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Abstract

We study the problem of feedback stabilization of a family of nonlinear stochastic systems with switching mechanism modeled
by a Markov chain. We introduce a novel notion of stability under switching, which guarantees a given probability that the
trajectories of the system hit some target set in finite time and remaining thereinafter. Our main contribution is to prove
that if the expectation of the time between two consecutive switching (dwell time) is “sufficiently large” then the system is
stable under switching with guaranteed probability. We illustrate this methodology by constructing measurement feedback
controllers for a wide class of stochastic nonlinear systems.
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1 Introduction

Robust control is an efficient design tool when the sys-
tem can be characterized as a nominal model plus un-
certainty with known bounds ([1]). These bounds rep-
resent a worst–case situation in which the controller is
designed. Another case is the one in which the system
switches within a finite number of models due to the pres-
ence of noise or uncertainty ([7]). The control law, known
as switching control, consists of a family of controllers
which stabilize each model and a supervision logic which
selects at each switching time the controller to be em-
ployed in the control loop. The number of switching is
assumed infinite since otherwise the stabilization prob-
lem would be trivial. It is known that a not suitable
timing of the controllers may lead to a closed–loop sys-
tem state diverging to infinity. For linear systems, it is
also known that if the time bewteen each switching, usu-
ally known as dwell–time, is not less than some constant
number, stability of the closed–loop system is guaran-
teed ([7]). Recently, a time–varying or state–dependent
dwell–time has been introduced to design a switching
controller for some classes of iISS ([8]) and ISS ([9]) non-
linear systems. The supervision logic selects from time
to time the controller which stabilizes the system as long
as the dwell–time is larger than some amount of time,
which depends on the initial value of the state when the
switching occurs.

A more complex situation is the one in which the switch-
ing mechanism is modeled as a Markov chain or even in

which a noise, modeled as a Wiener process, affects each
system of a given family. This is a very realistic situation
when abrupt changes in the parameter structure occur
due to component failures or repairs, environmental dis-
turbances or changes in the system interconnections. A
first contribution is given for a family of delayed linear
systems in [10], where the technical conditions for achiev-
ing exponential stability in the mean square are formu-
lated. The analysis is led through a Lyapunov–based ap-
proach, in which a Lyapunov function Vi is available for
each system i ∈ I, and the effect of the Markovian chain
is taken into account by adding a “weighted average” of
the Lyapunov functions Vj , j ∈ I, in the infinitesimal
generator L acting on Vi, the weights depending on the
transition probabilities of the Markov chain.

In this paper, we want to extend the results of [10] in
several directions. First of all, we consider a family of
nonlinear systems, each consisting of a nominal system
plus nonlinear stochastic term in which the noise is mod-
eled as a Wiener process. As in [10] the switching mech-
anism is modeled as a Markov chain. We assume that a
Lyapunov function Vi and measurement feedback con-
troller Ci are available for each system i of the family
and the controller Ci stabilizes the system i in probabil-
ity with guaranteed region of attraction and target set in
the sense of [1]. Given numbers αi, βi ∈ [0, 1) and a pair
of compact sets Ti ⊂ Ri, containing the origin, the tra-
jectories of the closed–loop system with initial condition
in the region of attraction Ri remain inside some larger
compact set, eventually enter any given neighbourhood
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of the target set Ti in finite time and remain thereinafter,
all with probability at least (1− αi)(1− βi). The num-
bers αi and βi can be considered as risk margins: the first
one quantifies the risk of leaving the region of attraction
rather than getting close to the target, while the second
one gives a risk margin for remaining close to the target.

We also assume that for each level set Di of Vi there ex-
ists a level set Di+1 of Vi+1 contained in Di. This nesting
property was already used for the control of hybrid sys-
tems in [11]. The key idea is that the system trajectory
dwells a sufficiently large amount of time in Di before
the next switching occurs so that in the meanwhile it has
approached the set Di+1. If the sequence of sets {Di}
is definitely contained or “close” to the target, then the
system trajectory approaches the target set. We propose
a switching strategy which consists of selecting at each
switching time i the controller Ci. To this aim, we in-
troduce a notion of stabilization of the switching system
(stabilization under switching with guaranteed probabil-
ity: definition 2), which ensures a given probability of
the system trajectories hitting Di+1 conditionally to the
event Ξi of dwelling in Di. Our main contribution is to
prove that if the conditional expectation to the event Ξi

of the dwell–time is “sufficiently large” then the switch-
ing system is stabilizable under switching with guaran-
teed probability (theorem 3). As an application of our
design tool, we consider a family of nonlinear stochastic
systems and show in detail how to construct a switch-
ing controller using theorem 3. Moreover, our result is
weaker even under the same assumptions of [10], since
stability in probability is implied by mean square stabil-
ity.

2 Notations

We give some notations extensively used throughout the
paper.

• if ‖v‖ denotes the 2–norm of any given vector v,
by ‖A‖ we denote the induced 2–norm of any given
matrix A; by ‖v‖A we denote the A–norm of v, i.e.
‖v‖A =

√
vTAv; let col (v1, . . . , vn) be the column

vector with i–th entry equal to vi. Moreover, λmin(A)
and λmax(A) denote the minimal and, respectively,
maximal eigenvalues of a given square symmetric
matrix A.

• by SPn (resp. SNn) we denote the set of n × n pos-
itive (resp. negative) definite symmetric matrices; by
SSPn we denote the set of n × n positive semidefi-
nite symmetric matrices; IR+ denotes the set of posi-
tive real numbers and IR≥ the set of nonnegative real
numbers;
• for any vector–valued function η : IRs → IRr, we de-

note by ηi (or [η]i) its i–th component. A continuous
function α : IR≥ → IR≥ is said to be of class K (or
α ∈ K) ifα(0) = 0 and it is increasing. For any smooth
function f : IRn → IR, s �→ f(s), and λ : IRl → IRn,

r �→ λ(r), we denote by ∇sf(s) the gradient of f(s),
by ∇2

ssf(s) the Hessian of f(s) and ∇sf |λ(r) the gra-
dient of f(s) evaluated for s = λ(r).
• for any given set S, we denote by clos(S) its closure, by
∂S its boundary and by int (S) its interior; moreover,
given δ > 0 and a set S, by δ–neighbourhood of S
we denote the set Sδ = {z : infy∈S ‖z − y‖ < δ}.
Moreover, byR\S denotes the the elements ofRwhich
are not in S.

• Pr{·} denotes the probability measure, E{·} denotes
the expectation and E{ · |·} the conditional expecta-
tion.

3 Stability in probability with guaranteed re-
gion of attraction and target set

In this section we want to review some previous results
on the stabilization for the following class of stochastic
systems

dx(t) = (Ax(t) + Bu(t))dt + H(x(t))dw
dy(t) =Cx(t)dt + K(x(t))dw (1)

where x(t), u(t) and y(t) take values in IRn, IRm and,
respectively, IRp andw(t) is a Wiener process with values
in IRs defined on a given probability space. We consider
a family of controllers C(k), k ∈IN ,

u(t) = η(F (k)σ(t))
dσ(t) = (Z(k)σ(t) + Bu(t))dt + G(k)dy(t) (2)

where η : IRm → IRm is a locally Lipschitz function,
F (k), G(k) and Z(k) are matrices with suitable dimen-
sions and the number k parametrizes the desired region
of attraction and target set for the closed–loop system
(1)–(2). Thus, the parameters of controller (2) depend
on the characteristics of the target set and the region
of attraction. Denote by z(t, t0, z0) = col(x(t, t0, x0),
σ(t, t0, σ0)) the trajectory of the closed–loop system (1)–
(2) at time t ≥ t0 stemming from z0 = col(x0, σ0). With
some abuse of notation, wherever there is no ambigu-
ity, we will use z(t) instead of z(t, t0, z0). For any closed
set R ⊂ IR2n and open set S ⊂ IR2n we denote by
τR\S the exit time of z(t) from the set R\S and define
τR\S(t) = min{τR\S , t}. The following definition of sta-
bilizability in probability for (1) has been given in [1].

Definition 1 Let α, β ∈ [0, 1) and R, T ⊂ IR2n be com-
pact sets containing the origin. The system (1) is said to
be (R, T, α, β)–stabilizable in probability (or (R, T, α, β)–
SP) if there exist a sequence of control laws {C(k)}, a se-
quence of compact sets {Ω(k) ⊂ IR2n, k ∈IN} and open
sets {S(k) ⊂ IR2n, k ∈IN} such that

(i) there exists k∗ ∈IN such that Ω(k) ⊃ R ⊃ T ⊇ S(k)
for all k ≥ k∗;
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(ii) for each δ > 0

lim inf
k→∞

inf
z0∈ clos(S(k))

P{z(t) ∈ clos(Tδ) ∀t ≥ t0}

≥ 1− β (3)

(iii) for each δ > 0

lim inf
k→∞

inf
z0∈R\S(k)

P{z(t) ∈ Ω(k) ∀t ≥ t0,

z(t + τIR2n\S(k)) ∈ clos(Tδ) ∀t ≥ 0, τIR2n\S(k) <∞}
≥ (1− α)(1− β) (4)

The set R gives the guaranteed region of attraction of the
closed–loop system Σ◦C(k), while T represents its target
set. Property (ii) is a local property with respect to T :
for each δ–neighbourhood Tδ of T , the probability that
the trajectories z(t) of the closed–loop system Σ ◦C(k),
starting from clos(S(k)), stay forever in clos(Tδ) is at
least 1 − β for sufficiently large k. Property (iii) is a
property in the large with respect toR: the trajectories of
Σ◦C(k) starting inside R remain inside Ω(k), eventually
enter any given δ–neighbourhood Tδ of the target set T
in finite time and remain thereinafter with probability
at least (1− α)(1− β) for sufficiently large k.

The numbers α and β are given risk margins: the first
one quantifies the risk of leaving the compact set Ω(k)
with initial condition in Ω rather than getting close to
the target, while the second one gives a risk margin for
remaining close to the target.

A technical condition for ensuring stabilization in prob-
ability with some target set T and region of attraction
R for (1) is given by the following theorem ([1]): if there
exists a C1 proper and positive definite function V such
that along the trajectories of the closed–loop system re-
sulting from (12), V̇ is definite negative on Ω(k)\S(k),
where Ω(k) = {z ∈ IR2n : V (z) ≤ k} and {S(k)} is a se-
quence of open sets, containing the origin and contained
in some level set of V , such that S(k) ⊆ T for k large,
then any trajectory starting from R ⊆ Ω(k) stays for-
ever in Ω(k), eventually enters any given neighbourhood
of T in finite time and remains thereinafter. For each (at
least) C2 function V : IR2n → IR be LV (z) its infinites-
imal generator along the trajectories of (1)–(2) ([5]).

Theorem 1 The system (1) is (R, T, α, β)–SP if there
exist compact sets R, T ⊂ IR2n, containing the origin, a
sequence of controllers {C(k), k ∈IN}, a sequence of (at
least) C2, positive definite and proper V : IR2n → IR≥,
continuous positive definite Q : IR2n → IR≥, open sets
{S(k), k ∈ IN} of IR2n and k∗ ∈ IN such that for all
k ≥ k∗

(iv) Ω(k) ⊃ R ⊃ T ⊇ S(k), where

Ω(k) = {z ∈ IR2n : V (z) ≤ k}

(v) LV (z) ≤ −Q(z) for all z ∈ Ω(k)\S(k);

(vi) sup
z∈R\S(k)

V (z)
k
≤ α and

sup
z∈∂S(k)

V (z)

infz∈IR2n\clos(Tδ) V (z)
≤

β, ∀δ > 0

In this case we also say that (1) is (R, T, α, β)–SP with
Lyapunov function V (z) and stability margin Q(z).

The following fact, which will be used extensively in the
next sections, follows from the proof of theorem 1 ([1]).

Lemma 1 Under assumptions of theorem 1 for any
Markov time t0 of the trajectories z(t) of (1)–(2)

lim inf
k→∞

P{z(τR\S(k)(t)) ∈ Ω(k), t ≥ t0; z(t0) ∈ R\S(k)}
≥ (1− α)Pr{z(t0) ∈ R\S(k)} (5)

.

The conditions of theorem 1 can be met by first guaran-
teeing the existence of a state–feedback controller and
then replacing the state with its estimate provided by an
observer (see [1]). The following result stands as a “cer-
tainty equivalence principle” for nonlinear systems (1).

Theorem 2 Let R, T ⊂ IR2n be compact sets con-
taining the origin. Assume the existence of continuous
Psf , Qsf , Pm, Qm : IN → SPn, Rsf : IN → SPm,
Rm : IN → SP p, C1 function δ : IR → (0, 1], C0 locally
Lipschitz η : IRm → IRm, α, β ∈ [0, 1), a sequence of
open sets {S(k) ⊂ IR2n, k ∈ IN} and k∗ ∈ IN such that
for all k ≥ k∗

• (state feedback) for all x ∈ Ωsf (k) := {v ∈ IRn :
‖v‖2Psf (k) ≤ k}

xT [ATPsf (k) + Psf (k)A]x− ‖BTPsf (k)x‖2
R−1
sf

(k)

+Tr{HT (x)Psf (k)H(x)} ≤ −‖x‖2Qsf (k) (6)

• (output injection ) Rm(k) ≥ K(x)KT (x) for all
x ∈ Ωsf (k),

Pm(k)A + ATPm(k) + Pm(k)H(x)HT (x)Pm(k)
−CTR−1

m (k)C + Psf (k)BR−1
sf (k)BTPsf (k)

≤ −Qm(k) (7)

and

lim
s→∞

ψ(s) =∞, ∇2
ssψ(s) ≤ ∇sψ(s),∀s ≥ 0 (8)

with ψ(s) =
∫ s
0
δ(ϑ)dϑ;
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• (coupling ) for all x ∈ Ωsf (k) and e ∈ IRn

‖η(F (k)(x− e))− F (k)x‖2Rsf (k)

+
r∑

j=1

[
HT
j (x)Pm(k)Hj(x)

+KT
j (x)R−1

m (k)CP−1
m (k)CTR−1

m (k)Kj(x)
]

− (1/2)‖x‖2Qsf (k) − δ(‖e‖2Pm(k))
[
‖F (k)e‖2Rsf (k)

+(1/2)‖e‖2Qm(k))
]
≤ 0 (9)

with F (k) = −R−1
sf (k)BTPsf (k) andHj(x) andKj(x)

be the j–th column of H(x) and K(x), respectively;
• (risk margin) with Ω(k) = {z ∈ IR2n : V (z) ≤ k}

S(k) ⊆ T ⊂ R ⊂ Ω(k) (10)
and for all δ > 0 with V (z) = ‖x‖2Psf (k) + ψ(‖x −
σ‖2Pm(k)) and

sup
z∈R\S(k)

V (z)
k
≤ α,

sup
z∈∂S(k)

V (z)

infz∈IR2n\clos(Tδ) V (z)
≤ β (11)

Under the above assumptions, (1) is (R, T, α, β)–SP with
Lyapunov function V (z) and stability margin Q(z) =
‖x‖2Qsf (k) + ‖e‖2Qm(k)δ(‖e‖2Pm(k)).

4 Problem formulation and main results

A switching system can be seen as a finite family of
systems each one selected through a switching or time–
varying mechanism. In this paper we consider the fol-
lowing class of switching systems

dx(t) = (Ar(t)x(t) + Br(t)u(t))dt + Hr(t)(x(t))dw
dy(t) =Cr(t)x(t)dt + Kr(t)(x(t))dw (12)

where x(t) and u(t) take values in IRn and respectively
IRm, y(t) takes values in IRp, w(t) is a Wiener process
with values in IRs and r(t) is a Markov chain taking val-
ues in J = {1, . . . , N}. We denote by tjljl+1 the Markov
(or switching) time at which r(t) switches from jl to
jl+1 and define as dwell time the difference between two
consecutive switching times. For simplicity, we denote
tjljl+1 by tjl+1 and set t0 := 0. Moreover, the transition
probabilities of the Markov chain are

Pr{r(t + ∆) = jl+1|r(t) = jl} = γjljl+1∆ if jl �= jl+1,

Pr{r(t + ∆) = jl+1|r(t) = jl} = 1 + γjljl∆ else (13)

where γjljl = −
∑

jl+1 �=jl γjljl+1 .

For each value of r(t) = j we assume that there exist
αj , βj ∈ [0, 1) and two compact sets Rj , Tj ⊂ IR2n such

that (12) is (Rj , Tj , αj , βj)–SP. In particular, we assume
that the hypotheses of theorem 1 are met with a sequence
of controllers {Cj(k), k ∈IN}

u(t) = ηj(Fj(k)σ(t))
dσ(t) = (Zj(k)σ(t) + Bju(t))dt + Gj(k)dy(t) (14)

where ηj : IRm → IRm is a locally Lipschitz function. We
assume that the Markov chain switches an infinite num-
ber of times, otherwise the stabilization problem of (12)
is trivial because from the last switching of r(t) from jl to
jl+1 the system (12) would be (Rjl+1 , Tjl+1 , αjl+1 , βjl+1)–
SP. In this paper we study under which conditions a se-
quence of dwell–time switching controllers {C(k), k ∈
IN}

u(t) = ηr(t)(Fr(t)(k)σ(t))
dσ(t) = (Zr(t)(k)σ(t) + Br(t)u(t))dt + Gr(t)(k)dy(t)(15)

guarantees some stability properties of the closed–loop
system. To this aim, we introduce a novel stability no-
tion for which, given a decreasing family of sets {Di ⊂
IR2n : i ∈ IN} approaching the target, the system (12)–
(15) is “stable under switching” if with an a priori given
probability it happens that its trajectory z(t) dwells a
sufficiently large amount of time in Di, before the next
switching occurs, and approaches the set Di+1. The fact
that the trajectory goes through a decreasing sequence
of sets {Di ⊂ IR2n : i ∈ IN} was already used as a con-
dition for the stability analysis of deterministic hybrid
systems in [11]. It is quite natural to require such “nest-
ing property” of the sets {Di ⊂ IR2n : i ∈ IN}, because
if the trajectory of (12)–(15) is required to be stable and
to approach the target in some reasonable sense then at
each switching time this trajectory must belong to a de-
creasing sequence of sets which approach the target.

Definition 2 Given compact sets R, T ⊂ IR2n and 7 ∈
[0, 1), the system (12) is said to be (R, T, 7)–stabilizable
under switching (or (R, T, 7)–SS) if there exist a decreas-
ing sequence of compact sets D1(k), . . . , Dl∗+1(k) ∈ IR2n

and k∗ ∈ IN for which Dl∗+1(k) ⊆ T and R ⊆ D1(k)
for all k ≥ k∗ and a sequence of feedback control laws
{C(k), k ∈IN} of the form (15) such that for all k ≥ k∗

Pr{Ξ(k)} ≥ (1− 7)Pr{z(0) ∈ R\T} (16)

where Ξ(k) is the following event

Ξ(k) = {z(τIR2n\T (t)) ∈ Dl(k), t ≥ τIR2n\T (tjl),
z(τIR2n\T (tjl+1)) ∈ Dl+1(k), z(0) ∈ R\T, l = 1, . . . , l∗}

In this case we also say that (12) is (R, T, 7)–SS with
switching controllers {C(k), k ∈IN}.

Note that the trajectories are stopped when z(t) ∈ T
since we consider of interest only the event for which the
trajectory z(t) may dwell outside the target.
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5 Switching dwell–time controllers

A first result to be established is, given a C2 Lyapunov
function Vi : IR2n → IR≥ for the “frozen” system (12),
what is the expression of LVi. It turns out that, if Vi a
Lyapunov function for (1) when r(t) = i, it has the same
expression as if there were no switching plus a “weighted
average” term of the functions Vj , j ∈ J , weighted by
the transition probabilities of the Markov chain.

Lemma 2 Let

dz = ar(t)(z)dt + br(t)(z)dw (17)

where z(t) takes values in IR2n, w(t) is a Wiener process
with values in IRs, r(t) is a Markov chain taking values
in J and ai : IR2n → IR2n and bi : IR2n → IR2n×s locally
Lipschitz functions. If Vi(z) is for each i ∈ J a smooth
function, then

LVi(z(t)) = lim
∆→0+

1
∆

[E{Vr(t+∆)(z(t + ∆))|z(t); r(t) = i}

−Vi(z(t))] = ∇zVi(z(t), i)ai(z(t)) +
N∑
j=1

γijVj(z(t))

+
1
2
Tr{bTi (z(t))∇2

zzVi(z(t))bi(z(t))} (18)

Proof. We follow the lines of [10]. We have by definition
of γij

E{Vr(t+∆)(z(t + ∆))|z(t); r(t) = i}

=
N∑
j=1

Pr{r(t + ∆) = j|z(t); r(t) = i}Vj(z(t))

+E{Vr(t+∆)(z(t + ∆))|z(t); r(t) = i}
−E{Vr(t+∆)(z(t))|z(t); r(t) = i}

=
N∑
j=1

∆γijVj(z(t)) + Vi(z(t))

+E{Vr(t+∆)(z(t + ∆))|z(t); r(t) = i}
−E{Vr(t+∆)(z(t))|z(t); r(t) = i} (19)

Moreover, by (4.88) of [6] with f(s, z) := Vi(z) and s = 0,
for all ξ ≥ 0

E{Vr(t+∆)(z(ξ))|z(t); r(t) = i}

= E

{ ξ∫
0

[
∇zVi(z(θ))ai(z(θ))

+
1
2
Tr{bTi (z(θ))∇2

zzVi(z(θ))bi(z(θ))}
]
dθ

}
(20)

From (20) with ξ = t + ∆ and , respectively, ξ = t,
dividing by ∆ and passing to the limit for ∆ → 0 we
obtain (18) from (19).

Using the previous lemma we can prove one of the main
results of this paper. If the level sets of the Lyapunov
function Vi of each “frozen” i–th system (12)–(15) sat-
isfy a suitable “nesting property” and the expectation
of the dwell time is sufficiently large, conditionally to
the trajectories of (12)–(15) ensuing from the level set of
Vi and dwelling therein till the next switching, then the
system (12)–(15) is stable under switching in the sense
of definition 2 with a guaranteed probability depending
on the risk margins of each frozen system (12)–(15).

Theorem 3 For j ∈ J let Rj , Tj ⊂ IR2n be compact
sets, T = ∪Nj=1Tj, R = ∪Nj=1Rj and αj , βj ∈ [0, 1)
such that (12), with r(t) = j, is (Rj , Tj , αj , βj)–
SP with Lyapunov function Vj(z), stability margin
Qj(z) := νj(Vj(z)) +

∑N
l=1 γjlVl(z) for some νj ∈ K,

smooth over (0,∞), and controllers {Cj(k), k ∈ IN}
and let S(k) = ∪Nj=1Sj(k), where the sets Sj(k) are
given by the definition of (Rj , Tj , αj , βj)–SP. Assume
the existence of k∗ ∈ IN , l∗ ∈ IN and continuous
ϕjljl+1 , ajl : IN → IR+ such that for all k ≥ k∗ and
l ∈ [1, l∗]

• (level nesting) with Ωjl(k) := {z ∈ IR2n : Vjl(z) ≤
k} and for all jl, jl+1 ∈ J

Ωjl+1(k) ∩ Ωjl(k) ⊃ Ωjl(ϕjljl+1(k)) (21)

and there exists l∗ ∈IN such that for all j1, . . . , jl∗ ∈ J

S(k) ⊂ Ωj1(Φjl∗ (k)) ⊂ T (22)

where Φjl(k) = ϕjljl+1 ◦· · ·ϕj2j3 ◦ϕj1j2(k), Φj0(k) = k
and ϕjj(k) = k;

• (minimum expected dwell time) there exists εjl ∈
[0, 1) such that for all jl−1, jl ∈ J

E{τIR2n\S(k)(tjl)− τIR2n\S(k)(tjl−1)
∣∣∣Λjl−1(k)}

≥ Ijl(Φjl−1(k))− εjlIjl(Φjl(k)) (23)

where Ijl(s) =
∫ s
ajl (k)

(1/νjl(r))dr for s > ajl(k) and
Ωjl(ajl(k)) ⊂ Sjl(k), and the events Λjl are defined as
follows

Λjl(k) = {z(τIR2n\S(k)(t)) ∈ Ωj1(Φjl(k))
t ≥ τIR2n\S(k)(tjl)}

Λj0(k) = {z(τIR2n\S(k)(t)) ∈ Ωj1(k)
t ≥ 0, z(0) ∈ Ωj1(k)/S(k)}

Under the above assumptions, (12) is (R, T, 1 −
Πl∗

l=1(1 − εjl)(1 − αjl))–SS with switching controllers
{Cr(t)(k), k ∈IN}.
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Remark. Theorem 3 states that if the expectation of the
dwell–time is “sufficiently large” and the sets {Ωjl(k)}
satisfy a “nesting property” then the switching system
is stable under switching with guaranteed probability.
This condition generalizes to a stochastic framework the
results for deterministic switching systems, for which the
dwell time must be long enough to let the system tra-
jectory to go through a decreasing sequence of sets ([7],
[8], [9], [11])). The expectation (23) has to be computed
conditionally to the event Λjl(k). Although this may be
difficult to do, it comes directly from the definition of
stability under switching itself, for which only the event
Λjl(k) is significant during each dwell time tjl+1−tjl and
it happens with a given probability.

Remark. From (23) it is clear that εj can be interpreted
as the risk that the trajectory does not enter Ωj1(Φjl(k))
starting from Ωj1(Φjl−1(k)): the longer is the expected

dwell time E{τ(tjl) − τ(tjl−1)
∣∣∣Λjl−1(k)} to be awaited

the smaller is the risk εj .

Proof. Throughout the proof we omit the argument k,
denote τIRn\S(t) simply by τ(t) and let j ∈ J . Assume
that k∗ ∈IN is chosen in such a way that

Rj ⊂ Ωj , Sj ⊂ Tj (24)

for all k ≥ k∗. Let j ∈ J . Since (12) is (Rj , Tj , αj , βj)–
SP with Lyapunov function Vj(z), stability margin
Qj(z) := νj(Vj(z)) +

∑N
l=1 γjlVj(z) and controllers

{Cj}, by lemma 2, then along the trajectories of (12)
with controllers {Cj}

LVj ≤ −νj(Vj(z)), ∀z ∈ Ωj\Sj (25)

where LVj is defined as in (18) for (12) with controller
{Cr(t)}.

Moreover, let Wj(z, t) = Ij(Vj(z)) + t. By the Ito rule
and (25), since ∇2

ssIj(s) ≤ 0 for all s ∈ (ajl ,∞) then

LWj(z) ≤
∂Ij
∂s
|s=Vj(z)LVj(z) + 1 ≤ 0, (26)

for all z ∈ Ωj\Sj . Along the trajectories of (12) with
controller {Cj1} and from (26) with j = j1

LWj1 ≤ 0, ∀z ∈ Ωj1\Sj1 (27)

Define the following event

Ξj0 = Λj0 ∩ {z(τ(tj1)) ∈ Ωj1(ϕj1j2)} (28)

Note that by lemma 1

Pr{Λj0} ≥ (1− αj1)Pr{z(0) ∈ Ωj1\S} (29)

By Dynkin’s formula and (27)

E{Wj1(z(τ(t)))|Λj0} ≤ E{Wj1(x(0))|Λj0}, ∀t ≥ 0 (30)

By definition of Wj1 and (30)

E{Ij1(Vj1(z(τ(t))))|Λj0} ≤ E{Ij1(Vj1(z(0)))|Λj0}
−E{τ(t)|Λj0}, ∀t ≥ 0 (31)

Note that Ij1(s) is strictly increasing for all s > aj
and then E{Ij1(Vj1(z(0))|Λj0} ≤ Ij1(k) since Pr{x(0) ∈
Ωj1\S|Aj0} = 1. By C̆ebys̆ev and (31)

Pr{z(τ(tj1)) /∈ Ωj1(ϕj1j2)|Λj0}
= Pr{Ij1(Vj1(z(τ)) > Ij1(ϕj1j2)|Λj0}
≤ [1/Ij1(ϕj1j2)][Ij1(k)−E{τ(tj1)|Λj0}] (32)

It follows from (32) and (29) that

E{τ(tj1)|Λj0} ≥ Ij1(k)− εj1Ij1(ϕj1j2)
⇒ Pr{Ξj0} ≥ (1− εj1)(1− αj1)Pr{z(0) ∈ Ωj1} (33)

Let h ∈ [1, l∗ − 1]. Define the following event

Ξjl = Λjl ∩ {z(τ(tjl+1) ∈ Ωjl+1(Φjl+1)} (34)

for l = 1, . . . , l∗. We prove by induction that

E{τ(tjl)− τ(tjl−1)|Λjl−1}
≥ Ijl(Φjl−1)− εjlIjl(Φjl)], l ∈ [1, h + 1]

⇒ Pr{Ξjl−1} ≥ Πl
r=1(1− εjr )(1− αjr ) ·

·Pr{z(0) ∈ Ωj1\S} (35)

Assume that (35) holds true for all integers l ∈ [1, h].
Note that by lemma 1

Pr{Λjh} ≥ (1− αjh+1)Pr{z(τ(tjh) ∈ Ωj1(Φjh)} (36)

Taking into account that

Pr{Ξjh−1} ≤ Pr{z(τ(tjh) ∈ Ωj1(Φjh)}

and that by the level nesting assumption (21) Ωj1(Φjh)
⊂ Ωjh+1 , reasoning as above in (33) we obtain for each
εjh+1 ∈ [0, 1)

E{τ(tjh+1)− τ(tjh)|Λjh} ≥ Ijh+1(Φjh)− εjh+1Ijh(Φjh)]
⇒ Pr{Ξjh} ≥ (1− εjh+1)(1− αjh+1)Pr{Ξjh−1} (37)

From (37) and the induction step we get (35).

Using (22) and (24) and defining D1 = ∪Nj=1Ωj , Dl =
Ωj1(Φjl−1)), l = 2, . . . , l∗ + 1, this proves that (12) with
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controller {Cr(t), k ∈ IN} is (R, T, 1− Πl∗

l=1(1− εl)(1−
αl))–SS.

As an application of theorem 3we want to study the case
of switching linear systems. For j ∈ J let Rj , Tj ⊂ IR2n

be compact sets and αj , βj ∈ [0, 1) and assume that

dx(t) = (Ar(t)x(t) + Br(t)u(t))dt + Hr(t)x(t)dw
dy(t) =Cr(t)x(t)dt + Kr(t)x(t)dw (38)

with r(t) = j, is (Rj , Tj , αj , βj)–SP with quadratic Lya-
punov functions Vj(z) = (1/2)‖z‖2Pj where Pj is sym-
metric and positive definite, quadratic stability margins
Qj(z) := νjVj(z) +

∑N
l=1 γjlVl(z) for some νj > 0, and

linear controller Cj (independent of k). This assump-
tion is quite natural for the class of systems (38) ac-
cording to the results of [1]. It is also reasonable to as-
sume that Sj(k) are independent of k and equal to int
(Ωj(cj)) for some cj > 0. Set k ≥ maxj cj . By definition,
Ωjl(k) := {z ∈ IR2n : (1/2)‖z‖2Pjl ≤ k} and

Ωjl+1(k) ∩ Ωjl(k) ⊃ {z ∈ IR2n : ‖z‖2

≤ kmin{λ−1
max(Pjl), λ

−1
max(Pjl+1)} (39)

If the functions ϕjljl+1 :IN → IR+ are defined so that

ϕjljl+1(k) = kγl min{λ−1
max(Pjl+1), λ

−1
max(Pjl)}

with γl ∈ (0, 1), then Ωjl+1(k)∩Ωjl(k) ⊃ Ωjl(ϕjljl+1(k)),
i.e. (21). For jl ∈ J define

Φjl(k) := ϕjljl+1 ◦ · · ·ϕj2j3 ◦ ϕj1j2(k)

= kΠl
i=1γi min{λ−1

max(Pji+1), λ
−1
max(Pji)} (40)

and Φ0(k) = k. It is always possible to choose
l∗ ∈ IN , k∗ ∈ IN and γ1, . . . , γl∗ ∈ (0, 1) such that
Ωj1(Φjl∗ (k)) ⊂ T := ∪Nj=1Tj , Sj(k) ⊂ Ωj(k) and
S(k) := ∪Nj=1Sj(k) ⊂ Ωj1(Φjl∗ (k)) for all j1, . . . , jl∗ ∈ J
and for all k ≥ k∗, which proves (22). Next, de-
fine Ij(s) :=

∫ s
cj/2

(1/νjs)ds = (1/νj) log(2s/cj), with
s > cj/2. For each jl ∈ J and εjl ∈ [0, 1), we obtain by
direct calculations

Ijl(Φjl−1(k))− εjlIjl(Φjl(k))
= (1/νjl){ log(2Φjl−1(k)/cjl−1)− εjl log(2Φjl(k)/cjl)}

Thus, by applying theorem 3, we conclude that (38) is
(R, T, 1−Πl∗

l=1(1− εjl)(1−αjl))–SS with switching con-
trollers Cr(t) (independent of k) if

E{τ(tjl)− τ(tjl−1)
∣∣∣Λjl−1(k)}

≥ (1/νjl){ log(2Φjl−1(k)/cjl−1)− εjl log(2Φjl(k)/cjl)}
(41)

6 Applications

In this section we use the methodology introduced in the
previous sections to design a switching controller for the
following class of systems

dxj = xj+1dt, j = 1, . . . , n− 1,
dxn = udt + hr(t)(x)dw

y = x1 (42)

where x = col(x1, . . . , xn), xi ∈ IR, u ∈ IR is the control,
y ∈ IR is the measurement, w ∈ IR is a Wiener process
and r ∈ J := 1, . . . , N a Markov chain. Moreover, we as-
sume that hr(x) is for each r a locally Lipschitz function,
vanishing at the origin. In [1] a measurement feedback
controller (14) has been designed using control satura-
tions and a logarithmic Lyapunov function for the state
estimation error system. Control saturations avoid the
“peaking” of some state variables, while a logarithmic
Lyapunov function for the state estimation error system
allows to enlarge the region of attraction of the closed–
loop system. On the other hand, following the results of
[3], one can choose other Lyapunov functions than log-
arithmic ones to enlarge the region of attraction. This
determines through a suitable “coupling condition” the
choice of the function ηj(·) in (14). Our main result is to
prove that in the presence of a Markov chain the choice
of the Lyapunov function for the state estimation error
system cannot be logarithmic, due to the “weighted av-
erage” in (18) of the Lyapunov functions of each frozen
system, weighted by the transition probabilities of the
Markov chain. Thus, it is necessary to design the Lya-
punov function of the state estimation error system in
order to compensate for the effect of the weighted aver-
age term in (14) and at the same time to enlarge the re-
gion of attraction of the closed–loop system: as a result
we obtain a Lyapunov function Vm(e) = (1+‖e‖2)1/r−1
where r ≥ 4(n− 1) + 1 and, according to the “coupling
condition”, a function ηj(s) which is linear over the re-
gion of attraction and goes as s1/r outside.

To find a switching measurement feedback controller for
(42) we adopt a certainty equivalence principle: first, we
design a switching state feedback controller, then we re-
place the state in this controller with a suitable estimate
given by an observer.

6.1 Backstepping design

The following result can be proved as in [2], theorem 5.1.
Let π = col(x1, . . . , xn−1), x = col(π, xn) and A0 and
B0 be matrices such that (42) rewrites as

dπ = (A0π + B0u)dt
dxn = udt + hr(t)(x)dw (43)

Theorem 4 Let j, i ∈ J and Tj ⊂ Rj ⊂ IRn be compact
sets, {Sj(k) ⊂ IRn, k ∈IN} a sequence of open sets such
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that Sj(k) ⊂ Tj for k large, with S(k) = ∪Nj=1Sj(k), and
αj ∈ [0, 1). Therefore, there exist l∗, k∗ ∈IN , continuous
∆, aj : IN → IR+, positive definite Vj : IRn → IR≥,
j ∈ J , and a family of linear state feedback controllers
{Cj(k), k ∈ IN}, j ∈ J , such that, if for all jl, jl+1 ∈ J
and k ≥ k∗

E{τIRn\S(k)(tjl+1)− τIRn\S(k)(tjl)
∣∣∣Λjl(k)} ≥ ∆(k) (44)

with Λjl(k) and τIRn\S(k)(t) defined as in theorem 3 with
z = x, then for all k ≥ k∗ (42) is (∪Nl=1Rl,∪Nl=1Tl, 1 −
Πl∗
i=1(1−αi))–SS with state feedback switching controllers
{C(k), k ∈IN} = {Cr(t)(k), k ∈IN}.

Proof. Let the linear controllers Cj(k) : u = −λ2
j (k)

R̃−1
sfj(k)P̃sfj(k)(xn+BT

0 Pπ), j = 1, . . . , N , with contin-
uous P̃sfj , R̃sfj , λj : IN → IR+ and P ∈ SP (n−1)×(n−1)

designed as in section V.A of [2]for each frozen sys-
tem (43) in such a way that limk→∞ P̃sfj(k)/k = 0,
limk→∞ λj(k) = 0 and

AT
0 P + PA0 − PB0B

T
0 P + I = 0 (45)

Moreover, according to section V.A of [2] we have a
quadratic Lyapunov function Vsfj(z) = (1/2)‖π‖2P +
λ2
j (k)P̃sfj(k)(xn + BT

0 Pπ)2 and a quadratic stability
margin Qsfj(z) = (1/2) [‖π‖2 + (xn +BT

0 Pπ)2Q̃sfj(k)]
for some continuous Q̃sfj : IN → IR+ such that
Q̃sfj(k) ≥ 2/λj(k). We claim that it is possible to se-
lect Q̃sfj : IN → IR+ and k∗ ∈ IN in such a way to
have Qsfj(z) = νsfjVsfj(z) +

∑N
i=1 γjiVsfi(z) for some

νsfj > 0 and for all k ≥ k∗. Indeed, using the fact that∑
i γji = 0 for each j and that limk→∞ λj(k) = 0 we get

Qsfj(z) = (1/2)[‖π‖2 + (xn + BT
0 Pπ)2Q̃sfj ]

≥ (1/λmax(P ))Vsfj(z) +
N∑
i=1

γjiVsfi(z) (46)

Thus, let νsfj = 1/λmax(P ) and Q̃sfj(k) ≥ max{2/λj(k),
(νsfj+γjj)λ2

j (k)P̃sfj(k)+
∑

i �=j γjiλ
2
i (k)P̃sfi(k)}, which

proves our claim. Moreover, we have Ωsfj(k) = {x :
(1/2)‖x‖2Psfj(k) ≤ k} where

Psfj(k) =(
P + λ2

j (k)P̃sfj(k)PB0B
T
0 P −λ2

j (k)P̃sfj(k)PB0

−λ2
j (k)P̃sfj(k)BT

0 P λ2
j (k)P̃sfj(k)

)

Thus, to prove the assumptions of theorem 3 we can pro-
ceed exactly as at the end of section 5 for linear systems
with εj = 0, j ∈ J .

6.2 H∞ filtering

In this section, we design an observer for estimating the
state and replace the state in the controller {C(k), k ∈
IN} = {Cr(t)(k), k ∈ IN} of theorem 4 to obtain a
measurement feedback controller. Rewrite (43) as

dx= (Ax + Bu)dt + hr(t)(x)dw
dy =Cxdt (47)

where

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 , B =


0
0
0
...
0
1

 , C =


1
0
0
...
0
0



T

In theorem 4 we have shown how to satisfy the assump-
tions of theorem 3 using state feedback. In this section
we want to show how to satisfy the assumptions of the-
orem 3 using measurement feedback. The main result is
the following, which is the corresponding result of theo-
rem 4 for measurement feedback.

Theorem 5 Let j, i ∈ J and Tj ⊂ Rj ⊂ IR2n be compact
sets, {Sj(k) ⊂ IR2n, k ∈IN} a sequence of open sets such
that Sj(k) ⊂ Tj for large k, with S(k) = ∪Nj=1Sj(k), and
αj ∈ [0, 1). Therefore, there exists l∗, k∗ ∈IN , continuous
∆, aj : IN → IR+, positive definite Vj : IR2n → IR≥,
j ∈ J , and a family of measurement feedback controllers
{Cj(k), k ∈ IN}, j ∈ J , such that, if for all jl, jl+1 ∈ J
and k ≥ k∗

E{τ(tjl+1)− τ(tjl)
∣∣∣Λjl(k)} ≥ ∆(k) (48)

with Λjl(k) and τIRn\S(k)(t) defined as in theorem 3 with
z = (x, σ), then for all k ≥ k∗ (42) is (∪Nl=1Rl,∪Nl=1Tl, 1−
Πl∗
i=1(1 − αi))–SS with measurement feedback switching

controllers {C(k), k ∈IN} = {Cr(t)(k), k ∈IN}.

Proof. We prove that the assumptions of theorem 3 are
met. In particular, taking also into account the results
of theorems 2 and 3, this happens if for some k∗ ∈ IN
and for all j = 1, . . . , N and k ≥ k∗:

• there exist Pmj(k) ∈ SPn, Rmj(k) > 0, continuous
positive definite qj : IR≥ → IR≥ and C1 functions δj :
IR≥ → (0, 1], j = 1, . . . , N , such that ∇sδj(s) ≤ δj(s)
for all s ≥ 0 and

eT [Pmj(k)Aj + AT
j Pmj(k)

+h2
j (x)Pmj(k)BjB

T
j Pmj(k)−R−1

mj(k)CT
j Cj

+Psfj(k)BjR
−1
sfj(k)BT

j Psfj(k)]e
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+
N∑
i=1

γjiψi(‖e‖Pmi(k))/δi(‖e‖Pmi(k)) ≤ −qj(‖e‖Pmi(k))

(49)

for all x ∈ Ωsfj(k) := {x ∈ IRn : (1/2)‖x‖2Psfj(k)},
with ψj(s) =

∫ s
0
δj(s)ds and Psfj(k) is defined as in

theorem 4,
• there exist a continuous locally Lipschitz function ηj :
IRm → IRm such that

sup
(x,σ)∈Rj

[‖x‖2Psfj(k) + ψj(‖e‖2Pmj(k))]

k
≤ αj (50)

and

‖ηj(−Fj(k)(x− e)) + Fj(k)x‖2Rsfj(k)

−
‖x‖2Qsfj(k)

2
+ h2

j (x)BT
j Pmj(k)Bj ≤ δj(‖e‖2Pmj(k)) ·

·
[
‖Fj(k)e‖2Rsfj(k) +

1
2
qj(‖x− σ‖2Pmj(k))

]
(51)

for all x ∈ Ωsfj(k) and e ∈ IRn, with Fj(k) =
−R−1

sfj(k)BT
j Psfj(k) and Qsfj(k) = νsfj‖x‖2Pj(k) +∑N

i=1 γji‖x‖2Pi(k).
• there exist ϕji :IN → IR+ such that for all jl, jl+1 ∈ J

Ωjl+1(k) ∩ Ωjl(k) ⊃ Ωjl(ϕjljl+1(k)) (52)

and there exists l∗ ∈IN such that for all j1, . . . , jl∗ ∈ J

S(k) ⊂ Ωj1(Φjl∗ (k)) ⊂ T (53)

where Ωj(k) := {z ∈ IR2n : ‖x‖2Psfj(k) + ψj(‖x −
σ‖2Pmj(k) ≤ k} and Φj(k) = ϕjljl+1◦· · ·ϕj2j3◦ϕj1j2(k),
Φ0(k) = k and ϕjj(k) = k.

We will use similar arguments to those of [1] for choosing
ηj and δj in such a way to satisfy (49)–(51). However,
in the presence of a Markov chain we have in (49) the
additional term

∑N
i=1 γjiψi(‖e‖Pmi(k))/δi(‖e‖Pmi(k)) for

which the choices of ηj and δj pointed out in [1] are
not satisfactory any more. Thus, we have to prove that
there exists some other choice of these functions satisfy-
ing (49)–(51). For, let r ≥ 4(n− 1) + 1 and

δj(s) =
(1 + s)

1−r
r

ζ(k)r
, ψj(s) =

(1 + s)
1
r − 1

ζ(k)
(54)

where ζ : IR+ → IR+ is someC0 function (to be specified
later) such that lim

k→∞
ζ(k) =∞. Note that, since r ≥ 1,

∇sδj(s) =
1− r

ζ(k)r2
(1 + s)

1−2r
r ≤ 0 ≤ δj(s), ∀s ≥ 0 (55)

Moreover,

ψi(s)/δi(s) = r[1 + s− (1 + s)
r−1
r ] ≤ rs, ∀s ≥ 0 (56)

Thus, (49) is solvable for some Pmj(k) ∈ SPn with
qj(s) = ζ2(k)s if

Pmj(k)A + ATPmj(k) + h2
j (x)Pmj(k)BBTPmj(k)

−R−1
mj(k)CTC + Psfj(k)BR−1

sfj(k)BTPsfj(k)

+r

N∑
i=1

γjiPmi(k) ≤ −ζ2(k)Pmj(k)

(57)

is solvable for some Pmj(k) ∈ SPn. To construct such
Pmj(k) ∈ SPn, define

P
(n)
mj (k) = [Pmj ]nn(k)

P
(n−1)
mj (k) =

(
[Pmj ]n−1,n−1(k) [Pmj ]n−1,n(k)
[Pmj ]n,n−1(k) [Pmj ]nn(k)

)
P

(i)
mj(k) =

(
[Pmj ]ii(k) vji(k)
vTji(k) P

(i+1)
mj (k)

)
, 1 ≤ i ≤ n− 2

where [Pmj ]li(k) = [Pmj ]il(k) and vi(k) = row([Pmj ]i,i+1(k),
0, . . . , 0). Moreover, define

Q
(n)
mj (k) = 2[Pmj ]n,n−1(k) + ωjn(P (n)

mj )

Q
(i)
mj(k) =

(
2[Pmj ]i,i−1(k) + ωji(P

(i)
mj) ξTji(P

(i)
mj)

ξji(P
(i)
mj) Q

(i+1)
mj (k)

)
,

i = 2, . . . , n− 1

Q
(1)
mj(k) =

(
−Lj(k) + ωj1(P

(1)
mj (k)) ξTj1(P

(1)
mj (k))

ξj1(P
(1)
mj (k)) Q

(2)
mj(k)

)
(58)

where Lj : IR+ → IR+ is a C0 function and ωji(P
(i)
mj)

and ξji(P
(i)
mj) are linear functions of the entries of P (i)

mj .
By direct calculations

Q
(1)
mj(k) = P

(1)
mj (k)(A + I) + (A + I)TP (1)

mj (k)

−Lj(k)CTC (59)

We claim that for each [Pmj ]nn(k) > 0 such that

‖x‖2Qsfj(k)
8

≥ [Pmj ]nn(k)h2
j (x) = h2

j (x)BTPmj(k)B (60)

for all x ∈ Ωsfj(k), there exist C0 functions L∗j : IR+ →
IR+ and P

(1)
mj : IR+ → SPn such that Q

(1)
mj(k) ∈ SNn

for all C0 functions Lj(k) ≥ L∗j (k). Indeed,

• pick [Pmj ]n,n−1 < 0 such that Q
(n)
mj < 0 and

[Pmj ]n−1,n−1 > 0 such that P (n−1)
mj ∈ SP 2.
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• Pick [Pmj ]n−1,n−2(k) < 0 such that Q(n−1)
mj (k) ∈ SN2

and [Pmj ]n−2,n−2(k) > 0 such that P (n−2)
mj (k) ∈ SP 3.

• At step i, fix [Pmj ]n−i,n−1−i(k) < 0 such that
Q

(n−i)
mj (k) ∈ SN i+1 and [Pmj ]n−1−i,n−1−i(k) > 0

such that P (n−1−i)
mj (k) ∈ SP i+2.

• Finally, fix [Pmj ]11(k) > 0 such that P
(1)
mj (k) ∈ SPn

and L∗j (k) > 0 such that Q
(1)
mj(k) ∈ SNn for all C0

functions Lj(k) ≥ L∗j (k).

Define

Pmj(k) = P̃mj(ζ(k)) = Z(ζ(k))P (1)
mj (k)Z(ζ(k)),

Z(ζ(k)) = diag{ζ2(n−1)(k), ζ2(n−2)(k), . . . , 1} (61)

In what follows, for sake of simplicity we will omit
the argument k when there is no ambiguity. We claim
that there exists a C0 function ζ∗j1 : IR+ → IR+

such that Pmj , defined as in (61), solves (49) with
Rmj ∈ (0, 1/[Ljζ2(2n−1)]) for all C0 functions ζ ≥ ζ∗j1.
Indeed, substituting in (49), left and right–multiplying
by Z−1(ζ(k)) and dividing both members by ζ2(k), we
obtain

P
(1)
mj (A + Uj1(ζ)) + (A + Uj1(ζ))TP

(1)
mj

−
R−1
mjC

T
j Cj

ζ2(2n−1)
+ Uj2(ζ) ≤ −P (1)

mj (62)

where Uj1, Uj2 : IR+ → IRn×n are C0 functions such
that lim

ζ→∞
Uji(ζ) = 0, i = 1, 2. Choose ζ∗j1 : IR+ → IR+

such that limk→∞ ζ∗j1(k) =∞ and

P
(1)
mjUj1(ζ) + UT

j1(ζ)P
(1)
mj + Uj2(ζ) ≤ P

(1)
mj (63)

for all C0 functions ζ ≥ ζ∗j1. By (59) and (63), it follows
that (62) (and, thus, (49)) is indeed true.

Next, we satisfy (50). Since for e ∈ IRn, r ≥ 4(n− 1)+1
and for all ζ(k) ≥ 1

1
ζ(k)

((1 + ‖e‖2
P̃mj(ζ(k))

)
1
r − 1) ≤

‖e‖2/rλ1/2
max(P

(1)
mj (k)

ζ1/2(k)

then there exists a C0 function ζ∗j2 : IR+ → IR+ such
that for all C0 functions ζ ≥ ζ∗j2

lim
k→∞

1
k

[
‖x‖2Psfj(k)

+
1

ζ(k)
((1 + ‖x− σ‖2

P̃mj(ζ(k))
)

1
r − 1)

]
= 0 (64)

for each (x, σ) ∈ Ωsfj(k)× IRn, which proves (50).

Now, we prove (51). Let

Fj(k) = R−1
sfj(k)row(0, 0, . . . , 0, 1)Psfj(k)

ηj(s) = col(ηj1(s), . . . , ηjm(s)), s = col(s1, . . . , sm),

ηji(si) =
si

(1 + max{0, |si| −maxx∈Ωsfj |Fjx|})
r−1
r

(65)

Taking into account (60), condition (51) is satisfied for
all x ∈ Ωsfj(k) and e ∈ IRn if there exists a C0 function
ζ∗j3 : IR+ → IR+ such that

ζ2‖e‖2
P̃mj(ζ)

+ ‖Fje‖2Rsfj
rζ(1 + ‖e‖2

P̃mj(ζ)
)
r−1
r

+
1
4
‖x‖2Qsfj

−‖Fjx− ηj(Fj(x− e)‖2Rsfj ≥ 0 (66)

for all C0 functions ζ ≥ ζ∗j3, x ∈ Ωsfj(k) and e ∈ IRn. In
order to prove (66), find a covering ∪3

i=1Mji of {(x, e) ∈
Ωsfj(k)× IRn}, with

Mj1 = {(x, e) ∈ Ωsfj(k)× IRn : ‖x− e‖ ≤ ϑj1;

‖e‖ ≤ ϑj1
2
}, ϑj1 > 0

Mj2 = {(x, e) ∈ Ωsfj(k)× IRn : ‖x− e‖ ≥ ϑj1;

‖e‖ ≤ ϑj2}, ϑj2 ≤
ϑj1
2

Mj3 = {(x, e) ∈ Ωsfj(k)× IRn : ‖e‖ ≥ ϑj2} (67)

for some ϑj2 > 0 and ϑj1 > 0 such that ηj(−Fj(x−e)) =
−Fj(x− e) for all ‖x− e‖ ≤ ϑj1.

First of all, it is easy to see that there exists aC0 function
ζ∗j4 : IR+ → IR+ such that (66) holds for all C0 functions
ζ ≥ ζ∗j4 and (x, e) ∈Mj1.

Moreover, (66) holds for all (x, e) ∈Mj2 for some ϑj2 ≤
ϑj1
2 and for all k > 0. Indeed, for all (x, e) ∈ M2 , since
ϑ1 > ϑ2 we have 1

4‖x‖2Qsfj > 0. It follows that for any
such a x by continuity there exists ejx > 0 such that (66)
holds for all ‖e‖ ≤ ejx and for all C0 functions ζ ≥ ζ∗j4.
Since Nj = {x ∈ Ωsfj(k) : ‖x‖ ≥ ϑj1

2 } is compact and
ϑj1 > 0, one can take ϑj2 = min{ϑj12 , min

x∈Nj
ejx}.

We are left with proving that there exists a C0 function
ζ∗j5 : IR+ → IR+ such that (66) holds for all (x, e) ∈Mj3

and for all C0 functions ζ ≥ ζ∗j5. Since ‖e‖2
P̃mj(ζ(k))

≥

‖e‖2λmin(P (1)
mj (k)) we have

ζ2‖e‖2
P̃mj(ζ)

+ ‖Fje‖2Rsfj
rζ(1 + ‖e‖2

P̃mj(ζ)
)
r−1
r

+
1
4
‖x‖2Qsfj
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−‖Fjx− ηj(Fj(x− e)‖2Rsfj ≥
ζλmin(P (1)

mj )‖e‖2

r(1 + λmin(P (1)
mj )‖e‖2)

r−1
r

−
m∑
i=1

4

[
2 max
x∈Ωsfj

([Fj ]ix)2

+
max2{0, |[Fj ]i(x− e)| − max

x∈Ωsfj
|[Fj ]ix|}

(1 + max2{0, |[Fj ]i(x− e)| − max
x∈Ωsfj

|[Fj ]ix|})
r−1
r

]
Rsfj

≥
ζλmin(P (1)

mj )‖e‖2

r(1 + λmin(P (1)
mj )‖e‖2)

r−1
r

−
m∑
i=1

4

[
3 max
x∈Ωsfj

([Fj ]ix)2

+
([Fj ]i(x− e))2

(1 + ([Fj ]i(x− e))2)
r−1
r

]
Rsfj ≥

ζλmin(P (1)
mj )‖e‖2

r(1 + λmin(P (1)
mj )‖e‖2)

r−1
r

−
m∑
i=1

4

[
5 max
x∈Ωsfj

‖[Fj ]i‖2‖x‖2

+2
‖[Fj ]i‖2‖e‖2

(1 + ‖[Fj ]i‖2‖e‖2)
r−1
r

]
Rsfj

(68)

This implies the existence of a C0 function ζ∗j5 : IR+ →
IR+ such that (66) holds for all (x, e) ∈ Mj3 and for
all C0 functions ζ ≥ ζ∗j5. Pick ζ∗j3 ≥ max{ζ∗j4, ζ∗j5}.
Finally, we conclude that (49)–(51) hold as long
as ζ : IR+ → IR+ is any C0 function such that
ζ ≥ maxj=1,...,N{ζ∗j1, ζ∗j2, ζ∗j3}.

Finally, (52)–(53) can be proved as in theorem 4, once
we show that for a proper choice of ζ(k), aj(k) > 0 and
bj(k) ∈ (0, 1/2] we have {z ∈ IR2n : Vj(z) ≤ aj(k)} ⊂
Sj(k) and the functions Ij(s) :=

∫ s
aj(k)

(1/νj(s))ds, with
νj(s) := aj(k)bj(k)s if |s| > aj(k) and = bj(k)s2 other-
wise, are such that

νj(Vj(z)) +
N∑
l=1

Vl(z)γjl

≤ ‖x‖2Qsfj(k) + δj(‖x− σ‖2Pmj(k))qj(‖x− σ‖2Pmj(k))

+
N∑
l=1

ψl(‖e‖2Pmj(k))γjl (69)

with z = (x, σ), Vj(z) = ‖x‖2Psfj +ψj(‖e‖Pmj and for all
z ∈ Ωj(k). Indeed, let νsfj and Ωsfj be as in the proof of
theorem 4. Since ζ(k) ≥ 1, k ≥ 1 and x ∈ Ωsfj(k), there
existsmj > 0 such that (1+s)1/r−1 ≤ mjs/(1+s) for all
s ∈ [0, 1], then for k ≥ Vj(z) ≥ aj(k), ‖x−σ‖2Pmj(k) ≤ 1,
ζ(k) ≥ max{1,mjr} and 2bj(k)k ≤ νsfj

νj(Vj(z)) = bj(k)(Vj(z))2 ≤ 2bj(k){k‖x‖2Psfj(k)
+[(1 + ‖x− σ‖2Pmj(k))

1/r − 1]2} ≤ νsfj‖x‖2Psfj(k)

+mj [(1 + ‖x− σ‖2Pmj(k))
1/r − 1]}

‖x− σ‖2Pmj(k)
1 + ‖x− σ‖2Pmj(k)

≤ νsfj‖x‖2Psfj(k) + (ζ(k)/r)(1 + ‖x− σ‖2Pmj )
1/r ·

·
‖x− σ‖2Pmj(k)

1 + ‖x− σ‖2Pmj(k)
= νsfj‖x‖2Psfj(k)

+δj(‖x− σ‖2Pmj(k))qj(‖x− σ‖2Pmj(k)) (70)

On the other hand, for k ≥ Vj(z) ≥ aj(k), ‖x −
σ‖2Pmj(k) ≥ 1, ζ(k) ≥ max{1,

√
2kr} and 2bj(k)k ≤ νsfj

we have

νj(Vj(z)) ≤ bj(k)(Vj(z))2 ≤ 2b(k){k‖x‖2Psfj(k)
+(1/ζ2(k))[(1 + ‖x− σ‖2Pmj(k))

1/r − 1]2}
≤ νsfj(k)‖x‖2Psfj(k) + (k/ζ(k))[(1 + ‖x− σ‖2Pmj(k))

1/r

−1] ≤ νsfj‖x‖2Psfj(k) + (ζ(k)/r)(1 + ‖x− σ‖2Pmj )
1/r ·

·
‖x− σ‖2Pmj(k)

1 + ‖x− σ‖2Pmj(k)
= νsfj(k)‖x‖2Psfj(k)

+δj(‖x− σ‖2Pmj(k))qj‖x− σ‖2Pmj(k)) (71)

This with (70) proves (69) for k ≥ Vj(z) ≥ aj(k). When
0 ≤ Vj(z) ≤ aj(k) then νj(Vj(z)) = bj(k)(Vj(z))2 and
we can prove (69) as above in the case k ≥ Vj(z) ≥ aj(k).

According to theorems 2 and 3, (42) is (∪Nl=1Rl,∪Nl=1Tl, 1−
Πl∗
i=1(1 − αi))–SS with switching controller {C(k), k ∈

IN} = {Cr(t)(k), k ∈IN} where Cj(k) :

u = −ηj [Fj(k)σ],
dσ = [(A− P−1

mj (k)CTR−1
mj(k)C)σ + Bu]dt

+P−1
mj (k)CTR−1

mj(k)dy (72)

where Fj(k) and ηj(s) are defined as in (65).

7 Conclusions

We have introduced a notion of stabilization for switch-
ing systems. Peculiar to this definition is the fact to eval-
uate the probability of the trajectory to pass through
a sequence of decreasing sets Dj , j = 1, . . . ,, at each
switching and approaching the target. Our main contri-
bution is to prove that if the expectation of the dwell–
time, conditionally to the event that the trajectory goes
from Dj to Dj+1, is “sufficiently large” then the switch-
ing system is stable under switching with guaranteed
probability (theorem 3). As an application of our design
tool, we consider a significant class of nonlinear stochas-
tic systems and show in detail how to construct both a
state feedback and a measurement feedback dwell–time
controller. Our approach is promising for applications to
more general class of nonlinear stochastic systems.
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