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Abstract

New algorithms for identification of a balanced state space representation are proposed. They are based on a procedure for the estimatior
of impulse response and sequential zero input responses directly from data. The proposed algorithms are more efficient than the existing
alternatives that compute the whole Hankel matrix of Markov parameters. It is shown that the computations can be performed on Hankel
matrices of the input—output data of various dimensions. By choosing wider matrices, we need persistency of excitation of smaller
order. Moreover, this leads to computational savings and improved statistical accuracy when the data is noisy. Using a finite amount of
input—output data, the existing algorithms compute finite time balanced representation and the identified models have a lower bound on the
distance to an exact balanced representation. The proposed algorithm can approximate arbitrarily closely an exact balanced representation
Moreover, the finite time balancing parameter can be selected automatically by monitoring the decay of the impulse response. We show
what is the optimal in terms of minimal identifiability condition partition of the data into “past” and “future”.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction The given trajectoryiv = (i, ¥) is anexacttrajectory of.&.
This means that there exist§1) ¢ R", such that the re-
In this paper, we consider the following exact determinis- sponse of? to the inputi and initial conditionz (1) is 3.
tic identification problem: given an input-output trajectory The problem is to find conditions and algorithms to con-

W= (i, y), W= (W(1), ..., W(T)), of an LTI system struct %y directly from w. Although the assumption that
_ W is exact is mainly of theoretical importance, we believe
S x(t(:; i) E;(‘;;(f: ; Ii?)(t) Q) that solving the exact identification problem is a prerequi-
Y= A site for the study of the realistigpproximateidentification
ut) € R y@) € RP, x(r) € R*, determine fromi an problems. o .
associated balanced state moddbore, 1981; Pernebo & Exact state-space identification has been considered ear-
Silverman, 198p lier in Gopinath (1969)Budin (1971)and later on in the
behavioral setting ifWillems (1986) The modern approach
Pl Xpal(? + 1) = Apaicbal(t) + Bpaitt (1) is deterministic subspace identificatiovaf Overschee &
& ¥(#) = Cparpal(?) + Dpapu(t). De Moor, 1996 Chapter 2). The identified model need not

* This paper was not presented at any IFAC meeting. This paper was b? ina Sp?Cial Stat? space basis. The problem considergd in
recommended for publication in revised form by Associate Editor B. this paper is to derive a balanced model and the motivation
Nigness under the direction of Editor T. Soderstrom. is that in a balanced basis one can apply truncation as a
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(I. Markovsky), jan.willems@esat.kuleuven.ac.b&C. Willems), a.‘.me_ 0d for approximate | en_ mcation. us, exac .I en-
bart.demoor@esat.kuleuven.ac(Be Rapisarda), tification of a balanced model is a prelude to approximate

p.rapisarda@math.unimaas(@.L.M. De Moor). identification. In the language a&¥illems (1986) we want
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to find an input/state/output balanced representation of the Dyg)) is finite timeA balanced For 4 > npay, the repre-

most powerful unfalsified mod@VIPUM).

sentation obtained is close to an infinite time balanced one.

The balanced state-space identification problem is stud-Determining an appropriate value for the paramettenow-

ied in Moonen and Ramos (1993ndVan Overschee and
De Moor (1996, Chapter 5)The proposed algorithms fit
in the outline given below, which will be called thea-
sic algorithm The following notation is used: witlf =

(f@,.... f(T)),

HA(f) =
O f@ 3 FT—A+1)
@ @ f@ (T —A+2)
@ fd 6 FT—4+3)
FA) FUA+D FA+2) £(T)

and ¢ is the shift operatow f(r) := f(t + 1). Acting on
a vector or matrixg removes the first block-row. Bfywe
will denote both the time seriesf (1), ..., f(T)) and the
vector col f (1), ..., f(T)), where col-) denotes a (block)
column vector.

Algorithm 1 (Basic algorithnm). Input a time seriesv =
(i, y), an upper bound nax Of the system order, and a finite
time balancing parametet > nmax.

1. Find the first 2 samplesH(0), ..., H24 — 1) of
the impulse response matrix o and let H :=
Col(H(0), ..., H(24 — 1)).

2. Find zero input respons 1), ...,yc(,M), M =T —
A 4+ 1, of length 4, generated from initial conditions

xél), .., x" that form a valid state sequence 6f

obtained by the inpui. Let Yo := [y” -+ y§"I.
3. Compute the restricted SV = UXV T, of the block

Hankel matrix of Markov parametes = # 4(cH) €
RAprm_

4. Compute the balanced state sequenkgy :=
V2UTy,,
Xbal = [Xpal(Nmax+ 1) Xbal(Nmax+ M)].

5. Compute the finite timel balanced realizatiompg),
Bpal, Cpal, Dpal by solving the linear system of equations

|:szal(nmax +2) Xbal(Nmax + M) i|
Y(Nmax+ 1) Y(Nmax+ T — 4)
_ [Abal Bbali|
Cbal  Dpal
% |:)Ebal(nmax+ 1 Xpal(Nmax+ T — A)]
ﬁ(nmax-i- 1) ﬂ(nmax“— T — A) '

)
Output a finite timeA balanced representatiomyg,
Bal, Cbals Dpal) of .

Note 1 (Finite time balancing. The basic algorithm fac-
tors a finited x A block Hankel matrix of Markov parame-
ters$, so that the obtained representatiethd, Bpal, Chal,

ever, is a problem in its own right, and will be addressed in
the paper.

Note 2 (Model reductio). ldentification of a state-space
model in a balanced basis is motivated by the effective
heuristic for model reduction by truncation in that basis. In
principle, it is possible to identify the model in any basis and
then apply standard algorithms for state transformation to a
balanced basis. The direct algorithm discussed in this paper,
however, has the advantage over the indirect approach that it
allows toidentify a reduced order model directly from data
without ever computing a full order model.

The model reduction can be done by Step 5 of the basic
algorithm. Letr be the desired order of the reduced model
and letX eq be the truncated to the firstows balanced state
sequencé?baL As a heuristic model reduction procedure, we
derive the reduced model parameters by solvingléast-
squares problem

|:)zred(nmax+ 2) Xred(Nmax + M) :|
Y(Nmax+ 1) Y(Nmax+ T — 4)
— |:Ared Bred]
Cred Dred
Xred(Nmax+ 1) XredNmax+ T — 4)
u(Nmax+ 1) U(Nmax+ 7T — 4)

in place of the exact system of equations (2). The obtained
model (Ared, Bred, Cred, Dred) iS Notthe same as the model
obtained by truncation of the (finite timé&) balanced model.

In particular, we do not know about error bounds similar
to the ones available for the (infinite time) balanced model
reduction. The model reduction question is not further dis-
cussed in this paper and will be treated elsewhere.

Note 3. In Moonen and Ramos (1993)an Overschee and
De Moor (1996) it is not mentioned that the Hankel ma-
trix of Markov parameters$) is computed. Also irMoonen

and Ramos (1993}t is not mentioned that the matri of
sequential zero input responses is computed. In the present
paper, we interpret these algorithms as implementations of
the above basic algorithm and reveal their structure. The im-
portant difference among the algorithms of Moonen—Ramos,
Van Overschee—De Moor, and Algorithm 7 proposed in this
paper is namely the method of computation of the matgix
and the impulse responsé

Step 1, the computation of the impulse response, is the
crucial one. In fact, oncel is computed, a balanced model
can be obtained directly via Kung's algorithm. This gives
the alternative deterministic balanced model identification
algorithm outlined in Algorithm 2.
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Algorithm 2. Input a time seriesv=(u, ), an upper bound Simulation results show that in the presence of noise “go-
Nmax Of the system order, and a finite time balancing param- ing back to the data”, as done in the basic algorithm and in
eter4 > Nmax- Algorithm 3, leads to more accurate results. This gives an

indication that the basic algorithm and Algorithms 3 might
be superior to Algorithm 2 in the noisy case.
The outline of the paper is as follows. In Section 2 we

2. Compute the restricted SVB = UV T, of the block present two_ lemmas that are instrumental for the derivation
' Hankel matrix of Markov arametesjs—’ H 4(cH) € of the algorithm. The first one, which we call thendamen-
RAPx An P - tal lemma gives conditions on a trajectofy, under which
o . T any response of/ with lengthL belongs to the image of
3. DefineCbal := U2 and%pa = ﬁv : the Hankel matrix#’; (W). As a consequence, any response
4. Let Dpg = H(0), Bpa be equal to the firahcolumns of _ :
. ) of lengthL can be found as?’; (W)g for a suitableg €
%pal (the first block column)Cpg be equal to the first RT-LHL The second lemma. which we call i aving
0 i : !
P TOws Of Cpal (the f!rst S I?Ck row), an(fjAba' be the lemma shows how an arbitrary long responsed%fcan be
solution of the equatioc™ Opa)) Apal = 0 Opal, Wherea . . .
N . . . obtained from a finite amount of dafaby weaving together
andg™, acting on a block matrix, remove, respectively, .
! segments of the desired response.
the first and the last block rows.

Output a finite timeA balanced representatiomya), In Section 3, t_he fundamental lemma is appheq for con-
struction of the impulse respons¢ Theorem 4 gives an
Bpal, Chal, Dpal) of .

algorithm for the computation dfl, based on the construc-
tion H = #»,(W)G, for a suitableG. This approach gives
a limited length response. Using the weaving lemma, an al-
gorithm is derived that computes arbitrary many samples of
the impulse response. By monitoring the decay of the im-
pulse response while computing it, the parametesf the
basic algorithm can be chosen adaptively.

In Section 4, an algorithm for the computation of the
matrix Yp that appears in the basic algorithm is described.
It is also based on the fundamental lemma and in anal-

1. Find the first 20 samplesH(0), ..., H(24 — 1) of
the impulse response matrix o and let H :=
Ccol(H(0), ..., H(24 — 1)).

In Algorithm 2, once the impulse response is computed,
the parametersipa;, Bpai, Chal, Dpal are obtained without
returning to the original observed data. Yet another alterna-
tive for computing a balanced representation directly from
data is to obtain the parametefgs and Cpy as in Algo-
rithm 2 from (4 and the parameteiBy, and Dpg (as well
as the initial conditionpg (1), under whichWw is obtained)
from the linear system of equations

-1 ogy with the impulse response computation has a block

(1) = CoalAhapepal(1) + Z CoalAb " Bpaiii (1) version and an iterative version. We show that the block
=1 version of the algorithm is actually equivalent to the fa-

+ Dpad(t+1), forr=1,...,T, 3) mous oblique projection from the classical subspace algo-

. - . rithms, which gives a system theoretic interpretation of the
using the original data. (By using Kronecker products (3) oblique projection. (In the subspace identification literature

can be solved explicitly.) The resulting Algorithm 3 is in yho oplique projection is defined and interpreted as a geo-
the spirit of the MOESP-type algorithms, sé&rhaegenand  ayric operation and its system theoretic meaning remains
Dewilde (1992) hidden.)

Algorithm 3. Input atime seriesv=(u, y), an upper bound
Nmax Of the system order, and a finite time balancing param-

eter4 > Nmax
max 2. Fundamental lemmas

1. Find the first 2 samplesH(0), ..., H224 — 1) of

the impulse response matrix of’ and let H := Denote by#|[1,1] the set of all trajectories of the system
COI(H(0), ..., H(24 — 1)). & over the time intervall, L], i.e.,

2. Compute the restricted SVB,=UXV T, of the block
Hankel matrix of Markov parametets = # 4(cH) € . ul . (lu@ u(L)
= =[] = (@] [50)])
3. DefineCpa := UVZ. 3x(1), ... x(L + 1) such that1) holds .
4. Let Cpy be equal to the firsp rows of Opq (the first

block row), andApa be the solution of the equation The notion of persistency of excitation is defined next, cf.

(6* Opan) Apal = 7 Opal. (Van Overschee & De Moor, 199®efinition 5).
5. Solve (3) forBpal, Dpal, andxpa(1). Definition 1 (Persistency of excitation The sequencgé =
Output a finite timeA balanced representatiomyg, @), ...,u(T)) is persistently exciting of ordet if the

Bpal, Cpal, Dpal) of 7. Hankel matrix#; (i) is of full row rank.
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Lemma 2 (Fundamental lemmaWillems,
Markovsky, and DeMoor (200%) Let

Rapisarda,

1. W= (u, y) be a trajectory of the LTI systef, i.e.,,
(1) a(T)

~[51= (5] [fn]) e

2. the systent” be controllable and

3. the input sequencé be persistently exciting of order
L + n, wheren is the order(the dimension of the state
spacé of &.

Then any L samples long trajectory=a(u, y) of & can
be written as a linear combination of the columns/#§, (W)
and any linear combination?’; (W)g, ¢ € RT L+ is also
a trajectory of.%, i.e,, col span#'r (W) = #|[1.1]-

u

y

W —

Proof. The proof of these results as well as interesting corol-
laries are given iWillems et al. (2004) O

The fundamental lemma states conditions under which
the Hankel matrix»#’; (W) has the “correct” image (and as

a consequence the “correct” left kernel). The conditions are

not verifiable from the daté& alone, so that in identification
problems, where onlyv is given, they should be assumed.
In addition, for the derivation of the algorithm, we assume
that an upper boundax on the system ordar and an up-
per boundl nhax on the system lad are a priori known.
The system lag is defined as the observability index of
. Note thatnnax can be used as a loose upper bound on
| . Genericallypl =n andpl max=Nmax- Assumptions 1-3

of the fundamental lemma and the assumption thalx is

given are the standard assumptions for deterministic sub-

space identification, see, e.yan Overschee and De Moor
(1996, Chapter 2)

The next lemma shows how a long response can be con-

structed by weaving together short ones.

Lemma 3 (Weaving responsgsLet

1. WV be aTy samples long trajectory of/, i.e., WV €
Bln

2. W? be aT, samples long trajectory of’, i.e, W? ¢
Bl

3. the last | samples ot coincide with the first | samples
of W2, i.e,

WM —1+1),..., W (1)
=W2Q),...,w20));

4. lis larger than or equal to the lag of the systent”.
Then the trajectory
w= @), .., WD (1), WP (I+1), .. W (1),  (4)

obtained by weaving togeth&® and w® is a trajectory
of #,i.e,we %|[1,T1+T2—l]-

I. Markovsky et al. / Automatica 41 (2005) 755—-766

Proof. Let i := GD(1),..., iV (11 + 1) andi®@ :=
E@(),..., 59 (T> + 1)) be the state sequences.#fas-
sociated withw® andw'?, respectively. Assumptions 3 and
4 imply thati D (71 + 1) = ¥@ (I + 1). Therefore, (4) is a
trajectory of¥. [

3. Computation of the impulse response

In this section, we consider Step 1 of the basic algorithm:
given a trajectoryv = (i, y), find the first 21 sampleHH of
the impulse response of. We need the first2 samples of
the impulse response in order to construct the A block
Hankel matrixs# 4(o H), whose factorization in turn gives
the finite timeA balancing transformation.

From the fundamental lemma, we know that, under suit-
able conditions, col sp&nt’s4(W)) = %|1,247. This implies
that there exists a matri®, such that#’,,(3)G = H. Thus,
the problem reduces to the one of finding a partic@ar

Let row dim denote the number bfockrows of a matrix
or vector and defin&p, Uy, Yp, Yt as follows

where row dinfUp) = row dim(Yp) = | max and row
dim(Us) = row dim(Y¢) = 24.

Yp
Yt

Up

%I max+24(lz) = |:Uf] ’ %| max+2A()7) =: |:

Theorem 4 (Impulse response from datalLet w = (i, ¥)
be a trajectory of a controllable LTI systerf of order
n<nmax and lagl <I maxand letz be persistently exciting
of order24 + | max+ Nmax- Then the system of equations

gp i 0m| ;:xxm (5)
Yg) B |: Om(ZA —1)xm
PI maxXM

is solvable forG e R**™. Moreover for any particular
solutionG, the matrixY G contains the firse4 samples of
the impulse response of, i.e, Y;G = H.

Proof. Under the assumptions of the theorem, we can apply
the fundamental lemma with = | yax + 24, thus

colspant ) . y24(W) = RBli1 | or241-

First we show that (5) is solvable. The impulse response

(001

On(24-1)xm - N
obtained under zero initial conditions. Because of the zero
In

Orq(ZA—l)xm
number of zeros remains a response/afTherefore, there

],H) is a (matrix valued) response of

initial conditions, ,H> preceded by any
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exists a matrixG, such that

Zp Om| ,Inmaxxm
Y:; G= |:0m(2A—1)><m
Yf p| maxXm

This shows that there exists a solutiérof (5) and therefore
Y¢G is the impulse response.
Conversely, leG be a solution of (5). We have

ml max X

U,

U? [ In

Yp G= Om(ZA—l)xm (6)
p| maxXm

i YiG

and the fundamental lemma guarantees that the right-hanch < ; <

side of (6) is a response of. The response is identically

zero during the first nax samples, which (using the assump-
tion| max=>1) guarantees that the initial conditions are set to
In

On24—1)xm
so that the corresponding outpitRG is indeed the impulse
responseH. [

zero. The inpu ] is a matrix valued impulse,

Theorem 1gives the following block algorithm for the
computation oH.

Algorithm 4 (Block computation of the impulse re-
sponsg Input i, y, | max, and4.

1. Solve the system of Eq. (5). L& be the computed
solution.
2. ComputeH =Y/G.
Output the first 24 samples of the impulse resporide

Note 4 (Efficient implementation via QR factorizatjonThe

system of equations in Step 1 of Algorithm 4 can be solved

efficiently by first “compressing the data” via the QR de-
composition

U U Yy | Y'|=QrR, R =

Ralo )

R ‘ Rz

WhereRll c R(m(l max+2A)+P| max)x(m(l max+24|)+P| max), and

then computing the pseudo-inverse of tRg; block. We
have

Up +ro 0
H:Yf|:Uf:| |:Ij|=R21RIr1|:I:|.
Yp 0 0

We proceed to point at an inherent limitation of Algorithm
4 when dealing with finite amount of data.
Let T samples of the input and the output be given.

The persistency of excitation assumption in Theorem 4

requires that#’, | (w) is full row rank, which

max+Mmax

759
implies that
M24 + | max+ Nmax) KT — 24 + | max+ Nmax) + 1
1/T+1
= A<§ (m — | max— nmax)-

Thus using Algorithm 4, we are limited in the number of
samples of the impulse response that can be computed.
Moreover, for efficiency and accuracy (in the presence of
noise), we want to have Hankel matricgp, Us, etc., with
many more columns than rows, which implies small
According to Lemma 3, however, it is possible to find
arbitrary many samples of the impulse response. Algorithm
5 does this by computing iteratively blockslotonsecutive
samples, where
1 (T +1

2 m+1 )

> — | max— I'lmax) .
Moreover, monitoring the decay bf (provided the system is
stable) while computing it, gives a heuristic way to determine
the parametert.

In the recursive algorithm the matricéf, Us, Yp, Yf
defined above are redefined as follows:

Y () = [gﬂ A n () = [’;ﬂ

where row dinfUp) = row dim(Yp) = | max and row dim
(Us) =row dim(Ys) = L.

Algorithm 5 (Iterative computation of the impulse re-
sponsg Input i, ¥, Nmax | max, @nd either4 or a conver-
gence tolerance.

1. Choose the number of samplesomputed in one iter-
ation step according to the persistency of excitation of
u. In particular (7) should be satisfied.

L . ) 0m| maxXm
2. Initialization: k := 0, F,~ := [ In } and
o On(z—1)xm
Fy,p = OPI max”
3. Repeat
Up £
3.1. Solve the system Us | G® = |:FL(Ik }
Yp y.p
3.2. Compute the respongg® := F)fkf) = YG®,
& ‘
3.3. DefineF)Ek) = [ {kﬂ
F
y.f
3.4. Shift Fy and Fy: FFY = ot Fif FD .~
o . v " | Ouzxm | y-p N
(k)
ol Fy". . .
3.5. Increment the iteration counter= k + 1.
4. Until kL>24 if 4 is given
' |H*D| r<e andkL is even otherwise.

5. If 4 is not given as an input, defing:= kL /2.
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Output H=col(H@, ..., H&=DyandA if 4is not given and setting’o=Y;G. Moreover, the Hankel structure o
as an input. and Yp imply that Yo is a matrix of sequential responses.
System (8) and'p = Y5G give a block algorithm for the
Proposition 5. Let (i, ) be a trajectory of a controllable =~ computation of sequential zero input responses. It is analo-
LTI system% of ordern <nmax and lagl <I max and let gous to the block algorithm for the computation of the im-
i be persistently exciting of orddt + | max + Nmax- Then pulse response and again the computation can be performed
Algorithm 5 computes the firs24 samples of the impulse efficiently via the QR factorization.
response of”.
Note 7 (Connection with the oblique projectibnFor any
Proof. Under the assumptions of the proposition, we can particular solutiorG of (8), Y():Yfé is equal to the oblique
apply Theorem 1 with the parameter in the theorem, re-
placed by the parametér, selected on Step 1 of the algo-
rithm. Steps 3.1 and 3.1 of the recursive algorithm corre- algorithms. To show this, let
spond to the steps of the block algorithm. The right-hand
" WpWp WprTi|+ [Wp}

side F
UsWp  UgU{ 0

projectioan/Upr, Wp = gp of the classical subspace

Flékf, of the system of equations, solved in Step 3.1, G = [WB UfT][
is initial)ilzed so that © is indeed the matrix of the firdt
samples of the impulse response.

The response computed on thie+ 1)th iteration step,
k>1, is aresponse due to zero input and its firghx Sam- U
ples overlap the lastyax Samples of the response computed |:Yp:| , which is (8) with permuted rows, so that the solu-
on thekth iteration step. By the weaving lemma, their con- 0
catenation is a valid response. Applying this argument re- tion is not changed. Then
cursively, we have thatl computed by the algorithm is the wewT  WeuT 1+
impulse response of the systent.] YiG = viiwg UfT][ Upr UprT ] [Wép} O

f%p f~f

Up
be the least-squares least norm solution [ofp} G =
Ut

Note 5 (Computation of an arbitrary response from o e ) o

data). For the purpose of balanced subspace identification, Wich is the definition of the oblique prOJeCt'df?/Uéva
we need construction of the impulse response from data.S€€Van Overschee and De Moor (1996, p. 21, Eq. (1.4)
In Markovsky, Willems, Rapisarda, and De Moor (2004) Thus, the gbllque projection is an |mplementat|on_ of the
Theorem 4 and Algorithm 5 are modified to compute an block algorithm for the computation of the sequential zero

arbitrary response directly from data. Input responsego.

We proceed to present a recursive algorithm for the com-
putation ofYp, analogous to Algorithm 5 for the computa-
tion of the impulse response. An advantage of the recursive
algorithm over the block one is that one is not restricted by
the finite amount of dat@& to a finite length response&y.

Note 6(Efficient implementation via QR factorizatjoriThe
most expensive part of Algorithm 4 is solving the system
of equations on Step 3.1. It can be solved efficiently via the
QR factorization as described in Note 4. Moreover, since
the matrix on the left-hand side of the system is fixed, the
pseudo-inverse can be computed out of the iteration loop

and used for all iterations. Algorithm 6 (Sequential zero input responesnput u, y,

Nmax | max, @nd either the desired number of samplesr
a convergence toleranee

4. Computation of sequential zero input responses 1. Choose the number of samplesomputed in one iter-
ation step according to the persistency of excitation of
In this section, we consider step 2 of the basic algorithm: ii. In particular (7) should be satisfied.
givenw = (i1, ¥), find a sequential zero input respondigs o U
of &. By “sequential’, we mean that the initial conditions 2 nitialization: k := 0, R = [ op]' andF;% = Yp.
corresponding to the columns & form a valid state se- 3. Repeat
quence of?.

Using the fundamental lemma, a set of zero input trajec- Up © FP
tories can be computed from data by solving the system of ~ 3-1. Solve the systern Ug | G = [F(kp]
equations Yp . ; v
3.2. Compute the responsg” := F)ff) = YGW.

Up Up &
|:Ufj| G= |: 0 } (8) 3.3. DefineR" := [ {kﬂ
Yp Yp Fysf
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oL FP

3.4,
OmLxm

Shift F, and Fy: RV = [

}, and

F&Y = oL ED.
3.5. Inc/r{eLm>e?‘t the itera}]Ei()AInigogungin: k+ 1.
4. Und 1Y PIr<e  otherwise.
5. If Ais not given as an input, definé:= kL.
Output Yozcol(Y(o), el Yék_l)) and4, if A is not given
as an input.

Proposition 6. Under the assumptions of Propositidn
Algorithm 6 computes a matrix of sequential zero input re-
sponses of” with 4 block rows

Proof. Similar to the proof of Proposition 5.7

Note 8 (Efficient implementation via QR factoriza-
tion). Note 6is valid also for Algorithm 6. Moreover, in the
basic algorithm, where both Algorithms 5 and 6 are applied,
the pseudo-inverse needs to be computed only once.

5. An algorithm for deterministic balanced subspace
identification

761

The corresponding balanced representatiotyal, Bbal,

Cpal, Dpa) is computed from the system of
equations
|:)zbal(| max + 2)2) Xpal(l max+ 7T +1— L)i|
(I max+ 1) V( max+T — L)
_ |:Abal Bbal]
Cbal  Dpal
% Xpal(l max+ 1) Xpal(l max+ 7T — L)
i(l max+ 1) il max+7 —L) |’
(10)

This yields the following procedure.

Algorithm 7. Input i, ¥, Nmax | max and eitherd > Nmax
or a convergence toleranee

1. Apply Algorithm 5 with inputsiz, ¥, Nmax | max, and
either4 or ¢, in order to compute the impulse response
H and, if not given, the parametel. In the latter case,
let 4 := max(Nmax+ 1, 4)

. Apply Algorithm 6 with inputsi, y, Nmax | max L,

and 4, in order to compute the sequential zero input

responsesp.

Form the Hankel matri¥y := # 4(c H) and compute

the restricted SV =UXV ".

3.

In the previous sections, we have specified Steps 1 and 2 4. Compute a balanced state sequeXigg=+v'~ U T Yo.

of the basic algorithm. Steps 3-5 follow from standard

derivations, which we now repeat for completeness. Let

$ be the Hankel matrix of the Markov parameteys:=
A 4(cH). By factoring  into ()hg and épa Via the re-
strictedSVD

§=USV =UVZ VIV, 3R>

Upal Chal

we obtain an extended observability matrix
Obal = €Ol(Chal, CoalAbal, - - - » ChaiAfg )
and a corresponding extended controllability matrix

%pal = [Bbal  AbpalBbal Ag; ! Boall

in a finite time balanced basis. The basis is finite tirhe-
balanced, because the finite timeebservability gramian
Op10ba = X and the finite timed controllability gramian
Gpabpy == are equal.

The matrix of sequential zero input responggsan be
written asYg = (OX for a certain extended observability ma-
trix ¢ and a state sequenan the same basis. We find the
balanced state sequence

Xbal = [Zpal(l max+ 1) Xpal(l max+ T +1— L)]

corresponding t@pa = U~/ from

Yo = OpaiXpal = Xpa= V21U Yo.

5. Compute a balanced representation by solving (10).
Output Apal, Bpal, Chal, Dpal, and4, if 4 is not given as
an input.

The discussion in this section and Propositions 5 and 6
prove the following main result.

Theorem 7. Under the assumptions of Propositios,
(Apal, Bpal, Cpal, Dpal) computed by Algorithn7 is a finite
time-4 balanced representation of’.

6. Alternative algorithms

We outline the algorithms of Van Overschee—De Moor
and Moonen—Ramos.

Algorithm 8 (Van Overschee & De Moor, 1996Input i,
y, and a parameter

Define: [gﬂ := A 5 (ii), where row diniUp) =i, and

Y - . .
[Yﬂ == A 2i(y), where row dintYp) =i.
1. Compute the weight matrit := Ug (UpUp) ™"/,
wherelJ is the left-right flipped identity matrix.
2. Compute the oblique projectidfy := Yf/Uf [;{S]

3. Compute the matri$ := YoW and the restricted SVD,
9=UXVT.
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[s—1pT . . .
4. Compute a balanced state sequeXigg=v' 2™ "U ' Yo. extended observability matrix. Thag [T 7] Uplisa
5. Compute a balanced representation by solving (10). o of al _ | Y h
output Apal, Bbal, Cbals Dbal matrix of sequential zero input responses. It turns out that

(T2T4+T3 — Ty)J is an extended controllability matrix (in

Note 9. The weight matrixW is different from the one in  the same basis), so thaf (127, s — T1)/ is the Hankel
Van Overschee & De Moor (1996)n terms of the final re- ~ Matrix of Markov parameters. _

sult$, however, itis equivalent. Another difference between A major difference between the proposed Algorithm 7,
Algorithm 8 and the deterministic balanced subspace algo- fom one side, and the algorithms of Van Overschee-De
rithm of Van Overschee & De Moor (1996 that the shifted ~ Moor and Moonen—Ramos, on the other side, is that in Algo-
state sequence appearing on the left-hand side of (10) is reJithm 7 the Hankel matri% is not computed butonstructed

computed invan Overschee & De Moor (199®)y another from the impulse response that parameterizes it. This is a
oblique projection. big computational saving because recomputing the same el-

ements of is avoided. In addition, in approximate identifi-

Algorithm 9 (Moonen & Ramos, 1993 Input i, 7, and a cation, wherew is not a trajectory of”, the matrices) and
parameter. $ computed by the algorithms of Van Overschee—De Moor

i Up . ) . and Moonen—Ramos are in general no longer Hankel, while
Define [Uf] 1= A 2i(u), where row diniUp) = i, and the matrix$) in Algorithm 7 is by construction Hankel.

Y - . .
[Yﬂ := A 2i(y), where row dingYp) =i.

7. On the splitting of the data into “past” and “future”
0. Compute a matriX7y T» T3 T4], whose rows form a
Up In the algorithms of Moonen—Ramos and Van Overschee—
basis for the left kernel o Yp R Y
U De Moor the block-Hankel matric Ul?] and [ Yl?] are
split into “past” and “future” of an equal length. A natural
question is why this is necessary and furthermore what is
“optimal” according to certain relevant criteria partitionings.
U These questions are open for a long time, in particular in
T, [T1 T»] [ Yp] the context of the stochastic identification problem, Bee
P Moor (2003)

In Sections 3 and 4 we showed that the pEgt Yp is

i
1. Compute the Hankel matrix of Markov parametgrs-
T, (ToT, T3 — Th) J.
2. Compute a matrix of zero input responsé&s =

3. Compute the restricted SV =UXV .

4. Compute a balanced state sequeXigg=v > U " Yo. used to assign the initial conditions and the futtig Y
5. Compute a balanced representation by solving (10). s used to compute the response. By weaving consecutive
Output Apal, Bpal, Chal, Dbal- segments of the response, as done in Algorithms 5 and 6,

_ the number of block rows in the future does not need to be
Note 10. In the algorithms of Van Overschee—De Moor and  equal to the required length of the response. Thus from the

Moonen-Ramos, the parameteplays the row of the finite  perspective of deterministic identification, the answer to the
time balancing parametefrfrom the previous sections. Note  ghove question is:

thati is given and the “past” and the “future” are taken with ) ] ]
equal length. row dim(Up) = row dim(Yp) = | max, i.e., the

given least upper bound on the system lagand
Both Algorithms 8 and 9 fit in the outline of the basic oW dim(Ug) = row dim(Yf) € {1,....7 = I max +
algorithm but Steps 1 and 2 are implemented in rather dif- Nmax}, Wherey is the order of persistency of excitation
ferent ways. As shown in Note 7, the oblique projection  Of the inputi.

Yf/Uf l;p is a matrix of sequential zero input responses. As shown inWillems et al. (2004, Section 4, Comment 5)

The weight matriV, in the algorithm of Van Overschee-De  ; persistently exciting of ordermax-+ 1 + Nmax (11)
Moor, is constructed so th& = YoW is an approximation

of the Hankel matrix of Markov parametegs it is the sum is a sharp sufficient condition for identifiability of the sys-
of $ and a matrix of zero input responses. tem.7. By using the iterative algorithms for computation of

The most expensive computation in the algorithm of the impulse response and sequential free responses with pa-
Moonen—-Ramos is Step 0, the computation of the an- rameterL =1, Algorithms 2, 3, and 7 are applicable under
nihilators [Ty --- T4]. The matrix [T} To] Up is a the same ass"u'mptlon', o) tha.t the partitioning “palStnax

Y] and future= 1" is consistent with (11).

non-minimal state sequence (the shift-and-cut operator yUsingthe fundamental lemma, we can prove the following
(Rapisarda & Willems, 1997 and T4Jr is a corresponding  result.
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Proposition 8. Let (i, y) be a trajectory of a controllable
LTI system?¥ of ordern <nmax and lagl <i, and letz be
persistently exciting of orde2i + nmax. Then the represen-
tations computed by Algorithn&and 9 are equivalent to
. Moreover the representation computed by Algoritiém
is in a finite time-i balanced basis.

Proposition 8 shows that Algorithms 8 and 9 are not par-
simonious with respect to the available data: the systém
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computed in three ways: by Algorithm 6, implemented with
the QR factorization, see Note 8; by the oblique projection,
computed directly from (9); and by the oblique projection,
computed via the QR factorization, see Note 7.

Algorithm 6 needs less computations and gives more ac-
curate results than the alternatives. As already emphasized,
the reason for this is that selecting the paramgten nzx=3
instead ofL. = 4 =10, as in a block computation, results in
a more overdetermined system of equations in Step 3.1 of

could be identifiable with algorithms Algorithms 2, 3, and Algorithm 6 compared with system (8) used in the block al-

7 but not with Algorithms 8 and 9.

gorithm. (For example, the difference is 95 vs. 88 columns.)

Note that the persistency of excitation required by Algo- As a result the noise is averaged over more samples, which

rithms 8 and 9 is a function of the finite time balancing
parameter. This implies that with a finite amount of data,
Algorithms 8 and 9 are limited in the ability to identify a

balanced representation. In fact,

i<| |

In contrast, the persistency of excitation required by Algo-

T+1
2(maxm p) + 1)

rithms 2, 3, and 7 depends only on the upper bounds on the
system order and the lag and thus these algorithms can com

pute an infinite time balanced representation if (11) holds.

8. Simulations

leads to statistically better estimate. Solving several more
overdetermined systems of equations instead of one more
rectangular system can be more efficient, as it is in the exam-
ple. In fact, the freedom in the choice loinakes it possible
to optimize efficiency or another criterion.

All algorithms return a finite time balanced model. The
next experiment illustrates the effect of the parameten
the balancing. LeW./W, be the controllability/observability
gramians of an infinite time balanced model ang/W,
be the controllability/observability gramians of an identified

model. Define closeness to balancing by

2 IWe— Well2 + ||Wo — Wol[2
€pal - = 2 2 :
|| Well2 + || Woll2

Fig. 2 showsepgy as a function of4 for the three algo-

In this section, we show some examples illustrate some rithms presented in the paper. The estimates obtained by Al-

advantages of the proposed algorithms. In all the experi-

ments the systen¥ is minimal with transfer function

Cz—AB+D
_0.89172z — 05193 (z + 0.5595
" (z —0.4314(z + 0.4987)(z + 0.6154

The input is a unit variance white noise and the data avail-
able for identification is the corresponding traject@ryof

&, corrupted by independent white noises with standard de-

viation s. Although, our main concern is the correct work
of the algorithms for exact data, i.e., with= 0, by varying
the noise variancs, we can investigate empirically the per-
formance under noise. The simulation timeTis= 100. In
all experiments the upper boundgax andl nax are taken
equal to the system ordar=3 and the parametéris taken
equal to 3.

Consider first the estimation of the impulse response.
Fig. 1 shows the exact impulse resportdeof . and the
estimate H computed by Algorithm 5. With exact data,
||H — H||r = 10715, so that up to the numerical precision
the match is exact. The plots éfig. 1 show the deteriora-
tion of the estimates when the data is corrupted by noise.

Consider next the computation of the zero input response.

Table 1shows the error of estimatian:= [|Yo — Yo||r and
the corresponding amount of operations, wheyres a matrix
of exact sequential zero input responses with lentth10
and Yy is its estimate computed from data. The estimate is

gorithm 7 and the algorithm of Moonen—Ramos are identi-
cal estimate obtained by the algorithms of Van Overschee—
De Moor is asymptotically equivalent, but for smal| is

worse. This is a consequence of the fact that this algorithm

uses an approximation of the Hankel matrix of Markov pa-
rametersFig. 2 also showspg as a function o4 for noisy
data withs = 0.001 and the total number of floating point
operations (flops) required by the three algorithms.

9. Conclusions

The impulse response and the sequence of zero input re-
sponses are the main tools for balanced subspace identifica-
tion. Classically they are computed with the oblique projec-
tion. We gave a system theoretic interpretation of the oblique
projection and a new algorithm for computation of a re-
sponse directly from data. The new algorithm allows compu-
tation of an arbitrary long response from a finite data set and
has the following advantages over the existing alternatives.

e The algorithms of Moonen—Ramos and VVan Overschee—
De Moor compute the whole Hankel matrix of Markov
parameters$), while the proposed algorithms com-
putes only the elements that uniquely speciyand
then constructs$ from them. Because of the Han-
kel structure, the algorithms of Moonen—Ramos and
Van Overschee—De Moor recompute most elements
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s=0.0

s=0.1
1 1
|H-H| = 10%5 |IH-HI| = 0.02
05 05
X I
= 0 = 0
I I
0.5 -0.5
-1 -1
0 2 4 6 8 10 0 2 4 6 8 10
t t
s=0.2 s=04
1 1
|H-H|| = 0.05
05 05
<% <t/
g .- T oo
I I
05 -0.5
-1 -1
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 1. Impulse response estimation. Solid line—exact impulse respéndashed line—impulse respongz computed from data via Algorithm 5.

Table 1

Error of estimatiore = ||Yg — Ypl| and the corresponding amount of operatibiis mega flops, wherdy is an exact sequence of zero input responses
and Yg is the estimate computed from data

Method s=0.0 s=0.1 s=02 s=04
e f e f e f e f
Alg. 6 with QR 10714 130 1.2990 131 2.5257 132 4.7498 132
formula (9) 1010 182 1.6497 186 3.2063 187 6.0915 189
(9) with QR 1014 251 1.6497 251 3.2063 251 6.0915 252
s=0 s=0.001 5 s=0
0.01 0.01 4 x 10
- - - Moonen-Ramos - - - Moonen-Ramos
' == Van Overschee-De Moor == Van Overschee-De Moor ’/
'l — Algorithm 7 \ — Algorithm 7 3 ’,’
E v 3 Y =2 e Pie
& : & ! 5] I e
' \ H* _," e
' N e RS BT
e ol 0E==
15 5 10 15 5 10 15
A A
Fig. 2. Closeness to balancirgg and computational cost as functions of the finite time balancing parameter
of $ many times. This is an inefficient step in these tolerance of the impulse response, which is directly
algorithms. related to the closeness of the obtained representation
e In the algorithms of Moonen—Ramos and Van to a balanced one.

Overschee—De Moor, the parametieis supplied by the e The algorithms of Moonen—-Ramos and Van Overschee—
user. In the proposed algorithms, it can be determined De Moor compute finite timet balanced representation
automatically on the basis of a desired convergence with 4< L%(T + 1)/(max(m p) + 1)|, whereT is the
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length of the given time serie8. By choosing the pa-
rameter4 large enough, the proposed algorithms have
no such limitation and can thus compute a representa-
tion that is arbitrary close to an infinite time balanced
one.

The proposed algorithms have weaker persistency of
excitation conditions than the one needed for the al-
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Moore, B. C. (1981). Principal component analysis in linear systems:
controllability, observability and model reductiolEEE Transactions
on Automatic Contrgl26(1), 17-31.

Pernebo, L., & Silverman, L. M. (1982). Model reduction via balanced
state space representatidBEE Transactions on Automatic Contyol
27, 382-387.

Rapisarda, P., & Willems, J. C. (1997). State maps for linear systems.
SIAM J. Control Optim.35(3), 1053—1091.

gorithms of Moonen—-Ramos and Van Overschee-De Van Overschee, P., & De Moor, B. (1996%ubspace identification

Moor. As a result, in certain cases, the proposed

for linear systems: theory, implementation, applicatio@®ortrecht:
Kluwer.

algorithms are applicable, while the algorithms of \erhaegen, M., & Dewilde, P. (1992). Subspace model identification, Part

Moonen—Ramos and Van Overschee—De Moor are not.
In the proposed algorithms, the computations can be
organized to use more overdetermined system of equa-
tions, which result in more accurate estimates wien

is noisy.

We foresee other advantages on the level of the numer-
ical implementation. Numerical issues, however, will be
presented elsewhere.
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