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Abstract

This paper addresses the problem of identification of hybrid dynami-
cal systems, by focusing the attention on hinging hyperplanes (HHARX)
and Wiener piecewise affine (W-PWARX) autoregressive exogenous mod-
els. In particular, we provide algorithms based on mixed-integer linear
or quadratic programming which are guaranteed to converge to a global
optimum. For the special case where switches occur only seldom in the
estimation data, we also suggest a way of trading off between optimality
and complexity by using a change detection approach.

1 Introduction

Hybrid systems are systems with both continuous and discrete dynamics, the
former typically associated with physical principles, the latter with logic de-
vices. Most literature on hybrid systems has dealt with modeling [1,2], stability
analysis [3,4], control [2,5,6], verification [7-9], and fault detection [10,11]. The
different tools rely on a model of the hybrid system. Getting such a model
from data is an identification problem, which does not seem to have received
enough attention in the hybrid systems community, except for the recent contri-
bution [12]. On the other hand, in other fields there has been extensive research
on identification of general nonlinear black-box models [13]. A few of these
techniques lead to piecewise affine (PWA) models of nonlinear dynamical sys-
tems [14-28], and thanks to the equivalence between PWA systems [1, 29, 30]
and several classes of hybrid systems, they can be used to obtain hybrid models.

As will be pointed out, if the guardlines (i.e., the partition of the PWA
mapping) are known, the problem of identifying PWA systems can easily be
solved using standard techniques. However, when the guardlines are unknown
the problem becomes much more difficult. There are two alternatives to tackle
such a problem: (1) Define a priori a grid of cells over which the system dynamics
is linear, or (2) Estimate the grid along with the linear models. The former
approach is used, e.g., in [14], and gives a simple estimation process for the
linear submodels, but suffers from the curse of dimensionality in the sense that
the number of a priori given cells will have to be very large for reasonable
flexibility even in the case of moderately many regressors. The second approach
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allows for efficient use of fewer cells, but leads to potentially (very) many local
minima, which may make it difficult to apply local search routines. Depending
on how the partition is determined, one can distinguish between four different
types of approaches:

e All parameters, both the parameters determining the partition and the
parameters of the submodels, are identified simultaneously [15-18].

e All parameters are identified simultaneously for a model class with a very
simple partition, and new submodels/regions are added when needed [17—
22].

e The partition and submodels are identified iteratively or in several steps,
each step considering either the partition or the models [12,23-25].

e The partition is determined using only information about the distribution
of the regression vectors [26,27].

Most of these approaches [15-22,27] assume that the system dynamics is contin-
uous, while, e.g., [12] allows for discontinuities. For a more detailed description
of the different approaches, see [31].

In this paper, we focus on the approach where both the partition and the
submodels are identified simultaneously, and point to reformulations of the iden-
tification problem for two subclasses of PWA models that lead to mixed-integer
linear or quadratic programming problems that can be solved for the global op-
timum (in contrast to the previously mentioned contributions, which can only
guarantee suboptimal solutions). These classes are the hinging hyperplane ARX
(HHARX) models and piecewise affine Wiener models (W-PWARX). Although
the worst-case complexity is high, these algorithms may be useful in cases where
relatively few data are available (e.g., where it is very costly to obtain data),
and where it is of importance to get a model which is as good as possible. As
we will see, however, for one of the two model classes, namely Wiener models,
the worst-case complexity will not be exponential, but polynomial.

We also discuss some ideas on how complexity can be drastically reduced for
the case of slowly varying PWA systems.

This paper extends results previously presented in [31-34].

2 PWARX Models

To begin with, let us consider systems on the form

Y = g(o¢) + e (1)

where ¢; € R™ is our regression vector, e; is white noise, and ¢ is a PWA
function of the form

9(¢) =dj¢+c; if Hjp<D; (2)

where d; € R", ¢; € R, f_lj € RMixn, Dj € RMi | “<” denotes componentwise
inequality, and the sets C; = {¢ : H;¢ < D,}, j =1,...,s are a polyhedral
partition of the ¢-space. The subscripts in, e.g., H; refer to the different parts

of the partition, while superscripts, e.g., sz will be used to denote the ith row



of H;. To allow for a more compact notation, we let ¢, = [ 4, ], 6; = [/ ], and
H; = [-D; Hy]. In this way (2) can be written as

glp) =¢'0; if Hjp <0 3)
¢ could, e.g., consist of old inputs and outputs, i.e.,

Or=[1y—1 - Ytom, Ut—1 .- ut—”b]l )

In this case we call the systems PWARX (PieceWise affine AutoRegressive eX-
ogenous) systems. We do not assume that ¢ is necessarily continuous over the
boundaries, commonly referred to as guardlines. Without this assumption, def-
inition (2) is not well posed in general, as the function can be multiply defined
over common boundaries of the sets C;. Although one can avoid this issue by
replacing some of the “<” inequalities into “<” in the definition of the regions
Cj, this issue is not of practical interest from a numerical point of view.

2.1 Identification of PWARX Models

Now suppose that we are given y; and ¢y, t = 1,..., N, and want to find the
PWARX model that best matches the given data. The identification of model
(3) can be carried out by solving the optimization problem

N s
1 /
in — — 0,0, T; 5
i oY ; ;Ilyt #1031 75 (1) (5a)
1 if Hipy <0
subj. to J;(p¢) = ! j(pt_ - (5b)
0 otherwise
+ linear bounds over §;, H; (5¢)
where 0;, H;, j =1,..., s are the unknowns. In (5), we will focus on the 1-norm
(]+]) and the squared Euclidean norm ( || - [|3 ), as they allow to express (5)

as a mized-integer linear or quadratic program (MILP/MIQP), respectively, for
which efficient solvers exist [35-38]. The problem can be also recast as an MILP
by using infinity norm over time (i.e. max;—q, . n instead of Zi\[:l), although
this would be highly sensitive to possible outliers in the estimation data. We
distinguish between two main cases:

A. Known Guardlines H; (i.e., the partition of the ¢-space) are known,
0; have to be estimated. If using 2-norm in (5), we can see that this is an
ordinary least-squares problem which can be solved efficiently.

B. Unknown Guardlines Both H; and 60, are unknown. This is a much
harder problem, since it is nonconvex and the objective function generally con-
tains several local minima. However, the optimization problem (5) can be recast
as an MILP or MIQP. In the following sections, we focus on two subsets of PWA
functions, namely the Hinging Hyperplanes (HH) and Wiener processes with
PWA static output mapping, and detail the mixed-integer program associated
to the identification problem. In general, the complexity of the mixed-integer
program needed to solve (5) is related to the number of samples N and re-
gions s, and the number of parameters Hj, 6; that are unknown. Note that in
general, the guardlines H;lp < 0, cannot be determined exactly from the given
estimation data set, as the pairs y;, ¢ are a discrete set of points which can be
divided by a continuum of possible guardlines.



Figure 1: Hinging hyperplanes and hinge function

3 Hinging Hyperplane Models

Hinging hyperplane (HH) models were introduced by Breiman [19]. They are
defined as a sum of hinge functions g;(p) = +max{¢’0;",¢’0; }, which each
consist of two half-hyperplanes, parametrized by 6" and 6, respectively (see
Fig. 1). The + sign is needed to represent both convex and nonconvex func-
tions. However, since this will only have a minor effect on the computations
in this paper, we will exclude it for notational simplicity, and only use positive
max functions. Using an alternative parametrization we obtain the following

HHARX (Hinging-Hyperplane AutoRegressive eXogenous) model

M

Y = @b + Zmax{apﬁi, 0} + e (6)
i=1

Since —z+max{z,0} = max{—z,0}, Vz € R, there are redundancies in (6) (i.e.,
the structure is not globally identifiable, so the same system can be described
by several different sets of parameter values), which can be partially avoided by
introducing the requirement

w'oy > >w'ly >0, i€ [1,M] (7)

(1>

where w is any nonzero vector in R”, e.g., w=1=[11 ... 1]’ (or any random

vector).

4 Identification Algorithms for HH Models

The first algorithm for estimating HH models was proposed by Breiman [19].
Later, in [18] it is shown that the original algorithm is a special case of Newton’s
method, and a modification is provided which guarantees convergence to a local
minimum. Other algorithms have been proposed based on tree HH models
[22]. In this paper, we propose an alternative approach based on mixed-integer
programming, which provides a global minimum, at the price of an increased
computational effort.



For a noiseless system consisting of one single hinge, the method proposed
in [19] was shown to converge to the global minimum. However, for noisy
systems or systems with multiple hinges, local minima may lead to problems
even in very simple examples, as the following example shows.

Example 1 Consider the problem of fitting a hinge function to the siz data
samples given in Fig. 2(a), using a 2-norm criterion. Fig. 2(a) also shows the
corresponding globally optimal function, with the optimal cost 0.98. However,
Breiman’s method will not converge to the optimal solution (regardless of the
initial value), but will in most cases converge to the local minimum corresponding
to the function plotted in Fig. 2(b), with the associated cost 2.25. The modified
method provided in [18] will converge to the global optimum. if starting sufficiently
close to it, but will converge to the local optimum if the hinge is originally placed
between 4 and 5.

w
w

25

15 .
1
08t/ 0.5
o 2 3 4 5 6 o 2 3 4 5 6
(a) Data samples (*) and globally (b) Locally (solid) and globally
optimal model (solid). (dashed) optimal model.

Figure 2: Identification of a single hinge function.

Consider the problem of estimating a HH function of the form (6) from the
estimation data set {y;, s} ;. Let us introduce the notation

0= (0 ... Ou)

and g(p¢, ©) for the parametrized system function according to (6). We choose
the optimal parameters ©* by solving

N
0* £ argmin V(0) £ Z lyt — g1, O)] (8a)
t=1

. 67— < g; <7t
subj. to { 10, >0, i € [1, M] (8b)
where the inequalities in (8b) are componentwise. As we will see, (8) can be
reformulated as an MILP. Another possibility is to use the squared Euclidean
norm (y; — g(¢, ©))2, which gives a problem that can be recast as an MIQP.



4.1 Optimization Problem

MILP Formulation. To recast (8) as an MILP, we introduce the 0-1 variables
(Sitl

and the new continuous variables z;;
zie = max{;0;,0} = ©}0:0; (10)

The relations (9) and (10) can be transformed into mixed-integer linear inequal-
ities, by using a slight modification of standard techniques described in [6] (see
also [31]). By assuming that the bounds over 6, are all finite, Eq. (9) and (10)
are equivalent! to the inequalities

zit 2 0

zit < Mz%it

©10; < zit

(1= 8i)mf, + 2 < ¢10;

(11)

where MZ and mft are upper and lower bounds on ¢}0;, respectively, derived
from the bounds on 6;.

Finally, by introducing auxiliary slack variables ¢; > |y; — g(¢r,©)|, t =
1,..., N, the following holds:

Proposition 1 The optimum of problem (8) is equivalent to the optimum of
the following MILP

N
AT, 2
t=1
M
subj. to ¢ > y; — @00 — ZZ“
(12)
M
€t = ¢ibo + Zzit — Yt
i=1
(11),(7)
Example 2 Consider the following HHARX model
Yt = 0.8yt—1 + 0.4us—1 — 0.1+ (13)

+ max{—0.3y,_1 + 0.6u;_, +0.3,0}

The model is identified on the data reported in Fig. 4(a), by solving an MILP
with 66 variables (of which 20 integers) and 168 constraints. The problem is
solved by using Cplex 6.5 [38] (1014 LP solved in 0.68 s on a Sun Ultra 10

LFor the equivalence to hold, the last inequality of (11) should be strict; otherwise &;; will
not be uniquely determined when ¢,0; = 0. However, because of the continuity of the hinge
functions, it does not matter in this case if d;; is 0 or 1, and therefore the non-strict inequality
will be used to facilitate implementation.




Estimation data and identified HH model

u(t-1) y(t-1)

Figure 3: Identification of model (13) — noiseless case. Identified HH model.
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Figure 4: Identification of model (13) — noiseless case

running Matlab 5.8), and, for comparison, using BARON [36] (73 LP solved
in 3.00 s, same machine), which results in a zero output prediction error (Fig.
4(b)). The fitted HH model is shown in Fig. 3. After adding white Gaussian
noise e; with zero mean and variance 0.01 to the output y;, the following model

Yt = 0.83yt—1 + O.34Ut_1 —0.20+

14
+ max{—0.34y;—1 + 0.62u;_, + 0.40,0} (14)

is identified in 1.39 s (3873 LP solved) using Cplex (7.86 s, 284 LP using
BARON) on the estimation set reported in Fig. 5(a), and produces the vali-
dation data reported in Fig. 5(b). For comparison, we identified the linear ARX
model

Yy = 0.82yt71 + 0.72Ut71 (15)

on the same estimation data, obtaining the validation data reported in Fig. 6
(higher order ARX models did not produce significant improvements). Clearly,
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Figure 5: Identification of model (13) — noisy case
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Figure 6: Identification of a linear ARX model — same estimation and validation data

as in Fig. 5

the error generated by driving the ARX model in open-loop with the validation
input ug is much larger, and would not make (15) suitable for instance for formal
verification tools, where a good performance of open-loop prediction is a critical
requirement.

MIQP Formulation. When the squared 2-norm is used in the objective
function, the optimization problem can be recast as the MIQP

N

M
, Igﬂn V()& Z(yt — (P00 + Y zin))?
0300t Zit =1 i=1

subj. to (11),(7)

(16)

Note that the problem is not strictly positive definite, for instance the cost
function does not depend on 6;, d;; (which only appear in the constraints). For
numerical reasons, a term o, where o is a small number, may be added to the
Hessian associated to the MIQP (16).
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Example 3 Consider again the PWARX system (13). In Fig. 7 we compare
the performance in terms of LP/QPs and total computation time of the linear
criterion (12) wversus the quadratic criterion (16). The reported numbers are
computed on a Sun Ultra 60 (2 x 360 MHz) running Matlab 5.3 and the solver
BARON [36], by averaging the number of LP/QPs and computation times, re-
spectively, for ten estimation data sets generated by feeding random Gaussian
inputs uy and zero output noise to system (13).

# LPs vs. #QPs Time LP vs. time QP (s)
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100f
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10
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0 5 10 15 20 25 [ 5 10 15 20 25

(a) Average number of LPs and QPs (b) Average computation time

Figure 7: Identification of model (13) — MILP (diamonds) vs. MIQP (squares). The
horizontal axes show the number of estimation data samples.

4.2 Complexity

Despite the good solvers available [35, 36, 38], the complexity of the MILP or
MIQP problems is well known to be A'P-hard, and in particular it is exponential
in the number M N of binary variables. Therefore, the approach is computation-
ally affordable only for model with few data, or if data are clustered together.
An example of the latter approach is given in Section 5, where a piecewise affine
function is identified over a sliding window.

4.3 Discontinuous HHARX Models

In HHARX models, the output y; is a continuous function of the regressor
¢¢. On the other hand, hybrid systems often consist of PWA discontinuous
mappings. In order to tackle discontinuities, we can modify the HH model (6)
in the form

M
9(¢1,©) = ¢ + Z(%@i + a;)0it (1) (17a)
[5it(@t) = O] — [@;91 S 0}7 (&S [LM]’ te [LN] (17b)



where a;, i = 1,..., M are additional free parameters, a; < a; < aj'; or, more
in general, in the form

M
9(1,0) = ¢\ + Y _(¢10:)0it (1) (18a)

i=1
where p;,7 = 1,..., M are additional free vectors of parameters, p1; < p; < ,uf,

1'p; > 0. Similarly to (12), both the identification problems (17) and (18) can
be again recast as an MILP. With respect to (12), the MILP has u; or a; as
additional optimization variables. Note that the problem in general does not
have a unique solution, just as for general PWARX systems.

4.4 Robust HHARX Models

In formal verification methods, model uncertainty needs to be handled in order
to provide safety guarantees. Typically, the model is associated with a bounded
uncertainty. In the present context of HHARX models, we wish to find an
uncertainty description of the form

g(@taei) Sytﬁg(%,@ﬂa Vtzo (19)
for an inclusion-type of description, or the form
Ye = g(@1,0%) +ng, n” <y <n’t (20)

for an additive-disturbance-type of description. Clearly, since the model is iden-
tified from a finite estimation data set, fulfillment of (19) or (20) for other data
than the estimation data cannot be guaranteed, unless additional hypotheses
on the model which generates the data are assumed. Nevertheless, a pair of
extreme models ©~, ©F can be obtained by solving (12) or (16) with the addi-
tional linear constraints

Yt > g(pt,0), Vt € [LN] (21)
for estimating ©~, and
Yt Sg(‘ﬁtae))v vt € [LN] (22)

for estimating ©F. An additive-disturbance description can instead be com-
puted in two alternative ways:

1. First, identify a model ©* by solving (12) or (16) and then compute

n® 2 max y — g(pr,07)

o (23)

n~ £ min y — g, O°)
t=1,...,N ’

ERREE)

2. Modify the MILP (12) by replacing ¢; with one variable € only, and min-
imize e. The corresponding optimum ¢* provides a nominal model such
that the bound on the norm of the additive disturbance n; is minimized.

10



5 Using Change Detection to Reduce Complex-
ity
Many PWA systems of interest may only seldom switch between different modes.
For such systems, it should be possible to use a change detection algorithm to
roughly find the timepoints when switches occur, and use this information to
reduce the complexity of (12) or (16) by forcing several samples, lying in the
same interval between two switches, to belong to the same subsystem. Here we
propose to use an MILP algorithm over a sliding window as a change detection
algorithm. The formulation (12) is used, taking only data from time to, ..., to+

L — 1 into account, where L is the length of the window. Furthermore, only one
switch is allowed in each window. Hence, the MILP solved takes the form

to+L—1

min E €

€t,0i,2it,0¢ —to

subj. to € >y — @00 — 214 + 201 (24)
€ > b0 + 216 — 220 — Y
)
(11) with 617 = 6oy = 0,

Note that we only need two hinges (one positive and one negative) and L dis-
crete variables since only one switch is allowed, compared to the M N discrete
variables needed in (12). (If the PWARX structure we would like to identify
just contains positive hinges, we would only need one (positive) hinge in (24).)
Furthermore, the inequalities é;, < --- < d;,+1,—1 also help to reduce the com-
plexity drastically.

In each position ty of the window, the fit of the local HHARX model (i.e.,
the optimal value of the cost function in (24)) is compared to the fit of a linear
model over the same window. The value of the relative improvement of the cost
function, i

kg =1 — LHZARX (25)
Virx
is assigned to the time point of the change, and as the window is moving,
these values are summed up (for each time point). If the sum of the relative
improvements for a certain time point exceeds a threshold Kj, chosen by the
user, this time point will be considered as a possible switch time.

The advantage of using (12) instead of a standard change detection algo-
rithm, e.g., Brandt’s GLR method (see, e.g., [39]), is that the latter does not
require linear separability between the classes; nor does it take the continuity
of the PWA function into account.

After having obtained the estimated possible time points of the switches
as described above, we solve (12) or (16), but using the same § variable for
all samples lying in the same time interval between two consecutive possible
switches. This will force the samples to belong to the same submodel, and will
reduce the complexity considerably. To summarize, the algorithm consists of
two phases:

1. Use a sliding window with a local MILP algorithm to detect possible
switches and divide the time series into segments.

11
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2. Use an MILP to simultaneously assign the different segments to different
submodels and estimate the parameters of the submodel.

Once again, note that in the first step, the MILP solved just uses two hinges,
independently of how many hinge functions the final global model contains.

Example 4 The system

yr = —0.3+ 1.2y, 1 —up_1q
+ max{—1.2 + 2u;_1,0} (26)
—max{—0.2y;—1,0} + e;
where ey is white Gaussian noise with variance 0.01, is identified using 100 data

samples. The true system function and the data samples are shown in Figure
8(a). The proposed sliding window algorithm was used with L = 15 and Ky = 1.

y(®)

0
u(t-1 u(t-1
A (D) 4 (D)
(a) System function (26) and estimation (b) Identified model.

data.

Figure 8: Identification of (26).

This resulted in the system shown in Figure 8(b). Table 1 shows the values of
the objective function (8a) for the true system and the identified model, for the
estimation data and a set of validation data. As can be seen, the identified model
shows a good performance. The computation time running CPLEX on a 333
MHz Pentium II laptop (128 MB RAM) was 144 s (42 s for the sliding windows
and 102 s for the final large MILP). This should be compared to solving the
MILP (12) directly, which did not return a solution within a mazimum allotted
time of 3 hours on the same computer.

True system | Identified model
Estimation data 7.8213 7.4833
Validation data 7.8668 8.6777

Table 1: Identification of (26) — values of the objective function (8a).

12



5.1 Complexity

The advantage of the described sliding window algorithm, compared to solving
(12) or (16) directly, lies in the reduction of the computational complexity. In
the sliding window phase, the complexity is linear in the number of data N
when using a window of fixed size, as opposed to the exponential complexity of
(12) and (16).

For the second phase, the complexity is closely related to the number of pos-
sible switches. Here, the thresholding procedure makes it possible to explicitly
trade off between complexity of the algorithm and optimality: The higher the
threshold value, the fewer possible switch times will be considered. If it is high
enough, no switches will be allowed, which means that all samples will be forced
to belong to the same submodel, and we will end up with a linear model. If,
on the other hand, the threshold value is chosen to be zero, every time point
will be considered as a possible switch time, and we will again get the globally
optimal solution.

As previously mentioned, the described algorithm requires the system to
switch only seldom between different modes. The general issue of designing
input signals having the desired properties of sufficiently exciting the modes of
the system and letting the system switch seldom is a subject for future research.

5.2 Approximating General Nonlinear Systems

To give another example of the described sliding window algorithm, the problem
of approximating a simple nonlinear system is considered. The capability of
approximating arbitrary nonlinear systems is an interesting issue. Since HH
functions have the universal approximation property (see, e.g., [40]), they can
(under mild conditions) approximate any function arbitrarily well, given a large
enough number of hinges. As a very simple illustration, a quadratic NARX
(nonlinear ARX) system is approximated by a HHARX model in the following
example.

Example 5 Consider the system
yr = —0.5y2 | +0.Tus_1 + e (27)

where ey is white Gaussian noise with variance 0.01, is identified using 100 data
samples. The input is designed to make the output change sign only seldom.
The true system function and the data samples are shown in Figure 9(a). Using
the sliding window algorithm with one hinge, L = 10, and a threshold Ko = 1,
resulted in the system shown in Figure 9(b). We can see that the parabola is
approzimated by the hinge in a natural way. The computation time running
CPLEX on a 333 MHz Pentium II laptop (128 MB RAM) was 19.7 s (17.7 s
for the sliding windows and 2 s for the final large MILP). Solving the MILP
(12) directly required about 1300 s of computations.

If we instead use three hinges to approzimate the true system function, we
get the result shown in Figure 9(c). The computation time was 152 s (20 s for
the sliding windows and 132 s for the final large MILP).

13
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Figure 9: Identification of (27).

u blz_1+---+bmz_m X y
1+a1z7 +...+a,z7

Figure 10: Wiener process with PWA static output mapping

6 Piecewise Affine Wiener Models

Let us now turn to the class of piecewise affine Wiener (W-PWARX) models,
for which, as it will turn out, one can design an optimal identification algorithm
whose worst-case complexity is polynomial in the number of data. The models
considered will be in the form shown in Fig. 10, described by the relations

A(z)xy = B(2)ug

yr = f(zt)
where A(z) = 1+ >/, a;27%, B(z) = 3%, biz7!, and 27! is the delay op-
erator, 2z lzy = xy_;. We assume that f(x) is a piecewise affine, invertible

function (without restrictions we can assume that f is strictly increasing), and
parameterize its inverse as

(28a)

M
Ty =1y — o+ Z + max{f;y; — o, 0} (28b)

i=1

Both signs + are allowed in order to be able to represent nonconvex functions.
We assume that the number M of positive signs is known (without restrictions
we can let these be the first terms of the sum). As max{—z,0} = —z+max{z, 0}
for all z € R, without loss of generality we can also assume 3; > 0.

6.1 Identification of W-PWARX Models

As seen from Fig. 10, a Wiener model consists of a linear dynamic system fol-
lowed by an output nonlinearity. In some cases, the two can be identified sep-

14



arately: first the inverse nonlinearity is estimated by supplying a quasi-static
input, and then a linear dynamic model is identified by using standard linear
techniques [41]. On the other hand, in some other cases the input signal cannot
be designed arbitrarily, as input/output estimation data are simply supplied by
other sources. Then one algorithm which estimates the whole Wiener process is
desirable. Here, we describe an algorithm based on mixed-integer programming,
which identifies W-PWARX models of the form (28). Such PWA form is par-
ticularly useful when the identified system models an unknown part of a larger
hybrid model. We assume that we are given an estimation data set {y, us }2Y .
Like in the HHARX case, the first thing to do is to get rid of the max
functions. This is done by introducing the discrete variables ¢;; € {0,1}

[5it:1]<_)[ﬂiyt*ai20]aie[lvM]ate[]-vN] (29)

Before continuing with the usual reformulation into an MIQP, let us consider
some additional structure that can be used to reduce the complexity of the prob-
lem. Without loss of generality, we can assume that the M ™ first breakpoints
in the PWA output nonlinearity are ordered, and similarly for the M — M ™ last
breakpoints. Clearly, the logic constraint

[6i =1] — [0; =1] (30)

should hold for all 7,5 < M™ such that j < 4, and for all i, > M™ such that
j < i. Each constraint (30) is translated into

0t — 050 <0, (31)

and a minimal set of inequalities is obtained by collecting (31) only for pairs of
consecutive indices i, 7. Moreover, since the output data y; can be ordered, we
can also get additional relations on d;; by using (29). In fact, if §;;, = 1 and
Y, > Yt,, it must follow that d;;, = 1. We can translate these relations into

Oity — 0ity <0, Vi1 #to Y, = Yio (32)

Both (31) and (32) will help to reduce the search space considerably in the
optimization.

One specific problem for this model structure is that we will get products
between the coefficients ay, of the A(z) polynomial and the coefficients inside the
max functions, §; and «;. Furthermore, since aj, may very well be negative, the
inequalities in the definition (29) of §;(¢) may change directions if we multiply
by aj. This is not desirable, so to get rid of these problems, first define a, =
a; —a, , where az, a;, >, and v > 0 is any positive scalar. Then

ap max{Biy;—n — ;,0} =
= max{a;{ﬁil/tfh - a;rai7 0}—
—max{ay, Biyi—n — a, o;, 0}
= max{c}, ys—n — dj; , 0} — max{c;, yi—pn — dj;,,0}

where
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Let also

—et— 2
Cio = iO_CiO_ﬂi

ot
dio = d;y = d;y = al
don, = apayg

A
doo = g

Czo = ZdOh = <1+Zah> (67}
h=0 h=1
As a;fa;, > 0, from (29) it now follows
(00 = 1] & [y — df > 0] (33)
Let us also introduce the auxiliary continuous variables
zito = (cioyr — dio)dit
zith = (¢ = e)ye—n — (df, = di)0ig—ny, h € [1,n4]

Using the same techniques as in [6], we can translate (33) and (34) to linear
inequalities.
Now,

(34)

M
2y =y —doo + Y Fziro
=1
i (3)
anti—n = anyi—n — don + Y _ +zirn
i=1
By (28) and (35),

M
2=y —doo + Y Fzis0 = Z brs—p—

=1 k=1
Ng M
- Z <ahyt—h — don + Z iZith)
h=1 i=1

which provides the relation

M ng

Z anyi—n + Z bk +do— Y Y Fzim (36)

i=1 h=0

In order to fit the estimation data to model (36), we solve the mixed-integer
quadratic program (MIQP)

N

min % Z

t=1+max{nq,np}

Yyt + Z apYt—n— (37)
h=1

M ng 2

_Zbkut k—do-i-zzizzth

i=1 h=0
subj. to linear constr. from (31), (32), (33), and (34)
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(a) System estimated with noiseless (b) System estimated with output noise
data. le¢] < 0.01 (dashed), and |e;| < 0.1 (dot-
dashed)

Figure 11: Validation results

with respect to the variables an, by, cio, dio, do, cﬁ” dﬁ/, Zith, and the binary
variables d;;. The solution to (37) provides the optimal parameters aj, b}, and

* A dy * A gx * A % : : : :
ay = Tryragrs @ = dip, B = cj,. Finally, we can obtain the estimation

f*(x) by invert’ilng (28b) (see [31] for details).

Example 6 A Wiener model constituted by a first-order linear system and a
nonlinearity with two breakpoints is identified, using N = 20 estimation data
points. The system is first identified using noiseless data, and then using noisy
measurements §; = y; + e, where e; are independent and uniformly distributed
on a symmetric interval around 0. The MIQP problem (37) is solved by running
BARON [36] on a Sun Ultra 10. The resulting estimates are shown in Table 2.
The estimated parameters are overall very close to the true values, the closer the

Par. | True | e, =0 | |e)] <0.01 | |e¢] < 0.1
a1 -0.5 | -0.5000 -0.4990 -0.5360
b1 2 2.0000 2.0024 2.0003
o -2 -2.0000 -2.0001 -1.7748
a1 0.5 0.5000 0.5095 0.5509
o2 -1.5 | -1.5000 -1.4924 -1.4999
B1 0.5 0.5000 0.5016 0.5028
B2 0.5 0.5000 0.4988 0.4876

CPU - 45.44 s 51.33 s 90.34 s

Table 2: Estimation results

lower the intensity of the output noise, as it should be expected. The estimated
model was also tested on a set of wvalidation data, and we report in Fig. 11
the resulting one-step-ahead predicted output and output error. Note that such
a good performance cannot be achieved by using standard linear identification
techniques.
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6.2 Complexity Analysis

By imposing the constraints expressed by (31) and (32), the degrees of freedom
for the integer variables, and hence the complexity, are reduced considerably.
In fact, instead of having to test 2M% different cases in the worst case, only
(M]\ZN ) . ( ]\%) combinations would be tested. For example, for N = 20 and
M = 2 this means that the number of possible combinations of integer variables
decreases from approximately 10'% to 462. In general, for a fixed M the worst-
case complexity grows as N™. Note that this simplification is possible since
the nonlinearity is one-dimensional, which allows an ordering of the breakpoints

and of the output data.

7 State-Space Realizations

In the recent literature on hybrid systems, several formalisms for describing
different system classes have emerged. In this section we show how HHARX
and W-PWARX models can be expressed using some of these formalisms.

Similarly to the linear ARX case, assuming that the identified polynomials
A(z), B(z) are coprime and n, > n, a minimal state-space realization contain-
ing ng +ny states can be obtained for HHARX models, by using different hybrid
state-space discrete-time paradigms introduced recently in the hybrid systems
literature. For W-PWARX, a minimal state-space realization containing n,
states can be obtained.

MLD Realization Mixed Logical Dynamical (MLD) systems [6] are a
discrete-time formalism for systems containing both continuous and boolean/dis-
crete variables. The key idea is to transform the Boolean variables into 0-1 inte-
gers, and to express the relations as mixed-integer linear inequalities, similarly
to what was done in (11) and (31). The MLD model has the form

&1 = P&+ Grug + Gody + Gaze (38a)
Yy = Hft + Dlut + Dgat + Dgzt (38b)
&by + E32 < Eyug +E46 + &5 (38c)

where & € R x {0,1}"™ is a vector of continuous and binary states, u €
R™e x {0,1}™¢ are the inputs, y € RPe x {0,1}7¢ the outputs, § € {0,1}"¢, and
z € R" are auxiliary variables.

Proposition 2 HHARX models (6) admit an MLD state-space realization with
ng + Ny states.

Proof. The realization can be obtained by defining auxiliary variables d;;, zj
similarly to what was done in (9), (10), and (11), and setting

& = [yt—l v Yten, Ut—1 .- ut—nb]l

O

Proposition 3 W-PWARX models (28) admit an MLD state-space realization
with n, states.
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Proof. Let

& = &1 + Gruy
= C&
M (39)
ye=C& —ap+ Z +max{3;,C¢& — a;,0}
i=1
be a minimal state-space realization of (28a). Define M auxiliary binary vari-
ables
[0 =1] < [3;C& — a; > 0]
and M continuous z; = (3;C& — @;)d;. With translations into mixed-integer
inequalities as in (11) or [6], the MLD form can be immediately obtained. [
PWA Realization Analogously to what was defined in (2), a PWA state-
space system is defined as

§ev1 = Aj& + Bjug + f; for [é}

: ec; 40
Yo = C& + Djug + gj Ut] ! (40)

where ¢ € R", and {Cj}j;(l) is a polyhedral partition of the combined state-
input-space. The following propositions can be obtained as corollaries of the
equivalence between MLD and PWA systems [30], and allows to construct a
PWA state-space realization of (28) via the above MLD realization.

Proposition 4 HHARX models (6) admit a PWA state-space realization (40)
with ne + ny states and at most 2M regions.

Proposition 5 W-PWARX models (28) admit a PWA state-space realization
(40) with n, states and at most 2™ regions.

MMPS Realization Max-Min-Plus-Scaling (MMPS) state space models
were introduced in [1] and have the form

i1 = Me(&,ug,dy)
Yt My((gtautadt) (41>
& Mc(ftautadt)

where Mg, M,, M, are expressions defined by the composition of max and
min functions, sum, and multiplication by a scalar, in terms of the state &, the
input us, and the auxiliary variables d;, which are all real-valued. When M. is
empty, we refer to these systems as unconstrained MMPS systems.

IVl

Proposition 6 HHARX models (6) admit an MMPS state-space realization
(41) with ng + ny, states.

Proof. As for the MLD realization, define & = [yt—1 ... Yt—n, Ut—1 .. Ut—n,) -
Then M, (&, u;) is directly obtained by (6), and the state update is obtained
by shifting the elements of { and using M, (&, uy).

Proposition 7 W-PWARX models (28) admit an unconstrained MMPS state-
space realization (41) with n, states.

Proof. Eq. (39) is already on MMPS form. O

LC and ELC Realization Linear Complementary (LC) and Extended
Linear Complementary (ELC) state-space realizations can be obtained by ex-
ploiting the equivalences described in [1].
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8 Conclusions

In this paper we have addressed the problem of identification of hybrid dynam-
ical systems, by focusing our attention on piecewise affine (PWARX), hinging
hyperplanes (HHARX), and Wiener piecewise affine (W-PWARX) autoregres-
sive exogenous models. In particular, for the two latter classes we have provided
algorithms that always converge to the global optimum, based on mixed-integer
linear or quadratic programming. As a possible step in the direction towards
faster suboptimal algorithms based on the mixed-integer approach, we have also
proposed a suboptimal sliding window algorithm for slowly changing HHARX
models.

Several problems remain open, such as the choice of persistently exciting
input signals u for identification (i.e., that allow for the identification of all the
affine dynamics), and criteria like Akaike’s criterion for choosing the best order
and number of hinging pairs in HHARX models.
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