally, we defined an auxiliary function get model from encoder,
which translates the generated phenotype to a functional Keras AE.
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3.3. Data

The data used in this work was provided by a Portuguese software com-
pany focused on maintenance management and presents a real historical
record from one of the company’s clients. The company has many PdM
datasets, detailed in Fig. 5.

Figure 5: Entities and relationships between the datasets (adapted from [10]).

For the context of this work, we assume a tabular dataset composed of the
aggregation of several attributes from each entity. Overall, the data includes
2,608 records and 21 input attributes. Each record represents an action (e.g.,
a work order) related to one of the company’s equipments (e.g., an industrial
machine). In addition, each record includes diverse input attributes, such as
the machine’s tasks, material consumption, and meter readings.

Table 3 details the input and output variables (Attribute), their descrip-
tion (Description), data type (Type), number of levels (Levels), domain
values (Domain), and example values from one of the records (Example).
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Table 3: Description of the equipment maintenance dataset attributes (adapted from [10]).

Attribute Description Type Levels Domain Example

RecordType Type of record String 5 - Failure
Brand Brand of the equipment String 2 - Rossi
WOType Type of work order String 4 - Corrective
PriorityLevel Priority Level of the work order String 4 - Urgent
Responsible Responsible for the work order String 3 - R4
Employee Employee that performed the action String 12 - E100
TotalTime Duration of the action (in hours) Float 17 [0, 8] 8
Quantity Consumption quantity Float 32 [0, 300] 90
Part Part that was consumed String 161 - T-1073
Meter Meter associated to meter reading String 11 - L-0002
MeterCumulative

Cumulative reading of meter Float 1477 [0, 73636] 22767
Reading
IncrementValue Increment compared to last reading Float 475 [0, 54570] 168
MaintenancePlan Maintenance Plan associated to task String 5 - P-000011
Task Executed task String 5 - T-0001
AssetWithFailure Identification of the equipment String 15 - A577

ParentAsset
Parent equipment of

String 11 - LINHA2
AssetWithFailure

Day Day of the month of the record Integer 31 [1, 31] 4
DayOfWeek Day of the week of the record Integer 7 [1, 7] 6
Month Month of the record Integer 12 [1, 12] 2
Year Year of the record Integer 6 [2015, 2019] 2019
DaysAfterPurchase Age of the equipment (in days) Integer 852 [0, 6309] 4479

DaysToNext Number of Days until the
Integer 1015 [0, 1550] 3

Failure next failure of the equipment

FailOn3Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 3 days

FailOn5Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 5 days

FailOn7Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 7 days

FailOn10Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 10 days

Half (12) of the 21 input attributes are categorical. Among these, most
present a low cardinality (e.g., RecordType, Brand). However, some at-
tributes present a very high cardinality (e.g., Part). The dataset includes
five target variables for regression or binary classification tasks. The regres-
sion task target (attribute DaysToNextFailure) describes the number of days
between that record and the failure of the respective equipment. As for the
binary classification targets (attributes FailOnxDays), these describe if the
equipment will fail or not in a certain amount of days (e.g., in three days).

Fig. 6 shows the histogram for the regression target and the balancing of
classes for the binary classification targets. Regarding the regression target
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Figure 6: Balancing of the binary classification targets and histogram of the regression
target.
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(attribute DaysToNextFailure), the available equipments will fail between
0 and 1550 days. However, many records (956) present a value between 0
and 155 days until the next failure. On the other hand, only a small num-
ber of records present a number of days until failure (e.g., only 89 records
present a value larger than 1240). Fig. 6 also shows that all four binary
classification targets present highly imbalanced classes, with the majority
of the records corresponding to “normal” situations. Only a tiny percent-
age of the equipments will fail on the respective interval (between 3 and
10 days, depending on the target). The most imbalanced target column is
FailOn3Days, with only 2.53% of records that will present failures in 3 days.
As expected, the larger the interval being considered, the larger the percent-
age of the “failure” class. However, even the least unbalanced target column
(FailOn10Days) presents 7.82% of records that will have failures. As other
studies show (e.g., [47]), imbalanced datasets are very prevalent in the PdM
domain since failures are frequently sporadic compared to health situations.

3.4. Data Preprocessing

Since several data attributes are of the type String (as shown in Table 3),
which is not accepted by some AutoML tools, we opted to encode all String
attributes into numerical types. To decide the most appropriate techniques to
transform the textual attributes into numerical, we first analyzed the number
of records and corresponding percentage for missing and unique values, which
are presented in Table 4.

For the String attributes that presented a low cardinality (five levels or
less), we applied the known One-Hot encoding. For the columns that had
missing values, we replaced the missing value with zero, which is assumed as
a numeric code value for the “unknown” level. Since the One-Hot encoding
method creates one binary column for each level of the original attribute, we
applied a different transformation for the columns with a higher cardinality.

Indeed, for the categorical variables with more than five levels, we used
the Inverse Document Frequency (IDF) technique, available on the Python
CANE module [48]. This method converts a categorical column into a nu-
merical column of positive values based on the frequency of each attribute
level. IDF uses the function f(x) = log(n/fx), where n is the length of x
and fx is the frequency of x. The benefit of IDF, compared with One-Hot
Encoding, is that the IDF technique does not generate new columns, which
is useful for attributes with high cardinality (e.g., the attribute Part has 161
levels).
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Table 4: Missing values and unique values of the datasets.

Attribute
Missing Values Unique Values

No. % No. %

RecordType 0 0 5 <1
Brand 203 8 2 <1
WOType 1801 69 4 <1
PriorityLevel 1801 69 4 <1
Employee 2228 85 12 <1
TotalTime 0 0 - -
Quantity 32 1 - -
Part 2338 90 161 6
Meter 0 0 11 <1
MeterCumulative 0 0 - -
IncrementValue 0 0 - -
MaintenancePlan 2228 85 5 <1
Task 2228 85 5 <1
AssetWithFailure 0 0 15 <1
ParentAsset 0 0 11 <1
Day 0 0 31 1
DayOfWeek 0 0 7 <1
Month 0 0 12 <1
Year 0 0 6 <1
DaysAfterPurchase 0 0 - -

DaysToNextFailure 0 0 - -
FailOn3Days 0 0 2 <1
FailOn5Days 0 0 2 <1
FailOn7Days 0 0 2 <1
FailOn10Days 0 0 2 <1

The remaining attributes (of Integer and Float types) were not altered
because most AutoML tools already apply preprocessing techniques to the
numerical columns (e.g., normalization, standardization). Furthermore, we
did not replace the missing values for the only numerical column that pre-
sented missing values (Quantity), since the AutoML tools usually perform
an imputation task before running the algorithms. After applying the trans-
formations, the final dataset had 42 inputs and five target columns.
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3.5. Evaluation

In order to evaluate the results from the AutoML tools and AutoOneClass,
we adopted a similar approach to the benchmark developed in [22]. For every
predictive experiment, we divided the dataset into 10 folds for an external
cross-validation and adopted an internal 5-fold cross-validation (i.e., over the
training data) for the AutoML tools, to select the best algorithm and hy-
perparameters (executed automatically by the AutoML tools). To evaluate
the test set (from external 10-fold validation) predictions we used the Mean
Absolute Error (MAE) (∈ [0.0,∞[, where 0.0 represents a perfect model) for
the regression task and the AUC analysis (∈ [0.0,1.0], where 1.0 indicates an
ideal classifier) for the binary classification targets. We also used MAE and
AUC for the internal validation, responsible for choosing the best ML model.

For all ten AutoML tools, we defined a maximum training time of one
hour (3,600 seconds) and an early stopping of three rounds, when available.
The maximum time of one hour was chosen since it is the default value
for most of the AutoML tools. We computed the average of the evaluation
measures on the test sets of the 10 external folds to provide an aggregated
value. Additionally, we use confidence intervals based on the t-distribution
with 95% confidence to verify the statistical significance of the experiments.
In order to identify the best results for each target, we chose the AutoML
tool with the best average predictive performance (with maximum precision
of 0.01). All experiments were executed using an Intel Xeon 1.70GHz server
with 56 cores and 64GB of RAM, without a GPU.

4. Results

4.1. AutoML Results

The first comparison focused on the supervised AutoML tools detailed in
Section 3.1. For each AutoML tool, we executed five experiments, one for
each target variable (DaysToNextFailure and FailOnxDays). Table 5 shows
the average external test scores for all 10 folds and the respective confidence
intervals (near the ± symbol). For the best models of each target, we also
apply the nonparametric Wilcoxon test for measuring statistical significance
[49].

The best tool for the regression task (DaysToNextFailure) was Auto-
Gluon, which produced the lowest average MAE. Besides AutoGluon, the
two best tools were H2O AutoML and Auto-Sklearn. For this task, the max-
imum predictive difference among all tools was 79.07 points (days). On the
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Table 5: Average predictive results obtained by the AutoML tools, best values for each
target in bold (adapted from [10]).

Targets
Days Unitl
Next Failure

Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

MAE AUC AUC AUC AUC

AutoDL
Tools

Auto-Keras 84.02±37.55 0.72±0.12 0.74±0.05 0.79±0.05 0.79±0.03
Auto-PyTorch 12.75±6.45 0.76±0.10 0.74±0.07 0.78±0.13 0.79±0.13

AutoML
Tools

Auto-Sklearn 6.20±0.50 0.82±0.10 0.84±0.08 0.90±0.05 0.91±0.04
AutoGluon 4.95a±0.57 0.98b±0.02 0.97c±0.02 0.98c±0.01 0.99c±0.01
H2O AutoML 5.53±0.62 0.98b±0.01 0.96±0.03 0.98c±0.01 0.98±0.01
MLJar 8.32±0.62 0.77±0.12 0.82±0.06 0.85±0.07 0.89±0.05
PyCaret 7.91±1.20 0.77±0.11 0.80±0.07 0.86±0.05 0.89±0.04
rminer 8.89±0.75 0.95±0.05 0.93±0.04 0.97±0.03 0.98±0.02
TPOT 7.05±0.57 0.97±0.03 0.96±0.02 0.98c±0.01 0.99c±0.01
TransmogrifAI 17.34±1.23 0.92±0.04 0.94±0.03 0.96±0.02 0.98±0.01

aStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, Auto-Sklearn, MLJar, PyCaret, rminer, TPOT, and TransmogrifAI.
bStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, MLJar, PyCaret, and TransmogrifAI.
cStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the tools:
Auto-Keras, Auto-PyTorch, MLJar, and PyCaret.

other hand, the worst tool was Auto-Keras, which produced an average MAE
of 84.02 days, a significantly higher value when compared to the remaining
AutoML and AutoDL tools.

As for the binary classification, AutoGluon was the best tool for all four
binary classification targets, followed by H2O AutoML and TPOT (best in
two targets each). The binary classification results show that the AutoDL
tools (Auto-Keras and Auto-PyTorch) performed significantly worse than the
AutoML tools, obtaining lower AUC results than all these tools. Nonetheless,
the predictive test set results also present significant discrepancies between
tools: maximum difference of 26 percentage points (pp) for FailOn3Days, 23
pp for FailOn5Days, 20 pp for FailOn7Days, and 20 pp for FailOn10Days.
However, when excluding the AutoDL tools, these differences are smaller:
maximum difference of 21 pp for FailOn3Days, 17 pp for FailOn5Days, 13
pp for FailOn7Days, and 10 pp for FailOn10Days. Even though the AutoDL
tools show, in general, worse results, they obtained similar results between
each other, with the maximum predictive difference of 4 pp (for the target

20



FailOn3Days) between Auto-Keras and Auto-PyTorch.
Additionally, we analyzed the training times (average of the external 10

folds) and respective confidence intervals of the AutoML tools, shown in
Table 6. The slowest tool was Auto-Sklearn, which always required the max-
imum allowed training time (3,600 s), followed by Auto-Keras (average of
2,550 s per external fold and dataset) and MLJar (average of 2,015 s). On
the other hand, PyCaret presented the lowest average value (206 s), best in
two datasets; AutoGluon - second best average value (396 s), best in three
datasets; rminer - third best average (440 s).

Table 6: Average training times (in seconds) obtained by the AutoML tools, best values
for each target in bold).

Targets
Days Unitl
Next Failure

Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoDL
Tools

Auto-Keras 2532±1137 2579±516 3374±2135 3209±1233 1055±291
Auto-PyTorch 1514±116 1450±161 1262±107 1524±111 1334±155

AutoML
Tools

Auto-Sklearn 3600±0 3600±0 3600±0 3600±0 3600±0
AutoGluon 130±9 143±12 146±17 264±243 1296±291
H2O AutoML 643±573 495±180 635±310 831±596 2764±613
MLJar 1519±57 1607±42 1653±46 2066±413 3232±770
PyCaret 178±9 193±4 200±5 208±19 253±41
rminer 329±10 355±4 361±6 378±22 776±721
TPOT 1552±770 1936±1020 2032±774 1839±804 1903±1206
TransmogrifAI 656±10 688±6 710±16 739±7 777±3

The overall results suggest that AutoML tools that focus on classical ML
algorithms (e.g., Decision Trees, Random Forest) are best suited to help the
Portuguese company to predict failures for their equipments. Nonetheless,
the AutoDL predictive results might be justified by the small size of the
analyzed dataset (which contains only 2,608 records) since it is generally
accepted that DL tends to produce better results with large datasets [50].
Also, since the experiments did not use GPU, the maximum training time
of one hour might have not allowed the AutoDL tools to perform enough
computation to achieve competitive results.

4.2. AutoOneClass Results

The second predictive comparison considers the AutoOneClass method,
proposed and described in Section 3.2. Given that the method only works
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for binary classification tasks, the regression task was not considered in these
predictive tests. Instead, we performed several experiments with different
parameters, such as the type of validation, the used algorithms, and the
type of optimization (single or multi-objective). We executed all the Au-
toOneClass experiments with an initial population of 10 individuals and 10
generations (GE parameters). The summary of the different parameters used
in the experimental evaluation is shown in Table 7. We note that we adopted

Table 7: Parameters used for the AutoOneClass experiments and respective values.

Parameter Used Values

Population Size 10
Number of Generations 10
Crossover Variable Onepoint with 75% crossover probability (PonyGE2 default)
Mutation Int Flip Per Codon with 100% mutation probability (PonyGE2 default)

Validation Type
Supervised
Unsupervised

Algorithm

Autoencoder
Isolation Forest
One-Class SVM
All (the three algorithms simultaneously)

Optimization Type
Single-objective
Multi-objective

Predictive Objective
Maximize Validation AUC (for supervised validation)
Minimize Reconstruction Error (for AE unsupervised validation)
Minimize Anomaly Score (for IF and OC-SVM unsupervised validation)

Effiency Objective
None (for single-objective)
Training Time (for multi-objective)

Targets

FailOn3Days
FailOn5Days
FailOn7Days
FailOn10Days

the default PonyGE2 values for crossover and mutation, namely: Variable
Onepoint crossover (selection of a different point on each parent genome
for crossover to occur) with a crossover probability of 75%; and Int Flip Per
Codon mutation (random mutation of every individual codon in the genome)
with a mutation probability of 100%.

Table 8 shows the average test results of the 10 folds and the respective
confidence intervals. The table also shows the type of validation (Valida-
tion) that was used, which algorithms were considered (Alg.), and which
of the two available optimization modes (single-objective or multi-objective)
was chosen (Opt.). For comparison reasons, the table also shows, for each
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binary classification target, the best AutoDL and AutoML results (from Ta-
ble 5). For the best models of each target, we apply the nonparametric
Wilcoxon test for measuring statistical significance.

It is worth mentioning that, for the single-objective executions, the aver-
age test results shown on the table represent the average of the best models
(one model per fold) since this type of optimization only considers the pre-
dictive performance of the ML models and is able to identify one “leader”
model. On the other hand, for the multi-objective optimization, the average
results include several models per fold (all that belong to the Pareto front),
since it considers two objectives (predictive performance and training time).
Therefore it generates more than one optimal model per fold.

Table 8: Average predictive results (AUC) obtained by the proposed AutoOneClass
method, best values obtained by AutoOneClass for each target in bold.

Targets

Validation Alg. Opt.∗
Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoOneClass

Supervised AE SO 0.73±0.01 0.67±0.00 0.72±0.01 0.71±0.01
Supervised AE MO 0.67±0.05 0.64±0.01 0.71±0.01 0.69±0.01
Supervised IF SO 0.79±0.01 0.80b±0.02 0.80b±0.01 0.80c±0.02
Supervised IF MO 0.77±0.02 0.77±0.02 0.79±0.01 0.77±0.01
Supervised OC-SVM SO 0.70±0.01 0.67±0.01 0.70±0.01 0.67±0.01
Supervised OC-SVM MO 0.68±0.02 0.66±0.01 0.67±0.02 0.67±0.02
Supervised All SO 0.80a±0.05 0.76±0.06 0.77±0.04 0.77±0.03
Supervised All MO 0.76±0.06 0.77±0.06 0.77±0.05 0.75±0.03
Unsupervised AE SO 0.71±0.02 0.64±0.01 0.71±0.01 0.69±0.01
Unsupervised AE MO 0.67±0.05 0.63±0.02 0.71±0.01 0.69±0.01
Unsupervised IF SO 0.70±0.05 0.68±0.04 0.71±0.03 0.69±0.02
Unsupervised IF MO 0.66±0.06 0.69±0.04 0.71±0.04 0.67±0.07
Unsupervised OC-SVM SO 0.62±0.06 0.60±0.07 0.55±0.06 0.65±0.06
Unsupervised OC-SVM MO 0.60±0.08 0.57±0.06 0.55±0.06 0.63±0.08

Best NAS/AutoDL result 0.76±0.10 0.74±0.07 0.79±0.05 0.79±0.03
Best AutoML result 0.98±0.01 0.97±0.02 0.98±0.01 0.99±0.01

∗SO - Single-objective; MO - Multi-objective.
aStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/IF/SO and Supervised/IF/MO.
bStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/All/MO.
cStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups except: Supervised/All/SO.

23



The results show that, on average, the executions that used a supervised
validation (using a labeled validation set) achieved better results than those
with unsupervised validation sets (using unlabeled validation data). While
the supervised validation achieved an average 0.73 of AUC (across all algo-
rithms and optimization types), the unsupervised validation obtained 0.66
points, on average. Regarding the previously discussed topic related to the
usage of the anomaly scores as a proxy for the AUC for the unsupervised val-
idation (mentioned in Section 3.2), we note that these experimental results
have shown that the improvement of the supervised validation is relatively
small (average of 7 percentage points), thus backing the usage of the anomaly
score minimization criterion for the unsupervised validation scenario.

When comparing the types of algorithms considered in these experiments
(AEs, IF, OC-SVM, or the three simultaneously), the mode with all three
algorithms simultaneously generated the best results, with an average AUC
of 0.77. Next, the second best algorithm was IF (average of 0.74 AUC),
followed by AE (average of 0.69 AUC), and the OC-SVM algorithm obtained
the worst results, with 0.64 of average AUC.

Another interesting result was that the single-objective executions only
achieved slightly better predictive results than the multi-objective ones. In-
deed, grouping the results by type of validation and algorithm, the average
difference between the single-objective and multi-objective results was 0.02
pp. These differences can be further analyzed in Fig. 7.

Similar to the previous experiment, we also analyze the average training
times for the AutoOneClass results, shown in Table 9. The results show
that the average training times of AutoOneClass when using AEs were much
higher than the other algorithms (average training time of 2,732 s across
all folds and datasets). On the other hand, OC-SVM presented the lowest
average training time (85 s), followed by IF (194 s) and lastly the setup which
uses all algorithms (538 s).

A comparison between the predictive results achieved by the proposed
AutoOneClass method (shown in Table 8) and the AutoML results (shown in
Table 5) shows that none of the AutoOneClass executions outperformed the
best AutoML tools on all four binary classification targets. However, when
comparing the AutoOneClass results only with AutoDL tools, AutoOneClass
generated at least one result better than all of the AutoDL tools (Auto-Keras
and Auto-PyTorch).

It should be stressed that the AutoOneClass method requires much less
labeled data to train the ML models (only uses labeled data for the super-
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Figure 7: AutoOneClass results aggregated by validation type, algorithm, and optimiza-
tion type, both globally (left) and per target (right).

vised validation), when compared with the supervised AutoML tools, which
typically require a labeled dataset with a balanced ratio of normal and ab-
normal records. In many real-world PdM scenarios, there is a huge number
of normal records and anomaly records might not always be available. Thus,
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Table 9: Average training times (in seconds) obtained by the proposed AutoOneClass
method, best values obtained by AutoOneClass for each target in bold.

Targets

Validation Alg. Opt.∗
Fail In
3 Days

Fail In
5 Days

Fail In
7 Days

Fail In
10 Days

AutoOneClass

Supervised AE SO 2349±945 3151±1250 3215±1566 2352±928
Supervised AE MO 4747±2265 3053±1186 2242±888 3109±1220
Supervised IF SO 157±49 177±71 191±86 255±100
Supervised IF MO 123±45 213±75 87±32 159±64
Supervised OC-SVM SO 136±53 115±45 106±42 93±37
Supervised OC-SVM MO 108±43 116±45 96±39 84±33
Supervised All SO 571±209 464±188 598±239 609±238
Supervised All MO 729±243 491±189 416±161 422±151
Unsupervised AE SO 2700±1073 2563±1005 2352±918 2430±921
Unsupervised AE MO 2418±931 2396±965 2282±874 2348±911
Unsupervised IF SO 468±207 365±153 229±104 146±56
Unsupervised IF MO 94±42 168±62 198±75 71±30
Unsupervised OC-SVM SO 74±28 67±26 59±22 66±26
Unsupervised OC-SVM MO 63±24 63±23 48±21 64±25

Best NAS/AutoDL result 1514±116 1450±161 1262±107 1334±155
Best AutoML result 130±9 143±12 146±17 208±19

∗SO - Single-objective; MO - Multi-objective.

AutoOneClass could be valuable in PdM use cases, when most of the data is
comprised by normal data and where anomaly records are costly to be col-
lected and labeled (e.g., equipment condition monitoring, failure detection).

We note that these experiments had some limitations that might present
disadvantages for the AutoOneClass method. First, the training time of one
hour might have been insufficient for tools that rely on DL algorithms (e.g.,
AEs, AutoDL tools), in particular since no GPU is used. Second, the usage of
a larger dataset could have improved both AutoOneClass and AutoDL pre-
dictive results. Third, GE optimization used fixed values (PonyGE2 default)
for some of the parameters, such as the crossover and mutation operators.

4.3. Comparison With a Human ML Modeling

Finally, we compare the best AutoML results for each target with the best
result achieved by two examples of a human ML modeling, as performed by a
non-ML expert belonging to the analyzed Portuguese software company and
an external ML expert. Table 10 compares the prediction results achieved
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using the manual ML design and best AutoML tools. For each AutoML tool,
Table 10 includes the algorithm (Alg.) that was most often the leader across
the external folds (in rounded brackets). For the human modeling, Table 10
shows the best obtained result and the used algorithm.

Table 10: Comparison between the best AutoML results, AutoOneClass results, and hu-
man ML modeling results (expert and non-expert) for each target, best values in bold
(adapted from [10]).

Target Measure
Best Results

AutoML AutoOneClass
Human

(Non-expert)
Human
(Expert)

Score Tool (Alg.) Score Alg. Score Alg. Score Alg.

DaysToNextFailure MAE 4.948
AutoGluon
(Ensemble)

- - 68.361 RF 6.510 RDT

FailOn3Days AUC 0.979
H2O AutoML

(GBM)
0.795 IF 0.500 RF 0.764 DT

FailOn5Days AUC 0.971
AutoGluon
(Ensemble)

0.800 IF 0.529 RF 0.794 RF

FailOn7Days AUC 0.982 TPOT (RF) 0.804 IF 0.581 RF 0.830 KNN

FailOn10Days AUC 0.988
AutoGluon
(Ensemble)

0.797 IF 0.563 RF 0.865 RF

DT - Decision Tree; IF - Isolation Forest; KNN - K-Nearest Neighbors; GBM - Gradient Boosting Ma-
chine; RF - Random Forest; RDT - Randomized Decision Trees

It should be noted that the human non-ML expert used a distinct prepro-
cessing procedure, since it applied the One-Hot encoding to all categorical
attributes (and not IDF for the high cardinality ones, as we adopted for the
AutoML tools). However, the external ML expert used the same preprocess-
ing adopted by the AutoML tools.

The comparison clearly favors the AutoML results for all predicted target
variables. For regression, the non-expert modeling achieved an average error
of 68.36 days, which was only better than Auto-Keras (which obtained an
average MAE of 84.02). On the other hand, the best expert modeling result
was an MAE of 6.51, which was only surpassed by three AutoML tools (Au-
toGluon, H2O AutoML, and Auto-Sklearn). As mentioned in Section 3.2,
the AutoOneClass method was not applied to the regression target since it
is only performs a binary classification.

For the binary classification task, all AutoML tools achieved results that
can be considered excellent (AUC higher than 0.90). On the other hand, the
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non-expert modeling achieved slightly better results than a random model,
while the expert’s modeling achieved good results, with AUCs between 0.764
and 0.865. The AutoOneClass method also produced good predictive results,
surpassing the human expert modeling in two of the four binary classification
tasks (targets FailOn3Days and FailOn5Days).

These results suggest that supervised AutoML can be a valuable to au-
tomate the modeling phase when applying ML to PdM tasks. The usage
of AutoML has several benefits, such as the ability to surpass human ML
modeling, accelerate the creation of good ML models, and free the ML ex-
pert to focus on other essential ML phases, such as Data Understanding and
Data Preparation. As for the proposed AutoOneClass method, the results
demonstrate that OC Learning can also be used for binary PdM tasks, being
particularly valuable the labeling anomaly data is costly. While outper-
formed by some of the supervised AutoML tools, AutoOneClass has shown
competitive results when compared with using human experts or AutoML
tools focused only on DL.

5. Conclusions

PdM is a crucial industrial application that is being increasingly enhanced
by the adoption of ML. However, most ML related works assume an expert
ML model design that requires manual effort and time. In this paper, we
explore the potential of AutoML to automate PdM ML modeling. We used
real-world data provided by a Portuguese software company within the do-
main of maintenance management to predict equipment malfunctions.

Our goal was to anticipate failures from several types of equipments (e.g.,
industrial machines), using two ML tasks: regression - to predict the number
of days until the next failure of the equipment; and binary classification -
to predict if the equipment will fail in a fixed amount of days (e.g, in three
days).

For the ML modeling and training, we relied on two main approaches.
First, we explored ten recent state-of-the-art Supervised AutoML and Au-
toDL tools: Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O
AutoML, MLJar, PyCaret, rminer, TPOT, and TransmogrifAI. Second, we
propose AutoOneClass, a novel AutoML method focused on an OC Learning
that uses a GE optimization.

Several computational experiments were held, assuming five predictive
tasks (one regression and four binary classifications). When comparing the
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supervised learning results, AutoGluon presented the best average results
among the AutoML tools. The AutoOneClass results were also satisfac-
tory, surpassing the AutoML tools focused on DL. The AutoML and Au-
toOneClass results were further compared with two human ML designs, per-
formed by a non-expert and an ML expert. The comparison favored all
AutoML tools, which provided better average results than both manual ap-
proaches. Overall, the best results were achieved iby the Supervised AutoML
tools. However, the AutoOneClass surpassed the expert human modeling in
two predictive targets and the performed OC Learning is quite useful when
anomalous PdM labeling is costly. These results confirm the potential of the
Supervised AutoML modeling and the proposed AutoOneClass approach,
which can automatically provide high-quality predictive models. This is par-
ticularly valuable for the PdM domain since industrial data can arise with
a high velocity. Thus, the predictive models can be dynamically updated
through time, reducing the data analysis effort.

In future work, we intend to perform experiments with more datasets
from the domain of PdM to verify further consistency with our results. We
also intend to experiment with AutoML technologies that can automatically
perform other ML phases apart from modeling, such as feature engineering
and selection. Furthermore, regarding the AutoOneClass method, we plan
to develop a benchmark with a more significant number of OC Learning
algorithms (e.g., Local Outlier Factor, Gaussian Mixture Model, recently
proposed OC Learning algorithms [51, 52, 53, 54, 55]) and datasets, including
big data ones that should favor its multi-objective variant. Additionally, we
aim to experiment different values for crossover, mutation and training time
to assess their impact on the GE optimization. Also, for the multi-objective
mode, we intend to analyze in more depth the correlation between the AUC
and the anomaly scores when using a supervised validation. Finally, we wish
to add more functionalities to AutoOneClass, such as the usage of other
performance objectives (apart from training time) or the application of an
early stopping to the GE optimization.
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