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Abstract

An algorithm for the construction of an explicit piecewise linear state feedback approxima-
tion to nonlinear constrained receding horizon control is given. It allows such controllers to
be implemented via an efficient binary tree search, avoiding real-time optimization. This is
of significant benefit in applications that requires low real-time computational complexity
or software complexity. The method hasa priori guarantee of asymptotic stability with re-
gion of attraction being a close inner approximation to the stabilizable set. This is achieved
by ensuring that the approximation error does not exceed the stability margin.

1 Introduction

Receding horizon control (RHC) traditionally involves the solution of a constrained
finite-horizon optimal control problem at each sampling instant (Keerthi and Gilbert
1988, Mayne and Michalska 1990, Michalska and Mayne 1993). Such real-time op-
timization is, however, restricted to applications that allow slow sampling and high-
performance computers. Parisini and Zoppoli (1995) suggested to approximate the
implicitly defined state feedback law of nonlinear constrained RHC by a nonlin-
ear function using neural networks. Hence, the real-time optimization is replaced
by a simpler function evaluation, extending the applicability of nonlinear RHC to
applications that may require fast sampling and inexpensive computers. For linear
constrained RHC an alternative function approximation method was suggested by
Johansen and Grancharova (2002a). It has the advantage that the neural network
approximation is replaced by a computationally more favorable piecewise linear
(PWL) approximation implemented via a binary search tree. More importantly, it is
guaranteed that stability is not lost due to the approximation error. This is achieved
by choosing a suitable tolerance on the sub-optimal cost function error, and it is
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given a constructive approximation algorithm that guarantees that this tolerance and
the constraints are fulfilled. In contrast, the results in (Parisini and Zoppoli 1995)
has some limitations as they focus on existence on function approximations, and
no constructive method with a priori guarantees is given to determine the nonlinear
function approximation such that asymptotic stability is not lost due to the approx-
imation error, or that the constraints are not violated. In the present work we ex-
tend recent results for linear RHC by Johansen and Grancharova (2002a), see also
(Johansen and Grancharova 2002b) to nonlinear constrained RHC problems. As we
shall see, convexity is a simplifying property. We will, however, outline how global
optimization can be utilized if this assumption is not fulfilled. Approximate explicit
solutions can also be computed using dynamic programming approximations such
as (Bertsekas and Tsitsiklis 1998, Rantzer 1999).

The ideas presented here can be viewed as a natural extension of explicit solutions
recently derived for linear input and state constrained RHC and linear quadratic reg-
ulation (Bemporadet al.2002, Bemporadet al.2000b, Bemporadet al.2000a, Be-
mporad and Filippi 2001). In this case theexactstate feedback solution takes the
form of a PWL function that can be computed off-line using multi-parametric
quadratic programming (mp-QP) algorithms (Bemporadet al. 2002, Tøndelet al.
2001) or multi-parametric linear programming algorithms. In the nonlinear case no
exact state feedback solution can be represented explicitly, in general, but approx-
imations can be found using multi-parametric nonlinear programming (mp-NLP)
(Fiacco 1983, Johansen 2002). The algorithm presented here can be utilized as an
approximate mp-NLP algorithm with applicability beyond RHC. The mp-NLP al-
gorithm in (Johansen 2002) generates an approximate PWL solution by locally ap-
proximating mp-NLPs with mp-QP sub-problems solved using the mp-QP solver
presented in (Tøndelet al. 2001). In the present work we only solve NLP sub-
problems.

We take as a starting point a discrete-time nonlinear RHC formulation similar to
(Chen and Allg̈ower 1998) using also some elements of (Mayneet al. 2000) and
dual-mode control, (Michalska and Mayne 1993). Since the contribution of the
present work is essentially on an efficient implementation of RHC without real-
time optimization, it is clear that similar algorithms can be derived along the same
lines for alternative nonlinear RHC formulations such as those given in (Mayne
and Michalska 1990, Keerthi and Gilbert 1988, Jadbabaieet al. 2001, De Nicolao
et al.1996) and others.

The following notation will be used throughout this paper.A Â 0 means that the
square matrixA is positive definite, andA º 0 positive semi-definite. Forx ∈
Rn the Euclidean norm is||x|| =

√
xT x and the weighted norm is defined for

some symmetric matrixA Â 0 as||x||A =
√

xT Ax. The maximum and minimum
eigenvalues of a square matrixA are denotedλmax(A) andλmin(A), respectively.
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2 Nonlinear RHC formulation

Consider the discrete-time non-linear system

x(t + 1) = f(x(t), u(t)) (1)

wherex(t) ∈ Rn is the state, andu(t) ∈ Rm is the input. We assume the control
objective is regulation to the origin. For the currentx(t), a typical RHC algorithm,
(Chen and Allg̈ower 1998, Mayneet al.2000), solves the optimization problem

V ∗(x(t)) = min
U

J(U, x(t)) (2)

subject toxt|t = x(t) and

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, 1, ..., N − 1,

xt+N |t ∈ Ω (3)

xt+k+1|t = f(xt+k|t, ut+k), k = 0, 1, ..., N − 1

yt+k|t = Cxt+k|t, k = 1, 2, ..., N

with U = {ut, ut+1, ..., ut+N−1} and the cost function given by

J(U, x(t)) =
N−1∑

k=0

(
||xt+k|t||2Q + ||ut+k||2R

)
+ ||xt+N |t||2P (4)

N is a finite horizon, and the following assumptions are made:

A1. P,Q, R Â 0.

A2. ymin < 0 < ymax andumin < 0 < umax.

A3. The functionf is twice continuously differentiable, withf(0, 0) = 0.

The compact and convex terminal setΩ is defined by

Ω = {x ∈ Rn | xT Px ≤ α} (5)

whereP ∈ Rn×n and α > 0 will be specified shortly. An optimal solution to
the problem (2)-(3) is denotedU∗ = {u∗t , u∗t+1, ..., u

∗
t+N−1}, and the control input

is chosen according to the receding horizon policyu(t) = u∗t . This and similar
optimization problems can be formulated in a concise form
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V ∗(x) = min
U

J(U, x) subject toG(U, x) ≤ 0 (6)

The problem (6) defines an mp-NLP, since it is an NLP inU parameterized byx.
Define the set ofN -step feasible initial states as follows

XF = {x ∈ Rn |G(U, x) ≤ 0 for someU ∈ RNm} (7)

SupposeΩ is a control invariant set, such thatXF is a subset of theN -step stabi-
lizable set (Kerrigan and Maciejowski 2000). Notice that A2-A3 implies that the
origin is an equilibrium and interior point inXF . It remains to specifyP Â 0 and
α > 0 such thatΩ is a control invariant set. For this purpose, we use the ideas of
(Chen and Allg̈ower 1998), where one simultaneously determine a linear feedback
such thatΩ is positively invariant under this feedback. Define the local linearization
at the origin

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0) (8)

and make the following assumption

A4. (A,B) is stabilizable.

Let K denote the associated LQ optimal gain matrix, such thatA0 = A − BK is
strictly Hurwitz. The following lemmas are discrete-time versions of Lemma 1 in
(Chen and Allg̈ower 1998):

Lemma 1 If κ > 0 is such thatA0 + κI is strictly Hurwitz, the Lyapunov equation

(A0 + κI)T P (A0 + κI)− P =−Q−KT RK (9)

has a unique solutionP Â 0.

Proof. The result is trivial sinceQ + KT RK Â 0. 2

Lemma 2 Letκ andP satisfy the conditions in Lemma 1. Then there exists a con-
stantα > 0 such thatΩ defined in (5) satisfies

(1) Ω ⊂ C = {x ∈ Rn | umin ≤ −Kx ≤ umax, ymin ≤ Cx ≤ ymax}.
(2) The autonomous nonlinear system

x(t + 1) = f(x(t),−Kx(t)) (10)

is asymptotically stable for allx(0) ∈ Ω, i.e.Ω is positively invariant.
(3) The infinite-horizon cost for the system (10)

4



J∞(x(t)) =
∞∑

k=0

(
||xt+k|t||2Q + ||Kxt+k|t||2R

)
(11)

satisfiesJ∞(x) ≤ xT Px for all x ∈ Ω.

Proof. Due to A2 one may define a set of the form

Ωα1 = {x ∈ Rn | xT Px ≤ α1} (12)

with α1 > 0, such thatΩα1 ⊆ C, i.e. an ellipsoidal inner approximationΩα1 to
the polyhedronC where the input and state constraints are satisfied. Hence, the first
claim holds for allα ∈ (0, α1].

Define the positive definite functionW (x) = xT Px. Along trajectories of the au-
tonomous system (10) we have

W (x(t + 1))−W (x(t)) = (A0x(t) + φ(x(t)))T P (A0x(t) + φ(x(t)))− xT (t)Px(t)

= xT (t)
(
AT

0 PA0 − P
)
x(t) + 2xT (t)Pφ(x(t)) (13)

whereφ(x) = f(x,−Kx) − A0x satisfiesφ(0) = 0. It is straightforward to show
that

xT Pφ(x)≤Lφ

(
λmax(P )

λmin(P )

)
||x||2P (14)

whereLφ is a Lipschitz constant inΩα1 (which must exist becausef is differ-
entiable). We chooseα ∈ (0, α1] such thatLφ ≤ κλmin(P )/λmax(P ), which is
possible because∂φ/∂x(0) = 0 andφ is twice differentiable. From (9)

W (x(t + 1))−W (x(t))≤ xT (t)
(
AT

0 PA0 − P + 2κP
)
x(t) (15)

=−xT (t)
(
Q + KT RK + κ2P

)
x(t) (16)

and positive invariance ofΩ follows sinceΩ is a level set ofW .

Notice that from (16) we have

W (x(∞))−W (x(0))≤−J∞(x(0))− κ2
∞∑

t=0

||x(t)||2P (17)

and the third claim holds becauseW (x(∞)) = 0. 2
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It follows from (Mayneet al.2000, Chen and Allg̈ower 1998) that the RHC makes
the origin asymptotically stable with region of attractionXF . However, in paramet-
ric programming problems one seeks the solutionU∗(x) as an explicit function of
the parametersx in some setX ⊆ XF ⊆ Rn (Fiacco 1983). The explicit solution
allows us to replace the computationally expensive real-time optimization with a
simple function evaluation. Unfortunately, for general nonlinear functionsJ andG
anexactexplicit solution cannot be found. In the remaining of this paper we will
develop an algorithm for constructing an explicit approximate solution such that
the approximation error that is introduced does not lead to loss of stability.

A procedure for selectingP, κ andα is given in (Chen and Allg̈ower 1998). One
feature of the explicit approach is that it is not generally desirable to selectΩ as
large as possible since this may lead to loss of performance and robustness. More-
over, any computational advantages of choosingΩ large are less important since
the optimization will be carried out entirely off-line.

3 Nonlinear Parametric Programming

The numerical computations involved in constructing the approximate explicit PWL
state feedback is simplified under the following assumption:

A5. J andG are jointly convex for all(U, x) ∈ U × X, whereU = [umin, umax]
N

is the set of admissible inputs.

The optimal cost function can now be shown to have some regularity properties
(Mangasarian and Rosen 1964):

Theorem 1 XF is a closed convex set, andV ∗ : XF → R is convex and continu-
ous.2

Convexity ofXF andV ∗ is a direct consequence of A5, while continuity ofV ∗

can be established under weaker conditions (Fiacco 1983). We remark thatV ∗ is
in general not differentiable, but properties such as local differentiability and di-
rectional differentiability can be investigated as shown in e.g. (Fiacco 1983). Reg-
ularity properties of the solution functionU∗ is a slightly more delicate issue, and
essentially relies on stronger assumptions such as strict joint convexity that ensure
uniqueness of the solution. Since this is not needed with our approach (in contrast
to (Parisini and Zoppoli 1995) where continuity ofU∗ was assumed because their
focus is on the approximation error in the solution rather than the value function
V ∗), we only refer to Appendix A and (Fiacco 1983) for some discussion on this
issue.

The main idea is to construct a feasible PWL approximation toU∗ onX, where the
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constituent affine functions are defined on hypercubes coveringX. The accuracy
of approximation will be measured by the difference between the optimal and sub-
optimal cost functions rather than the difference between the exact and approxima-
tion solutions. Since the optimal cost functionV ∗ cannot be assumed known, con-
vexity is exploited to compute simple bounds to be used both for constructing the
approximate solution, similar to chapter 9 in (Fiacco 1983), and quantify the asso-
ciated perturbation in the stability analysis, see (Johansen and Grancharova 2002a)
for similar results in the context of linear constrained RHC.

Consider the verticesV = {v1, v2, ..., vM} of any bounded polyhedronX0 ⊆ XF .
Define the affine functionV (x) = V 0x + l0 as the solution to the following linear
program (LP):

min
V 0,l0

(
V 0v + l0

)
(18)

subject toV 0vi + l0 ≥ V ∗(vi), for all i ∈ {1, 2, ..., M} (19)

Likewise, define the convex PWL function

V (x) = max
i∈{1,2,...,M}

(
V ∗(vi) +∇T V ∗(vi)(x− vi)

)
(20)

If V ∗ is not differentiable atvi, then∇V ∗(vi) is taken as any sub-gradient ofV ∗

at vi. V andV have the following properties, see also also chapter 9.2 of (Fiacco
1983):

Theorem 2 Consider any bounded polyhedronX0 ⊆ XF . ThenV (x) ≤ V ∗(x) ≤
V (x) for all x ∈ X0.

Proof. Let x ∈ X0 be arbitrary, and consider the convex combinationx =
∑

i αivi

whereαi ≥ 0 satisfies
∑

i αi = 1:

V ∗(x) ≤
M∑

i=1

αiV
∗(vi) ≤

M∑

i=1

αi

(
V 0vi + l0

)
= V 0x + l0

The lower boundV follows from the convexity ofV ∗, since the sub-gradient in-
equalityV ∗(x) ≥ V ∗(v)+∇T V ∗(v)(x−v) holds for allv ∈ X0 (Rockafellar 1970).

2

We suggest to select a local linear approximation to the solution that minimizes the
value function approximation error subject to feasibility of the solution, similar to
(Bemporad and Filippi 2001):
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Lemma 3 Consider any bounded polyhedronX0 ⊆ XF with vertices{v1, v2, ...., vM}.
If K0 andg0 solve the convex NLP

min
K0,g0

M∑

i=1

(
J(K0vi + g0, vi)− V ∗(vi) + β||K0vi + g0 − U∗(vi)||22

)
(21)

subject toG(K0vi + g0, vi) ≤ 0, i ∈ {1, 2, ..., M} (22)

thenÛ0(x) = K0x + g0 is feasible for the mp-NLP (6) for allx ∈ X0.

Proof. We remark that the NLP is convex because the cost function and constraints
are convex functions, being the composition of convex functions with linear func-
tions. Letx ∈ X0 be arbitrary, and consider the convex combinationx =

∑
i αivi

whereαi ≥ 0 satisfies
∑

i αi = 1:

G(K0x + g0, x) = G

(
M∑

i=1

αi(K0vi + g0),
M∑

i=1

αivi

)
(23)

≤
M∑

i=1

αiG (K0vi + gi, vi) ≤ 0 (24)

2

In general, the NLP defined in this lemma need not have a feasible solution. As a
partial remedy, the following result shows that at least for sufficiently small poly-
hedraX0, feasibility can be guaranteed:

Lemma 4 Let X0 ⊆ XF be a sufficiently small bounded polyhedron with non-
empty interior. Then there exists an affine functionŨ(x) such thatG(Ũ(x), x) ≤ 0
for all x ∈ X0.

Proof. SinceX0 ⊆ XF is small, it follows from Theorem 5 in Appendix A that
some unique and continuous feasible solution functionU(x) exists a neighborhood
that containsX0. SinceG is convex it is straightforward to construct an affine sup-
port Ũ(x). 2

SinceÛ0(x) defined in Lemma 3 is feasible inX0, it follows that

V̂ (x) = J(Û0(x), x) (25)

is an upper bound onV ∗(x) in X0 such that for allx ∈ X0

0 ≤ V̂ (x)− V ∗(x)≤ ε0 (26)

where
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ε0 =− min
x∈X0

(
−V̂ (x) + V (x)

)
(27)

Computingε0 requires the solution of the NLP (27). IfV is conservatively chosen
as linearV (x) = V ∗(vi)+∇T V ∗(vi)(x−vi), cf. (20), this NLP is concave sincêV
is convex. Hence the optimization can be done efficiently sinceX0 is a polyhedron
and it suffices to compare the solution at its extreme points due to the concavity
(Horst and Tuy 1993).

4 mp-NLP algorithm

Consider a hypercubeX ⊂ Rn where we seek to approximate the solution function
U∗(x) to the mp-NLP (6). In order to keep the real-time computational complexity
at a minimum, we require that the approximating function is PWL with a state space
partition that is orthogonal and can be represented by ak − d-tree, (Bentley 1975),
such that the real-time search complexity is logarithmic with respect to the num-
ber regions in the partition (Grancharova and Johansen 2002). Thek − d-tree is a
hierarchical data structure where a hypercube can be sub-divided into smaller hy-
bercubes allowing the local resolution to be adapted. When searching the tree, only
one scalar comparison is required at each level. Initially the algorithm will consider
the whole regionX0 = X. The main idea of the approximate mp-NLP algorithm
is to compute the solution of the problem (6) at the2n vertices of the hypercube
X0, by solving up to2n NLPs. Based on these solutions, assuming they are all
feasible, we compute a feasible local linear approximation functionÛ0 to the opti-
mal solution functionU∗, restricted to the hypercubeX0, using Lemma 3. If such
an approximation exists, and the maximal cost function errorε0 in X0 is smaller
than some prescribed toleranceε > 0, no further refinement of the regionX0 is
needed. Otherwise, we partitionX0 into two hypercubes, and repeat the procedure
described above for each of these.

Algorithm 1 (approximate mp-QP)

1. Initialize the partition to the whole hypercube, i.e.P = {X}. Mark the hypercube
X as unexplored.

2. Select any unexplored hypercubeX0 ∈ P. If no such hypercube exists, the
algorithm terminates successfully.

3. Solve the NLP (6) forx fixed to each of the vertices of the hypercubeX0 (some
of these NLPs may have been solved in earlier steps). If all solutions are feasible,
go to step 4. Otherwise, compute the size ofX0. If it is smaller than some tolerance,
markX0 explored and infeasible. Otherwise, go to step 8.

4. If 0 ∈ X0, chooseÛ0(x) = −Kx and go to step 5 . Otherwise, go to step 6.
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5. If X0 ⊆ Ω, markX0 as explored and go to step 2. Otherwise, go to step 8.

6. Compute an affine state feedbackÛ0 using Lemma 3, as an approximation to be
used inX0. If no feasible solution was found, go to step 8.

7. Compute the error boundε0, using Theorem 3 and (27). Ifε0 ≤ ε, markX0 as
explored and feasible, and go to step 2.

8. Split the hypercubeX0 into two hypercubesX1 andX2 using some heuristic
rule. Mark both unexplored, removeX0 from P, addX1 andX2 to P and go to
step 2.

2

The PWL approximation generated by Algorithm 1 is denotedÛ : X′ → RNm,
whereX′ is the union of hypercubes where a feasible solution has been found. It
is an inner approximation toXF and the approximation accuracy is determined by
the tolerance in step 3.

We remark that̂U is generally not continuous. Due to step 4 we require that in a
neighborhood of the origin the LQ optimal gain matrix is used, as in dual-mode
RHC, (Michalska and Mayne 1993).

Step 8 needs further specification of how a hypercube is being partitioned. A hy-
percube is split into two equal parts by an axis-orthogonal hyperplane that goes
through its center. As in (Grancharova and Johansen 2002), the main idea is to
select the hyperplane where the error between the solutions on each side of the
hyperplane is largest (before splitting). This is implemented by comparing the so-
lutions at the vertices of the hypercube. It is reasonable to expect that this may give
a significant reduction in the error in both hypercubes after splitting.

Theorem 3 Assume the partitioning rule in step 8 guarantees that the error de-
creases by some minimum amount or factor at each split. Then Algorithm 1 termi-
nates with an approximate solution functionÛ that is feasible and satisfies

0 ≤ J(Û(x), x)− V ∗(x) ≤ ε (28)

for all x ∈ X′.

Proof. If the algorithm terminates, the specified tolerance is met because of steps 7
and 8. SinceV ∗ is continuous it is clear that ak − d-tree partition will lead to an
approximation with arbitrary uniform accuracy provided the hypercubes are suffi-
ciently small. According to lemma 4, this approximation will be feasible, and since
the partitioning rule ensures that the error decreases by some minimum amount
or factor at each step, the algorithm will indeed terminate after a finite number of
steps.2
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If convexity does not hold, global optimization is generally needed if theoretical
guarantees are required:

(1) The NLP (6) must be solved using global optimization in step 3.
(2) The NLP (21)-(22) must be solved using global optimization in step 6.
(3) The computation of the error boundε0 in step 7 must rely on global optimiza-

tion, or convex underestimation.
(4) The heuristics in step 8 may be modified to be efficient also in the non-convex

case.

5 Stability

The exact RHC will make the origin asymptotically stable (Mayneet al.2000, Chen
and Allgöwer 1998). We show below that asymptotic stability is inherited by the
approximate RHC under an assumption on the toleranceε:

A6. Assume the partitionP generated by Algorithm 1 has the property that for any
hypercubeX0 ∈ P that does not contain the origin

ε≤ γ min
x∈X0

||x||2P (29)

whereγ ∈ (0, 1) is given.

Theorem 4 The origin is an asymptotically stable equilibrium point for the system
(1) in closed loop with the approximate explicit RHC given by Algorithm 1, for all
x(0) ∈ X′.

Proof. Let x(t) ∈ X′ be arbitrary and the associated optimal control be denotedU∗.
At time t + 1 considerŨt+1 = {u∗t+1, u

∗
t+2, ..., u

∗
t+N−1,−Kx∗t+N |t}, wherex∗t+k|t is

the state at timet + k associated withU∗. SinceU∗ is N -step feasible,x∗t+N |t ∈ Ω.

Hence,Ũt+1 is feasible and the tail of the trajectories remain feasible sinceΩ is
positively invariant. SincêV (x) is an upper bound onV ∗(x), standard arguments,
(Bemporad and Filippi 2001), give

V ∗(x(t + 1))≤ V̂ (x(t + 1))

= V̂ (x(t))− ||x(t)||2Q − ||u(t)||2R − ||x∗t+N |t||2P
+||f(x∗t+N |t,−Kx∗t+N |t)||2P + ||x∗t+N |t||2Q + ||Kx∗t+N |t||2R

≤ V̂ (x(t))− ||x(t)||2Q − ||u(t)||2R (30)

The first inequality is due to Theorem 2, while the second inequality is due to
Lemma 2, eq. (16). LetΩα2 = {x ∈ Ω | xT Px ≤ α2} be such thatu = −Kx for
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all x ∈ Ωα2. Such a set with non-empty interior exists due to step 4 in Algorithm 1.
Then, forx 6∈ Ωα2 it follows from (30) and assumption A6 that

V ∗(x(t + 1))− V ∗(x(t))≤ ε− ||x(t)||2Q − ||u(t)||2R (31)

≤−(1− γ)||x(t)||2Q < 0 (32)

It follows that x(t) → Ωα2 ast → ∞. Asymptotic stability of the origin can be
concluded due to Lemma 2 becauseu = −Kx in the positively invariant setΩα2.

2

We remark that the toleranceε can be chosena priori for each hypercubeX0 to
satisfy (29). Hence, one can guaranteea priori that the PWL feedback law gen-
erated by Algorithm 1 will be asymptotically stabilizing. The parameterγ in (29)
determines the approximation accuracy and degree of sub-optimality. Aγ close to
one is sufficient for stability, butγ close to zero give less approximation error and
sub-optimality.

6 Simulation example

The example is taken from (Chen and Allgöwer 1998), where the following system
is studied

ẋ1 = x2 + u(1 + x1)/2 (33)
ẋ2 = x1 + u(1− 4x2)/2 (34)

The origin is an unstable equilibrium point, with a stabilizable (but uncontrollable)
linearization. We discretize this system using a sampling intervalTs = 0.1. The
control objective is given by the weighting matrices

Q =
Ts

2
I2×2, R = Ts (35)

Notice the scaling withTs that ensures the discrete-time formulation is comparable
to the continuous-time formulation. The terminal penalty is given by the solution
to the Lyapunov equation

P =




16.5926 11.5926

11.5926 16.5926


 (36)
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Fig. 1. State space partitioning of the approximate PWL explicit optimal control.

and a positively invariant terminal region is

Ω = {x ∈ R2 | xT Px ≤ 0.7} (37)

as in (Chen and Allg̈ower 1998). The prediction horizon isN = 1.5/Ts = 15. In the
approximate mp-NLP algorithm we chooseγ = 0.25, and get the partition shown in
Figure 1. It contains 105 regions and the associated solution and optimal cost func-
tions are shown in Figures 2 and 3. For comparison, the same figures also show the
exact solution and optimal cost, computed by gridding the state space. It is noticed
that in some part of the setX = [−0.9, 0.9]2 a feasible solution does not exist.
Figure 4 shows simulation results from the initial statex(0) = (−0.683,−0.874)T

with the system in closed loop with both the exact and approximate RHC (in com-
pliance with Fig. 2 in (Chen and Allg̈ower 1998)). We notice that the difference is
small, as the exact and approximate curves can hardly be distinguished in the plots.
The computational complexity with the approximate approach is at most 14 arith-
metic operations per sample, since there are at most 10 levels in the search tree.
In contrast, (Chen and Allg̈ower 1998) report typical computing times of about 6
seconds per sample using a state-of-the-art numerical optimization (NAG, e04ucf),
which are several orders of magnitude slower. It is also worthwhile mentioning
that the computations with the present approach can be carried out with sufficient
accuracy using fixed-point arithmetic, while floating-point arithmetic is generally
required in iterative numerical optimization.
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Fig. 2. Optimal solutionu(x), exact to the left and approximate to the right.
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Fig. 3. Optimal cost function, exactV ∗(x) to the left and approximatêV (x) to the right.

The partition found by Algorithm 1 can be further simplified without any loss of
accuracy. For example, in all the regions in the lower left corner of the partition in
Figure 1, the control is saturated atu = 2 as shown in Figure 2. This unnecessary
partitioning is a consequence of the cost function approximation approach is taken.
The solutions in these regions differ towards the end of the control trajectory and,
hence, their cost differ. Still, it is straightforward to join neighboring regions with
the same solution at the first sample of the control trajectory in a postprocessing
step to reduce the complexity of the partition.
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Fig. 4. Simulation results, where the exact solution are the dashed curves and the approxi-
mate solution are the solid curves.
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7 Conclusions

An offline algorithm for the construction of a PWL explicit state feedback approx-
imation to a general constrained nonlinear receding horizon control problem is
given. It allows very efficient real-time implementation via a binary tree search,
without real-time optimization. It is thus ideally suited for small embedded appli-
cations with low-cost (with only fixed-point arithmetics) real-time computers still
operating at high sampling rates. Another important benefit of the explicit solution
is that its simple implementation reduces software complexity, which is a key issue
in safety-critical applications where real-time optimization is usually avoided.

A Background on parametric programming

For a givenx0 ∈ XF the well known Karush-Kuhn-Tucker (KKT) first-order con-
ditions (Nocedal and Wright 1999)

∇UL(U0; x0) = 0 (A.1)
diag(λ0)G(U0; x0) = 0 (A.2)

λ0≥ 0 (A.3)
G(U0; x0)≤ 0 (A.4)

are necessary for a local minimumU0, with associated Lagrange multiplierλ0 and
the Lagrangian defined as

L(U, λ; x) , J(U ; x) + λT G(U ; x) (A.5)

Consider the optimal active setA0 atx0, i.e. the set of indices to active constraints
in (A.4). The above conditions are sufficient provided the following second order
condition holds:

zT∇2
UUL(U0, λ0; x0)z > 0, for all z ∈ F − {0} (A.6)

withF being the set of all directions where it is not clear from first order conditions
if the cost will increase or decrease:

F = {z ∈ Rp | ∇UGA0(U0; x0)z ≥ 0,

∇UGi(U0; x0)z = 0, for all i with (λ0)i > 0} . (A.7)

The notationGA0 means the rows ofG with indices inA0. The following result
gives local regularity conditions for the optimal solution, Lagrange multipliers and
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optimal cost as functions ofx.

Theorem 5 Consider the problem (6), and letx0 ∈ XF andU0 be given. If

(1) V andG are twice continuously differentiable in a neighborhood of(U0, x0).
(2) The sufficient conditions (A.1)-(A.4) and (A.6) for a local minimum atU0 hold.
(3) Linear independence constraint qualification (LICQ) holds, i.e. active con-

straint gradients∇UGA0(U0; x0) are linearly independent.
(4) Strict complementary slackness holds, i.e.(λ0)A0 > 0.

then

(1) U0 is a local isolated minimum,
(2) For x in a neighborhood ofx0, there exists a unique continuous functionU∗(x)

satisfyingU∗(x) = U0 and the sufficient conditions for a local minimum.
(3) Assume in addition A4 holds, and letx be in a neighborhood ofx0. ThenU∗(x)

is differentiable and the associated Lagrange multipliersλ∗(x) exists, and are
unique and continuously differentiable. Finally, the set of active constraints
is unchanged, and the active constraint gradients are linearly independent at
U∗(x).

2

Parts 1 and 2 are due to (Kojima 1980), while part 3 is due to Theorem 3.2.2 in
(Fiacco 1983). For the fixed active setA0 the KKT conditions (A.1)-(A.2) reduces
to the following system of equations parameterized byx:

∇UJ(U(x); x) +
∑

i∈A0

λi(x)∇UGi(U(x); x) = 0 (A.8)

GA0(U(x); x) = 0 (A.9)

The functionsU(x) andλ(x) implicitly defined by (A.8)-(A.9) are optimal only for
thosex where the active setA0 is optimal. Assumingλ andU are well defined on
X, we characterize the critical regionXA0 where the solution corresponding to the
fixed active setA0 is optimal:

XA0 , {x ∈ X | λ(x) ≥ 0, G(U(x); x) ≤ 0} (A.10)

We remark that in the nonlinear RHC setting, the first two assumption of Theorem 5
are satisfied if the cost function is required to be strictly jointly convex. This implies
uniqueness of solutions, which is clearly necessary for continuity. It remains to
discuss the third requirement, LICQ. As discussed in (Bemporadet al.2002, Tøndel
et al.2001), the LICQ will generally be violated in degenerate critical regions, i.e.
critical regions that are not full-dimensional. However, because the critical regions
are closed sets this only reflects the fact that the dual solution may not be unique.
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Hence, one may exploit the closedness of the critical regions together with the
uniqueness of the solution to establish thatU∗ is continuous, as in (Bemporadet
al. 2002). For an in-depth discussion of regularity properties ofU∗, we refer to
(Fiacco 1983).
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