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Abstract

A fundamental problem in the simulation and control of complex physical systems containing distributed-parameter components concerns
5nite-dimensional approximation. Numerical methods for partial di7erential equations (PDEs) usually assume the boundary conditions
to be given, while more often than not the interaction of the distributed-parameter components with the other components takes place
precisely via the boundary. On the other hand, 5nite-dimensional approximation methods for in5nite-dimensional input–output systems
(e.g., in semi-group format) are not easily relatable to numerical techniques for solving PDEs, and are mainly con5ned to linear PDEs.
In this paper we take a new view on this problem by proposing a method for spatial discretization of boundary control systems based on
a particular type of mixed 5nite elements, resulting in a 5nite-dimensional input–output system. The approach is based on formulating
the distributed-parameter component as an in5nite-dimensional port-Hamiltonian system, and exploiting the geometric structure of this
representation for the choice of appropriate mixed 5nite elements. The spatially discretized system is again a port-Hamiltonian system,
which can be treated as an approximating lumped-parameter physical system of the same type. In the current paper this program is carried
out for the case of an ideal transmission line described by the telegrapher’s equations, and for the two-dimensional wave equation.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In previous works, see e.g. van der Schaft and Maschke
(1995), Maschke, van der Schaft, and Breedveld (1992),
Dalsmo and van der Schaft (1999), van der Schaft (2000a,
b), it has been shown how port-based network modelling
of complex lumped-parameter physical systems naturally
leads to a generalized Hamiltonian formulation of the dy-
namics. In fact, the Hamiltonian is given by the total energy
of the energy-storing elements in the system, while the geo-
metric structure, de5ning together with the Hamiltonian the
dynamics of the system, is given by the power-conserving
interconnection structure of the system, and is called a
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Dirac structure. Furthermore, energy-dissipating elements
may be added by terminating some of the system ports. The
resulting class of open dynamical systems has been called
“port-Hamiltonian systems” (van der Schaft & Maschke,
1995; van der Schaft, 2000a). The identi5cation of the
Hamiltonian structure of the dynamical model is important
for various reasons. From a simulation point of view it
yields information about the energy function and other con-
served quantities in the system, which preferably should be
respected in simulation. Furthermore, it is instrumental in
5nding the most convenient representation of the equations
of motion of the system; in the format of purely di7eren-
tial equations or of mixed sets of di7erential and algebraic
equations (DAEs), see e.g. van der Schaft (2000b). From
an analysis point of view it allows to use the powerful
methods regarding from the theory of Hamiltonian systems.
Finally, the Hamiltonian structure may be fruitfully used
in the control design, e.g. by the explicit use of the energy
function and conserved quantities for the construction of
a Lyapunov function (possibly after the connection with
another port-Hamiltonian controller system), or by directly
modifying by feedback the interconnection and dissipation
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structure and shaping the internal energy. We refer to
Ortega, van der Schaft, Mareels, and Maschke (2001),
van der Schaft (2000a), Ortega, van der Schaft, Maschke,
and Escobar (2002) for various works in this direction.
Recently, the framework of port-Hamiltonian systems

has been extended to classes of distributed-parameter sys-
tems (van der Schaft & Maschke, 2002; Maschke & van der
Schaft, 2000; Talasila, Golo, & van der Schaft, 2002; Golo,
van der Schaft, & Stramigioli, 2003), such as Maxwell’s
equations over a domain with boundary incorporating en-
ergy radiation through its boundary, the n-dimensional
wave equation, compressible ideal Kuids, as well as beam
models (Golo et al. (2003)). Hereto a special type of
in5nite-dimensional Dirac structure has been introduced,
based on Stokes’ theorem. Physically, this Stokes–Dirac
structure captures the basic balance laws of the system,
like Faraday’s and AmpLere’s law or mass balance. The
port-Hamiltonian formulation is a non-trivial extension of
the Hamiltonian formulation of partial di7erential equations
(PDEs) by means of Poisson structures (see e.g. Olver,
1993), since in the latter case it is crucially assumed that the
boundary conditions are such that the energy-Kow through
the boundary of the spatial domain is zero. In order to
allow a non-zero boundary energy-Kow the use of Dirac
structures instead of Poisson structures appears to be indis-
pensable (Maschke & van der Schaft, 2000; van der Schaft
& Maschke, 2002).
As a result, complex physical systems consisting

of components which are either lumped-parameter or
distributed-parameter systems, and which moreover may
belong to di7erent physical domains (mechanical, electrical,
hydraulic, etc.), can be modelled in a uni5ed way.
From a simulation point of view, however, a fundamental

problem concerns the incorporation of the powerful numeri-
cal methods for the solution of PDEs, such as 5nite-element
and 5nite-di7erence methods, into this framework. Also for
control purposes it may be crucial to approximate either
the distributed-parameter system with a 5nite-dimensional
system, or the in5nite-dimensional controller system by a
5nite-dimensional one. This is not an easy task. One fun-
damental problem is the fact that numerical solution meth-
ods for PDEs usually assume the boundary conditions to be
given. On the other hand, more often than not it are precisely
the boundary conditions which represent the interaction of
the distributed-parameter component with the other compo-
nents of the system. A typical simple example is an electrical
circuit containing a transmission line. The transmission line
is usually modeled by PDEs (the telegrapher’s equations)
with boundary conditions being the values of the voltages
and currents at both ends of the cable. Clearly, those volt-
ages and currents cannot be considered to be given, since the
transmission line is connected to the other dynamical compo-
nents of the electrical network. We thus have to approximate
the distributed-parameter system with a 5nite-dimensional
system, while retaining the power port-structure of the sys-
tem (like the boundary voltages and currents in the trans-

mission line example). In this paper we show how this can
be done for the examples of the transmission line and the
two-dimensional wave equation. Indeed, we will show how
the intrinsic Hamiltonian formulation suggests 5nite element
methods which result in 5nite-dimensional approximations
which are again port-Hamiltonian systems. In the case of
the transmission line the basic observation is that in the geo-
metric Hamiltonian formulation the state space variables are
(electric and magnetic) densities, or in geometric language
one-forms, while the voltages and currents are functions on
the spatial domain of the system. Furthermore, in the case
of the two-dimensional wave equation the state variables are
given by one-forms (elastic strains) and two-forms (kinetic
momenta). From a geometric point of view it is natural to
use di7erent 5nite-elements for the approximation of func-
tions, one-forms and two-forms. This point of view was al-
ready stressed in the work by Bossavit (1991, 1998) on the
use of 5nite elements for the computation of solutions of
Maxwell’s equations (for given boundary conditions), and
was shown to lead to mixed (vector) 5nite elements.
The further outline of this paper is as follows. The def-

inition of port-Hamiltonian systems is recalled in Section
2. In Section 3, we introduce the spatial discretization
procedure for the telegrapher’s equations, which preserves
the port-Hamiltonian structure. We show how this im-
plies that certain physical properties, like the existence
of conserved quantities and energy balance, are retained
in the 5nite-dimensional approximation. Furthermore, we
discuss the choice of the approximating functions within
our discretisation scheme, and its physical interpretation.
In Section 4 we apply the discretization procedure to the
two-dimensional boundary-controlled wave equation, writ-
ten in port-Hamiltonian form. Finally, in Section 5 some
simulation results regarding the discretization of the trans-
mission line are presented, while Section 6 contains the
conclusions.
Preliminary versions of results in this paper have been

reported in Talasila et al. (2002), Golo, Talasila and van der
Schaft (2002).

1.1. Notation

Although in this paper we consider only the telegrapher’s
equations and the two-dimensional wave equation, the pro-
posed methodology is applicable to the general class of
distributed-parameter port-Hamiltonian systems as treated
in van der Schaft and Maschke (2002). In order to stress
the generality of our method we throughout employ the
di7erential-geometric framework of di7erential forms on the
spatial domain Z of the system.
In the context of a one-dimensional spatial domain this

means that we distinguish between functions (also called
zero-forms) and one-forms de5ned on the interval repre-
senting the spatial domain of the transmission line. Basi-
cally, functions can be evaluated at any point of the interval,
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while one-forms can be integrated over every sub-interval
of the interval. If we consider a spatial coordinate z for the
interval Z, then a function f is simply given by the val-
ues f(z)∈R for every coordinate value z in the interval,
while a one-form ! is given as g(z) dz for a certain density
function g. Physically, in the transmission line example the
voltages and currents are functions, while the charge and
Kux densities correspond to one-forms. (Note that it does
not make physical sense to talk about the charge at a certain
point of the interval; instead one considers the total charge
contained in a part of the transmission line.) We denote the
set of zero-forms and one-forms on Z by �0(Z), respec-
tively �1(Z). Given a coordinate z for the spatial domain
we obtain by spatial di7erentiation of a function f(z) the
one-form ! := df=dz(z) dz. In coordinate-free language
this is denoted as ! = df, where d is called the exterior
derivative, converting functions into one-forms.
In the case of a two-dimensional spatial domain Z(as in

the example of the two-dimensional wave equation) we have
to distinguish between zero-forms (functions), one-forms
and two-forms. Again, functions are objects which can be
evaluated at any point in the spatial domain. Furthermore,
one-forms are objects which can be integrated along any
line-segment in the spatial domain, while two-forms are ob-
jects which can be integrated over any open part of the spatial
domain. Physically (see Section 4), in the two-dimensional
wave equation the elastic strain is a one-form and the ki-
netic momentum is a two-form. Furthermore, the velocity
is a function and the elastic stress is a one-form. Given
coordinates z1; z2 for the spatial domain, a function is
simply given by the values f(z1; z2)∈R for every point
(z1; z2), while a one-form is expressed as g1(z1; z2) dz1 +
g2(z1; z2) dz2 for certain functions g1; g2. Finally, a two-form
!∈�2(Z) is given by the in5nitesimal area element
k(z1; z2) dz1 dz2 for a certain function k. By spatial di7er-
entiation of a function f(z1; z2) we obtain the one-form
@f=@z1(z1; z2) dz1 + @f=@z2(z1; z2) dz2, while spatial di7er-
entiation of a one-form g1(z1; z2) dz1 + g2(z1; z2) dz2 results
in the two-form (@g2=@z1(z1; z2)− @g1=@z2(z1; z2)) dz1dz2.
In geometric, coordinate-free, language both spatial dif-

ferentiation operations are denoted by the exterior derivative
d, transforming zero-forms into one-forms, and one-forms
into two-forms. In this geometric setting the main theo-
rem of integral calculus on the interval and Gauss’ theorem
on R2 can be generalized to Stokes’ theorem stating that∫
Z

d!=
∫
@Z !, for any (n− 1)-form ! on a n-dimensional

manifold Z with (n− 1)-dimensional boundary @Z.
Furthermore, given a k-form !1 and an ‘-form !2 the

wedge product !1 ∧ !2 is an (k + ‘)-form. For example,
dz1 ∧ dz2 is the two-form commonly denoted as dz1 dz2
(but note that dz2 ∧ dz1 =−dz1 ∧ dz2). Finally, we will use
the Hodge star operator ∗, converting any k-form ! on a
n-dimensional spatial domainZ to an (n−k)-form ∗!. The
de5nition of the Hodge star operator relies on the assumption
of a Riemannian metric on the spatial domain Z; however,
in the present paper this Riemannian metric will simply

be the Euclidean inner product corresponding to a choice
of local coordinates on Z. Thus on the one-dimensional
spatial domain Z with spatial coordinate z we simply have
∗g(z)= g(z) dz, ∗(g(z) dz)= g(z). If Z is two dimensional
with coordinates (z1; z2) then ∗k(z1; z2) = k(z1; z2) dz1dz2
and ∗(k(z1; z2) dz1 dz2) = k(z1; z2), while ∗(g1(z1; z2) dz1 +
g2(z1; z2) dz2) = g1(z1; z2) dz2 − g2(z1; z2) dz1.

2. Dirac structures and port-Hamiltonian systems

The de5nition of a port-Hamiltonian system is based on
grouping the energy-storing elements of the system, leading
to a Hamiltonian function given by the total stored energy,
and formalizing the power-conserving interconnection be-
tween them by the geometric notion of a Dirac structure (see
(van der Schaft & Maschke, 1995, 2002; Dalsmo & van der
Schaft, 1999; van der Schaft, 1999, 2000a, b, for details).

First we recall the de5nition of Dirac structures. Let F,
E be real vector spaces whose elements are labeled as f,
e, respectively. We call F the space of 9ows, and E the
space of e7orts. The product space P := F×E is assumed
to be endowed with a scalar pairing 〈·|·〉 : F × E → R,
formalizing the notion of power:

De�nition 1. Let F, E be real vector spaces. A map 〈·|·〉 :
P =F× E → R is called a scalar pairing if it is linear in
each argument and it is non-degenerate, that is 〈e|f〉 = 0;
∀e∈E ⇒ f = 0 and 〈e|f〉= 0; ∀f∈E ⇒ e = 0.

(In the 5nite-dimensional case the canonical choice for E
is the dual space of F with scalar pairing de5ned by the
duality product.)
P =F × E is called a multi-dimensional (power) port,

and the vector pair p = (f; e) is called the vector of port
variables. On P there exists a bilinear form �;� : P ×
P → R de5ned as

〈〈(f1; e1); (f2; e2)〉〉 := 〈e1|f2〉+ 〈e2|f1〉

De�nition 2. A subspace D ⊂ P is a Dirac structure if
D=D⊥, where ⊥ denotes the orthogonal complement with
respect to the bilinear form �;�.

Actually, this is the de5nition of a constant Dirac struc-
ture on linear spaces as given (in a slightly restricted sense)
in Courant (1990), see also Dorfman (1993). The de5ni-
tion can be extended to (non-constant) Dirac structures on
manifolds; see Courant (1990), Dorfman (1993), as well as
Dalsmo and van der Schaft, 1999. It immediately follows
that 〈e|f〉= 0; ∀(f; e)∈D, formalizing that a Dirac struc-
ture represents a power-conserving interconnection struc-
ture; i.e., the net power in the Dirac structure is zero. The
de5nition of a port-Hamiltonian system can now be stated
as follows. Consider the energy-storing elements of the sys-
tem with energy-variables x living in a total state space X.
The space of energy rate variables will de5ne the linear
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space Fx of internal Kows fx. In general, X is a manifold
but for the purposes of this paper we assume that X is
a linear space (5nite-dimensional for a lumped-parameter
system and in5nite-dimensional for a distributed-parameter
system), implying that Fx =X. Furthermore, consider the
space FB of external (or boundary) Kows fB, modeling
the interaction of the system with its environment (through
the boundary of the system).
After having speci5ed the total space of Kows F as the

product Fx ×FB the space E of conjugated e7orts is con-
structed as follows. Consider a linear space Ex of conjugated
internal e7ort variables ex, together with a scalar pairing
〈·|·〉x : Fx × Ex → R as above. Let EB be a linear space
of boundary e7ort variables eB, together with a scalar pair-
ing 〈·|·〉B : FB × EB → R. De5ne E := Ex × EB, with
〈·|·〉x + 〈·|·〉B the scalar pairing on F× E.
Next we consider a Dirac structureD relating the internal

and boundary Kows fx; fB and internal and boundary e7orts
ex; eB, that is D ⊂ Fx × FB × Ex × EB. Furthermore,
we consider a Hamiltonian H : X → R representing the
total energy stored in the system. Under weak smoothness
conditions on H

H (x + �x)− H (x) = 〈�xH |�x〉x + o(�x); ∀�x (1)

for a certain conjugated internal e7ort �xH ∈Ex, called the
vector of co-energy variables. In the 5nite-dimensional case
�xH is just the gradient of H (the vector of partial deriva-
tives), while in the in5nite-dimensional case �xH will be
the variational derivative; see Olver (1993) for details.
As said before, the internal Kows fx are the Kows con-

nected to the energy-storing elements, and thus are set equal
to the rate of the energy variables: fx = ẋ∈X, while the
internal e7orts ex are set equal to the vector of co-energy
variables: ex = �xH . Finally, the dynamical system de5ned
by the relations

(ẋ(t); fB(t); �xH (x(t)); eB(t))∈D; t ∈R;
is called a port-Hamiltonian system. This de5nition of
port-Hamiltonian systems includes in general the occur-
rence of algebraic constraints, whereas in the absence of
algebraic constraints the Dirac structure specializes to a
Poisson structure; see e.g. van der Schaft (2000a), Ortega
et al. (2001).
An important class of in5nite dimensional port-

Hamiltonian systems, modelling a large class of boundary
control distributed-parameter systems, is de5ned as follows
(see Maschke & van der Schaft (2000), van der Schaft &
Maschke (2002) for details). Let Z be an n-dimensional
smooth manifold with (n−1)-dimensional smooth boundary
@Z. The state spaceX is de5ned asX := �nq(Z)×�np(Z),
with nq+np=n+1. Here�n•(Z) stands for the space of ex-
terior n•-forms onZ. An element of the spaceX is denoted
by x = [q; p]T. The spaces Fx, Ex are de5ned as Fx :=
�nq(Z)× �np(Z) and Ex := �n−nq(Z)× �n−np(Z), and
the elements fx ∈Fx, ex ∈Fx are given as fx = [fq; fp]T

and ex = [eq; ep]T. Furthermore, the spaces FB, EB are

de5ned as FB := �n−np(@Z), EB := �n−nq(@Z) with cor-
responding boundary Kows and e7orts denoted byfB and eB,
respectively. It has been shown in van der Schaft &Maschke
(2002) that the following system de5nes a port-Hamiltonian
system:[

fq

fp

]
=

[
0 −d

(−1)n
pnq d 0

][
eq

ep

]
; (2a)

fB = ep|@Z; eB =−(−1)n
q
eq|@Z; (2b)

fq =
dq
dt

; fp =
dp
dt

; (2c)

eq = �qH; ep = �pH: (2d)

Here |@Z denotes the restriction to the boundary @Z. The
space of all admissible Kows end e7orts satisfying (2a),
(2b) represents a Dirac structure (called Stokes–Dirac struc-
ture Maschke & van der Schaft (2000), van der Schaft &
Maschke (2002)), with respect to the scalar pairing∫

Z

eq ∧ fq +
∫
Z

ep ∧ fp +
∫
@Z

eB ∧ fB: (3)

A large class of boundary control distributed-parameter
systems are represented by Eq. (2): transmission line, nD
wave equation, uniaxial bar, torsional bar, 1D compress-
ible Kuid, Maxwell’s equations, and so on. Furthermore,
port-Hamiltonian systems described by (2) are the basic
building blocks for Hamiltonian models of beams, shells,
and in general, Kexible structures. For later use we recall
two basic properties of port-Hamiltonian systems (2) (see
van der Schaft & Maschke (2002) for details):

• Energy balance: dH
dt (t) +

∫
@Z eB(t) ∧ fB(t) = 0,

• Conserved quantities:
◦ If nq = n then d

dt

∫
Z
q=

∫
@Z ep,

◦ If np = n then d
dt

∫
Z
p=

∫
@Z eq,

◦ If nq ¡n then d
dt dq= 0,

◦ If np ¡n then d
dt dp= 0.

The 5rst property expresses a basic property of any
port-Hamiltonian system: the increase in stored energy
(Hamiltonian) is equal to the power supplied by the envi-
ronment. The second class of properties is strictly related to
the de5nition of the Stokes–Dirac structure, and expresses
the basic conservation laws of the system (like conservation
of charge in the example of the transmission line; see the
next section).

3. Spatial discretization of the transmission line

The spatial domain on which the variables of the trans-
mission line are de5ned is the interval Z= [0; S]. The tele-
grapher’s equations for the ideal transmission line without
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energy dissipation are given by the PDEs
@q
@t

=−@I
@z

;
@�
@t

=−@V
@z

; (4)

where q(t; z) denotes the charge density and�(t; z) is the Kux
density, and where the current I and voltage V are given by

I(t; z) =
�(t; z)
L(z)

; V (t; z) =
q(t; z)
C(z)

(5)

with C(z); L(z) being, respectively, the distributed capaci-
tance and distributed inductance of the line. Furthermore,
the boundary Kow and e7ort variables are given by the volt-
ages and currents at both ends of the line:

eBL(t) = V (t; 0); eBR(t) = V (t; S);

fBL(t) = I(t; 0); fBR(t) = I(t; S): (6)

These PDEs can be immediately seen to be in port-
Hamiltonian form (2), with n= np = nq = 1, replacing the
letter p by �:

fq =−de�; f� =−deq; (7a)

fB
0 = e�|z=0; fB

S = e�|z=S ;

eB0 = eq|z=0; eBS = eq|z=S ; (7b)

H =Hq + H� =
∫
Z

∗q(z)
2C(z)

q(z)

+
∫
Z

∗�(z)
2

L(z)�(z); (7c)

fq =
@q
@t

; f� =
@�
@t

; (7d)

eq = �qH =
∗q(z)
C(z)

; e� = ��H =
∗�(z)
L(z)

: (7e)

The physical meaning of the variables and parameters are
summarized in Table 1.
The energy balance for the transmission line takes the

form dH=dt(t)−fB
0 e

B
0 +fB

S e
B
S =0, while there exist two con-

served quantities dQ=dt(t)−fB
0 +fB

S =0 and d�=dt(t)−eB0 +
eBS =0, where Q :=

∫
Z
q and � :=

∫
Z
� are the total charge

and the total Kux of the transmission line, respectively.

Remark 1. Note that for a non-quadratic electro-magnetic
energy H we may still de5ne the co-energy variables
eq = �qH and e� = ��H . In this way we can obtain non-
linear models for the transmission line (which still are in
port-Hamiltonian form); cf. van der Schaft and Maschke
(2002).

The spatial discretization procedure as proposed in this
section consists of two steps. First, the interconnection
structure of the distributed parameter model is spatially
discretized, and secondly the constitutive relations of the en-
ergy storage part of the transmission line are approximated.
In Sections 3.1, 3.2 these two steps are applied to a single
discretized lump of the transmission line. Afterwards in

Table 1

Variable Meaning Space

q In5nitesimal charge �1(Z)
� In5nitesimal Kux �1(Z)
fq In5nitesimal charge rate �1(Z)
f� In5nitesimal Kux rate �1(Z)
eq Voltage distribution �0(Z)
e� Current distribution �0(Z)
fB
0 Boundary current at left end R

fB
S Boundary current at right end R

eB0 Boundary voltage at left end R
eBS Boundary voltage at right end R
C(z) Distributed capacitance C∞(Z)
L(z) Distributed inductance C∞(Z)

Section 3.3 we show how to apply the strategy to the trans-
mission line split into multiple parts. Finally, the choice
of the approximating functions in order to preserve ad-
ditional physical properties of the system is discussed in
Section 3.4.

3.1. Spatial discretization of the interconnection structure

Consider a part of the transmission line between two
points a and b (06 a¡b6 S). The spatial manifold cor-
responding to this part of transmission line is Zab = [a; b].
The voltage at the point a is denoted by eBa and the current at
the point is denoted by fB

a . Similarly, the voltage and cur-
rent at the point b are denoted by eBb and fB

b , respectively.
The relations between the boundary variables fB

a , e
B
a , f

B
b ,

eBb and the e7orts eq, e� are by (7b)

eBa (t) = eq(t; a); eBb (t) = eq(t; b); (8a)

fB
a (t) = e�(t; a); fB

b (t) = e�(t; b): (8b)

Our discretization method is based on the following:

Assumption 1 (Approximation offq andf�). The in5nite-
simal charge rate fq and the in5nitesimal Kux rate f� are
approximated on Zab as

fq(t; z) = fq
ab(t)!

q
ab(z); (Thus: !q

ab(z)) (9a)

f�(t; z) = f�
ab(t)!

�
ab(z); (9b)

where the one-forms !q
ab; !

�
ab satisfy∫

Zab

!q
ab = 1;

∫
Zab

!�
ab = 1: (10)

Remark 2. Since the in5nitesimal charge q belongs to the
same space as the Kowfq it will be approximated as q(t; z)=
Qab(t)!

q
ab(z). Hence by condition (10) Qab equals the to-

tal charge of the considered lump of the transmission line.
Similarly for the total Kux.
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Assumption 2 (Approximation of eq and e�). Theco-energy
variables voltage eq(t; z) and current e�(t; z) are approxi-
mated as

eq(t; z) = eqa(t)!
q
a(z) + eqb(t)!

q
b(z); (11a)

e�(t; z) = e�a (t)!
�
a (z) + e�a (t)!

�
b (z); (11b)

where the zero-forms !q
a; !

q
b; !

�
a ; !

�
b ∈�0(Zab) satisfy

!q
a(a) = 1; !q

a(b) = 0; !q
b(a) = 0; !q

b(b) = 1; (12a)

!�
a (a) = 1; !�

a (b) = 0; !�
b (a) = 0; !�

b (b) = 1: (12b)

Remark 3. Note that the variables eq(t; z), e�(t; z) at the
point a equal eBa (t); f

B
a (t), respectively, and at the point b

equal eBb (t); f
B
b (t). Hence the e7ort eq(t; z) cannot be ap-

proximated with only one zero-form since otherwise eBa and
eBb are dependent. Similarly for e�(t; z).

Inserting (9a), (11b) and (9b),(11a) into (7a) gives

fq
ab(t)!

q
ab(z) =−e�a (t) d!

�
a (z)− e�b (t) d!

�
b (z); (13a)

f�
ab(t)!

�
ab(z) =−eqa(t) d!

q
a(z)− eqb(t) d!

q
b(z): (13b)

Assumption 3 (Compatibility of forms). (1) The one-form
!q

ab and functions !�
a , !

�
b should be chosen in a such way

that for every e�a , e
�
b we can 5nd fq

ab such that (13a) is
satis5ed.
(2) The one-form !�

ab and functions !q
a, !

q
b should be

chosen in a such way that for every eqa, e
q
b we can 5nd f�

ab
such that (13b) is satis5ed.

Assumption 3 implies the following relations between the
one-forms !q

ab chosen in Assumption 1 and the functions
!�

a , !
�
b chosen in Assumption 2. Take e�b =0. Then (13a) is

true if and only if d!�
a = c!q

ab, for a constant c. Integrating
this over Zab yields !�

a (b) − !�
a (a) = c

∫
Zab

!q
ab. Taking

into account relations (12a), (10), one proves that c = −1.
Therefore

d!�
a =−!q

ab: (14a)

On the other hand, by choosing e�a = 0, one proves that

d!�
b = !q

ab: (14b)

Using a similar argument as above, it can be shown that

d!q
a =−!�

ab; d!q
b = !�

ab: (14c)

We conclude that as a consequence of Assumption 3 the
functions !q

a, !
q
b, !

�
a , !

�
b are completely determined by the

one-forms !q
ab, !

�
ab. For later use we state some additional

properties of the basis functions and zero forms.

Proposition 1. !q
a, !

q
b, !

�
a , !

�
b , !

q
ab, !

�
ab satisfy

(i) !q
a(z) + !q

b(z) = 1,
(ii) !�

a (z) + !�
b (z) = 1,

(iii)
∫
Zab

!q
a(z)!

q
ab(z) +

∫
Zab

!q
b(z)!

q
ab(z) = 1,

(iv)
∫
Zab

!�
a (z)!

�
ab(z) +

∫
Zab

!�
b (z)!

�
ab(z) = 1,

(v)
∫
Zab

!q
a(z)!

q
ab(z) +

∫
Zab

!�
a (z)!

�
ab(z) = 1.

Proof.

(i) d(!q
a + !q

b) =
(14c)

0 ⇒ !q
a(z) + !q

b(z)

=!q
a(a) + !q

b(a) =
(12a)

1;

(ii) d(!�
a + !�

b ) =
(14a);(14b)

0 ⇒ !�
a (z) + !�

b (z)

=!�
a (0) + !�

b (0) =
(12b)

1;

(iii)
∫
Zab

!q
a(z)!

q
ab(z) +

∫
Zab

!q
b(z)!

q
ab(z)

=
∫
Zab

(!q
a(z) + !q

b(z))!
q
ab(z)=(i)

∫
Zab

!q
ab =(10)

1;

(iv)
∫
Zab

!�
a (z)!

�
ab(z) +

∫
Zab

!�
b (z)!

�
ab(z)

=
∫
Zab

(!�
a (z) + !�

b (z))!
�
ab(z)=(ii)

∫
Zab

!�
ab =(10)

1;

(v)
∫
Zab

!q
a(z)!

q
ab(z) +

∫
Zab

!�
a (z)!

�
ab(z)

=
(14a);(14c)

−
∫
Zab

d(!q
a!

�
a ) = !q

a(a)!
�
a (a)

−!q
a(b)!

�
a (b) =(12)

1:

Remark 4. The simplest choice for the functions !q
a, !

q
b,

!�
a , !

�
b and one-forms !q

ab, !
�
ab satisfying all the conditions

are linear splines. Indeed, we may take !q
a, !

q
b, !

�
a , !

�
b to

be the linear splines de5ned by (12), and the one-forms
!q

ab, !
�
ab to be the one-forms with corresponding density

function equal to 1=(b − a), and zero outside. From a
di7erential-geometric point of view this corresponds to the
Whitney zero-forms and one-forms, see Bossavit (1991,
1998).

The spatially discretized interconnection structure corre-
sponding to the considered part of the transmission line
is obtained as follows. Inserting (14a), (14b) into (13a)
gives fq

ab(t)!
q
ab(z)= e�a (t)!

q
ab(z)− e�b (t)!

q
ab(z). Integrating

this over Zab gives

fq
ab(t) = e�a (t)− e�b (t): (15a)
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Similarly using (13b) one proves that

f�
ab(t) = eqa(t)− eqb(t): (15b)

For the sake of clarity, the argument t is omitted in the rest
of this subsection. The relations describing the spatially dis-
cretized interconnection structure of the part of transmission
line are thus given by (see Remark 3 and Eqs. (8) and (8b))


eBa

eBb

fB
a

fB
b

fq
ab

f�
ab



=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1

1 −1 0 0






eqa

eqb

e�a

e�b


 : (16)

The net power of the considered part of the transmission
line is∫

Zab

eq(z)fq(z) +
∫
Zab

e�(z)f�(z)− eBa f
B
a + eBb f

B
b : (17)

Inserting (9a), (11) into (17), where the properties (iii),
(iv), (v) of Proposition 1 are taken into account, gives

Pnet
ab = [%abeqa + (1− %ab)e

q
b]f

q
ab + [(1− %ab)e�a

+%abe
�
b ]f

�
ab − eBa f

B
a + eBb f

B
b ; (18)

where %ab :=
∫
Zab

!q
a(z)!

q
ab(z). Expression (18) is used for

the identi5cation of the port variables of the discretized in-
terconnection structure. The third term and the fourth term
on the right side of (18) imply that the port variables of the
incoming port are (fB

a ; e
B
a ) and that the port variables of the

outgoing port are (fB
b ; e

B
b ). The 5rst term, the power supplied

to or taken from the electrical part of the part of the trans-
mission line, implies that the Kow variable of the electric
port is fq

ab and that the e7ort variable is %abe
q
a +(1−%ab)e

q
b.

Similarly, the second term implies that the port variables of
the magnetic port are (f�

ab; (1 − %ab)e
�
a + %abe

�
b ). Thus by

de5ning

eqab := %abeqa + (1− %ab)e
q
b;

e�ab := (1− %ab)e�a + %abe
�
b (19)

the expression for Pnet
ab becomes

Pnet
ab = 〈eab|fab〉= fq

abe
q
ab + f�

abe
�
ab − eBa f

B
a + eBb f

B
b ; (20)

where fab = [fq
ab; f

�
ab; f

B
a ; f

B
b ]

T, eab = [eqab; e
�
ab; e

B
a ; e

B
b ]

T.

Remark 5. Observe that in contrast to (20) the expression
(18) does not de5ne a scalar pairing as in De5nition 1 since

Pnet
ab =0 for every (fq

ab; f
�
ab; f

B
a ; f

B
b ) does not imply that the

vector (eqa; e
q
b; e

�
a ; e

�
b ; e

B
a ; e

B
b ) is zero.

Elimination of eqa; e
q
b; e

�
a ; e

�
b from (16), (19) gives


−1 0 %ab %ba

0 −1 0 0

0 0 0 0

0 0 −1 1




︸ ︷︷ ︸
Eab



eqab

e�ab

eBa

eBb




+



0 0 0 0

0 0 %ba %ab

1 0 −1 1

0 1 0 0




︸ ︷︷ ︸
Fab



fq
ab

f�
ab

fB
a

fB
b


= 0; (21)

where %ba = 1 − %ab. Eq. (21) represents the spa-
tially discretized interconnection structure, which we
abbreviate to

Dab = {(fab; eab)∈R8 : Eabeab + Fabfab = 0}: (22)

Proposition 2. The subspace Dab is a Dirac structure with
respect to the bilinear form

〈〈(f1
ab; e

1
ab); (f

2
ab; e

2
ab)〉〉= 〈e1ab; f2

ab〉+ 〈e2ab; f1
ab〉: (23)

Proof. Dab is a Dirac structure with respect to the bilin-
ear form given by (23) if and only if (van der Schaft &
Maschke, 1995; Dalsmo & van der Schaft, 1999; van der
Schaft, 2000a):
(i) Rank condition: rank[FabEab] = 4.
(ii) Zero net power: FabRET

ab + EabRFT
ab = 0, where the

matrix R = diag{1; 1;−1; 1} represents the signs in the ex-
pression for the net power Pnet

ab described by (20).
Both conditions are easily checked.

3.2. Approximation of the energy part of the transmission
line

After the spatial discretization of the interconnec-
tion structure, the next step is to discretize the consti-
tutive relations of the energy storage. Recall that in the
port-Hamiltonian representation the system is speci5ed by
its Dirac structure—the interconnection structure-, together
with its Hamiltonian—the constitutive relations of the
energy storage.
Both the Kow variables fq and f� and the energy vari-

ables q and � are one-forms. Hence, since fq and f� are
approximated by (9), and they are related to q and � by
(7d), it is consistent to approximate q and � on Zab in the
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same way by

q(t; z) = Qab(t)!
q
ab(z); �(t; z) = �ab(t)!

�
ab(z); (24)

where

dQab(t)
dt

= fq
ab(t);

d�ab(t)
dt

= f�
ab(t): (25)

Observe that Qab represents the total amount of charge of
the considered part of the transmission line and �ab rep-
resents the total amount of Kux of the same part (see also
Remark 2).
The electric energy as a function of the energy vari-

able q is given by (see (7c))
∫
Zab

∗(q(t; z)=2C(z))q(t; z).
Approximation of the in5nite-dimensional energy variable q
by (24) means that we restrict the in5nite-dimensional
space of one-forms �1(Zab) to its one-dimensional sub-
space spanned by !q

ab. This leads to the approximation of
the electric energy of the considered part of the transmission
line by

Hq
ab(Qab(t)) =

Q2
ab(t)
2Cab

; (26a)

where

C−1
ab :=

∫
Zab

∗
(
!q

ab(z)
C(z)

)
!q

ab(z): (26b)

Note that this is nothing else than the restriction of the
electric energy function to the one-dimensional subspace of
�1(Zab) spanned by !q

ab. Similarly, the magnetic energy is
approximated by

Hq
ab(�ab(t)) =

�2
ab(t)
2Lab

; (27a)

where

L−1
ab :=

∫
Zab

∗
(
!�

ab(z)
C(z)

)
!�

ab(z): (27b)

Therefore, the total energy of the considered part of the
transmission line is approximated by

Hab(Qab; �ab) = Hq
ab(Qab) + H�

ab(�ab) =
Q2

ab

2Cab
+

�2
ab

2Lab
:

(28)

In order to de5ne the discretized dynamics, we equate the
discretized e7ort variables eqab, e

�
ab of the discretized inter-

connection structure as de5ned in (19) with the co-energy
variables corresponding to the total approximated energy
Hab of the considered part of the transmission line:

eqab(t) =
@Hab(Qab; �ab)

@Qab
(t) =

Qab(t)
Cab

;

e�ab(t) =
@Hab(Qab; �ab)

@�ab
(t) =

�ab(t)
Lab

: (29)

Eqs. (21) (interconnection structure) and (25),(29) (con-
stitutive relations of the magnetic and electric ports)
represent a 5nite-dimensional model of the transmission
line. As noted before the discretized interconnection struc-
ture is a (5nite-dimensional) Dirac structure. Hence (21),
(25), (29) represents a 5nite-dimensional port-Hamiltonian
system (see e.g. van der Schaft & Maschke, 1995; van der
Schaft, 2000a) with Hamiltonian given by (28).

Remark 6. The usual physical approximation of the trans-
mission line by an LC-circuit corresponds to the case %ab
equal to 0 or 1, depending on the ordering of the capacitor
and the inductor. The corresponding choice of the one-forms
!q

ab and !�
ab is the Dirac distribution at a, while the choice

for the functions !q
a, !

q
b and !�

a , !
�
b is either the square

pulse on Zab with height 1=(b− a) or the zero-function.

Note that the approximation as given above can be also
performed if the Hamiltonian of the transmission line is not
quadratic in q(t; z) and �(t; z), cf. Remark 1.

3.3. Spatial discretization of the transmission line

The transmission line is split into n parts. The ith part
(Si−1; Si) is discretized as explained in the previous two sub-
sections, where a = Si−1 and b = Si. The resulting model
consists of n sub-models where each of them represents
a port-Hamiltonian system. Since the power connection of
port-Hamiltonian systems is again a port-Hamiltonian sys-
tem (see van der Schaft, 1999) the total discretized system
is also a port-Hamiltonian system, whose interconnection
structure is given by the composition of the n Dirac struc-
tures on (Si−1; Si), while the total Hamiltonian is given by
the sum of the individual Hamiltonians

H (Q;�) =
n∑

i=1

Q2
Si−1 ; Si

2CSi−1 ; Si
+

n∑
i=1

�2
Si−1 ; Si

2LSi−1 ; Si
:

Here Q = (QS0 ;S1 ; QS1 ;S2 ; : : : ; QSn−1 ;Sn)
T are the discretized

charges and �=(�S0 ;S1 ; �S1 ;S2 ; : : : ; �Sn−1 ;Sn)
T is the vector of

discretized Kuxes.
The total discretized model still has two ports. The port

(fB
S0 ; e

B
S0 ) = (fB

0 ; e
B
0 ) is incoming and the port (fB

Sn ; e
B
Sn) =

(fB
S ; e

B
S ) is outgoing, resulting in the energy balance for the

discretized model

dH (Q(t); �(t))
dt

− eB0f
B
0 + eBS f

B
S = 0:

Eq. (15a) for the ith part becomes fq
Si−1 ;Si(t) = e�Si−1

(t) −
eS�

i
(t). Taking into account (25) and e�S0 = fB

0 , e
�
Sn = fB

S ,

we have dQ(t)=dt = fB
0 − fB

S , where Q :=
∑n

i=1 QSi−1 ;Si
is the total charge of the transmission line. This repre-
sents charge conservation. Another conserved quantity (Kux
conservation) is obtained from Eqs. (15b) and (25), i.e.
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d�(t)=dt = eB0 − eBS , where �=
∑n

i=1 �Si−1 ;Si represents the
total 9ux of the transmission line.

3.4. Choice of approximating one-forms

In this section we show how to choose the approximat-
ing one-forms satisfying (10) in such a way that additional
physical characteristics of the system are taken into account.
First we note that by (7e) q(t; z) = C(z) ∗ eq(t; z). Hence,
since ∗eq(t; z)=eq(t; z) dz, the total charge of the considered
part of the line is also given by

Qab(t) =
∫
Zab

q(t; z) =
∫
Zab

C(z)eq(t; z) dz: (30)

Approximating the e7ort variable eq(t; z) on the right-hand
side as in Assumption 2 yields∫
Zab

C(z)eq(t; z)

=
(∫

Zab

C(z)!q
a(z) dz

)
eqa(t)

+
(∫

Zab

C(z)!q
b(z) dz

)
eqb(t):

On the other hand, the left-hand side of (30) is by (29) equal
to

Qab(t) = Cab%abeqa(t) + Cab(1− %ab)e
q
b(t): (31)

Equating both sides gives

Cab%ab =
∫
Zab

C(z)!q
a(z) dz;

Cab(1− %ab) =
∫
Zab

C(z)!q
b(z) dz: (32)

Similarly, the total Kux of the part of the transmission line
is given by

�ab(t) =
∫
Zab

�(t; z) =
∫
Zab

L(z)e�(t; z) dz (33)

and we may impose the following conditions on !�
a , !

�
b

Lab%ab =
∫
Zab

L(z)!�
a (z) dz;

Lab(1− %ab) =
∫
Zab

L(z)!�
b (z) dz: (34)

Proposition 3. The conditions (32) and (34) are satis=ed
if and only if

(i) %ab =
∫
Zab

C(z)
Cab

dz; (ii) Cab =
∫
Zab

C(z) dz;

(iii) %ab =
∫
Zab

L(z)
Lab

dz; (iv) Lab =
∫
Zab

L(z) dz:

Proof. Condition (i) is actually a rewritten version of the
5rst part of (32). Condition (ii) is obtained by summing
the terms of (32) and taking into account condition (i) of
Proposition 1. Conversely, multiplying (i) with Cab and sub-
tracting the obtained result from (ii) gives the second part
of (32), since condition (i) of Proposition 1 holds. Similarly
(34) implies conditions (iii) and (iv) and vice-versa.

The following choice of the one-forms !q
ab, !

�
ab satis5es

Assumption 1 and conditions (i)–(iv):

!q
ab =

C(z) dz∫
Zab

C(z) dz
; !�

ab =
L(z) dz∫

Zab
L(z) dz

: (35)

Remark 7. The choice (35) takes into account the capac-
itance and inductance functions C(z) and L(z). If they are
constant then !q

ab and !�
ab are one-forms corresponding to

the constant density function with value 1=(b− a) (cf. Re-
mark 6). However, if C(z) and L(z) are not constant then
so are !q

ab and !�
ab; see Section 5.

4. Two-dimensional case

In this section we indicate that the discretization pro-
cedure used for one-dimensional distributed-parameter
port-Hamiltonian systems has a natural extension to
higher-dimensional cases, by explicitly showing the exten-
sion to the two-dimensional wave equation.

4.1. Port-Hamiltonian formulation of the wave equation

Consider the wave equation * Tu+EUu=0; u(t; z)∈R; z=
(z1; z2)∈Z, where * is the mass density, E is Young’s
modulus, , is the (two-dimensional) Laplacian operator,
and Z is a two-dimensional spatial domain with boundary.
This equation, for example, models the vertical movement
u(t; z1; z2) of a vibrating membrane. It can be formulated as
a port-Hamiltonian system with boundary port variables as
follows (see Talasila et al., 2002, for details, as well as for the
port-Hamiltonian formulation of the general n-dimensional
wave equation).
The energy variables are the 2-form kinetic momen-

tum p(t; z1; z2), and the 1-form elastic strain -(t; z1; z2)(:=
@u=@z1 dz1 + @u=@z2 dz2). The co-energy variables are the
0-form velocity v(t; z1; z2) = @H=@p and the 1-form stress
/(t; z1; z2) = @H=@-. Here H is the energy density de5ned
as H(p; -) = 1

2 (- ∧ / + p ∧ v), where ∧ is the wedge
product, and thus the co-energy variables / and v are re-
lated to the energy variables by the constitutive relations
/ = E ∗ -; v = 1=* ∗ p, where ∗ denotes the Hodge star
operator corresponding to a choice of the Riemannian met-
ric on Z. The wave equation can be represented as the
port-Hamiltonian system (note the opposite sign convention
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with respect to (2))[
-̇

ṗ

]
=

[
0 d

−d 0

][ @H
@-

@H
@p

]
;

[
vB

/B

]
=

[
0 1

1 0

][ @H
@- |@Z
@H
@p |@Z

]
(36)

with d- = 0. Indeed, substituting - = du in the 5rst part of
(36) we obtain d(u̇−1=*∗p)=0, and thus u̇=1=*∗p+f(t).
Without loss of generality we may set f(t) = 0 since f(t)
is the motion of the membrane as a whole. Next we write
the second part of (36) as ∗ṗ=− ∗ d(E ∗ -) and substitute
∗p = *u̇. This yields (due to - = du) * Tu + E(∗d ∗ d)u = 0
which is the geometric version of the wave equation. The
second expression in (36) de5nes the boundary Kow vari-
ables vB and boundary e7ort variables /B as the velocity v=
@H=@p, respectively the stress /= @H=@-, restricted to the
boundary.

4.2. Interconnection structure

Passing from the interval grid for the one-dimensional
case, we move onto the simplest possible grid for the
two-dimensional example—the triangular grid. We denote
byZabc the triangular grid de5ned by the three points a; b; c.
The edges of the grid are denoted as {ab; bc; ca}, and the
facet as abc.

Assumption 4 (Approximation of Kow variables). The
two-form rate kinetic momentum fp and the one-form rate
elastic strain f- are approximated on Zabc as

fp(t; z) = fp
abc(t)w

p
abc(z); (37a)

f-(t; z) = f-
ab(t)w

-
ab(z) + f-

bc(t)w
-
bc(z) + f-

ca(t)w
-
ca(z);

(37b)

where the one-forms w-
l(z); l∈{ab; bc; ca}, and the

two-forms wp
abc(z) satisfy the following conditions:

∫
l′
w-
l =

{
0 if l �= l′;

1 if l= l′;

∫
Zabc

wp
abc = 1:

Assumption 5 (Approximation of e7orts). The e7ort vari-
ables, the zero-form velocity ev, and the one-form elastic
stress e/, are approximated as

ev(t; z) = eva(t)w
v
a(z) + evb(t)w

v
b(z) + evc(t)w

v
c(z); (38a)

e/(t; z) = e/ab(t)w
/
ab(z) + e/bc(t)w

/
bc(z) + e/ca(t)w

/
ca(z);

(38b)

where the following conditions need to be satis5ed∫
l′
w/
l =

{
0 if l �= l′;

1 if l= l′;
wv
x(y) =

{
0 if x �= y;

1 if x = y:

with l; l′ ∈{ab; bc; ca}, x∈{a; b; c} and y∈{a; b; c}.

Assumption 6 (Boundary variables). The boundary port
variables are the zero-form velocity fB(t; z) and the
one-form stress eB(t; z). They are approximated on @Zabc as

fB = fB
a (t)w

v
a(z) + fB

b (t)w
v
b(z) + fB

c (t)w
v
c(z); (39a)

eB = eBab(t)w
/
ab(z) + eBbc(t)w

/
bc(z) + eBca(t)w

/
ca(z): (39b)

It is clear that in this way Remarks 2 and 3 generalize to
the two-dimensional case.
Inserting the corresponding variables into Eq. (36) we

obtain the following relations:

fp
abc(t)w

p
abc(z) =

−d(e/ab(t)w
/
ab(z) + e/bc(t)w

/
bc(z) + e/ca(t)w

/
ca(z)); (40a)

f-
ab(t)w

-
ab(z) + f-

bc(t)w
-
bc(z) + f-

ca(t)w
-
ca(z)

=d(eva(t)w
v
a(z) + evb(t)w

v
b(z) + evc(t)w

v
c(z)): (40b)

Assumption 7 (Compatibility of forms). The two-form
wp
abc(z) and one-forms w/

ab(z); w
/
bc(z); w

/
ca(z) should be

chosen such that for every e/ab(t); e
/
bc(t); e

/
ca(t) we can 5nd

fp
abc(t) such that (40a) is satis5ed.
A similar compatibility is demanded for (40b).

Suppose that e/bc(t) = e/ca(t) = 0, then (40a) is satis5ed
for every e/ab(t) if and only if wp

abc(z) = 3a dw/
ab(z). Hence,∫

Zabc
wp
abc(z) = 3a

∫
Zabc

dw/
ab(z) = 3a

∫
@Zabc

w/
ab(z) implying

that 3a = 1. Therefore,

dw/
ab(z) = wp

abc(z) (41a)

and similarly

dw/
bc(z) = wp

abc(z); dw/
ca(z) = wp

abc(z): (41b)

Inserting (41a), (41b) and integrating over Zabc gives

fp
abc(t) =−e/ab(t)− e/bc(t)− e/ca(t): (42)

Taking evb(t) = evc(t) = 0 Eq. (40b) is satis5ed if and
only if dwv

a(z) = 3abw-
ab(z) + 3bcw-

bc(z) + 3caw-
ca(z). Thus∫

ab dwv
a(z) =

∫
ab(3abw

-
ab(z) + 3bcw-

bc(z) + 3caw-
ca(z)) yield-

ing 3ab = −1. Similarly integrating along bc and ca gives
3bc = 0 and 3ca = 1. Therefore,

dwv
a(z) = w-

ca(z)− w-
ab(z): (43a)

Similarly we can show that

dwv
b(z) = w-

ab(z)− w-
bc(z);

dwv
c(z) = w-

bc(z)− w-
ca(z): (43b)
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Substituting (43a), (43b) into (40b) we obtain

f-
ab(t) = evb(t)− eva(t); f-

bc(t) = evc(t)− evb(t);

f-
ca(t) = eva(t)− evc(t): (44)

Finally, the boundary conditions imply

eva(t)w
v
a(z) + evb(t)w

v
b(z) + evc(t)w

v
c(z)

=fB
a (t)w

v
a(z) + fB

b (t)w
v
b(z) + fB

c (t)w
v
c(z);

e/ab(t)w
/
ab(z) + e/bc(t)w

/
bc(z) + e/ca(t)w

/
ca(z)

=eBab(t)w
/
ab(z) + eBbc(t)w

/
bc(z) + eBca(t)w

/
ca(z);

which yields

eva(t) = fB
a (t); e

v
b(t) = fB

b (t); e
v
c(t) = fB

c (t);

e/ab(t) = eBab(t); e
/
bc(t) = eBbc(t); e

/
ca(t) = eBca(t): (45)

Combining all these relations we obtain the relations de-
scribing the spatially discretized interconnection structure of
the cell, just as in (21). As before we compute the net power,
and by identifying the port variables we then derive the dis-
cretized interconnection structure. The net power of the cell
is the sum of the power of the kinetic domain, the elastic po-
tential domain and the boundary, i.e. Pnet

abc=Pp
abc+P-

abc+PB
abc.

The power corresponding to the kinetic domain is

Pp
abc(t) =

∫
Zabc

ev(t; z) ∧ fp(t; z)

=fp
abc(t)[%a;abce

v
a(t) + %b;abcevb(t) + %c;abcevc(t)];

(46)

where

%m;abc :=
∫
Zabc

wv
m(z) ∧ wp

abc(z); m∈{a; b; c}:

We identify the ports of the kinetic domain as (fp
abc(t); e

p
abc(t))

where epabc(t) = %a;abceva(t) + %b;abcevb(t) + %c;abcevc(t). Now
we look at the power corresponding to the boundary

PB
abc(t) =

∫
@Zabc

eB(t; z) ∧ fB(t; z)

=eBab(t)[5a;abf
B
a + 5b;abfB

b (t) + 5c;abfB
c (t)]

+eBbc(t)[5a;bcf
B
a + 5b;bcfB

b (t) + 5c;bcfB
c (t)]

+eBca(t)[5a;caf
B
a + 5b;cafB

b (t) + 5c;cafB
c (t)] (47)

with 5m;l =
∫
@Zabc

wv
m ∧ w/

l ; m∈{a; b; c}; l∈{ab; bc; ca}.
We identify the ports on the boundary as (fB

ab(t); e
B
ab(t)),

(fB
bc(t); e

B
bc(t)); (f

B
ca(t); e

B
ca(t)), where

fB
ab = 5a;abfB

a (t) + 5b;abfB
b (t) + 5c;abfB

c (t);

fB
bc = 5a;bcfB

a (t) + 5b;bcfB
b (t) + 5c;bcfB

c (t);

fB
ca = 5a;cafB

a (t) + 5b;cafB
b (t) + 5c;cafB

c (t): (48)

We need some properties of the coeWcients %; 5 to compute
the elastic potential power.

Proposition 4. The coe?cients %m;abc and 5m;l satisfy the
following relations, with l∈{ab; bc; ca}:
(i) %a;abc + %b;abc + %c;abc = 1,
(ii) 5a;l + 5b;l + 5c;l = 1,
(iii)

∫
Zabc

w/
l ∧ dwv

m = %m;abc − 5m;l, m∈{a; b; c}.

Proof.

(i) Eqs. (43a), (43b) imply that d(wv
a(z)+wv

b(z)+wv
c(z))=

0 ⇒ wv
a(z)+wv

b(z)+wv
c(z)=k; k ∈R. Since wv

m(m)=1
and wv

m(m
′) = 0 for m �= m′ it follows that wv

a(z) +
wv
b(z) + wv

c(z) = 1. We have

%a;abc + %b;abc + %c;abc

=
∫
Zabc

(wv
a(z) + wv

b(z) + wv
c(z)) ∧ wp

abc(z) = 1:

(ii) Condition (ii) follows from

5a;l + 5b;l + 5c;l

=
∫
@Zabc

(wv
a(z) + wv

b(z) + wv
c(z)) ∧ w/

l = 1:

(iii) w/
l ∧dwv

m=−dwv
m∧w/

l =wv
m∧dw/

l −d(wv
m∧w/

l )=wv
m∧

wp
abc(z)− d(wv

m ∧ w/
l ) and hence by Stokes’ theorem∫

Zabc

w/
l ∧ dwv

m = %m;abc − 5m;l:

Proposition 5. The 9ow f-(t; z) can be rewritten as

f-(t; z) = f-
ab(t) dw

v
b(z)− f-

ca(t) dw
v
c(z): (49)

Proof.

f-(t; z) = f-
ab(t)w

-
ab(z) + f-

bc(t)w
-
bc(z) + f-

ca(t)w
-
ca(z)

=f-
ab(t)(w

-
ab(z)− w-

bc(z)) + f-
ca(t)(w

-
ca(z)− w-

bc(z))

+ (f-
ab(t) + f-

bc(t) + f-
ca(t))w

-
bc(z):

Since by (44) f-
ab(t) +f-

bc(t) +f-
ca(t) = 0, and using (43b)

we have the desired result.

Finally, we compute the power P-
abc(t) in the elastic

potential domain as (leaving out the argument t)∫
Zabc

e/(z) ∧ f-(z)

=
∫
Zabc

(e/abw
/
ab(z) + e/bcw

/
bc(z) + e/caw

/
ca(z))

∧(f-
ab dw

v
b(z)− f-

ca dw
v
c(z))

=[f-
ab(%b;abc − 5b;ab)e/ab + (%b;abc − 5b;ab)e/bc

+(%b;abc − 5b;ab)e/ca] + f-
ca[(5c;ab − %c;abc)e/ab

+(5c;bc − %c;abc)e/bc + (5c;ca − %c;abc)e/ca]:
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Now we identify the ports of the elastic potential domain as
(f-

ab; e
-
ab) and (f-

ca; e
-
ca) where

e-ab = (%a;abc − 5b;ab)e/ab + (%b;abc − 5b;bc)e/bc

+(%b;abc − 5b;ca)e/ca; (50a)

e-ca = (5c;ab − %c;abc)e/ab + (5c;bc − %c;abc)e/bc

+(5c;ca − %c;abc)e/ca: (50b)

Elimination of eva(t); e
v
b(t); e

v
c(t); e

/
ab(t); e

/
bc(t); e

/
ca(t), f

-
ab(t);

f-
bc(t); f

-
ca(t); f

B
a ; f

B
b (t); f

B
c (t) gives



%a 0 0 0 0 0

%b 0 0 0 0 0

%c 0 0 0 0 0

0 %b;abc − 5b;ab 5c;ab − %c;abc 1 0 0

0 %b;abc − 5b;bc 5c;bc − %c;abc 0 1 0

0 %b;abc − 5b;ca 5c;ca − %c;abc 0 0 1







fp
abc

f-
ab

f-
bc

f-
ca

fB
ab

fB
bc

fB
ca




+




0 −1 1 5a;ab 5a;bc 5a;ca

0 1 0 5b;ab 5b;bc 5b;ca

0 0 −1 5c;ab 5c;bc 5c;ca

−1 0 0 0 0 0

−1 0 0 0 0 0

−1 0 0 0 0 0




×




epabc

e-ab

e-ca

eBab

eBbc

eBca



= 0: (51)

Proposition 6. The subspace of admissible 9ows fabc and
e7orts eabc de=ned by Dabc = {(fabc; eabc) : Fabcfabc +
Eabceabc=0} is a Dirac structure with respect to the scalar
pairing (power product) de=ned by 〈eabc|fabc〉= eTabcfabc.

Proof. It is easy to check that FabcET
abc + EabcFT

abc = 0,

and that rank[Fabc
...Eabc] = 6. Hence (see van der Schaft &

Maschke, 1995; Dalsmo & van der Schaft, 1999) Dabc is a
Dirac structure.

4.3. Approximation of the constitutive relations

The approximation of the rate energy variables has been
shown in the previous subsection. Now we approximate the
energy variables in the same way

p(t; z) = pabc(t)w
p
abc(z); (52a)

-(t; z) = -ab(t)w-
ab(z) + -bc(t)w-

bc(z) + -ca(t)w-
ca(z); (52b)

where dpabc=dt=fp
abc and d-l=dt=f-

l ; l∈{ab; bc; ca}. The
Hamiltonian of the discretized 5nite-dimensional model is
derived as follows. The kinetic energy of the cell is

Hp
abc(p) =

1
2

∫
Zabc

∗ p(t; z)
*(z1; z2)

∧ p(t; z)

=
p2
abc(t)
2

∫
Zabc

∗wp
abc(z) ∧ wp

abc(z)
*(z)

=
p2
abc(t)
2M

with M−1 =
∫
Zabc

∗wp
abc(z) ∧ wp

abc(z)
*(z)

:

The elastic strain can be rewritten as -(t; z)=-ab(t) dwv
b(z)−

-ca(t) dwv
c(z) + (-ab(t) + -bc(t) + -ca(t))w-

bc. Since d- = 0,∫
Zabc

d-(t; z)=
∫
@Zabc

-(t; z)=0. Thus -(t; z)=-ab(t) dwv
b(z)−

-ca dwv
c(z). The potential energy is H-

abc(-) is approximated
as

1
2

∫
Zabc

∗-
Y (z)

∧ -=
1
2

[
-2ab
Y1

+
-2ca
Y2

− 2-ab-ca
Y3

]

with Y−1
1 :=

∫
Zabc

∗ dwv
b(z) ∧ dwv

b(z)
Y

;

Y−1
2 :=

∫
Zabc

∗dwv
c(z) ∧ dwv

c(z)
Y

;

Y−1
3 :=

∫
Zabc

∗dwv
b(z) ∧ dwv

c(z) + ∗dwv
c(z) ∧ dwv

b(z)
2Y

:

Therefore, the total energy of the cell is approximated by

Habc(p; -) =
p2(t)
2M

+
1
2

[
-2ab
Y1

+
-2ca
Y2

− 2-ab-ca
Y3

]
(53)

and the discretized co-energy variables epabc; e
-
ab; e

-
ca are

epabc=
@Habc

@p
(p; -)=

pabc(t)
M

; e-ab=
@Habc

@-ab
(p; -)=

-ab
Y1

− -ca
Y3

;

e-ca =
@Habc

@-ca
(p; -) =

-ca
Y1

− -ab
Y3

:

5. Example

Consider a transmission line with length S = e − 1. The
distributed capacitance and the distributive inductance are
given by C(z) = 1=(1 + z); L(z) = 1=(1 + z). On one side
we apply an input voltage u(t) and at the other end the
transmission line is terminated by a load of resistance R=1 .
It is assumed that the initial conditions are zero, i.e. q(0; z)=
0, �(0; z) = 0 for z ∈Z = [0; S]. The exact solution for
the voltage distribution eq(t; z) is eq(t; z)= u(t− ln(z+1)).
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Table 2

Approximation CSi ;Si+1 ; LSi ;Si+1

Exp. 1 material, non-uniform 1
n

Exp. 2 material, uniform log (i+1)(e−1)+n
i(e−1)+n

Exp. 3 spline, non-uniform 2
e1=n−1

e1=n+1

Exp. 4 spline, uniform 2 e−1
2n+(2i+1)(e−1)

The transmission line is split into n parts. Two di7erent grids
are considered:
Uniform grid: The points Si are de5ned by Si =

(i(e − 1))=n; 1¡i¡n.
Non-uniform grid: Si = ei=n − 1. The non-uniform grid is

chosen in such way that the total capacitance and inductance
of any part of the transmission line is equal to 1=n.
The basis one-forms are chosen as follows.
Spline approximation: The one-forms !q

ab, !
�
ab are de-

5ned by (see Remarks 4 and 6)!q
ab(z)=!�

ab(z)=dz=(b−a).
The zero-forms !q

a, !
q
b, !

�
a , !

�
b are determined such that

Eq. (12), (4) are satis5ed, i.e.

!q
a(z) = !�

a (z) =
b− z
b− a

; !q
b(z) = !�

b (z) =
z − a
b− a

: (54)

Material approximation: The one-forms !q
ab, !

�
ab are

de5ned by (see Eq. (35))

!q
ab(z) = !�

ab(z) =
dz

ln((b+ 1)=(a+ 1))(z + 1)

and the zero-forms !q
a, !

q
b, !

�
a , !

�
b are given by

!q
b(z) = !�

b (z) =
ln((z + 1)=(a+ 1))
ln((b+ 1)=(a+ 1))

; (55)

while !q
a(z)=!�

a (z)=1−!q
b(z). For both cases the param-

eter %ab, cf. (18), is %ab= 1
2 . The number of parts is taken to

be n=5. The input voltage is u(t)= sin(t). Four simulation
experiments are carried out (see Table 2). These simulation
experiments are performed by means of the 20-Sim simu-
lation package. The integration technique is Runge–Kutta
4 and the integration step size is 0.01s. In all simulation
experiments the di7erence between the exact value of the
voltage and the value obtained by numerical simulation is
the largest at the 5nal spatial point S. Hence we de5ne the
deviation �(t) as

�(t) =

{−eq(t; S); t6 1;

sin(t − 1)− eq(t; S); t ¿ 1:

This deviation �(t) for all four experiments is shown in
Fig. 1(a). The computation error in all experiments has
an oscillatory behavior and the amplitude of the oscilla-
tion increases for t ¡ ln(1 + S) = 1. For t ¿ 1 the ampli-
tude of the oscillation decreases to a constant value and the

frequency of the oscillations coincides with the frequency
of the input signal. The normalized deviation de5ned with
respect to the amplitude of the deviation in Experiment
1, �nom(t) := �(t)=0:00331, is shown in Fig. 1(b) for
26 t6 10. The amplitude of the error is the smallest for
Experiment 1 in which the grid is non-uniform and the
choice of the approximating one-forms is based on the
physical properties of the transmission line (the form of
L(z) and C(z) is taken into account). Since the deviation
error in Experiment 2 is smaller than in Experiment 3, one
concludes that the choice of approximating one-forms plays
a more important role for the accuracy than the choice of
the grid. Finally, the worst results are obtained in the case
when the grid is uniform and the approximating one-forms
are splines.
With regard to the accuracy of the proposed method we

have observed the following. Experiment 1 has been re-
peated with the number of parts being doubled, i.e. n = 10
(in this case LSi−1 ;Si =CSi−1 ;Si =0:1, 1¡i¡n). The ampli-
tude of the error for n=5 is 0.0033 and the amplitude of the
error for n = 10 is 0.00084. Thus the amplitude of the er-
ror decreases almost by a factor four. So we may conjecture
that the accuracy of the proposed method is of order 1=n2.

6. Conclusions

In this paper we have proposed a general method-
ology for the spatial discretization of boundary control
systems modelled as port-Hamiltonian systems. Key fea-
ture of this methodology is that the discretized system
is again a port-Hamiltonian system. This has advantages
from di7erent point of views. First it allows to transfer
certain physical properties, such as energy conservation
and other conservation laws, from the in5nite-dimensional
model to the 5nite-dimensional approximation. Secondly,
one may couple the 5nite-dimensional approximation of
the distributed-parameter component to the other sys-
tem components in the same way as for the original
distributed-parameter model (using the boundary port).
Thirdly, the discretization within the port-Hamiltonian
framework allows the use of control strategies based on the
Hamiltonian structure.
In the current paper we have only treated the spatial dis-

cretization of the telegrapher’s equations and the boundary
controlled two-dimensional wave equation. However, the
methodology is applicable to higher-dimensional spatial do-
mains. In particular the discretization of Maxwell’s equa-
tions on a three-dimensional spatial domain with boundary
is waiting to be worked out.
Another open problem concerns the systematic adapta-

tion of the approximating di7erential forms to the physical
characteristics of the system, see Section 5.
Finally, it is a major challenge to analyze the approxi-

mation properties of the discretized port-Hamiltonian sys-
tems; in particular, to obtain bounds on the error between
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Fig. 1. (a) �(t), (b) Magni5ed plot: solid (Exp. 1), dash (Exp. 2), dot (Exp. 3), dash-dot (Exp. 4).

the distributed-parameter model and its 5nite-dimensional
approximation.
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