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Abstract

New algorithms for identification of a balanced state space representation are proposed. They are based on a procedure for the estimation
of impulse response and sequential zero input responses directly from data. The proposed algorithms are more efficient than the existing
alternatives that compute the whole Hankel matrix of Markov parameters. It is shown that the computations can be performed on Hankel
matrices of the input–output data of various dimensions. By choosing wider matrices, we need persistency of excitation of smaller
order. Moreover, this leads to computational savings and improved statistical accuracy when the data is noisy. Using a finite amount of
input–output data, the existing algorithms compute finite time balanced representation and the identified models have a lower bound on the
distance to an exact balanced representation. The proposed algorithm can approximate arbitrarily closely an exact balanced representation.
Moreover, the finite time balancing parameter can be selected automatically by monitoring the decay of the impulse response. We show
what is the optimal in terms of minimal identifiability condition partition of the data into “past” and “future”.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we consider the following exact determinis-
tic identification problem: given an input–output trajectory
w̃ = (ũ, ỹ), w̃ = (w̃(1), . . . , w̃(T )), of an LTI system

S : x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(1)

u(t) ∈ Rm, y(t) ∈ Rp, x(t) ∈ Rn, determine fromw̃ an
associated balanced state model (Moore, 1981; Pernebo &
Silverman, 1982)

Sbal : xbal(t + 1) = Abalxbal(t) + Bbalu(t)

y(t) = Cbalxbal(t) + Dbalu(t).
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The given trajectorỹw = (ũ, ỹ) is anexacttrajectory ofS.
This means that there exists̃x(1) ∈ Rn, such that the re-
sponse ofS to the inputũ and initial conditionx̃(1) is ỹ.
The problem is to find conditions and algorithms to con-
structSbal directly from w̃. Although the assumption that
w̃ is exact is mainly of theoretical importance, we believe
that solving the exact identification problem is a prerequi-
site for the study of the realisticapproximateidentification
problems.

Exact state-space identification has been considered ear-
lier in Gopinath (1969), Budin (1971)and later on in the
behavioral setting inWillems (1986). The modern approach
is deterministic subspace identification (Van Overschee &
De Moor, 1996, Chapter 2). The identified model need not
be in a special state space basis. The problem considered in
this paper is to derive a balanced model and the motivation
is that in a balanced basis one can apply truncation as a
very effective heuristic for model reduction, which yields
a method for approximate identification. Thus, exact iden-
tification of a balanced model is a prelude to approximate
identification. In the language ofWillems (1986), we want
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to find an input/state/output balanced representation of the
most powerful unfalsified model(MPUM).

The balanced state-space identification problem is stud-
ied in Moonen and Ramos (1993)andVan Overschee and
De Moor (1996, Chapter 5). The proposed algorithms fit
in the outline given below, which will be called theba-
sic algorithm. The following notation is used: withf =
(f (1), . . . , f (T )),

H�(f ) :=


f (1) f (2) f (3) · · · f (T − � + 1)
f (2) f (3) f (4) · · · f (T − � + 2)
f (3) f (4) f (5) · · · f (T − � + 3)
...

...
...

...

f (�) f (� + 1) f (� + 2) · · · f (T )




and � is the shift operator�f (t) := f (t + 1). Acting on
a vector or matrix,� removes the first block-row. Byf we
will denote both the time series(f (1), . . . , f (T )) and the
vector col(f (1), . . . , f (T )), where col(·) denotes a (block)
column vector.

Algorithm 1 (Basic algorithm). Input: a time seriesw̃ =
(ũ, ỹ), an upper boundnmax of the system order, and a finite
time balancing parameter�>nmax.

1. Find the first 2� samplesH(0), . . . , H(2� − 1) of
the impulse response matrix ofS and let H :=
col(H(0), . . . , H(2� − 1)).

2. Find zero input responsesy(1)0 , . . . , y
(M)
0 , M := T −

� + 1, of length�, generated from initial conditions
x
(1)
0 , . . . , x

(M)
0 that form a valid state sequence ofS

obtained by the input̃u. Let Y0 := [y(1)0 · · · y
(M)
0 ].

3. Compute the restricted SVD,H= U�V �, of the block
Hankel matrix of Markov parametersH= H�(�H) ∈
R�p×�m.

4. Compute the balanced state sequenceX̃bal :=√
�−1U�Y0,

X̃bal = [x̃bal(nmax + 1) · · · x̃bal(nmax + M)].
5. Compute the finite time� balanced realizationAbal,

Bbal,Cbal,Dbal by solving the linear system of equations[
x̃bal(nmax + 2)) · · · x̃bal(nmax + M)

ỹ(nmax + 1) · · · ỹ(nmax + T − �)

]

=
[
Abal Bbal
Cbal Dbal

]

×
[
x̃bal(nmax + 1) · · · x̃bal(nmax + T − �)

ũ(nmax + 1) · · · ũ(nmax + T − �)

]
.

(2)

Output: a finite time-� balanced representation (Abal,
Bbal, Cbal, Dbal) of S.

Note 1 (Finite time-� balancing). The basic algorithm fac-
tors a finite� × � block Hankel matrix of Markov parame-
tersH, so that the obtained representation (Abal, Bbal, Cbal,

Dbal) is finite time-� balanced. For � 
 nmax, the repre-
sentation obtained is close to an infinite time balanced one.
Determining an appropriate value for the parameter�, how-
ever, is a problem in its own right, and will be addressed in
the paper.

Note 2 (Model reduction). Identification of a state-space
model in a balanced basis is motivated by the effective
heuristic for model reduction by truncation in that basis. In
principle, it is possible to identify the model in any basis and
then apply standard algorithms for state transformation to a
balanced basis. The direct algorithm discussed in this paper,
however, has the advantage over the indirect approach that it
allows to identifya reduced order model directly from data
without ever computing a full order model.

The model reduction can be done by Step 5 of the basic
algorithm. Letr be the desired order of the reduced model
and letX̃red be the truncated to the firstr rows balanced state
sequencẽXbal. As a heuristic model reduction procedure, we
derive the reduced model parameters by solving theleast-
squares problem

[
x̃red(nmax + 2) · · · x̃red(nmax + M)

ỹ(nmax + 1) · · · ỹ(nmax + T − �)

]

=
[
Ared Bred
Cred Dred

]

×
[
x̃red(nmax + 1) · · · x̃red(nmax + T − �)

ũ(nmax + 1) · · · ũ(nmax + T − �)

]

in place of the exact system of equations (2). The obtained
model(Ared, Bred, Cred,Dred) is not the same as the model
obtained by truncation of the (finite time-�) balanced model.
In particular, we do not know about error bounds similar
to the ones available for the (infinite time) balanced model
reduction. The model reduction question is not further dis-
cussed in this paper and will be treated elsewhere.

Note 3. In Moonen and Ramos (1993); Van Overschee and
De Moor (1996), it is not mentioned that the Hankel ma-
trix of Markov parametersH is computed. Also inMoonen
and Ramos (1993), it is not mentioned that the matrixY0 of
sequential zero input responses is computed. In the present
paper, we interpret these algorithms as implementations of
the above basic algorithm and reveal their structure. The im-
portant difference among the algorithms of Moonen–Ramos,
Van Overschee–De Moor, and Algorithm 7 proposed in this
paper is namely the method of computation of the matrixY0
and the impulse responseH.

Step 1, the computation of the impulse response, is the
crucial one. In fact, onceH is computed, a balanced model
can be obtained directly via Kung’s algorithm. This gives
the alternative deterministic balanced model identification
algorithm outlined in Algorithm 2.
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Algorithm 2. Input: a time series̃w=(ũ, ỹ), an upper bound
nmax of the system order, and a finite time balancing param-
eter�>nmax.

1. Find the first 2� samplesH(0), . . . , H(2� − 1) of
the impulse response matrix ofS and let H :=
col(H(0), . . . , H(2� − 1)).

2. Compute the restricted SVD,H= U�V �, of the block
Hankel matrix of Markov parametersH= H�(�H) ∈
R�p×�m.

3. DefineObal := U
√

� andCbal :=
√

�V �.
4. LetDbal=H(0), Bbal be equal to the firstmcolumns of

Cbal (the first block column),Cbal be equal to the first
p rows of Obal (the first block row), andAbal be the
solution of the equation(�∗Obal)Abal = �Obal, where�
and�∗, acting on a block matrix, remove, respectively,
the first and the last block rows.

Output: a finite time-� balanced representation (Abal,
Bbal, Cbal, Dbal) of S.

In Algorithm 2, once the impulse response is computed,
the parametersAbal, Bbal, Cbal, Dbal are obtained without
returning to the original observed data. Yet another alterna-
tive for computing a balanced representation directly from
data is to obtain the parametersAbal andCbal as in Algo-
rithm 2 fromObal and the parametersBbal andDbal (as well
as the initial conditionxbal(1), under whichw̃ is obtained)
from the linear system of equations

ỹ(t) = CbalA
t
balxbal(1) +

t−1∑
�=1

CbalA
t−1−�
bal Bbalũ(�)

+ Dbal�(t + 1), for t = 1, . . . , T , (3)

using the original data. (By using Kronecker products (3)
can be solved explicitly.) The resulting Algorithm 3 is in
the spirit of the MOESP-type algorithms, seeVerhaegen and
Dewilde (1992).

Algorithm 3. Input: a time series̃w=(ũ, ỹ), an upper bound
nmax of the system order, and a finite time balancing param-
eter�>nmax.

1. Find the first 2� samplesH(0), . . . , H(2� − 1) of
the impulse response matrix ofS and let H :=
col(H(0), . . . , H(2� − 1)).

2. Compute the restricted SVD,H= U�V �, of the block
Hankel matrix of Markov parametersH= H�(�H) ∈
R�p×�m.

3. DefineObal := U
√

�.
4. Let Cbal be equal to the firstp rows of Obal (the first

block row), andAbal be the solution of the equation

(�∗Obal)Abal = �Obal.

5. Solve (3) forBbal, Dbal, andxbal(1).
Output: a finite time-� balanced representation (Abal,

Bbal, Cbal, Dbal) of S.

Simulation results show that in the presence of noise “go-
ing back to the data”, as done in the basic algorithm and in
Algorithm 3, leads to more accurate results. This gives an
indication that the basic algorithm and Algorithms 3 might
be superior to Algorithm 2 in the noisy case.

The outline of the paper is as follows. In Section 2 we
present two lemmas that are instrumental for the derivation
of the algorithm. The first one, which we call thefundamen-
tal lemma, gives conditions on a trajectorỹw, under which
any response ofS with length L belongs to the image of
the Hankel matrixHL(w̃). As a consequence, any response
of length L can be found asHL(w̃)g for a suitableg ∈
RT−L+1. The second lemma, which we call theweaving
lemma, shows how an arbitrary long response ofS can be
obtained from a finite amount of dataw̃ by weaving together
segments of the desired response.

In Section 3, the fundamental lemma is applied for con-
struction of the impulse responseH. Theorem 4 gives an
algorithm for the computation ofH, based on the construc-
tion H = H2�(w̃)G, for a suitableG. This approach gives
a limited length response. Using the weaving lemma, an al-
gorithm is derived that computes arbitrary many samples of
the impulse response. By monitoring the decay of the im-
pulse response while computing it, the parameter� of the
basic algorithm can be chosen adaptively.

In Section 4, an algorithm for the computation of the
matrix Y0 that appears in the basic algorithm is described.
It is also based on the fundamental lemma and in anal-
ogy with the impulse response computation has a block
version and an iterative version. We show that the block
version of the algorithm is actually equivalent to the fa-
mous oblique projection from the classical subspace algo-
rithms, which gives a system theoretic interpretation of the
oblique projection. (In the subspace identification literature
the oblique projection is defined and interpreted as a geo-
metric operation and its system theoretic meaning remains
hidden.)

2. Fundamental lemmas

Denote byB|[1,L] the set of all trajectories of the system
S over the time interval[1, L], i.e.,

B|[1,L] :=
{

w =
[
u

y

]
:=

([
u(1)
y(1)

]
, . . . ,

[
u(L)

y(L)

])∣∣∣∣
∃x(1), . . . , x(L + 1) such that(1) holds} .

The notion of persistency of excitation is defined next, cf.
(Van Overschee & De Moor, 1996, Definition 5).

Definition 1 (Persistency of excitation). The sequencẽu =
(ũ(1), . . . , ũ(T )) is persistently exciting of orderL if the
Hankel matrixHL(ũ) is of full row rank.
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Lemma 2 (Fundamental lemmaWillems, Rapisarda,
Markovsky, and DeMoor (2004)). Let

1. w̃ = (ũ, ỹ) be a trajectory of the LTI systemS, i.e.,

w̃ =
[
ũ

ỹ

]
=

([
ũ(1)
ỹ(1)

]
, . . . ,

[
ũ(T )

ỹ(T )

])
∈ B|[1,T ];

2. the systemS be controllable; and
3. the input sequencẽu be persistently exciting of order

L + n, wheren is the order(the dimension of the state
space) of S.

Then any L samples long trajectory w= (u, y) of S can
be written as a linear combination of the columns ofHL(w̃)

and any linear combinationHL(w̃)g, g ∈ RT−L+1, is also
a trajectory ofS, i.e., col span(HL(w̃)) = B|[1,L].

Proof. The proof of these results as well as interesting corol-
laries are given inWillems et al. (2004). �

The fundamental lemma states conditions under which
the Hankel matrixHL(w̃) has the “correct” image (and as
a consequence the “correct” left kernel). The conditions are
not verifiable from the datãw alone, so that in identification
problems, where onlỹw is given, they should be assumed.
In addition, for the derivation of the algorithm, we assume
that an upper boundnmax on the system ordern and an up-
per boundl max on the system lagl are a priori known.
The system lagl is defined as the observability index of
S. Note thatnmax can be used as a loose upper bound on
l . Genericallypl = n andpl max= nmax. Assumptions 1–3
of the fundamental lemma and the assumption thatnmax is
given are the standard assumptions for deterministic sub-
space identification, see, e.g.,Van Overschee and De Moor
(1996, Chapter 2).

The next lemma shows how a long response can be con-
structed by weaving together short ones.

Lemma 3 (Weaving responses). Let

1. w̃(1) be aT1 samples long trajectory ofS, i.e., w̃(1) ∈
B|[1,T1];

2. w̃(2) be aT2 samples long trajectory ofS, i.e., w̃(2) ∈
B|[1,T2];

3. the last l samples of̃w(1) coincide with the first l samples
of w̃(2), i.e.,

(w̃(1)(T1 − l + 1), . . . , w̃(1)(T1))

= (w̃(2)(1), . . . , w̃(2)(l));

4. l is larger than or equal to the lagl of the systemS.
Then the trajectory

w:=(w̃(1)(1), . . ., w̃(1)(T1), w̃(2)(l+1), . . ., w̃(2)(T2)), (4)

obtained by weaving togetherw̃(1) and w̃(2) is a trajectory
of S, i.e., w ∈ B|[1,T1+T2−l].

Proof. Let x̃(1) := (x̃(1)(1), . . . , x̃(1)(T1 + 1)) and x̃(2) :=
(x̃(2)(1), . . . , x̃(2)(T2 + 1)) be the state sequences ofS as-
sociated withw(1) andw(2), respectively. Assumptions 3 and
4 imply that x̃(1)(T1 + 1) = x̃(2)(l + 1). Therefore, (4) is a
trajectory ofS. �

3. Computation of the impulse response

In this section, we consider Step 1 of the basic algorithm:
given a trajectorỹw= (ũ, ỹ), find the first 2� samplesH of
the impulse response ofS. We need the first 2� samples of
the impulse response in order to construct the� × � block
Hankel matrixH�(�H), whose factorization in turn gives
the finite time-� balancing transformation.

From the fundamental lemma, we know that, under suit-
able conditions, col span(H2�(w̃))=B|[1,2�]. This implies
that there exists a matrixG, such thatH2�(ỹ)G=H . Thus,
the problem reduces to the one of finding a particularG.

Let row dim denote the number ofblockrows of a matrix
or vector and defineUp, Uf , Yp, Yf as follows

Hl max+2�(ũ) =:
[
Up
Uf

]
, Hl max+2�(ỹ) =:

[
Yp
Yf

]
,

where row dim(Up) = row dim(Yp) = l max and row
dim(Uf) = row dim(Yf) = 2�.

Theorem 4 (Impulse response from data). Let w̃ = (ũ, ỹ)

be a trajectory of a controllable LTI systemS of order
n�nmax and lagl � l max and letũ be persistently exciting
of order2� + l max + nmax. Then the system of equations

[
Up
Uf
Yp

]
G =




0ml max×m[
Im

0m(2�−1)×m

]
0pl max×m


 , (5)

is solvable forG ∈ R•×m. Moreover, for any particular
solutionḠ, the matrixYf Ḡ contains the first2� samples of
the impulse response ofS, i.e., Yf Ḡ = H.

Proof. Under the assumptions of the theorem, we can apply
the fundamental lemma withL = l max + 2�, thus

col span(Hl max+2�(w̃)) = B|[1,l max+2�].

First we show that (5) is solvable. The impulse response([
Im

0m(2�−1)×m

]
, H

)
is a (matrix valued) response ofS

obtained under zero initial conditions. Because of the zero

initial conditions,

([
Im

0m(2�−1)×m

]
, H

)
preceded by any

number of zeros remains a response ofS. Therefore, there
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exists a matrixḠ, such that



Up
Uf
Yp
Yf


 Ḡ =




0ml max×m[
Im

0m(2�−1)×m

]
0pl max×m

H


 .

This shows that there exists a solutionḠ of (5) and therefore
Yf Ḡ is the impulse response.

Conversely, letG be a solution of (5). We have



Up
Uf
Yp
Yf


G =




0ml max×m[
Im

0m(2�−1)×m

]
0pl max×m

YfG


 (6)

and the fundamental lemma guarantees that the right-hand
side of (6) is a response ofS. The response is identically
zero during the firstl max samples, which (using the assump-
tion l max� l) guarantees that the initial conditions are set to

zero. The input

[
Im

0m(2�−1)×m

]
is a matrix valued impulse,

so that the corresponding outputYfG is indeed the impulse
responseH. �

Theorem 1gives the following block algorithm for the
computation ofH.

Algorithm 4 (Block computation of the impulse re-
sponse). Input: ũ, ỹ, l max, and�.

1. Solve the system of Eq. (5). Let̄G be the computed
solution.

2. ComputeH = Yf Ḡ.
Output: the first 2� samples of the impulse responseH.

Note 4(Efficient implementation via QR factorization). The
system of equations in Step 1 of Algorithm 4 can be solved
efficiently by first “compressing the data” via the QR de-
composition

UU

 ⊥ ⊥  ⊥  ⊥  ⊥

f Ypp | Y 
f

 
= QR , R =:

R11 0
R21 R22

 
,[ [[ [

whereR11 ∈ R(m(l max+2�)+pl max)×(m(l max+2�)+pl max), and
then computing the pseudo-inverse of theR11 block. We
have

H = Yf

[
Up
Uf
Yp

]+ [0
I

0

]
= R21R

+
11

[0
I

0

]
.

We proceed to point at an inherent limitation of Algorithm
4 when dealing with finite amount of data.

Let T samples of the input and the output be given.
The persistency of excitation assumption in Theorem 4
requires thatH2�+l max+nmax

(ũ) is full row rank, which

implies that

m(2� + l max + nmax)�T − (2� + l max + nmax) + 1

⇒ �� 1

2

(
T + 1

m+ 1
− l max − nmax

)
.

Thus using Algorithm 4, we are limited in the number of
samples of the impulse response that can be computed.
Moreover, for efficiency and accuracy (in the presence of
noise), we want to have Hankel matricesUp, Uf , etc., with
many more columns than rows, which implies small�.

According to Lemma 3, however, it is possible to find
arbitrary many samples of the impulse response. Algorithm
5 does this by computing iteratively blocks ofL consecutive
samples, where

1�L� 1

2

(
T + 1

m+ 1
− l max − nmax

)
. (7)

Moreover, monitoring the decay ofH (provided the system is
stable) while computing it, gives a heuristic way to determine
the parameter�.

In the recursive algorithm the matricesUp, Uf , Yp, Yf
defined above are redefined as follows:

Hl max+L(ũ) =:
[
Up
Uf

]
, Hl max+L(ỹ) =:

[
Yp
Yf

]
,

where row dim(Up) = row dim(Yp) = l max and row dim
(Uf ) = row dim(Yf ) = L.

Algorithm 5 (Iterative computation of the impulse re-
sponse). Input: ũ, ỹ, nmax, l max, and either� or a conver-
gence toleranceε.

1. Choose the number of samplesL computed in one iter-
ation step according to the persistency of excitation of
ũ. In particular (7) should be satisfied.

2. Initialization: k := 0, F (0)
u :=

[ 0ml max×m[
Im

0m(L−1)×m

]]
and

F
(0)
y,p := 0pl max

.
3. Repeat

3.1. Solve the system

[
Up
Uf
Yp

]
G(k) =

[
F

(k)
u

F
(k)
y,p

]
.

3.2. Compute the responseH(k) := F
(k)

y,f := YfG
(k).

3.3. DefineF (k)
y :=

[
F

(k)
y,p

F
(k)

y,f

]
.

3.4. ShiftFu andFy: F (k+1)
u :=

[
�LF

(k)
u

0mL×m

]
, F (k+1)

y,p :=
�LF

(k)
y .

3.5. Increment the iteration counterk := k + 1.

4. Until

{
kL�2� if � is given,
‖H(k−1)‖F �ε andkL is even otherwise.

5. If � is not given as an input, define� := kL/2.
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Output: H=col(H (0), . . . , H (k−1)) and� if � is not given
as an input.

Proposition 5. Let (ũ, ỹ) be a trajectory of a controllable
LTI systemS of order n�nmax and lag l � l max, and let
ũ be persistently exciting of orderL + l max + nmax. Then
Algorithm 5 computes the first2� samples of the impulse
response ofS.

Proof. Under the assumptions of the proposition, we can
applyTheorem 1, with the parameter� in the theorem, re-
placed by the parameterL, selected on Step 1 of the algo-
rithm. Steps 3.1 and 3.1 of the recursive algorithm corre-
spond to the steps of the block algorithm. The right-hand

side

[
F

(k)
u

F
(k)
y,p

]
of the system of equations, solved in Step 3.1,

is initialized so thatH(0) is indeed the matrix of the firstL
samples of the impulse response.

The response computed on the(k + 1)th iteration step,
k�1, is a response due to zero input and its firstl max sam-
ples overlap the lastl max samples of the response computed
on thekth iteration step. By the weaving lemma, their con-
catenation is a valid response. Applying this argument re-
cursively, we have thatH computed by the algorithm is the
impulse response of the system.�

Note 5 (Computation of an arbitrary response from
data). For the purpose of balanced subspace identification,
we need construction of the impulse response from data.
In Markovsky, Willems, Rapisarda, and De Moor (2004),
Theorem 4 and Algorithm 5 are modified to compute an
arbitrary response directly from data.

Note 6(Efficient implementation via QR factorization). The
most expensive part of Algorithm 4 is solving the system
of equations on Step 3.1. It can be solved efficiently via the
QR factorization as described in Note 4. Moreover, since
the matrix on the left-hand side of the system is fixed, the
pseudo-inverse can be computed out of the iteration loop
and used for all iterations.

4. Computation of sequential zero input responses

In this section, we consider step 2 of the basic algorithm:
given w̃ = (ũ, ỹ), find a sequential zero input responsesY0
of S. By “sequential”, we mean that the initial conditions
corresponding to the columns ofY0 form a valid state se-
quence ofS.

Using the fundamental lemma, a set of zero input trajec-
tories can be computed from data by solving the system of
equations

[
Up
Uf
Yp

]
G =

[
Up
0
Yp

]
(8)

and settingY0 =YfG. Moreover, the Hankel structure ofUp
andYp imply that Y0 is a matrix of sequential responses.
System (8) andY0 = YfG give a block algorithm for the
computation of sequential zero input responses. It is analo-
gous to the block algorithm for the computation of the im-
pulse response and again the computation can be performed
efficiently via the QR factorization.

Note 7 (Connection with the oblique projection). For any
particular solutionḠ of (8),Y0=Yf Ḡ is equal to the oblique

projectionYf/UfWp,Wp :=
[
Up
Yp

]
of the classical subspace

algorithms. To show this, let

Ḡ = [W�
p U�

f ]
[
WpW�

p WpU�
f

UfW
�
p UfU

�
f

]+ [
Wp
0

]

be the least-squares least norm solution of

[
Up
Yp
Uf

]
G =

[
Up
Yp
0

]
, which is (8) with permuted rows, so that the solu-

tion is not changed. Then

Yf Ḡ = Yf [W�
p U�

f ]
[
WpW�

p WpU�
f

UfW
�
p UfU

�
f

]+ [
Wp
0

]
, (9)

which is the definition of the oblique projectionYf/UfWp,
seeVan Overschee and De Moor (1996, p. 21, Eq. (1.4).
Thus, the oblique projection is an implementation of the
block algorithm for the computation of the sequential zero
input responsesY0.

We proceed to present a recursive algorithm for the com-
putation ofY0, analogous to Algorithm 5 for the computa-
tion of the impulse response. An advantage of the recursive
algorithm over the block one is that one is not restricted by
the finite amount of datãw to a finite length responsesY0.

Algorithm 6 (Sequential zero input responses). Input: u, y,
nmax, l max, and either the desired number of samples� or
a convergence toleranceε.

1. Choose the number of samplesL computed in one iter-
ation step according to the persistency of excitation of
ũ. In particular (7) should be satisfied.

2. Initialization: k := 0, F (0)
u :=

[
Up
0

]
, andF (0)

y,p := Yp.

3. Repeat

3.1. Solve the system

[
Up
Uf
Yp

]
G(k) =

[
F

(k)
u

F
(k)
y,p

]
.

3.2. Compute the responseY (k)
0 := F

(k)

y,f := YfG
(k).

3.3. DefineF (k)
y :=

[
F

(k)
y,p

F
(k)

y,f

]
.
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3.4. Shift Fu and Fy: F
(k+1)
u :=

[
�LF

(k)
u

0mL×m

]
, and

F
(k+1)
y,p := �LF

(k)
y .

3.5. Increment the iteration counterk := k + 1.

4. Until

{
kL�� if � is given,
‖Y (k−1)

0 ‖F �ε otherwise.
5. If � is not given as an input, define� := kL.
Output: Y0=col(Y (0)

0 , . . . , Y
(k−1)
0 ) and�, if � is not given

as an input.

Proposition 6. Under the assumptions of Proposition5,
Algorithm 6 computes a matrix of sequential zero input re-
sponses ofS with � block rows.

Proof. Similar to the proof of Proposition 5.�

Note 8 (Efficient implementation via QR factoriza-
tion). Note 6is valid also for Algorithm 6. Moreover, in the
basic algorithm, where both Algorithms 5 and 6 are applied,
the pseudo-inverse needs to be computed only once.

5. An algorithm for deterministic balanced subspace
identification

In the previous sections, we have specified Steps 1 and 2
of the basic algorithm. Steps 3–5 follow from standard
derivations, which we now repeat for completeness. Let
H be the Hankel matrix of the Markov parametersH :=
H�(�H). By factoringH into Obal and Cbal via the re-
strictedSVD

H= U�V � = U
√

�︸ ︷︷ ︸
Obal

√
�V �︸ ︷︷ ︸
Cbal

, � ∈ Rn×n

we obtain an extended observability matrix

Obal = col(Cbal, CbalAbal, . . . , CbalA
�−1
bal )

and a corresponding extended controllability matrix

Cbal = [Bbal AbalBbal · · · A�−1
bal Bbal]

in a finite time balanced basis. The basis is finite time-�
balanced, because the finite time-� observability gramian
O�

balObal = � and the finite time-� controllability gramian
CbalC

�
bal = � are equal.

The matrix of sequential zero input responsesY0 can be
written asY0 =OX for a certain extended observability ma-
trix O and a state sequenceX in the same basis. We find the
balanced state sequence

X̃bal := [x̃bal(l max + 1) · · · x̃bal(l max + T + 1 − L)]
corresponding toObal = U

√
� from

Y0 = ObalX̃bal ⇒ X̃bal =
√

�−1U�Y0.

The corresponding balanced representation(Abal, Bbal,

Cbal,Dbal) is computed from the system of
equations[
x̃bal(l max + 2)2) · · · x̃bal(l max + T + 1 − L)

ỹ(l max + 1) · · · ỹ(l max + T − L)

]

=
[
Abal Bbal
Cbal Dbal

]

×
[
x̃bal(l max + 1) · · · x̃bal(l max + T − L)

ũ(l max + 1) · · · ũ(l max + T − L)

]
.

(10)

This yields the following procedure.

Algorithm 7. Input: ũ, ỹ, nmax, l max, and either�>nmax
or a convergence toleranceε.

1. Apply Algorithm 5 with inputsũ, ỹ, nmax, l max, and
either� or ε, in order to compute the impulse response
H and, if not given, the parameter�. In the latter case,
let � := max(nmax + 1,�)

2. Apply Algorithm 6 with inputsũ, ỹ, nmax, l max, L,
and �, in order to compute the sequential zero input
responsesY0.

3. Form the Hankel matrixH := H�(�H) and compute
the restricted SVDH= U�V �.

4. Compute a balanced state sequenceX̃bal=
√

�−1U�Y0.
5. Compute a balanced representation by solving (10).
Output: Abal, Bbal, Cbal, Dbal, and�, if � is not given as

an input.

The discussion in this section and Propositions 5 and 6
prove the following main result.

Theorem 7. Under the assumptions of Proposition5,
(Abal, Bbal, Cbal,Dbal) computed by Algorithm7 is a finite
time-� balanced representation ofS.

6. Alternative algorithms

We outline the algorithms of Van Overschee–De Moor
and Moonen–Ramos.

Algorithm 8 (Van Overschee & De Moor, 1996). Input: ũ,
ỹ, and a parameteri.

Define:

[
Up
Uf

]
:= H2i (ũ), where row dim(Up) = i, and[

Yp
Yf

]
:= H2i (ỹ), where row dim(Yp) = i.

1. Compute the weight matrixW := U�
p (UpU�

p )−1J ,
whereJ is the left–right flipped identity matrix.

2. Compute the oblique projectionY0 := Yf/Uf

[
Up
Yp

]
.

3. Compute the matrix̂H := Y0W and the restricted SVD,
Ĥ= U�V �.
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4. Compute a balanced state sequenceXbal=
√

�−1U�Y0.
5. Compute a balanced representation by solving (10).
Output: Abal, Bbal, Cbal, Dbal.

Note 9. The weight matrixW is different from the one in
Van Overschee & De Moor (1996). In terms of the final re-
sult Ĥ, however, it is equivalent. Another difference between
Algorithm 8 and the deterministic balanced subspace algo-
rithm ofVan Overschee & De Moor (1996)is that the shifted
state sequence appearing on the left-hand side of (10) is re-
computed inVan Overschee & De Moor (1996)by another
oblique projection.

Algorithm 9 (Moonen & Ramos, 1993). Input: ũ, ỹ, and a
parameteri.

Define:

[
Up
Uf

]
:= H2i (ũ), where row dim(Up) = i, and[

Yp
Yf

]
:= H2i (ỹ), where row dim(Yp) = i.

0. Compute a matrix[T1 T2 T3 T4], whose rows form a

basis for the left kernel of



Up
Yp
Uf
Yf


.

1. Compute the Hankel matrix of Markov parametersH=
T +

4 (T2T
+
4 T3 − T1)J .

2. Compute a matrix of zero input responsesY0 =
T +

4 [T1 T2]
[
Up
Yp

]
.

3. Compute the restricted SVD,H= U�V �.

4. Compute a balanced state sequenceXbal=
√

�−1U�Y0.
5. Compute a balanced representation by solving (10).
Output: Abal, Bbal, Cbal, Dbal.

Note 10. In the algorithms of Van Overschee–De Moor and
Moonen–Ramos, the parameteri plays the row of the finite
time balancing parameter� from the previous sections. Note
that i is given and the “past” and the “future” are taken with
equal lengthi.

Both Algorithms 8 and 9 fit in the outline of the basic
algorithm but Steps 1 and 2 are implemented in rather dif-
ferent ways. As shown in Note 7, the oblique projection

Yf/Uf

[
Up
Yp

]
is a matrix of sequential zero input responses.

The weight matrixW, in the algorithm of Van Overschee–De
Moor, is constructed so that̂H= Y0W is an approximation
of the Hankel matrix of Markov parametersH; it is the sum
of H and a matrix of zero input responses.

The most expensive computation in the algorithm of
Moonen–Ramos is Step 0, the computation of the an-

nihilators [T1 · · · T4]. The matrix [T1 T2]
[
Up
Yp

]
is a

non-minimal state sequence (the shift-and-cut operator
(Rapisarda & Willems, 1997)) andT +

4 is a corresponding

extended observability matrix. ThusT +
4 [T1 T2]

[
Up
Yp

]
is a

matrix of sequential zero input responses. It turns out that
(T2T

+
4 T3 − T1)J is an extended controllability matrix (in

the same basis), so thatT +
4 (T2T

+
4 T3 − T1)J is the Hankel

matrix of Markov parametersH.
A major difference between the proposed Algorithm 7,

from one side, and the algorithms of Van Overschee–De
Moor and Moonen–Ramos, on the other side, is that in Algo-
rithm 7 the Hankel matrixH is not computed butconstructed
from the impulse response that parameterizes it. This is a
big computational saving because recomputing the same el-
ements ofH is avoided. In addition, in approximate identifi-
cation, wherẽw is not a trajectory ofS, the matriceŝH and
H computed by the algorithms of Van Overschee–De Moor
and Moonen–Ramos are in general no longer Hankel, while
the matrixH in Algorithm 7 is by construction Hankel.

7. On the splitting of the data into “past” and “future”

In the algorithms of Moonen–Ramos and Van Overschee–

De Moor the block-Hankel matrices

[
Up
Uf

]
and

[
Yp
Yf

]
are

split into “past” and “future” of an equal length. A natural
question is why this is necessary and furthermore what is
“optimal” according to certain relevant criteria partitionings.
These questions are open for a long time, in particular in
the context of the stochastic identification problem, seeDe
Moor (2003).

In Sections 3 and 4 we showed that the pastUp, Yp is
used to assign the initial conditions and the futureUf , Yf
is used to compute the response. By weaving consecutive
segments of the response, as done in Algorithms 5 and 6,
the number of block rows in the future does not need to be
equal to the required length of the response. Thus from the
perspective of deterministic identification, the answer to the
above question is:

row dim(Up) = row dim(Yp) = l max, i.e., the
given least upper bound on the system lagl , and
row dim(Uf) = row dim(Yf) ∈ {1, . . . , � − l max +
nmax}, where� is the order of persistency of excitation
of the inputũ.

As shown inWillems et al. (2004, Section 4, Comment 5)

ũ persistently exciting of orderl max + 1 + nmax (11)

is a sharp sufficient condition for identifiability of the sys-
temS. By using the iterative algorithms for computation of
the impulse response and sequential free responses with pa-
rameterL = 1, Algorithms 2, 3, and 7 are applicable under
the same assumption, so that the partitioning “past= l max
and future= 1” is consistent with (11).

Using the fundamental lemma, we can prove the following
result.
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Proposition 8. Let (ũ, ỹ) be a trajectory of a controllable
LTI systemS of ordern�nmax and lagl � i, and letũ be
persistently exciting of order2i + nmax. Then the represen-
tations computed by Algorithms8 and 9 are equivalent to
S. Moreover, the representation computed by Algorithm9
is in a finite time-i balanced basis.

Proposition 8 shows that Algorithms 8 and 9 are not par-
simonious with respect to the available data: the systemS
could be identifiable with algorithms Algorithms 2, 3, and
7 but not with Algorithms 8 and 9.

Note that the persistency of excitation required by Algo-
rithms 8 and 9 is a function of the finite time balancing
parameter. This implies that with a finite amount of data,
Algorithms 8 and 9 are limited in the ability to identify a
balanced representation. In fact,

i�
⌊

T + 1

2(max(m,p) + 1)

⌋
.

In contrast, the persistency of excitation required by Algo-
rithms 2, 3, and 7 depends only on the upper bounds on the
system order and the lag and thus these algorithms can com-
pute an infinite time balanced representation if (11) holds.

8. Simulations

In this section, we show some examples illustrate some
advantages of the proposed algorithms. In all the experi-
ments the systemS is minimal with transfer function

C(Iz − A)−1B + D

= 0.89172(z − 0.5193)(z + 0.5595)

(z − 0.4314)(z + 0.4987)(z + 0.6154)
.

The input is a unit variance white noise and the data avail-
able for identification is the corresponding trajectoryw̃ of
S, corrupted by independent white noises with standard de-
viation s. Although, our main concern is the correct work
of the algorithms for exact data, i.e., withs = 0, by varying
the noise variances, we can investigate empirically the per-
formance under noise. The simulation time isT = 100. In
all experiments the upper boundsnmax and l max are taken
equal to the system ordern =3 and the parameterL is taken
equal to 3.

Consider first the estimation of the impulse response.
Fig. 1 shows the exact impulse responseH of S and the
estimateĤ computed by Algorithm 5. With exact data,
||H − Ĥ ||F = 10−15, so that up to the numerical precision
the match is exact. The plots onFig. 1 show the deteriora-
tion of the estimates when the data is corrupted by noise.

Consider next the computation of the zero input response.
Table 1shows the error of estimatione := ||Y0 − Ŷ0||F and
the corresponding amount of operations, whereY0 is a matrix
of exact sequential zero input responses with length� = 10
and Ŷ0 is its estimate computed from data. The estimate is

computed in three ways: by Algorithm 6, implemented with
the QR factorization, see Note 8; by the oblique projection,
computed directly from (9); and by the oblique projection,
computed via the QR factorization, see Note 7.

Algorithm 6 needs less computations and gives more ac-
curate results than the alternatives. As already emphasized,
the reason for this is that selecting the parameterL=nmax=3
instead ofL= � = 10, as in a block computation, results in
a more overdetermined system of equations in Step 3.1 of
Algorithm 6 compared with system (8) used in the block al-
gorithm. (For example, the difference is 95 vs. 88 columns.)
As a result the noise is averaged over more samples, which
leads to statistically better estimate. Solving several more
overdetermined systems of equations instead of one more
rectangular system can be more efficient, as it is in the exam-
ple. In fact, the freedom in the choice ofL makes it possible
to optimize efficiency or another criterion.

All algorithms return a finite time balanced model. The
next experiment illustrates the effect of the parameter� on
the balancing. LetWc/Wo be the controllability/observability
gramians of an infinite time balanced model andŴc/Ŵo
be the controllability/observability gramians of an identified
model. Define closeness to balancing by

e2
bal :=

||Wc − Ŵc||2F + ||Wo − Ŵo||2F
||Wc||2F + ||Wo||2F

.

Fig. 2 showsebal as a function of� for the three algo-
rithms presented in the paper. The estimates obtained by Al-
gorithm 7 and the algorithm of Moonen–Ramos are identi-
cal estimate obtained by the algorithms of Van Overschee–
De Moor is asymptotically equivalent, but for small�, is
worse. This is a consequence of the fact that this algorithm
uses an approximation of the Hankel matrix of Markov pa-
rameters.Fig. 2also showsebal as a function of� for noisy
data withs = 0.001 and the total number of floating point
operations (flops) required by the three algorithms.

9. Conclusions

The impulse response and the sequence of zero input re-
sponses are the main tools for balanced subspace identifica-
tion. Classically they are computed with the oblique projec-
tion. We gave a system theoretic interpretation of the oblique
projection and a new algorithm for computation of a re-
sponse directly from data. The new algorithm allows compu-
tation of an arbitrary long response from a finite data set and
has the following advantages over the existing alternatives.

• The algorithms of Moonen–Ramos and Van Overschee–
De Moor compute the whole Hankel matrix of Markov
parametersH, while the proposed algorithms com-
putes only the elements that uniquely specifyH and
then constructsH from them. Because of the Han-
kel structure, the algorithms of Moonen–Ramos and
Van Overschee–De Moor recompute most elements
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Fig. 1. Impulse response estimation. Solid line—exact impulse responseH, dashed line—impulse responsêH computed from data via Algorithm 5.

Table 1
Error of estimatione = ||Y0 − Ŷ0||F and the corresponding amount of operationsf in mega flops, whereY0 is an exact sequence of zero input responses
and Ŷ0 is the estimate computed from data

Method s = 0.0 s = 0.1 s = 0.2 s = 0.4

e f e f e f e f

Alg. 6 with QR 10−14 130 1.2990 131 2.5257 132 4.7498 132
formula (9) 10−10 182 1.6497 186 3.2063 187 6.0915 189
(9) with QR 10−14 251 1.6497 251 3.2063 251 6.0915 252
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Fig. 2. Closeness to balancingebal and computational cost as functions of the finite time balancing parameter�.

of H many times. This is an inefficient step in these
algorithms.

• In the algorithms of Moonen–Ramos and Van
Overschee–De Moor, the parameter� is supplied by the
user. In the proposed algorithms, it can be determined
automatically on the basis of a desired convergence

tolerance of the impulse response, which is directly
related to the closeness of the obtained representation
to a balanced one.

• The algorithms of Moonen–Ramos and Van Overschee–
De Moor compute finite time-� balanced representation
with ���1

2(T + 1)/(max(m,p) + 1)�, whereT is the
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length of the given time series̃w. By choosing the pa-
rameter� large enough, the proposed algorithms have
no such limitation and can thus compute a representa-
tion that is arbitrary close to an infinite time balanced
one.

• The proposed algorithms have weaker persistency of
excitation conditions than the one needed for the al-
gorithms of Moonen–Ramos and Van Overschee–De
Moor. As a result, in certain cases, the proposed
algorithms are applicable, while the algorithms of
Moonen–Ramos and Van Overschee–De Moor are not.

• In the proposed algorithms, the computations can be
organized to use more overdetermined system of equa-
tions, which result in more accurate estimates whenw̃
is noisy.

We foresee other advantages on the level of the numer-
ical implementation. Numerical issues, however, will be
presented elsewhere.
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