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Abstract

The development of methods based on artificial intelligence for the classification

of medical imaging is widespread. Given the high dimensionality of this type

of images, it is imperative to use the information contained in relevant regions

for further classification. This information can be derived from the morphol-

ogy of the region of interest, in terms of measurements such as area, perimeter,

etc. However, the performance of the classification system strongly depends on

the correct selection of the type of information employed. We propose in this

work an alternative for evaluating differences between brain regions that relies

on the basis of Siamese neural networks. Initially, brain scans are delimited by

an anatomical atlas. Next, each pair of regions of interest is then entered into

a Siamese network, which is formed by relating the distance between the two

individual outputs and the corresponding label. Features are extracted from

the embeddings of the final linear layer. Finally, the classification is performed

by combining the characteristics of each pair of regions into an ensemble archi-

tecture. Performance was assessed by determining how asymmetry between the

right and left hemispheres changes during progressive brain degeneration, from

mild cognitive impairment to severe atrophy associated with Alzheimer’s disease
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(AD). Our method discriminates with an accuracy of 98.95% between controls

and AD patients, and most important, it predicts the cognitive decline in pa-

tients suffering from mild cognitive impairment that will develop AD before it

occurs with an accuracy of 78.41%. These results demonstrate the applicability

of our proposal in the study of a wide range of pathologies.

Keywords: Deep learning; Siamese network; Alzheimer’s disease; Asymmetry;

PET; Computer-aided diagnosis.

1. Introduction

Nowadays, the use of medical imaging is vital for the diagnosis of a wide

range of diseases. The boost in the resolution of these images in recent times

has revealed information that helps clinicians in this task, although there are

situations in which different pathologies present very similar symptoms. In5

these contexts, the use of methods based on artificial intelligence (AI) can be

especially important. When applying to neuroimaging, these models assist in the

identification of patterns that are highly relevant for the detection of neurological

diseases, as many previous works have successfully shown. For example, they

have demonstrated to be effective in the study of Alzheimer’s disease (AD [1,10

2, 3, 4, 5]. These works employed information from structural or functional

images that allows the distinction between controls and AD patients, as well

as evaluating the progression of dementia from its initial stages. Similarly,

these approaches have also detected changes associated with Parkinson’s disease

[6, 7, 8, 9, 10]. They often use DaTSCAN neuroimaging because of their ability15

to quantify the spatial distribution of dopaminergic transporters in the brain

[11, 12, 13, 14, 15].

Traditionally, classification frameworks focus only on the brain regions that

are commonly affected by the disease instead of searching for information pat-

terns throughout the whole brain. This reduces the number of features to be20

processed, which partially solves the curse of dimensionality present in most

statistical classifications [16]. Once the brain region is delimited, the easiest ap-
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proach is to use the intensity of the voxels as predictors of the different classes

to be modelled, using them as inputs of the classifier. Nevertheless, differences

in intensity could not explain the patient’s cognitive state in contexts where25

these differences are subtle [17]. Another alternative is to define features that

characterize the brain region of patients who suffer from the pathology under

study. These features can be based on the morphology of the region, so that

information is expressed in variables such as the area, roundness, perimeter, etc.

Although previous research has validated this approach [18, 19, 20, 21, 22], the30

main drawback is that features that are relevant in the study of a disease can be

uninformative in a different one. This is especially problematic in the diagnosis

of rare diseases where the information in the initial stages is limited, and it is

not clear which features could be relevant.

One possibility is to employ feature selection methods to identify from the35

total number of variables only those that are different between groups. This

means that it is possible to extract a subset of features (based on morphological

analysis, as introduced earlier) and then select only those that are statistically

significant [23, 24, 25]. Thus, features that do not exceed the statistical thresh-

old are not used for classification. This approach would alleviate the curse of40

dimensionality problem while guaranteeing that variables are differential be-

tween the groups evaluated (e.g. Alzheimer’s disease and controls). Previous

works have shown a good performance [26, 27, 28], but the main concern is that

these tests are not appropriate when differences between regions are multivari-

ate instead of univariate. Thus, it seems of vital importance to find a general45

framework that does not rely on specific features whose relevance depends on

the context, in addition to address the curse of dimensionality problem without

using statistical tests whose assumptions are not always met.

In this work, we address the curse of dimensionality by proposing an en-

semble framework that iteratively evaluates differences between pair of brain50

regions, which considerably reduces the amount of information that is simulta-

neously processed. Differences between regions are not computed by defining a

number of variables whose statistical significance is evaluated. On the contrary,
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we employ a Siamese neural network whose inputs are pairs of brain regions

to be compared. These regions are obtained from the brain subdivisions pro-55

posed by a neuroanatomical atlas, so that we focus on one region and the inputs

of the network are the parts of this region contained in the left and the right

hemisphere. The model is trained by relating the similarity between the latent

space of each pair of regions (evaluated in terms of the Hinge function) and the

corresponding diagnostic label. The information retrieved from the embeddings60

provided by the final linear layer is then combined for each pair of regions, lead-

ing to the aforementioned ensemble approach. We evaluated this method using

Positron Emission Tomography (PET) images for studying the development of

Alzheimer’s disease. Specifically, we hypothesize that differential degeneration

is of great importance, instead of degeneration itself, as a crucial point for the65

study of the development of Alzheimer’s disease. All brain regions are not

affected at the same time and with the same severity in all the stages of the dis-

ease, so evaluating the differential degeneration in the left and right hemispheres

can provide vital information. Our approach successfully identifies functional

asymmetries between regions of both hemispheres, demonstrating its relevance70

in the study of the progression of this pathology. Figure 1 shows a schematic

diagram of the framework proposed in this work. A more detailed description

of each stage will be provided in next sections.

PET images Preprocessing Brain 
parcellation

Siamese 
network Linear SVM

Prediction

Weights map

Figure 1: General scheme of the whole idea of the paper.

The organization of the work is explained as follows. Section 2 describes

previous works that used siamese architectures or ensemble frameworks in the75

analysis of medical imaging. In Section 3, the methods developed for this work

are described, from the architecture of the siamese network proposed to the

classification stage. Afterwards, we describe in Section 4 the database used

for evaluating the performance of our method and the experiments conducted.
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Section 5 summarizes the results obtained, whereas a discussion of the implica-80

tions of these results is contained in Section 6. Finally, Section 7 includes the

conclusions of the study and a description of future lines of research.

2. Related works

Siamese networks have been used in a wide range of contexts such as vi-

sual tracking [29, 30, 31], signature recognition [32, 33, 34], anomaly detection85

[35, 36, 37] and speech signal processing [38, 39, 40]. This technique has shown

an excellent performance handling with heterogeneous data [41, 42, 43], includ-

ing the evaluation of medical images [44, 45, 46]. [47] proposed a solution based

on convolutional siamese networks to evaluate the state of the patient at dif-

ferent stages of the disease. Specifically, they used this kind of networks for90

measuring changes within a longitudinal study, revealing a high effectiveness in

classification of retinal scans and the evaluation of knee radiographs. We can

also find models focused on the diagnosis of COVID-19. For example, [48] de-

veloped a diagnostic method for speeding up the analysis of chest X-ray (CXR)

images. To do so, they employed an encoder based on an VGG-16 architecture95

to extract a latent representation of the input space while avoiding any potential

overfitting. After that, the nature of siamese networks led to image classification

based on the similarity between the input images, which was characterized by

using a contrastive loss function. This model yielded a 95.6% of accuracy when

diagnosing COVID-19 from healthy patients, achieving an excellent performance100

even in scenarios with a reduced number of samples.

Regarding ensemble architectures, they have been successfully used in dif-

ferent contexts. In fact, an optimal combination of information from different

sources is vital for obtaining a superior performance than when individual in-

formation is used [49]. In [50], authors developed a deep convolutional neural105

network approach able to fuse several information sources to detect and classify

abnormalities in mammographic scans. First, features from regions of interests

were fused in the convolutional block, whereas the decision of three different
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classifiers (based on SVM and Random Forest) were then combined. Results

demonstrated a substantial increase in performance in the combined approach110

compared with the one obtained individually by each classifier. In [3], we can

find another example of an ensemble classification framework for the diagnosis

of AD. Specifically, authors combined MRI data from several sessions of a lon-

gitudinal study with the results of neuropsychological tests in order to predict

the appearance of AD. Results showed the importance of effectively computing115

how each individual source contributes to the classification decision, assigning

a higher weight to most informative modalities while penalizing those with a

lower accuracy. In the same line, other works have also attempted to combine

different models to increase the reliability of the results. For example, in [51] au-

thors trained 300 models independently in a classification context to identify the120

informative patterns associated with autism. These outputs were then averaged

within a cross-validation scheme, leading to a stable and accurate result. The

use of ensemble architectures has shown a boost in performance when combined

with neural networks [52], especially in image classification [53]. [54] strategi-

cally combined basic models to classify functional magnetic resonance imaging,125

whereas [55] fused features extracted from local binary patterns to improve the

classification of hyperspectral imaging.

3. Methodology

3.1. Regions parcellation

The first step when trying to evaluate differences between a couple of re-130

gions is to properly delimitate them. Although our proposal could be used in

a wide range of scenarios, we focus on the analysis of brain images. Thus, the

initial step is to delimitate the anatomical brain regions. Previous studies have

demonstrated how brain parcellations may alter final classification results [56].

One important point is to determine the number of regions the brain should135

be divided into since this affects to the size of those regions and their location.

A high number of subdivisions can enhance spatial precision, but reduce the
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ability to find informative patterns. On the other hand, dividing the brain into

a low number of regions means that they have a large size. Thus, although only

part of a region contains relevant information, the whole one would be mark140

as informative. In order to strike a balance between brain parcellations and

spatial accuracy, we employed the Automated Anatomical Labelling (AAL) at-

las, which divides the brain into 116 regions, an intermediate number compared

with other atlases that are publicly available [57, 58]. Figure 2 depicts a visual

representation of the brain parcellations proposed by the AAL atlas.145

Figure 2: Representation of the 116 regions delimited by the AAL atlas.

3.2. Siamese neural network

Siamese networks were introduced in the 1990s as part of a signature verifica-

tion system [59]. They are based on the combination of two neural networks with

identical architecture, i.e parameters are the same and weights are commonly

shared. During training, each input is individually processed as a common feed-150

forward network, which means that the information only follows one direction.

In short, neurons of each layer process the inputs and send the output to the

neurons of the following layer. Since weights are shared by the two networks,

they are updated at the same time following an error back-propagation process.

Each individual network receives one input and produces one output in its final155

layer. A crucial point of this architecture is that similarity between the two

outputs is evaluated by a distance measure, which is then employed to assign a
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final label to each input data. This output can be interpreted as the semantic

difference between the projected representation of the inputs [60].

Figure 3: Scheme of the siamese neural network designed in this work. The left and right
parts of each region defined by the AAL atlas are entered into each branch of the siamese
network. The convolutional layers are employed as feature extractors, so that the output of
the full convolutional layer of each branch comprises a representation in a lower dimension
of the brain region. During the training process, the idea is to find a relationship between
the differences between both regions and the diagnostic label. Once the training finishes, the
network quantifies the asymmetry between the left and the right subregions and outputs the
embeddings in a lower dimensionality, which are then combined with the latent spaces of the
rest of the regions of the brain within an ensemble framework to predict the diagnosis of the
patient.

Although siamese architectures have been used for assessing similarity be-160

tween two samples, they can also be employed as a previous step in a classifica-

tion tasks. Figure 3 summarizes the architecture used in this work. Specifically,

we employed PET images from the dataset described in Section 4.1 as inputs

of the network. The goal in this scenario was to evaluate whether asymme-

try between brain regions from left and right hemispheres may be important165

in the study of the development of AD. Thus, we hypothesize that there is a

relationship between the stage in the development of this disease and functional
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differences between the left and right hemisphere of the brain. We evaluated

differences from the 116 parcellations contained in the AAL atlas, which leads

to 58 pairs of regions (left and right part) that are iteratively entered into the170

siamese network. During training, the Hinge function [61] is used to compute

the loss as a measure that quantifies the distance between the two outputs of

the siamese network, as follows:

l(y) =

 0 t · y ≥ 1

1− t · y otherwise
(1)

where t = {−1, 1} denotes the actual label and y corresponds to the output of

the linear layers.175

3.3. Classification

Embeddings extracted for each pair of regions of the AAL atlas are combined

and used as input features of a linear classification algorithm. Linear classifiers

provide a weight map that quantifies the contribution of each individual feature

to the decision function. In our case, we used the weights to rank the asym-180

metry of each couple of regions in order to quantify their relevance in a certain

classification context. Moreover, we employed an SVM classifier with a linear

kernel whose decision function is based on maximizing the geometrical margin

between the two classes. The classification rule f , can be specified by a pair of

(x,x), as follows:185

f(xi) = 〈w,xi〉+ b (2)

where w and xi are the weight and the feature vector, respectively, and b is the

error term. A sample x would be classified as positive or negative depending on

if f(x) > 0 or if f(x) < 0. The resulting decision function is based on a linear
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rule obtained by solving the optimisation problem described in [62] :

1

2
‖w‖2 + C

∑
i

ξi subject to

yi(〈w,xi〉+ b) ≥ 1− ξi ∀iξi ≥ 0 ∀i

(3)

where C denotes the penalty for misclassification. The solution of the optimi-190

sation problem is given as follows:

w =

n∑
i=1

yiαixi (4)

after applying the Lagrangian multipliers. Substituting the value of w in Equa-

tion 2, the decision function can be rewritten in its dual form, as follows :

f(xi) =

n∑
i=1

αiK(x,xi) + b (5)

where αi and b are the coefficients to be learnt from the examples and K(x,xi)

is the kernel function employed to characterize the similarity between samples195

x and xi.

During the training process, we employed an L1-regularization to enforce

sparsity. This means that features associated with most of regions are auto-

matically discarded (set to zero), while a few remaining ones are non-zeros,

which means that a bunch of extremely informative regions guide the decision200

of the classifier [63]. Once the classifier was trained, we extracted the weight

maps associated with the embeddings used as inputs. The dimensionality of the

embeddings is derived from the number of neurons in the output layer of the

siamese network. We set a final layer of 40 neurons, and the resulting feature

vector was built as the concatenation of the embeddings of the subregions (left205

and right parts of the region), so that the input feature vector had a size of 80.

This means that weight maps had exactly this size, but the aim was to know

the relevance of the region as a whole, and not the contribution of each of the 80

values. To address this issue, we computed a normalized weight for each couple

of regions of the atlas as the absolute value of the embeddings extracted from210
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these subregions. Besides, we normalized this resulting value by the size of the

region in order to penalize those regions that are extremely large. Equation 6

provides a mathematical summarization of this computation:

NWROI =

∑
v∈ROI ‖Wv‖
mROI

(6)

PET images AAL atlas

Brain 
parcellation

Siamese 
network

Linear 
SVM classifier

Output

Regions from 1 to 116

Training Test

for (i=1; i<= 116; i+2)
Loop

Region i Region i+1

Embeddings 
training

Siamese 
network

Region i Region i+1

Embeddings 
testing

Figure 4: Scheme of the classification framework proposed in this work. PET images are
divided into training and test subsets in order to guarantee the independence between the
images used to build the model and those employed to test the performance. Regions defined
by the neuroanatomical atlas are iteratively entered into the siamese neural network in pairs.
Once the network is trained, the resulting embeddings are combined for all the regions of the
brain and used to train a linear SVM classifier. The embeddings associated with the patients
from the test sample are used to check the generalization ability of the model, leading to the
final prediction.
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with v representing the index of a embedding in the weight map, Wv is its weight

and mROI is the number of voxels contained in each ROI. Thus, the normalized215

weight (NWROI) is a score that represents the amount of information contained

in a specific brain region. A large value means that the embeddings associated

with the ROI have had a large contribution to the classification model. A scheme

of the classification method proposed in this work is shown in Figure 4.

4. Evaluating asymmetry in Alzheimer’s disease220

4.1. Database description

The data used in the preparation of this paper were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food225

and Drug Administration (FDA), private pharmaceutical companies and non-

profit organizations, as a $60 million, 5-year public-private partnership. The

primary goal of ADNI has been to test whether serial MRI, PET, other biologi-

cal markers, and clinical and neuropsychological assessment can be combined to

measure the progression of Mild Cognitive Impairment (MCI) and AD. Determi-230

nation of sensitive and specific markers of very early AD progression is intended

to aid researchers and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical trials. The Principal

Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California, San Francisco. ADNI is the result of efforts of235

many co-investigators from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites across the U.S.

and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has

been followed by ADNI-GO and ADNI-2. To date these three protocols have

recruited over 1500 adults, ages 55-90, to participate in the research, consist-240

ing of cognitively normal older individuals, people with early or late MCI, and

people with early AD. The follow up duration of each group is specified in the

12



protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited for

ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-

date information, see www.adni-info.org. All procedures performed during the245

acquisition of the data by ADNI were in accordance with the ethical standards

of the institutional and national research committee and with the 1964 Helsinki

declaration and its later amendments or comparable ethical standards (see [64]

for more details.)

The experiments conducted in this work employed 18F-FDG PET data from250

241 patients, consisting of 70 suffering from Alzheimer’s disease (AD), 39 Mild

Cognitive impairment that in future sessions of the longitudinal study convert

to AD (MCIc), 64 MCI patients that remain stable in all sessions (MCIs) and

68 Controls (CTL). Demographic data (gender and age) in addition to the Mini

Mental State Examination scores (MMSE) of the patients in the database are255

summarized in Table 1, whereas a representation of the PET images for each

individual pathology in the database is shown in Figure 5.

Table 1: Patient’s demographics for Alzheimer’s disease (AD), mild cognitive impairment
converter (MCIc) and stable (MCIs), and controls (CTL).

Diagnosis Number Gender (M/F) Age MMSE
AD 70 46/24 75.26 ±7.53 23.22 ±2.19

MCIc 39 28/11 74.50 ±7.05 26.76 ±1.74
MCIs 64 42/22 75.03 ±7.72 27.18 ±2.53
CTL 68 43/25 75.87 ±5.02 29.11 ±0.99

4.2. Image preprocessing

Images were first spatially normalized according to a PET template using

SPM12 [65]. This allows to modify the shape and size of the brain of each indi-260

vidual into a standard template in order to establish a correspondence between

them, allowing the comparison between brains from different patients. After

that, it is also necessary to apply an intensity normalization to standardize the

intensity values in the images of the different subjects. Thus, the intensity of

the images was normalized to a value, Imax, which was obtained by averaging265

13



the 0.1% highest voxel intensities that exceeded a specific threshold [66]. This

threshold was fixed to the 10th bin intensity value of a 50 bins intensity his-

togram, so that all voxels that did not surpass the threshold were discarded and

considered as background, as they do not contain any relevant information but

can add noise and artifacts [67].270

Control MCI stable MCI converter Alzheimer’s

Figure 5: Slice of a PET image for the different stages of the AD development: control, MCI
(stable or converter) and AD.

4.3. Performance evaluation

We employed a 5-fold stratified cross-validation scheme [68] in order to guar-

antee that there was approximately the same percentage of images of each class

in each individual fold. The total number of images were divided into five dif-

ferent groups: four of them were used to train the model and the remaining275

one was used to estimate the generalization ability of the model. These sub-

divisions were performed within an iterative process, so that images contained

in each subdivision were employed once to test the performance of the model.

Performance was evaluated in terms of the following metrics derived from the

confusion matrix:280

Bal Acc = 1
2

(
TP
P + TN

N

)
Prec = TP

TP+FP

Sens = TP

TP+FN
Spec = TN

TN+FP

F1− score = 2×Prec×Sens
Prec+Sens AUC = 1

2

(
TP
P + TN

N

)
In the CTL vs AD classification, TP refers to the number of patients correctly
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classified as AD (true positives), TN corresponds to the number of controls prop-

erly identified (true negatives), FP quantifies the number of controls labelled as

AD (false positives), whereas FN refers to the number of AD patients incor-

rectly classified as controls. Besides, the area under the ROC curve (AUC) is285

employed as an additional measure for evaluating the ability of the model to

identify the different classes [69, 70].

After computing performance, it is crucial to assess the statistical signifi-

cance of the results. To do so, we employed a non-parametric test based on

permutations [71]. Labels associated with each individual image were shuffled290

and ensemble classification was performed. This process was repeated 500 times

in order to build an empirical distribution of the accuracies. The probability

of occurrence of a certain accuracy was assessed by comparing the scores ob-

tained when training the classifier with the correct labels and the empirical

distribution. The associated p-value is computed as follows:295

p =
1 + n

N
(7)

where n is the number of occurrences that exceeds the actual accuracy and N

is the number of permutations performed to build the empirical distribution.

Thus, a result is considered significant if it does not surpass the significance

threshold, which is widely established as p = 0.05.

4.4. Experimental setup300

The experiments conducted in this work can be summarized as the evaluation

of the functional asymmetry at different stages of Alzheimer’s disease:

• AD vs CTL: identification of asymmetry between regions from both

hemispheres in order to detect whether AD modifies them in a non-

homogeneous way.305

• MCIs vs CTL: in this context, the evaluation is performed in an early

stage of the degeneration process.
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• MCIc vs CTL: similar to the previous context, but in this case the

asymmetry is evaluated in MCI patients that will develop AD in the future.

• MCIc vs MCIs: the hardest case, since the diagnosis is the same for310

both groups. The aim is to evaluate the existence of asymmetry in some

regions that predicts the conversion of MCI patients versus those that

remain stable.

The framework employed in all the experiments relies on the use of siamese

networks for feature extraction and an ensemble of linear SVM classifiers for315

classification purposes. The final value of the cost parameter, C = 1, was

selected as the optimum value by using a grid search within a 5-Fold cross-

validation scheme. This regularization parameter controls the trades off be-

tween the misclassification of training samples and the simplicity of the decision

surface. Besides, we employed an early-stopping procedure during the training320

of the siamese network in order to control the overfitting of the model [72].

Specifically, we used part of the training data as a validation sample in order to

finish the training procedure when the validation loss stopped decreasing.

We employed custom code written in Python 3.6, in addition to a number

of libraries such as Torch 1.7.1, Numpy 1.19.5 and Scikit-Learn 1.0. All the325

experiments were carried out on a computing cluster with high performance: two

Intel® Xeon® E5-2630 node 2.40GHz processors, with 10 cores per processor;

one Nvidia Geforce RTX3090 with 128 GB DDR6 memory. Besides, the total

RAM memory capacity of the system is 128 GB. Moreover, the average execution

time was 8 hours and 12 minutes for the AD vs CTL classification context, which330

is the one with the highest number of images to process.

Table 2 summarizes recent works focused on the automatic identification of

AD, including the performance that they obtained. Besides, we included the

best results obtained by the method proposed in this work. It is important to

note that the comparison between the different approaches is not a straight-335

forward task. First, the aim of our method is not classification itself, but a

better understanding of the regions affected in different stages of AD through
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Table 2: Performance obtained by previous works and by our method in the identification of
Alzheimer’s disease.

Research work Dataset Method Classification context Results (%)
[73] 138 MRI and PET Deep belief networks AD vs CTL AUC = 0.95
[67] 138 MRI and PET Sparse representation + SVM AD vs CTL Acc = 92.00
[74] 400 MRI FLS-TWSVM AD vs CTL Acc = 97.15
[75] 818 MRI Broad Learning System AD vs CTL Acc = 91.83
[76] 200 MRI AlexNet AD vs CTL Acc = 95.00
[77] 500 MRI ResNet-50 AD vs CTL Acc = 86.67
[78] 479 PET Autoencoder AD vs CTL Acc = 88.73
[79] 511 MRI Log-Gabor filters AD vs CTL AUC = 0.90
[80] 250 diffusion MRI Elastic Net AD vs CTL AUC = 0.90
[81] 416 MRI Wavelet + SVM AD vs CTL AUC = 0.90
[82] 97 SPECT PCA + SVM AD vs CTL Acc = 89.69
[83] 246 PET Recurrent Neural Network MCI vs CTL Acc = 83.90
[84] 416 MRI CNN AD vs CTL Acc = 97.75
[85] 6400 MRI LPQNET Dementia vs CTL Acc = 99.62
[86] 769 MRI AlzVNet AD vs MCI vs CTL Acc = 98.26
[87] 99 MRI and PET Adaptive Similarity Learning AD vs MCIc vs MCIs Acc = 69.41

Our method 138 PET Siamese network AD vs CTL AUC = 0.98
Our method 107 PET Siamese network MCIc vs CTL AUC = 0.98
Our method 132 PET Siamese network MCIs vs CTL AUC = 0.90
Our method 103 PET Siamese network MCIc vs MCIs AUC = 0.91

the quantification of asymmetry between brain regions. Second, many of these

studies employ images from the ADNI database, but some of them use private

datasets. Since performance is clearly affected by the images employed, the340

comparison between different works should be done as an informative way, and

not as a categorical ranking of the different works.

5. Results

Table 3: Performance of the proposed method in the different classification scenarios.

Classification Bal Acc (%) Sens (%) Spec (%) Prec (%) AUC F1-score (%)
AD vs CTL 98.95 ±1.27 97.88 ±1.31 98.02 ±1.36 97.56 ±1.41 0.98 ±0.17 98.67 ±1.21

MCIc vs CTL 94.01±3.07 96.92±6.15 91.10±3.25 91.27±2.35 0.98 ±0.55 93.89±3.22
MCIs vs CTL 80.67 ±8.45 78.91±7.26 91.52±5.43 83.31±10.45 0.90 ±0.47 82.03±12.59
MCIc vs MCIs 78.41±9.19 95.38±3.76 61.43±12.30 81.02±7.48 0.91 ±0.44 87.40±4.61

We first explore the performance obtained by the proposed method in the

different classification contexts, as summarized in Table 3. We can see that345

there is a clear relationship between the performance and the difficulty of the

classification scenario. The maximum accuracy, 98.95%, is obtained when dis-

tinguishing between AD and controls, the context where differences between

the two groups are maximum. After that, the second maximum performance
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corresponds to the context in which differences between both groups are also350

high (MCIc vs CTL, Acc = 94.01%), since MCI patients will convert to AD

in future sessions of the longitudinal study. Results show a decrease in perfor-

mance for the two contexts where the diagnosis of patients of the two groups is

more similar. Specifically, our method provides a 80.67% of accuracy in MCIs

vs CTL, with a similar performance (78.41%) in MCIc vs MCIs. The results355

associated with this last context demonstrates a relationship between an asym-

metric degeneration of the brain and a high probability of developing AD in the

future.
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Figure 6: ROC curves obtained for the different classification contexts.

A similar behavior occurs when referring to the area under the ROC curve,

as Figure 6 shows. Differences between controls and AD patients are higher360

than any of the other classifications, leading to the largest diagnostic power

(AUC=0.98), whereas distinguishing MCI stable and controls/MCI converters

lead to the lowest AUC (0.91 and 0.90, respectively). However, it is remarkable
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the high performance obtained in all scenarios, demonstrating the usefulness of

the proposed method. Figure 7 shows the empirical distributions obtained in the365

four classification contexts, in addition to the actual accuracy after classifying

using the correct labels. It can be seen that results are clearly significant,

validating our findings from a statistical standpoint.
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Figure 7: Empirical distribution of the classification accuracy obtained after performing per-
mutations. The vertical red lines represent the accuracy obtained when using the correct
labels.

Table 4: Most relevant regions in each classification scenario.

Classification Regions
AD vs CTL Superior frontal gyrus, Middle frontal gyrus, Hippocampus, Inferior occipital gyrus.

MCIc vs CTL Posterior cingulate gyrus, Caudate, Middle cingulate gyrus, Gyrus rectus, Superior frontal gyrus.
MCIs vs CTL Inferior occipital gyrus, Rectus gyrus, Middle cingulate gyrus, Posterior cingulate gyrus, Precentral gyrus.
MCIc vs MCIs Inferior occipital gyrus, Middle cingulate gyrus, Rectus gyrus, Superior frontal gyrus, Heschl’s gyrus.

Figure 8 provides a map of the regions with a higher contribution to the

classification decision in the four contexts evaluated. These regions are also370

summarized in Table 4, ranked according to the associated weight in order to

compare their influence in classification. This representation allows a visual
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Figure 8: Weights associated with the asymmetric regions that guide the classifier’s decision
in the different scenarios.

identification of the regions whose asymmetry allows to differentiate between

the different cognitive states. Most importantly, changes in the regions map

across the four classification contexts manifest the atrophy of brain regions in375

all the stages of the degeneration process associated with AD. Further discussion

and its implications are covered in Section 6.

Figure 9 shows a two-dimensional visualization of the embeddings associated

with the different stages of AD. The representation provides a clear separation

into clusters between the different classes, especially between AD y CTL. This380

separation is also high between MCI patients, but some of the MCIc have more

similar embeddings to MCIs than to the rest of the MCIc class. This explains

the decrease in performance obtained in the MCIc vs MCIs classification con-

text. This figure also includes ApoE genetic information from the different

subjects regarding the three genotypes more related to AD. Previous studies385

have demonstrated that subjects with two copies of the allele 3 (ApOE-ε3) have

a high likelihood of developing AD, whereas the risk factor is much higher in

subjects with two copies of the allele-4 (ApOE-ε4). On the other hand, subjects
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Figure 9: Two-dimensional representation of the embeddings associated with each pathology
and distribution of the genetic information for the different stages of AD progression.

with genotype ApoE 2,3 are considered protected against AD. The bar charts

included in the figure corroborates that most of ApOE-4 subjects belong to the390

AD group, whereas the prevalence in the controls is minimum (only one per-

son). Conversely, subjects with genotype ApoE 2,3 are mostly located in the

CTL group, whereas the presence of these people in the MCIc and AD groups

considerably decreases.

6. Discussion395

In this work, we propose a method based on siamese architecture to evaluate

functional differences in medical imaging. This approach relies on the union of

two convolutional neural networks with identical configuration, i.e. their pa-

rameters are the same and weights are commonly shared. The siamese network

has two inputs, which corresponds to the brain regions to be compared. After400

training the network, the embeddings from the last linear layer of the archi-

tecture are extracted. This process is contained within an iterative scheme in

which differences between left and right hemispheres are evaluated for all regions

provided by an anatomical atlas. Thus, the embeddings of each pair of regions

are then combined via an ensemble in order to quantify their predictive power.405
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We evaluated the performance of this approach in terms of different metrics and

studied how informative functional asymmetry is in the progression of AD.

The high performance shown by the method proposed in this work when

handling functional data demonstrates its usefulness for studying the spatial

patterns associated with the progression of AD. Although accuracy is extremely410

high (98.95% when differentiating between AD and CTL), it is worth mention-

ing that classification per se is not the main point of this work. Instead, the

identification of the regions that are asymmetrically affected by the progres-

sion of AD at different stages of the disease. With reference to this spatial

information, the regions with a large asymmetry when distinguishing controls415

from AD patients are the superior frontal gyrus, the middle frontal gyrus and

the hippocampus, which its role in AD has been reported in previous studies

[88, 89, 90]. These regions are slightly different in the conversion from MCI to

AD, where the posterior cingulate gyrus, the caudate and the middle cingulate

gyrus play a crucial role [91, 92, 93] . Finally, an incipient asymmetry is found420

in the inferior occipital gyrus, the middle cingulate gyrus and the gyrus rec-

tus, evidencing the importance of these regions in an early stage of the disease

[94, 95, 96].

It is worth understanding that these results have not been derived from

the region as a whole, but from the asymmetry between the left and right425

parts of each region. For example, hippocampus had been previously linked

to the degeneration of brain, and even identified as informative by intelligent

systems. The difference between these previous results and our findings is that

we demonstrate the importance of asymmetry in the evaluation of the AD. Our

proposal divides each brain region into two subregions: the left and the right430

one. Let imagine a region that is extremely affected by the disease, but the

atrophy is similar both in the left and right one. In this case, our method would

not marked as informative this region, since the classification performed by

our approach is based on differences in atrophy, and not atrophy itself. This is

highly relevant for the development of computer-aided diagnosis (CAD) systems435

to help clinicians in the early diagnosis of this disease.
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We have developed a robust tool for evaluating differences in medical im-

ages that is extremely useful in a wide range of pathologies. It is also important

to note that the design of our method eliminates the need of a priori defining

features that are subsequently entered into a classifier to evaluate their infor-440

mativeness. This is remarkably relevant since there is a crucial relationship

between the election of the features and performance. Region A can differ from

Region B both in its eccentricity and in the average intensity value of the voxels

that contains. However, if the input feature to a classifier is the size of both re-

gions, the algorithm will probably not find any differences between them despite445

they exist. The training of the classification system proposed in this work is

based on the difference between the regions itself, not the differences in a bunch

of features previously computed. This assures that the system is specifically

adjusted to detect real differences between the regions.

7. Conclusion450

In this work, we present a method based on siamese architecture to evaluate

functional differences in medical imaging. These differences can be seen as a

measure of asymmetry between the brain regions evaluated, and are then as-

sessed in a specific classification scenario to quantify their relevance. Once the

network is trained, vectors from the final linear layer of the two branches of the455

siamese network are extracted. These embeddings are then used as input of a

SVM classifier with linear kernel, yielding an accuracy of 98.95 % when distin-

guishing between controls and AD patients. Our findings reveal the suitability

of the method proposed for the study of the development of AD. Moreover, this

work paves the way to future research not only in brain imaging but also for its460

application to other biomedical signals. Additionally, the inclusion of other mea-

sures for the computation of the similarity between two samples could lead to a

more realistic estimation of brain asymmetry. Finally, our results demonstrate

that differences between two regions can be even more relevant than the study

of an isolated region, given the importance of the asymmetrical deterioration in465
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neurological disorders.

Funding

This work was supported by projects PGC2018-098813-B-C32 and RTI2018-

098913-B100 (Spanish “Ministerio de Ciencia, Innovación y Universidades”),

UMA20-FEDERJA-086, A-TIC-080-UGR18 and P20 00525 (Consejeŕıa de economı́a470
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