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ABSTRACT

Resource allocation involves deciding how to divide a resource of limited availabil-

ity across multiple demands in a way that optimizes current objectives (e.g., allocating

a processor’s computing resources to the demand presented by tasks in order to max-

imize task completion throughput). In “distributed” resource allocation there are

multiple resource types each of which can be subdivided, but then each can only be

allocated to a subset of the demands (e.g., in a multiprocessor system where each

processor can only process certain task types). In this dissertation we focus on three

types of resource allocation problems where via an imperfect communication network

multiple agents can share the workload presented by multiple task types. First, we

define a model for a network of processors processing task types from buffers and

show that they lead to the cumulative demand being bounded by a constant. We

demonstrate via simulations when they can be superior to one noncooperative strat-

egy. Second, we model a cooperative control problem for a network of uninhabited

autonomous vehicles (UAVs) where it is assumed that before the mission starts a

set of tasks is given to a set of UAVs, but then after deployment the UAVs must

cooperate to decide which UAV should process each task. We introduce coopera-

tive scheduling of tasks for a set of UAVs where the cooperation must occur over

a network that has random but bounded delays. We show how to view this as a

cooperative scheduling (resource allocation) problem, and how to derive bounds on
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mission-level performance metrics for cooperative scheduling methods. Simulations

will be used to compare the approach to a noncooperative strategy and to provide

design guidelines for the cooperative scheduler. Finally, we introduce an inexpensive

laboratory testbed for networked cooperative scheduling strategies. We describe the

apparatus, highlight the challenges it presents, and we compare the performance of

two scheduling strategies that seek to optimize different objectives. This experiment

establishes a basis for future research in networked cooperative scheduling strategies.
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CHAPTER 1

INTRODUCTION

Resource allocation has played a fundamental role in the solution of a large va-

riety of engineering problems. We can use resource allocation algorithms to solve

optimization problems, so that given a specific constraint on the amount of resources

available, the algorithm will allocate them to several activities such that a pre-defined

cost function will be optimized. On the other hand, cooperative control involves co-

ordinating the activities of several agents to work together to complete tasks in order

to achieve a common goal. The coordination can occur via a communication network

and the goal could be to optimize the task completion rate. Cooperative control can

be useful in a variety of applications including multiprocessor computing systems, net-

worked flexible manufacturing systems assembling a product, multiple receivers being

coordinated to find multiple emitters in an uncertain environment, and uninhabited

autonomous vehicles (UAVs) to perform tasks in order to try to minimize the time

it takes to complete tasks during the mission. We want to fuse the last two defini-

tions in order to develop and to study network-based cooperative resource allocation

strategies for different scenarios. For example, suppose that we have a processor that

needs to process multiple task types. Tasks arrive at the processor, are stored in

“buffers” and there is a scheduler (controller, resource allocator) on that processor
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that decides which task it should process next in order to maximize throughput and

hence minimize the buffer levels. In this case the resource being allocated is the

processing capability of the processor. We can also use distributed computing and

control concepts to develop cooperative resource allocation strategies. For example,

there may be the need for a “cooperative” scheduler for a multiprocessor system with

local schedulers on each processor. In the same way, hierarchical resource allocation

can be applied to optimize a pre-defined cost function in the upper level of a system

given a constraint on the resources available. The result can be passed to the lower

levels of the system. Each lower level will in turn allocate its resources to optimize

its own local cost function. On the other hand, we can also use distributed control

ideas to coordinate the activities of several agents to work together to complete tasks

in order to achieve a common goal. The coordination can occur via a communication

network and the goal could be to optimize the task completion rate.

In this dissertation we consider a cooperative controller to allocate a set of proces-

sors to a group of buffers in order to maximize throughput. We also study the use of

cooperative scheduling strategies for coordinating uninhabited autonomous vehicles

(UAVs) to perform tasks in order to try to avoid ignoring high priority tasks for too

long and yet minimize UAVs travel time to perform tasks. Moreover, we illustrate

the performance of cooperative scheduling strategies in an experiment called the “

electromechanical arcade.” Generally, we focus on the design and analysis of coop-

erative resource allocation strategies in the presence of significant uncertainties. In

particular, we pay special attention to two types of uncertainties, those encountered

in communications and in the environment.
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Uncertainty in communication networks arise from having imperfect communica-

tions and hence a lack of centralized and perfect (e.g., up-to-date) information. The

network may have a communication topology that is not fully connected in the sense

that each agent may not be able to directly communicate with every other agent.

Also, each “link” may be imperfect in that there may be delays or bandwidth con-

straints in sending or receiving information, mis-ordering of messages/information,

or noise that corrupts the information. It may not be possible to have one central

place to keep all information as if this is one special agent there is a problem with

fault tolerance of the whole system (if there is a problem with the special agent the

whole system may not be able to function). Moreover, it is typically not possible to

keep all information at a special location (e.g., teleoperation center) as it may be out

of communication range.

Imperfect communications arise from many sources. First, there is no perfect

communication network in spite of recent and envisioned advances in communica-

tion network technology. Link bandwidth, delays (e.g., random but bounded ones),

and noise are significant problems. Therefore, a reasonable approach to avoid con-

fronting the above problems is to avoid the need for passing extraordinary amounts

of information when there are hard real-time constraints.

It is important, however, also to recognize that communication imperfections can

arise from sources other than the physical network itself. For instance, if “line-of-

sight” is needed for the communication technology, then as a group of agents moves

there could be occlusions among them. In some contexts, this may be modeled as a

communication delay that can be of quite a significant length of time. Also, clearly

this affects both the topology and specific messages over an established link. Next,
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note that in some cases there may be a need to periodically communicate with a

central to have a type of “semi-tele-operated” agent.

Uncertainty in the environment arises from having imperfect information about

the tasks that need to be processed by the agents or malfunctioning of the agent

devices. For instance, once an agent is engaged in pursuing a task, it may need to

travel to where the task is; however, if this agent only knows that the task to process

is within a specific area (due to imperfect sensor information), then this agent may

spend more time trying to search for the task location than what the agent originally

estimated. Another clear example related to the environment is the “pop-up” type

task. In this case the agent can be ready to process the task but the agent needs to

wait for the appearance of the task in order to start the processing of it. Thus, there

is a time delay related to these uncertainties. There may be cases where the agents

need to have their local clocks synchronized by a global clock. Desynchronization of

the local clocks, which would be viewed as a malfunctioning device, could lead the

agents to incorrect decisions that would affect the performance of the whole group of

agents.

In summary, we see that there can be significant uncertainties in communications

and the environment. Cooperation requires shared information, either via a priori

information or communication of information gathered during a mission. If that in-

formation is not perfect then we naturally expect to achieve lower levels of cooperation

and hence performance. Uncertainty creates a type of passing of bad information that

typically leads to poor group decision making, and if the information is quite bad it

could be worse to try to cooperate than to simply take a noncooperative approach

where no communications are required.
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Next, we overview the literature that is relevant to our study of resource allocation

strategy modeling, analysis, and design.

1.1 Literature Overview

Resource allocation has been studied in the area of flexible manufacturing systems

(FMS). In [1], a resource allocation problem is considered in flexible manufacturing

systems where several types of scheduling policies are studied. Several part types

arrive at various machines. Strategies are designed for the machines to ensure that

the cumulative production of each part type is bounded by a constant. In [2], [3]

extensions to the work in [4] were given. For instance, a discrete time framework and

additional policies (e.g., time based ones as in [4]) are considered. Also, there is work

there on trying to explicitly use global information to obtain more efficient scheduling

than when only local information is used. Although the multiple-machine cases above

consider the situation of serial production where parts can move from one machine

to another one, they do not take into account the case where multiple machines can

work together to service a set of part types in the sense that we will consider it

here (e.g., via two or more agents processing in parallel several task types). In [5],

Chase and Ramadge find a new lower bound on performance by the introduction of

machine “idling.” In [6], Lou, Sethi, and Sorger improve on the isolated machine

clear-a-fraction (CAF) buffer bound of [1] by the implementation of a CAF of work

policy. In [7], Kumar and Seidman study general issues in stability of FMS and

introduce a universally stabilizing supervisory mechanism (USSM) that can stabilize

any scheduling policy. In [8], Lu and Kumar prove stability for a class of policies

whose aims are to optimize the performance of the FMS with respect to criteria such
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as the mean and variance of the total delay incurred in processing a part (other

related work can be found in [9]). In [10], Humes introduces the use of “regulators”

(devices which control the rates of part flows throughout an FMS) to stabilize general

nonacyclic FMS, and in [11], Perkins, Humes, and Kumar explain how to generate

buffer bounds in a completely regulated FMS (i.e., one that has regulators directly

before each machine buffer input). The bounded delay element is essentially the

discrete-time version of the bounded delay in [12]. A control-theoretic approach is

considered in [13] in order to allocate heterogeneous resources (people) in the new

product development process (NPD). Although most of the problems are based on the

minimization of buffer levels in the FMS case, NPD focuses on performance measures

considered in scheduling theory of job shops and flow shops, such as the minimizations

of functions which depend on due dates and completion times. In [14], Seidman and

Holloway analyze the stability of pull production control methods for systems with

significant setups; they show that by selecting appropriately the buffer parameters,

signal Kanban policies and pattern production policies will be stable subject to a

capacity constraint and a limit on the burstiness of total demand. In [14], a set of

M machines are working in parallel to serve a set of N buffers with a common input

stream to a specific queue. This approach is different from the analysis considered in

this dissertation (see Chapter 2) from the perspective that first, the policies of pull

production systems are based on response to demand whereas in our case, the policies

are based on current buffer levels and the production is designed for future demands.

Second, the stability analysis in [14] looks for bounds of the queue of backorders or

that the queue will eventually be empty and remains in that condition while the

stability analysis in this dissertation focuses on ultimate bounds of the buffer levels.
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Resource allocation has been used for the detection of the appearance of a set

of events. An application of this technique can be found in [15], where attentional

strategies are used for simulating a predator/prey environment. The basic idea is

to simulate an organism in an environment with multiple predators that is trying to

attend to every movement of all predators so that it can defend itself. In addition

to that, it is assumed that there are multiple preys in the same environment, and

the organism pays attention to them in case it decides to kill and eat one or several.

In [15], the author assumed that each predator/prey appear at a certain time period

and that there is just one organism in a predator/prey environment. This approach

inspired the development in Chapter 3, however, this work in [15] does not consider

the case where there is a group of organisms working together to pay attention to

its environment. In [16], the receiver and multiple emitter problem is modeled as a

sensor resource allocation problem, where several methods are proposed for the design

of optimal dynamic scan schedulers. Similarly, another approach is taken in [17] for

solving the sensor allocation problem (what is called there “sensor management”) in

an environment where there is a single receiver and a certain number of emitters that

can vary in time.

Resource allocation has also been formulated as an optimization problem [18]

minimize f(x1, x2, . . . , xn)

subject to
∑n

i=1 xi = N

xi ≥ 0, i = 1, 2, . . . , n

Thus, given one type of resource whose total amount is equal to N , we want to allo-

cate it to n activities so that the cost function f(·), which is typically some measure
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of cost of the N activities using the resource, becomes as small as possible. In [19],

an ordinal optimization approach is used to solve the above resource allocation prob-

lem since convergence of such algorithms is fast and there is no need for step size

or scaling parameters commonly used in other classes of algorithms. The necessary

and sufficient conditions for a globally optimal solution of a deterministic problem, as

well as the similar stochastic case where the costs are estimated, are provided and the

algorithm converges in probability to the optimal allocation. In [20], it is shown that

under certain additional mild conditions the algorithm also converges almost surely.

Moreover, the probability of finding the optimal allocation converges exponentially

to one if the simulation length increases linearly. Another approach is formulated

in [21], where basically the original discrete problem is transformed into a continu-

ous set over which a surrogate optimization problem is solved. The intention of this

is simply to take advantage of a stochastic approximation type of algorithm with

the ability to obtain sensitivity estimates with respect to discrete decision variables.

One application of this methodology can be found in [22], where a surrogate problem

approach is used in the lot sizing problem in manufacturing systems. In [23], an

algorithm for stochastic discrete resource allocation problems is proposed. Basically,

the algorithm combines the nested partitions (NP) method, ordinal optimization, and

an efficient simulation control technique. The NP method is promising for solving

difficult combinatorial deterministic optimization problems. The NP method com-

bines global search through global sampling of the space and local search where it

should be concentrated. Moreover, the convergence rate of the ordinal comparison

can be exponential as the simulation length is increased. Finally, an efficient simula-

tion control technique, optimal computing budget allocation (OCBA), is studied. It
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is a technique that can be used in a simulation-optimization procedure for selecting

the most appropriate design. In [24], a new algorithm for optimal allocation of buffers

in production lines can be found . This problem considers tandem production lines

that comprise serial processing by a group of machines that are prone to failure. The

algorithm combines NP with a local search method, the tabu search (TS) method, to

optimally allocate a given buffer capacity among a number of machines such that a

cost function, throughput, is maximized.

There is another type of resource allocation problem different from the one studied

in [18] that has been used in real-time systems. In [25], adaptive control techniques

are used in a closed-loop method for adapting on-line the fraction of assigned resource

to the task requirements of a system. On the other hand, in [26] it has been proposed

to apply adaptive resource management techniques based on feedback control theory

to resource allocation problems that arise during run-time adaptation using PID

controllers. In [27], a sequential linear programming algorithm is used to optimize a

complex oil production system by selecting the best combination of pressures and flow

rates of the set formed by the gathering station, compression plants, and high-pressure

gas manifolds.

Also, there is a significant amount of current research activity focused on coopera-

tive control of autonomous vehicles. Receding horizon control approaches are studied

in [28, 29, 30]. Work focusing on cooperative search and coordinated sequencing of

tasks include [31, 32, 33, 30] and the “map-based approaches” in [34]-[41]. Using such

approaches, significant mission performance benefits can be realized via cooperation

in some situations, most notably when there is not a high level of uncertainty.
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Here, we consider throughout this dissertation environments that are highly un-

certain and where we have an imperfect communication network so that there are

random but bounded delays on messages communicated to coordinate activities. Due

to the presence of so much uncertainty it is generally not possible to accurately predict

far into the future, and hence generally not useful to employ optimization approaches

to develop long sequences of planned coordinated operations either off- or on-line (as

studied in many of the above-mentioned UAV studies). It is well-known that the

complexity of coordinated sequencing/planning is significant when there are, for in-

stance, many agents and tasks; however, with significant uncertainty arising from the

environment and communication network, coordinated sequencing/planning of long

sequences of tasks is not useful anyway so in this case the challenge should often not

even be confronted. Instead, the challenge is to overcome the effects of uncertainty so

that benefits of cooperation can still be realized. Hence, when uncertainty dominates

we will not be able to achieve the high level of coordination achieved in many of the

above-mentioned studies; we simply seek to achieve some benefit from cooperation.

In this dissertation we define the concept of a cooperative resource allocation simi-

lar to the one defined in [42], and it refers to the case where there are a group of agents

processing a set of tasks of different types. These agents are separated and they are

communicating certain messages to each other in the presence of communication de-

lays. In addition to that, each agent is processing its particular task but cooperating

at the same time with the rest of agents in order to achieve a specific goal. Similarly,

note that the strategies to be defined have some features mentioned in [42] for syn-

chronous cooperative algorithms in the sense that every agent will choose a task type
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based on a previous agent selection, the processing time for every agent can be in-

dependent of the processing time of the other agents, and every agent communicates

its task type selection choice at every decision time. Note that these synchronous

strategies are generally not efficient for the case when some agents with a fast pro-

cessing rate need to wait for the processing of agents with slow processing rate in

order for the former to choose new task types to process, this is primarily the reason

because we devote our attention in this dissertation to asynchronous strategies. The

asynchronous cooperative resource allocation problems considered in this document

are defined in such a way that every agent does not wait for the complete processing

of the task types being processed by the rest of agents present in the system, so that

we can potentially reduce the ultimate bound of every buffer level since there is no

“idle” time for any agent. Once a agent completely processes a task type at a decision

point, it chooses another task type available for processing.

1.2 Dissertation Outline

In this dissertation we consider the problems of mathematically modeling, per-

forming stability analysis, simulating, and implementing experimentally network-

based cooperative resource allocation strategies. First, in Chapter 2 we focus on

one type of cooperative resource allocation problem where via an imperfect commu-

nication network multiple processors can share the workload presented by multiple

task types. We introduce asynchronous “cooperative” resource allocation strategies,

and show that they lead to the cumulative demand being bounded by a constant.

We demonstrate via simulations when they can be superior to one noncooperative

strategy.
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In Chapter 3 we model a cooperative control problem for a network of UAVs where

it is assumed that before the mission starts a set of tasks is given to a set of UAVs,

but then after deployment the UAVs must cooperate to decide which UAV should

process each task. The cooperation must occur in spite of imperfect communications

(e.g., messages with random but bounded delays). We show how to view this as

a cooperative scheduling (resource allocation) problem, and then derive bounds on

mission-level performance metrics for cooperative scheduling methods. Simulations

will be used to compare the approach to a noncooperative strategy and to provide

design guidelines for the cooperative scheduler.

In Chapter 4 we evaluate and compare the performance of scheduling strategies

defined in [15] and in Chapter 3 in the electromechanical arcade experiment. The

experiment is composed of eight “pop-up” targets that “appear” and “disappear” at

frequencies that are independent of each other and guns that need to detect targets’

appearance. We implement algorithms to cooperatively schedule the shooting of the

guns in the presence of an imperfect communication network that allows communi-

cation between the guns.

12



CHAPTER 2

ASYNCHRONOUS COOPERATIVE RESOURCE
ALLOCATION

In this chapter we consider the problems of mathematically modeling, perform-

ing stability analysis, and simulating network-based cooperative resource allocation

strategies. We focus on the case where tasks arrive at buffers, each of which is only

accessible to one of many processors. To study the key challenge in this case, we

focus on the “overlap” in processing responsibilities and (for now) ignore the impact

of other demands on the processors. Hence, we study the problem shown in Fig-

ure 2.1(a). In this “cooperative scheduling problem” there are local schedulers for

each of the M > 1 processors and a communication network that allows them to share

the workload presented by the N > M buffers that the M processors are responsible

for. The goal of the cooperative scheduler is to allocate the M processors to N buffers

to maximize throughput. We will assume that each processor can only process one

task type at a time and that to switch processing to another task type it incurs a

random but bounded delay. We will consider the case where the information needed

by the processors in order to make decisions about the task type to process next is

either held by one processor all the time or passed along the network to any proces-

sor, but where the communication network can have random but bounded delays and

13



Buffers 1 2 N.        .       .

Processors 1 2 M.        .       .

Processors 1 2 M    .     .     .

a. Cooperative processing.

b. Processors on a communication network.

δc

δc δc

δc

δc

δc : Random but bounded 

  communication delays 

  between processors

Figure 2.1: Cooperative scheduling system.

can be asynchronous (see below for more discussion and Figure 2.1(b)). Notice that

there is one resource that must be shared (processor’s capabilities), and the resource

allocation strategy must decide how it is shared (what task type to process) over an

asynchronous network through time. We focus on one type of cooperative resource al-

location problem where via an imperfect communication network multiple processors

can share the workload presented by multiple task types. We introduce asynchronous

“cooperative” resource allocation strategies, and show that they lead to the cumu-

lative demand being bounded by a constant. We demonstrate via simulations when

they can be superior to one noncooperative strategy.
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2.1 Preliminaries

Suppose that the number of task types N is fixed, that we number them, and

denote the set of task types as P = {1, 2, . . . , N}. Let pi, i ∈ P denote the arrival

rate of task type i to its respective buffer i. Let t denote time. Let xi(t), i ∈ P, t ≥ 0

denote the size of the buffer level holding task type i and assume that there are

sensors that provide the value of these levels whenever a processor requests it. There

is a time delay that represents the amount of time that it takes for the processor to

switch from processing task type i to another task type j, j �= i. We will call this

type of delay δi,j > 0 and assume it is a random but bounded delay with bound δ.

Let 1/ai represent the “rate” at which processor processes task type i ∈ P . What is

the effect of the ai and pi parameters on the buffer level once a processor is processing

task types from it? It can be shown that when a processor starts processing tasks

from the ith buffer, the buffer level decreases at a rate (1−aipi)
ai

. Hence, it is clear that a

necessary condition for stability is that 0 < aipi < 1,∀i ∈ P . Moreover, this necessary

condition indicates how fast processing of buffer levels can occur depending on the

set of values of ai, pi. The term aipi represents the load on the processors due to task

type i. We assume that the number of processors is constant, we number them, and

denote the set of processors as Q = {1, 2, . . . , M} where N > M . Note that we are

not concerned with the case where N ≤ M because if N = M then the number of

processors and task types are the same and every processor will be processing tasks

from the same buffer all the time. Moreover, if there are more processors than task

types (N < M) then at least two or more processors will be processing simultaneously

tasks from the same buffer.
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We define the set U(t) ⊂ P as the set of (“unattended”) task types not processed

by any processor at the current time t while the set Ua
j (t) =

{
i∗j(t)

} ∪ U(t) is the

set of task types that can be considered for processing by processor j, j ∈ Q. Here,

i∗j(t) is the task type being processed by processor j at time t. Define A(t) as the set

of task types processed by the group of M processors at the current time t; hence

P = U(t) ∪ A(t), t ≥ 0.

Now, what is the “capacity” [1] to do work for this case? Clearly it is necessary

that

ρ =
N∑

i=1

aipi < M (2.1)

and this serves as a “capacity condition.” How can we interpret Equation (2.1)?

First, the capacity condition of our system is the sum of all the individual processor’s

capacity conditions in [1]. Second, the advantage of having M processors working

together is reflected in the capacity condition of each of them since the work to be

done in order to process all task types is reduced by the number of processors. Can

we prove that all resource allocation strategies are stable given this new capacity

condition? No. However, our goal is to obtain the least restrictive conditions by

trying to get ρ as close as possible to M for a few strategies.

2.2 Asynchronous Decision Making

In this section we will explain how asynchronous decision making is accomplished.

Define a processor ju ∈ Q that holds the set U(t). We assume that whenever a

processor � ∈ Q where � �= ju (if � = ju there is no need for a request) finishes

processing a task type at time tf such that xi∗� (t
f ) = 0 (i.e., the instant the buffer

is emptied), it broadcasts a request for the set U(t) to all the processors. Let the

16



amount of time it takes to broadcast the request and receive U(t) be δc > 0 which

is random, but bounded by a constant δc > 0. In the time interval [tf , tf + δc]

that processor � waits for the unattended set it continues to process task type i∗� so

xi∗� (t
′
) = 0, t

′ ∈ [tf , tf + δc]. The instant that processor � gets U(t) (and the “request

queue” defined below), it becomes processor ju, it samples the buffer levels, puts task

type i∗� on U(t), decides which task type to process next, and takes it off U(t). So, at

time tf + δc the unattended set is again available for another processor to request.

Since two or more processors could request the set U(t) at the same time, we need

to use a mutual exclusion algorithm which coordinates the access of all processors to

the set U(t) in such a way that this set can be accessed and updated by only one

processor at a time. Assume processor ju has a “request queue.” There are certain

ways of creating that queue, and one possibility is to use the policy first in-first out

(FIFO), and another one is simply to use a predefined order (e.g., requests made from

processor 1 up to processor M). Thus, if processor ju has already built a queue and

updated the set U(t), it proceeds to send both U(t) and the request queue to the

processor located at the head of the queue when it transmits it. The processor that

receives both U(t) and the request queue updates the set U(t) and passes this U(t)

along with the queue to the new processor at the head of the queue, and this process

is repeated until the queue becomes empty. These types of communications can be

viewed as “token-asking algorithms,” where a processor cannot update the set U(t)

unless it possesses the token. It is not the intention of this dissertation to focus on

a detailed definition of distributed mutual exclusion algorithms since these types of

algorithms can be found in [43] and elsewhere. We simply need to establish here our
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strategy for cooperation, which is based on asynchronous communication of the set

U(t) along with the request queue.

Note that we have described the case where both the set U(t) and the request

queue are passed along the network and they are held by the processor that requested

this information; it is clear for this case that a “tracking” mechanism is needed to

know the current processor that holds this information, unless broadcast type requests

are made as we assume here. However, another scenario can be studied as well, where

processor ju always holds both the set U(t) and the request queue, and whenever a

processor � ∈ Q, � �= ju, requests the set U(t) held by the processor ju, it modifies it

with the new unattended task types, and sends it back to the processor ju. Regardless

of the strategy used to share U(t), here the key point will be that it is shared over an

asynchronous network where random but bounded delays can be incurred.

Let kj, kj = 0, 1, . . . , denote the index of the sequence of times that processor j

makes allocation decisions. Let Dkj be the time when processor j ∈ Q, decides to

process task type i∗j(k
j), and assume that at the initial time Dkj = 0. Let Dkj+1 be

the next decision time for processor j which is when it completes the processing of

task type i∗j(k
j) and gets the unattended set. For each j define Dkjc to be the closest

decision time made by any other processor jc, previous to the decision time Dkj+1

(so given j we can define jc at each Dkj+1). Note that if no other processor except

j makes a decision between times Dkj and Dkj+1 then Dkjc is just equal to Dkj so

jc = j. Since δi,j > 0 and δc > 0 we know that Dkj+1 > Dkjc . By the definition of jc,

Dkj ≤ Dkjc < Dkj+1, and we know that

Dkj+1 − Dkjc ≤ Dkj+1 − Dkj ≤
δ + ai∗j (kj)xi∗j (kj)(Dkj)

1 − ai∗j (kj)pi∗j (kj)

+ δc (2.2)
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Also, if jc �= j

Dkj+1 − Dkjc < Dkjc
+1 − Dkjc ≤

δ + ai∗jc (kjc
)xi∗jc (kjc

)(Dkjc )

1 − ai∗jc (kjc
)pi∗jc (kjc

)

+ δc (2.3)

This can be seen in Figure 2.2. Furthermore, note that in the time interval t ∈
[Dkjc , Dkj+1] the set U(t) is constant. This will be useful in our proof below.

Time, t

i  (k  )
j
*    j

i    (k    )
j
*

D
kj D

k j +1
D

kj
c

x

x
c

jc

D
k

j +1
c

δc

Figure 2.2: Decision times made by M = 2 processors.

2.3 Synchronous Decision Making

While in the remainder of the chapter we study asynchronous cooperative resource

allocation strategies, we have also studied a type of synchronous cooperative resource

allocation problem, which consists in a group of processors trying to make decisions at

the same time. In this case, the processors start processing their chosen buffers, and

then wait till each other are all done processing before they decide again. Notice that

some processors could finish processing their respective task types some time before

the last of the M processors finishes as it can be seen in Figure 2.3. Thus, there

could be idling where some processors could have brought their buffer levels to zero

(and buffer levels remain at that value since arrivals and processing continues but the
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Figure 2.3: Illustration of task type processing by M = 3 processors working syn-
chronously (ψj

k denotes “idling” by processor j before it makes a decision).

processor immediately takes care of each task), but they cannot make any decision

because they need to wait until the rest of the processors are done. The stability

analysis of this strategy is not included in this dissertation because we think of it as

a special case of the asynchronous one; this can be easily seen by making idling, ψj
k,

equal to δc in Figure 2.3. In fact, we could follow the approach detailed in Section 2.5

to obtain a single stability result for both asynchronous and synchronous cooperative

resource allocation strategies. This can be done by considering idling in the analysis,

which leads to the result that such strategies are still stable in the presence of such

idling. However, it would be interesting to explore whether there exists a condition

where idling could produce lower bounds for synchronous strategies rather than for

asynchronous ones based on the previous work done in [5] for the M = 1 case.
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2.4 Cooperative Resource Allocation Strategies

Next, we introduce the resource allocation strategies that we study in the remain-

der of this chapter.

Processing M Task Types with the Largest Buffer Level

This strategy is a generalization of the one for the M = 1 case in [1]. For it, at

time kj the resource allocation strategy on each processor j chooses to process task

type i∗j(k
j), such that

xi∗j (kj)(Dkj) ≥ xij(Dkj),∀ij ∈ Ua
j (Dkj) (2.4)

and processes it until it finishes the tasks in the buffer (which will only take a finite

amount of time) when it sends a request for U(t) and continues processing until it

receives U(t) (keeping xi∗j (t
′
) = 0 for Dkj+1 − δc ≤ t

′ ≤ Dkj+1). Note that when a

processor j finishes processing a task type i∗j(k
j − 1) it chooses a new task type i∗j(k

j)

from the largest buffer level contained in the set Ua
j (Dkj) and, then replaces it with

i∗j(k
j − 1) to form U(Dkj). If there is more than one maximizer for any processor

at any time, then the resource allocation strategy will simply choose one of these at

random (likewise, for the strategies below). Generally for j �= j
′
, Dkj �= D

kj
′ and

Ua
j (Dkj) �= Ua

j′ (Dkj
′ ) so Equation (2.4) represents how decisions are made over a range

of M times, not just one time as it is in the M = 1 case. Since there can be many

more decisions made by one processor than another it could be that Dkj −D
kj

′ → ∞
as kj → ∞ and kj

′ → ∞, j �= j
′
. Note that although the processors could complete

processing of their respective task types at the same time, their decisions will occur

at different times since the processors will make choices depending on the queue held
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by processor ju so that they will pick different buffers to process due to the use of

the mutual exclusion algorithm.

Processing M Task Types with Buffer Levels Greater or Equal
to the Average One

This strategy is also a generalization of one from [1]. For it, at time kj the resource

allocation strategy on each processor j chooses to process task type i∗j(k
j) such that

xi∗j (kj)(Dkj) ≥ 1

N − M

∑
ij∈Ua

j (D
kj )

xij(Dkj),∀ij ∈ Ua
j (Dkj) (2.5)

and process it as from the above policy until it receives U(t) so it can make another

decision. Similar additional comments made for the last policy hold here also.

Processing M Task Types Expected to Be Most Difficult to
Process

This strategy is taken from [15], which was inspired by the work done in [1].

Assume that at each kj each processor j chooses to process task type i∗j(k
j) at time

Dkj if

i∗j(k
j) = arg max

ij


wij


xij(Dkj) + δij ,jpij

(1−aij
pij

)

aij




 ,∀ij ∈ Ua

j (Dkj) (2.6)

where wij > 0 are weighting factors. This strategy estimates the length of time that

elapses from the time where the peak occurs, until the buffer level currently processed

is brought to zero for the first time. The weighting factors wij can be chosen to force

the processor to process some task types more than others. We have derived a specific

bound on the ultimate buffer level for all i ∈ P when this strategy is used for the

M = 1 case defined in [15].
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Note that all the above strategies have in common that they are all clearing

policies. We also studied a pre-emptive approach for the “clear the largest buffer”

(CLB) [1] strategy (i.e., xi∗(k)(Dk) ≥ xi(k)(Dk),∀i ∈ P ) for the M = 1 case. For it,

once the processor engages in processing task types from buffer i∗, it will continue

processing task types from that buffer until the following condition is satisfied

xi∗(k)(Dk+1) ≤ εxi∗(k)(Dk)

where 0 < ε < 1. Notice that the condition ε < 1 will guarantee that the buffer level

i∗ at time Dk+1 be always less than its value at time Dk, while the condition 0 < ε will

avoid that the buffer levels be brought to zero. We do not show the result obtained

for this pre-emptive approach, however, the bound for the pre-emptive case is greater

than the one in [1]. From that perspective, the result, in general, indicates that it

is beneficial to clear the buffer once a processor starts processing it. Unfortunately,

however, since these bounds are conservative we cannot conclude that one approach

is superior to the other.

2.5 Stability Analysis

In this section we analyze the stability of the implementation of the strategies

defined in Equations (2.4) and (2.5). The same proof strategy holds if Equation (2.6)

is used.

Theorem: Assume that 0 < aipi < 1,∀i ∈ P and

N∑
i=1

aipi < M(1 + ap − ap) (2.7)
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where ap = mini{aipi}, and ap = maxi{aipi}. For the cooperative resource allocation

strategies in Equations (2.4) and (2.5) a specific bound on the ultimate buffer level

for all i ∈ P is given by

lim
t→∞

xi(t) ≤ δ

a

(
ap +

1

M

N∑
i=1

aipi − ap

)

+ (N − M)
a

a
max

i

{
(δ + δc(1 − aipi))(

∑N
i=1 aipi − Map)

ai(1 − aipi − 1
M

∑N
i=1 aipi + ap)

}

where a = mini{ai}, and a = maxi{ai}.

Proof: Let

V (t) =
N∑

i=1

aixi(t)

The proof to follow focuses on the strategy where the task type i∗j is chosen by

processor j ∈ Q, that has the buffer level greater or equal to the average one; however,

a special case of this is when the largest buffer level is chosen at each decision point so

the above bound holds for that resource allocation strategy also. The reader familiar

with the first proof in [1] will notice some similarities to this proof since it is the special

M = 1 case of this one. There are, however, significant fundamental differences since

we have M processors operating simultaneously, asynchronously, and over a network

with delays.

Now, we split the V (t) function into two terms: the task types that are “unat-

tended”, U(t), and the ones that are being “attended”, A(t). Thus,

V (t) =
N∑

i=1

aixi(t) =
∑

i∈U(t)

aixi(t) +
∑

i∈A(t)

aixi(t)

Since there are M processors processing different task types at the same time, we

next define a function for each processor such that when we sum the functions we
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obtain V (t). Let

∑
i∈U(t)

aixi(t) = M
∑

i∈U(t)

aixi(t)

M
=

M∑
j=1


∑

i∈U(t)

aixi(t)

M




and notice that ∑
i∈A(t)

aixi(t) =
M∑

j=1

ai∗j xi∗j (t)

Hence,

V (t) =
M∑

j=1

Vj(t) =
M∑

j=1


ai∗j xi∗j (t) +

∑
i∈U(t)

aixi(t)

M


 (2.8)

Define the function Vj(t) for processor j as

Vj(t) = ai∗j xi∗j (t) +
∑

i∈U(t)

aixi(t)

M
(2.9)

The function Vj(t) represents the amount of work that every processor needs to

do in order to process at time t the task type that it is currently processing plus the

task types that are unattended. However, notice that the unattended set is being

“artificially shared” among all processors since the set U(t) is shared by the number

of processors and this is why the second term of Equation (2.9) is divided by M .

Consider the sum of the values of the Vj(t) at the set of decision times Dkj ,

M∑
j=1

Vj(Dkj) =
M∑

j=1


ai∗j (kj)xi∗j (kj)(Dkj) +

∑
i∈U(D

kj )

aixi(Dkj)

M


 (2.10)

There is an important difference between Equations (2.8) and (2.10). While Equa-

tion (2.8) is evaluated at a specific time t, Equation (2.10) is evaluated at the M

processor decision times Dkj . Since these M decision times can occur at different

times, it is clear that there is in general a time misalignment among all processor’s

decisions. Hence, the left hand side of Equation (2.10) is not V (t). Below, we will not
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use V (t) as a Lyapunov-like function in our proof. Instead we use the Equation (2.10)

in this manner.

Next, since xi∗j (kj)(Dkj+1) = 0,∀j ∈ Q (i∗j(k
j) was the task type that was just

processed by processor j ∈ Q),

M∑
j=1

Vj(Dkj+1) =
M∑

j=1


ai∗j (kj)xi∗j (kj)(Dkj+1) +

∑
i∈U(D

kj+1
)

aixi(Dkj+1)

M




=
M∑

j=1


 ∑

i∈U(D
kj+1

)

aixi(Dkj+1)

M


 (2.11)

Note that by the definition of jc, U(Dkj+1) = U(Dkjc ) since the unattended set

will not change for every processor j for t such that Dkjc ≤ t ≤ Dkj+1. Hence,

considering task arrivals in this time period,

M∑
j=1

Vj(Dkj+1) =
M∑

j=1


 ∑

i∈U(D
kjc )

[ ai

M
xi(Dkjc ) +

aipi

M
(Dkj+1 − Dkjc )

]
 (2.12)

Hence, for processor jc in Equation (2.9) at time Dkjc

∑
i∈U(D

kjc )

ai

M
xi(Dkjc ) = Vjc(Dkjc ) − ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc ) (2.13)

We use Equations (2.3), (2.12), and (2.13) to obtain

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc ) − ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc )

+
∑

i∈U(D
kjc )

aipi

M

(
δ + ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc )

1 − ai∗jc (kjc
)pi∗jc (kjc

)

+ δc

)


≤
M∑

j=1

{
Vjc(Dkjc ) − ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc )

(
1 −

∑
i∈U(D

kjc )
aipi

M

1 − ai∗jc (kjc
)pi∗jc (kjc

)

)

+
(δ + δc(1 − ai∗jc (kjc

)pi∗jc (kjc
)))
∑

i∈U(D
kjc )

aipi

M

1 − ai∗jc (kjc
)pi∗jc (kjc

)

}
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Define

α(ijc) = aijc

(
1 − aijcpijc −

∑
i∈U

aipi

M

1 − aijcpijc

)
(2.14)

and

β(ijc) =

(
δ + δc(1 − aijcpijc )

)∑
i∈U

aipi

M

1 − aijcpijc

So

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc ) − α(i∗jc(kjc

))xi∗jc (kjc
)(Dkjc ) + β(i∗jc(kjc

))
}

(2.15)

It is clear that β(ijc) > 0, and we need to find out whether α(ijc) is also greater

than zero. We know that

1

M

N∑
i=1

aipi =
1

M

∑
i∈A

aipi +
1

M

∑
i∈U

aipi < 1 + ap − ap ≤ 1 + ap − aipi,∀i ∈ P

where the second to last inequality comes from the assumption in the statement of

the theorem. Thus,

−1 − ap +
1

M

∑
i∈A

aipi < − 1

M

∑
i∈U

aipi − aipi < 0

Therefore,

0 = −ap +
1

M
Map < −ap +

1

M

∑
i∈A

aipi < 1 − 1

M

∑
i∈U

aipi − aipi < 1 (2.16)

Since the terms aijc > 0, 1 − aijcpijc > 0 in Equation (2.14), and by using Equa-

tion (2.16) we know that α(ijc) > 0.

We use the definition of either resource allocation strategy for j = jc

α(i∗jc(kjc

))xi∗jc (kjc
)(Dkjc ) ≥ α(i∗jc(kjc

))

(N − M)a


 ∑

i∈Ua
j (D

kjc )

aixi(Dkjc )



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But notice that

α(i∗jc(kjc

))xi∗jc (kjc
)(Dkjc ) ≥ α(i∗jc(kjc

))

(N − M)a


ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc ) +

∑
i∈U(D

kjc )

aixi(Dkjc )




≥ α(i∗jc(kjc
))

(N − M)a


ai∗jc (kjc

)xi∗jc (kjc
)(Dkjc ) +

∑
i∈U(D

kjc )

aixi(Dkjc )

M




≥ α(i∗jc(kjc
))

(N − M)a
Vjc(Dkjc )

Combine this with Equation (2.15) to get

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc )

(
1 − α(i∗jc(kjc

))

(N − M)a

)
+ β(i∗jc(kjc

))

}
(2.17)

This means that we have a contractive mapping in Equation (2.17). Notice, however,

that in Equation (2.17) we have on the left side Vj(Dkj+1) and on the right Vjc(Dkjc )

so the mapping is contractive as we go from kjc
to kj + 1,∀j ∈ Q. Do the sums in

Equation (2.17) account for all time so that the contractive mapping is valid for all

t ≥ 0? The answer is yes, and we explain why next. Recall how we defined jc: Given

a j we have some Dkj+1 and from that value we define jc as the index of the processor

that most recently finished its processing at time t < Dkj+1. So given any Dkj+1 we

can always find a jc (at t = 0 we consider all processors to have just finished processing

to get xij(0) = 0). At any time t such that xij(t) becomes zero is labeled as Dkj+1

as soon as processor j has already received U(t). Then the time range [Dkjc , Dkj+1]

is considered in the mapping since the left hand side of Equation (2.17) is revaluated

at the right side of this interval for one j and the right side of Equation (2.17) is

evaluated at the left side of the interval. Now, the key is to note that we can relabel

this jc (and hence Dkjc ) as D
kj

′
+1

since it was the time that processor jc finished so

it is the new decision time for the processor. Then there is of course a j
′c

and so on
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so that all time intervals are considered in the contractive mapping. Note that this

accounts for the fact that the sums in the contraction are based on a set of times that

are not necessarily contiguous. Note also that in Equation (2.17) it is not possible that

Vj(Dkj+1) = Vjc(Dkjc ) for any j since δi,j > 0 so that Dkj+1 > Dkj and Dkjc < Dkj+1

by definition. Also it is not possible that for any j, Vj(Dkj+1) → Vjc(Dkjc ) as kj → ∞.

Why? Because, while this may happen for some j values, it cannot happen for all

such values. Note that if for M − 1 processors Vj(Dkj+1) → Vjc(Dkjc ), then for the

remaining processors, say j
′
, D

kj
′c < D

kj
′
+1

, Vj
′ (D

kj
′
+1

) � Vj′c(Dkj′c ).

Next, notice that

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc )

(
1 − minijc α(ijc)

(N − M)a

)
+ max

ijc
β(ijc)

}

≤
(

1 − mini α(i)

(N − M)a

) M∑
j=1

{Vjc(Dkjc )} + M max
i

β(i) (2.18)

Define for k ≥ 0

V (k) =
M∑

j=1

Vjc(Dkjc )

and

V (k + 1) =
M∑

j=1

Vj(Dkj+1)

so that V (k+1) is the sum at the set of times when all processors j ∈ Q have already

finished processing their respective task types and have received U(Dkjc ) in order to

choose which task types they will process next.

Now, we use V (k) and V (k + 1) in Equation (2.18)

V (k + 1) ≤ γV (k) + ζ (2.19)
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where γ =
(
1 − mini α(i)

(N−M)a

)
and ζ = M maxi β(i) which are both constants. But, notice

that

[
1 − α(i∗jc(kjc

))

(N − M)a

]
= 1 −

{
aijc

(
1−aijc pijc−

∑
i∈U(D

kjc )
aipi
M

1−aijc pijc

)}
(N − M)a

By using the bounds of Equation (2.16), we know that

0 <
1 − aijcpijc −

∑
i∈U

aipi

M

1 − aijcpijc

< 1,∀ij ∈ P

Furthermore,

0 <
aijc

(N − M)a
< 1

hence

0 < 1 − α(i∗jc(kjc
))

(N − M)a
< 1 (2.20)

so that 0 < γ < 1.

Equation (2.19) is a difference inequality with a solution that is bounded for all k

by

V (k) ≤
(

V (0) − ζ

1 − γ

)
γk +

ζ

1 − γ
(2.21)

Notice that if V (0) > ζ
1−γ

(V (0) < ζ
1−γ

) then since γk → 0 as k → ∞ V (k) decreases

(increases) to ζ
1−γ

as k → ∞.

Now

ζ

1 − γ
=

M(N − M)a maxi β(i)

mini α(i)

= M(N − M)a max
i

β(i)

α(i)
(2.22)

This gives us a bound on the transient and ultimate V (k) values as k → ∞, at the

decision times.
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We need to consider the times in between the decision times. To do this, note

that for all jc, kjc
, and k

Vjc(Dkjc ) ≤ V (k)

Next, we show that for Dkjc ≤ t ≤ Dkj+1

Vjc(t) ≤ Vjc(Dkjc + δ) (2.23)

From Equation (2.9) and for any t, Dkjc ≤ t ≤ Dkjc + δ

Vjc(Dkjc + δ) = ai∗jc (kjc
)xi∗jc (kjc

)(t + Dkjc + δ − t)

+
∑

i∈U(t+D
kjc +δ−t)

aixi(t + Dkjc + δ − t)

M

= ai∗jc (kjc
)xi∗jc (kjc

)(t) + (Dkjc + δ − t)ai∗jc (kjc
)pi∗jc (kjc

) +
∑

i∈U(t)

aixi(t)

M

+ (Dkjc + δ − t)
∑

i∈U(D
kjc +δ−t)

aipi

M

= Vjc(t) + (Dkjc + δ − t)


ai∗jc (kjc

)pi∗jc (kjc
) +

∑
i∈U(D

kjc +δ−t)

aipi

M




since the second term of the right hand side of the above equation is nonnegative

Vjc(t) ≤ Vjc(Dkjc + δ) (2.24)

for all t, Dkjc ≤ t ≤ Dkjc + δ.

Next, we consider t, Dkjc + δ ≤ t ≤ Dkj+1, and use Equation (2.9)

Vjc(Dkj+1) = ai∗jc (kjc
)xi∗jc (kjc

)(t + Dkj+1 − t) +
∑

i∈U(t+D
kj+1

−t)

aixi(t + Dkj+1 − t)

M

= ai∗jc (kjc
)xi∗jc (kjc

)(t) − (Dkj+1 − t)

(
1 − ai∗jc (kjc

)pi∗jc (kjc
)

ai∗jc (kjc
)

)
ai∗jc (kjc

)

+
∑

i∈U(t)

aixi(t)

M
+ (Dkj+1 − t)

∑
i∈U(D

kj+1
−t)

aipi

M
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= Vjc(t) + (Dkj+1 − t)


−1 + ai∗jc (kjc

)pi∗jc (kjc
) +

∑
i∈U(D

kj+1
−t)

aipi

M




since the second term of the right hand side of the last equation is nonpositive

Vjc(t) ≤ Vjc(Dkjc + δ) (2.25)

for all t, Dkjc + δ ≤ t ≤ Dkj+1.

On the other hand,

Vjc(Dkjc + δ) = ai∗jc (kjc
)xi∗jc (kjc

)(Dkjc ) + δai∗jc (kjc
)pi∗jc (kjc

) +
∑

i∈U(D
kjc )

aixi(Dkjc )

M

+
∑

i∈U(D
kjc )

aipiδ

M

= Vjc(Dkjc ) + δ


ai∗jc (kjc

)pi∗jc (kjc
) +

∑
i∈U(D

kjc )

aipi

M




≤ Vjc(Dkjc ) + δ

(
ap +

N∑
i=1

aipi

M
− ap

)
(2.26)

where the second term of the right hand side of the equation was derived by using

∑
i∈U(D

kjc )

aipi

M
=

N∑
i=1

aipi

M
−

∑
i∈A(D

kjc )

aipi

M
≤

N∑
i=1

aipi

M
− M

ap

M
(2.27)

Notice here that we can also obtain a tighter bound on the right side of Equation (2.27)

by using the M minimum values of aipi rather than Map.

Next, note that for any jc

a


xi∗jc

(t) +
∑

i∈U(t)

xi(t)

M


 ≤ ai∗jc

xi∗jc
(t) +

∑
i∈U(t)

aixi(t)

M
= Vjc(t)

so that

xi∗jc
(t) +

∑
i∈U(t)

xi(t)

M
≤ Vjc(t)

a
≤ Vjc(Dkjc )

a
+

δ

a

(
ap +

N∑
i=1

aipi

M
− ap

)
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Hence,

lim
t→∞

xi∗jc
(t) ≤ lim

t→∞


xi∗jc

(t) +
∑

i∈U(t)

xi(t)

M




≤ δ

a

(
ap +

1

M

N∑
i=1

aipi − ap

)
+ M(N − M)

a

a
max

i

β(i)

α(i)

≤ δ

a

(
ap +

1

M

N∑
i=1

aipi − ap

)

+ M(N − M)
a

a
max

i

{
(δ + δc(1 − aipi))(

∑N
i=1

aipi

M
− ap)

ai(1 − aipi − 1
M

∑N
i=1 aipi + ap)

}

≤ δ

a

(
ap +

1

M

N∑
i=1

aipi − ap

)

+ (N − M)
a

a
max

i

{
(δ + δc(1 − aipi))(

∑N
i=1 aipi − Map)

ai(1 − aipi − 1
M

∑N
i=1 aipi + ap)

}

(2.28)

Now, we must show that each buffer will get chosen by some processor j ∈ Q infinitely

often so that every buffer becomes i∗jc persistently so that Equation (2.28) provides a

bound for each buffer level i ∈ P . Note that we have a bound for every kjc
for every

buffer level so xi∗jc (kjc
)(Dkjc ) is bounded, and using Equation (2.3), Dkj+1 − Dkjc is

bounded. This results in a bound on the time that the unattended set will not be

changed. Ignored buffers rise so eventually any ignored buffer in U(t) will be taken

off U(t) and hence become i∗jc . �

Next, we make a few remarks about the ultimate bound obtained. First of all,

note that when the time delays, δ and δc, increase, the bound also increases (e.g.,

network delays can result in ignoring buffers longer). If the load values assigned to

tasks increase then the ultimate bound does also since then we may spend more time

processing the higher task loads and hence an increased amount of time ignoring the

lower task loads. However, if the load of all tasks is very high, then the delay incurred

33



by the processor communications does not have too much influence on the bound since

processors are so busy processing tasks from buffers and they do not communicate to

each other so frequently. If the number of tasks and processors are about the same,

then the ultimate bound decreases. On the other hand, if ap �= ap then in a sense,

the capacity of the system is decreased. Why? Note that if the loads are not all

equal then when a processor is processing a task type with a high load it will take

a considerable amount of time to complete processing that buffer. Therefore, this

processor will not be able to process other task types for a while (it is as if it were

not helping) and the rest of processors have to process the remaining buffers. Notice

that this slows down the overall processing rate and the processing capacity of the

system is reduced.

One important point to highlight here is the fact that the analysis could take

into account the behavior of heterogeneous processors (i.e., processors with different

processing capabilities for the same task). Therefore, we could define a rate at which

processor j processes task type i, 1
aij

,∀i ∈ P,∀j ∈ Q, and with a slight modification

of the proof in Equation (2.18) the stability analysis would hold for this type of

processor.

2.6 Comparative Analysis: Noncooperative Vs. Cooperative
Strategies

Consider the scenario where we have a group of M processors, not connected over

a communication network, and all process just one task type out of N at a time.

If the group of processors does not coordinate their choices, then for a variety of

scheduling strategies they will choose the same task type to process all the time,

and suppose this is possible (e.g., two machines processing parts from one buffer).
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Due to the lack of communications and hence coordinated decision making we name

such strategies “noncooperative.” In this section we want to make a comparison

between these noncooperative strategies and the cooperative strategies discussed in

this chapter to clarify when a cooperative strategy might be superior.

2.6.1 Comparison between the ultimate bounds

Here, for our noncooperative strategies we simply use the “clear a fraction” policy

from [1] but with M processors so they will all simultaneously process one of N

buffers. Here, we start our comparative analysis by comparing the bounds for the

cooperative and noncooperative cases, in one special case. Suppose that 1

aj
i

is the

processing rate for task type i by processor j. Note that the ultimate bound obtained

by Perkins and Kumar in [1], but for this noncooperative case, is

lim
t→∞

sup xi(t) ≤ lim
t→∞

sup
∑

i

xi(t) ≤ δ
∑N

i=1 at
ipi

at

+
at(N − 1)

at
max

i




δ
(∑N

i=1 at
ipi − at

ipi

)
at

i(1 −∑N
i=1 at

ipi)



(2.29)

where the “total processing rate” 1
at

i
is

1

at
i

=
1

a1
i

+ . . . +
1

aj
i

+ . . . +
1

aM
i

,∀i ∈ P

If we assume that aj
i = a�

i ,∀j, � ∈ Q, then at
i = ai

M
. Moreover, assume that ai = aj

and pi = pj, for all i and j so that the ultimate bound in Equation (2.29) is

lim
t→∞

sup xi(t) ≤ δ
∑N

i=1 aipi

a
+

a(N − 1)

a
max

i




δ
(∑N

i=1 aipi − aipi

)
ai(1 − 1

M

∑N
i=1 aipi)


 (2.30)
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Next, consider the cooperative case. Since we know that aipi = ajpj, for all i and j,

via Equation (2.28) we obtain an ultimate bound

lim
t→∞

xi(t) ≤ δ
∑N

i=1 aipi

aM

+
a(N − M)

a
max

i

{
(δ + δc(1 − aipi))(

∑N
i=1 aipi − Map)

ai(1 − 1
M

∑N
i=1 aipi)

}
(2.31)

where it can be seen that when the arrival of tasks and processing rates for every

processor have all the same value, the ultimate bound for the cooperative case, Equa-

tion (2.31), is always smaller than the ultimate bound for the noncooperative case,

Equation (2.30) if δc → 0. Unfortunately, however, since these bounds are conserva-

tive we cannot, even in this special case, conclude that one strategy is superior to the

other.

2.6.2 Simulations

Here, we seek to determine if the cooperative strategies are superior to noncoop-

erative ones. In particular, are cooperative strategies superior to noncooperative ones

for all processing and arrival rates (i.e., for all ai and pi)? In addition to that, we

would like to answer the following questions: Is it possible, and if so in what cases,

that the cooperative strategies perform better than the noncooperative ones? Can

the noncooperative strategy perform better than the cooperative one? When?

In order to compare both cooperative and noncooperative strategies we must have

the conditions that were defined for stability satisfied, i.e., 0 < aipi < 1,
∑N

i=1 aipi <

M(1 − ap + ap) ≤ M , and
∑N

i=1 aipi < M respectively. Note that if aipi �= ajpj, the

stability constraint of the cooperative case is always smaller than the noncooperative

case; hence all our cases studied below are for cases where the processors are lightly

loaded relative to noncooperative strategies. In order to answer all the above questions
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we run a Monte Carlo simulation with the following values: the sampling time is

Ts = 0.0001 sec., the length of the simulation is 5 sec., the number of simulations to

run are 300 (we verified that this is a sufficient number), the values of 0 < aipi < 1 are

randomly generated for every simulation, the values of the arrival rate (0 < pi < 10)

are randomly generated also, and for every simulation the equation
∑N

i=1 aipi < M(1−
ap + ap) is forced to be satisfied (randomly generated cases where they are not are

rejected). Furthermore, there are N = 4 task types, M = 2 processors, the switching

times for processors 1 and 2 are δ1
i,j = δ2

i,j = 0.01 sec., and we do not consider network

delays so, δc → 0. The range of workload generated randomly for every processor,

0 < aipi < 0.6, was relatively large; hence we consider this set of cases to be a test

for performance for a highly loaded processor case.

Table 2.1 shows a summary of the performance measures of the Monte Carlo

simulation for this case where we want to point out that those values converge after the

50th simulation run. Notice that the averages of the performance measures obtained

in the cooperative case are better than the noncooperative one. However, we want to

comment that the performance measures of the noncooperative case were better than

the cooperative one in 37 of the 300 cases. We observe that there is a common factor

in those cases, and this is that the stability condition values,
∑N

i=1 aipi, are relatively

big as it is shown in Figure 2.4. In other words, the processors are highly loaded and

that motivates us to simulate the case where the processors are lightly loaded so that

the values of 0 < aipi < 0.2 are randomly generated for every simulation.

The results obtained are shown in Table 2.2. Note that for this case the averages

of the performance measures of the cooperative case are again better than the nonco-

operative ones. In fact, the cooperative case performed better in 299 out of 300 cases.
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Noncooperative Cooperative

Average of average values of
buffer levels

0.0951 0.0775

Variance of average values of
buffer levels

0.0009 0.0012

Maximum of average values
of buffer levels

0.1378 0.1345

Variance of maximum of av-
erage values of buffer levels

0.0016 0.0043

Table 2.1: Average of the performance measures from the Monte Carlo simulations
(highly loaded case).
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Noncooperative Cooperative

Average of average values of
buffer levels

0.0928 0.0625

Variance of average values of
buffer levels

0.0009 0.0004

Maximum of average values
of buffer levels

0.1340 0.1023

Variance of maximum of av-
erage values of buffer levels

0.0015 0.0009

Table 2.2: Average of the performance measures from the Monte Carlo simulations
(lightly loaded case).
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Figure 2.4: Stability condition values for the cooperative case (solid line) and nonco-
operative one (dashed line).

These simulations confirm that in the lightly loaded case the advantages realized by

the noncooperative strategy over the cooperative one can be lost. This is because in

this case the cooperative strategy better distributes processing resources to minimize

wasteful delays due to set-up times. In the highly loaded case such benefits are not

found as often since all the processors are busy.

2.7 Discussion: Ideas for Cooperative Strategy Design

We have the intuition that there may be cases where a combination of the co-

operative and the noncooperative resource allocation strategies could maximize the

throughput and minimize wait-times and it would be interesting to derive stability
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properties for this scenario. The idea behind this combination of strategies is that

every time that a processor needs to choose a new buffer level to process, it needs to

compute how long it will take to clear the buffer to be chosen in such a way that it

may end up either helping to process a buffer level that is already being processed

by another processor, or choosing a new buffer contained in the set U(t). This choice

could be based on selecting the longest time to process a buffer no matter whether

or not this buffer is already being processed by any other processor. A combined

strategy could provide the benefits of the cooperative strategy we study here with

potential benefits of simultaneous processing of a buffer (which can indeed be thought

of a special type of cooperation that does not rely on direct communications).
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CHAPTER 3

COOPERATIVE SCHEDULING OF TASKS FOR
NETWORKED UNINHABITED AUTONOMOUS

VEHICLES

We model, perform mathematical analysis, and simulate in this chapter a coop-

erative control problem for a network of UAVs where it is assumed that before the

mission starts a set of tasks is given to a set of UAVs, but then after deployment the

UAVs must cooperate to decide which UAV should process each task. The coopera-

tion must occur in spite of imperfect communications. We show how to view this as

a cooperative scheduling (resource allocation) problem, and how to derive bounds on

mission-level performance metrics for cooperative scheduling methods. Simulations

will be used to compare the approach to a noncooperative strategy and to provide

design guidelines for the cooperative scheduler.

3.1 Problem Statement

Suppose that there are several UAVs that need to process a set of tasks, where to

process a task a UAV has to go to a certain location in a region of finite size. Here,

we assume that a set of UAVs is given a priori a number of tasks, their respective

locations, and characteristics (e.g., the priority of each task). It is assumed that

the tasks must be repeatedly visited and processed (e.g., for repeated surveillance of
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points spread across a large region where the points of interest are more numerous

than the number of UAVs). UAVs must work together autonomously to allocate

their capabilities to process all these tasks in order to maximize the rate of task

processing for the highest priority tasks. In this chapter we introduce the model

for the cooperative scheduling of tasks problem; however, there are analogies to the

multiprocessor problem that we have already defined in Chapter 2 and this will allow

us to shorten our description somewhat.

3.1.1 Tasks, Prioritized Time, and Processing Time

Suppose that the number of tasks is fixed and that we number and denote them as

P = {1, 2, . . . , N}. Assume that the number of UAVs is constant and we number them

and denote the set of UAVs as Q = {1, 2, . . . , M} where N > M (if N ≤ M , then

you could dedicate at least one UAV to each task). Let pi, i ∈ P denote the priority

of processing task i. Let t denote time. Let Ti(t), i ∈ P, t ≥ 0 denote the “prioritized

time” since last processing of task i and ti denote the time since last processing task

i (e.g., if task i was last processed at time zero then Ti(t) = piti is its “prioritized

time”). We will assume that there is a cooperative scheduling strategy that decides

which task a UAV should process next. Assume that there is a global clock (e.g., via

GPS) that keeps all the UAV’s clocks synchronized. Let xi = [xi
1, x

i
2, θ

i]� denote the

coordinates in the (xi
1, x

i
2) plane and orientation θi for the ith task. Let d(xj

v(t), x
i)

be the distance that UAV j must travel from its current location and orientation

xj
v(t) = [xj

v1
(t), xj

v2
(t), θj

v(t)]
� to process task i at xi. If communication delays are

finite and tasks are in a finite region, then we can find a d ≥ d(·) for all i, j and

t ≥ 0. Given a certain scenario that contains a fixed number of tasks located in a
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finite region, we could determine d by choosing the longest travel distance that any

UAV must travel between two tasks considering their respective orientation angles.

Suppose that all UAVs travel at a constant velocity v and either move on a constant

minimum turn radius or on a straight line. Let τij , 0 ≤ τ ≤ τij ≤ τ ,∀i ∈ P,∀j ∈ Q

denote the “processing” time that takes to process task i by UAV j with τ (τ) the

minimum (maximum) time it takes to process task i after a UAV first arrives at it.

Let δi,j, 0 ≤ δi,j ≤ δ be the random but bounded time delay that represents the

amount of time that it takes for any UAV to switch from processing task i to task j,

j �= i. Let δc > 0 be the random but bounded time delay incurred when UAV j has

finished processing any task but it needs to wait for information held by another UAV

in order to make a decision (see below for more details). Assume that δc is random

but bounded by δc > 0.

Consider the case where there is only one task (N = 1), named “task 1” and

one (M = 1) UAV. Suppose that at some time t′, the value of prioritized time

since last processing task 1 is T1(t
′) > 0 as shown in Figure 3.1 and the last task

processed by UAV 1 is task i. At time t′ + δi,1 UAV 1 is heading to task 1. Then, at

time t′ + δi,1 + d(x1
v ,x1)
v

UAV 1 is at the location where task 1 is and it initiates the

processing of task 1, and the amount of time that it takes to do so is dictated by the

τ1 parameter (here processing could, e.g., include multiple passes over an object at

different angles in order to detect or identify/classify it). When processing for task

1 is completed the UAV sends a request to the other UAVs to coordinate decision

making and thereby experiences the delay δc. Finally, at time t′+δi,1+ d(x1
v ,x1)
v

+τ1+δc

UAV 1 chooses the next task to perform. Moreover, we assume that T1(t) could have

in Figure 3.1 any shape for the time when UAV 1 is processing task 1 to represent
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Time, t
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task 1
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processed
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v

τ
1

UAV chooses

next task to

process

δc

f (t)
l

Figure 3.1: Illustration of timing of UAV decision-making and size of prioritized time
since last processing.

how the processing of the task is completed as the UAV processes it. Figure 3.1 shows

that Ti(t) = f(t),∀t, t′ + δi,1 + d(x1
v ,x1)
v

≤ t ≤ t′ + δi,1 + d(x1
v ,x1)
v

+ τ1, and we assume

that function f(·) must additionally satisfy f(t) ≤ f�(t), where f�(t) is the bold line

shown in Figure 3.1. Notice that the processing time, τ1, does not depend on the

value of T1(t
′ + δi,1 + d(x1

v ,x1)
v

) since no matter what the current value of the prioritized

time since last processing is, the UAV will always take τ1 time units to process task

1. One consequence of this is that the slope of f�(t) will not be the same each time a

UAV is processing a task.

3.1.2 Asynchronous Decision Making

Asynchronous decision making is accomplished in a way similar to the one de-

scribed in Section 2.2. The only difference in this case is that UAV ju ∈ Q will hold

the sets U(t) and S(t), which are defined next.
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We define the set U(t) ⊂ P as the set of (“unattended”) tasks not processed or

being pursued by any UAV at the current time t, while the set Ua
j (t) =

{
i∗j(t)

}∪U(t)

is the set of tasks that can be considered for processing by UAV j, j ∈ Q. Here, i∗j(t)

is the task being processed or pursued by UAV j at time t. Define A(t) as the set

of tasks processed or pursued by the group of M UAVs at the current time t; hence

P = U(t) ∪ A(t), t ≥ 0.

Let

S(t) = {{Ti(t) : i ∈ U(t)}, ts}

denote the information available for UAV j at time t when it makes a scheduling

decision, where ts is a time stamp that indicates the last time that the Ti(t), i ∈ U(t)

were updated.

We assume as we did in Section 2.2 that whenever a UAV � ∈ Q where � �= ju

finishes processing a task at time tf such that Ti∗� (t
f ) = 0 (i.e., the instant the task is

processed), it broadcasts a request for the sets U(t) and S(t) to all the UAVs. Thus,

during the time interval [tf , tf + δc] that UAV � waits for the unattended set and S,

Ti∗� (t
′
) = 0, t

′ ∈ [tf , tf + δc], which means that UAV � keeps processing task i∗ until it

receives both sets U and S. This is consistent with our definition of the prioritized

time since last processing since task i∗ has already been completely processed at time

tf and it is not being ignored during the interval [tf , tf + δc] anymore. The instant

that UAV � gets U(t) and S(t), it becomes UAV ju, it compares the ts value to its

local clock and it proceeds to update all Ti(t),∀i ∈ U(t) values if there exists any

mismatch (the time stamp ts indicates to UAV � when was the last time that UAV

ju updated all Ti(t),∀i ∈ U(t)). By doing so, UAV � makes a decision on what task

to process next with up-to-date information; however, note that even if the UAV’s
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local clocks are not synchronized the decision maker will be able to select a new task

to process.

Here, we also use a mutual exclusion algorithm which coordinates the access of

all UAVs to the set U(t) in such a way that this set can be accessed and updated by

only one UAV at a time. We also assume UAV ju has a “request queue”, which could

be built in the same way it was defined in Section 2.2. Moreover, we use the same

definitions of Section 2.2 for the index of the sequence of times that UAV j makes

allocation decisions (kj), Dkj , Dkj+1, and Dkjc . Since δi,j ≥ 0 and δc > 0 we know

that Dkj+1 > Dkjc . By the definition of jc, Dkj ≤ Dkjc < Dkj+1, and we know that

Dkj+1 − Dkjc < Dkjc
+1 − Dkjc ≤ δ +

d(xjc

v (Dkjc ), xi∗jc (kjc
))

v
+ τ + δc (3.1)

This can be seen in Figure 3.2. Note that in the time interval t ∈ [Dkjc , Dkj+1] the

set U(t) is constant.

Time, t

i  (k  )
j
*    j

i    (k    )
j
*

D
kj D

k j +1
D

kj
c

T

T
c

jc

D
k

j +1
c

Figure 3.2: Example: decision times for M = 2 UAVs.
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3.2 Stable Cooperative Scheduling

For the scenario in Section 3.1 tasks are spread across a limited region so that each

UAV can process just one task at a time. Notice that there are M resources that

must be shared (UAVs capabilities), and the scheduling strategy must decide how

they are shared (what task to process). Note that if no UAV was actively engaged in

processing to its environment, then clearly Ti(t) → ∞, i ∈ P, t → ∞ since no tasks

are processed. We consider the scenario studied in this document to be “unstable” if

Ti(t) → ∞, t → ∞ for any i ∈ P . Hence, the goal of the scheduling allocation strategy

is to try to avoid Ti(t) → ∞ for any i ∈ P and indeed it will try to keep the Ti(t) values

as small as possible since this represents that the set of UAVs has recently processed

each task. We consider a scenario to be “stable” when Ti(t) < B, 0 < B < ∞,∀i ∈ P .

Next, we introduce a cooperative scheduling strategy that seeks to pay attention

to two variables: high priority tasks and gas expenditure. Furthermore, we are inter-

ested in deriving bounds for the ignored time since last processing in terms of known

parameters.

3.2.1 Cooperative Scheduling Strategies

Next, we introduce a particular cooperative scheduling strategy that we study in

the remainder of the paper. Other strategies that can be applied to this particular

problem can be found in Section 2.4 which are extensions of those in [1]. For it, at

time kj the cooperative scheduling strategy on each UAV j chooses to process task

i∗j(k
j), such that

Ti∗j (kj)(Dkj) − d(xj
v(Dkj), xi∗j (kj))

v
≥
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1

N − M + 1

∑
ij∈Ua

j (D
kj )

[
Tij(Dkj) − d(xj

v(Dkj), xij(k
j))

v

]
,∀ij ∈ Ua

j (Dkj) (3.2)

and makes no other decision until it has finished processing task i∗j(k
j) and received

U(t) and S(t) (note that the quantities of both sides of Equation (3.2) can be positive

or negative and if they are both zero then any task can be chosen for processing).

Ties are broken with an arbitrary choice. Similar additional comments made for the

strategy defined in Section 2.4 hold here also.

Equation (3.2) produces a set of admissible choices for what UAV j can process.

The strategy “Process M Closest Highest Priority Tasks” where you choose i∗j(k
j) to

process where

i∗j(k
j) = arg maxij

{
Tij(Dkj) − d(xj

v(Dkj), xij(k
j))

v

}
,∀ij ∈ Ua

j (Dkj) (3.3)

is a special case of Equation (3.2) in the sense that it represents one possible choice for

Equation (3.2); hence when in Section 3.3 we do stability analysis for Equation (3.2)

it also applies if we use Equation (3.3) for our strategy.

Notice that Equation (3.2) could be viewed as a cost function and the goal of the

strategy is to locally optimize the difference between the prioritized time since last

processing and the travel time from current UAV location to the chosen task location.

Another way to view this cost function is by thinking of the chosen task i∗j(k
j) by

UAV j as the one whose prioritized “ignore time” combined with the UAVs travel

time is greater or equal to the average value of those variables for each task contained

in the set Ua
j (Dkj). Thus, if all the tasks contained in the set Ua

j (t) have the same

prioritized time since last processing but they are located at different distances from a

UAV, then this UAV chooses to process the task that is closest to it. In this sense the
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strategy is “myopic” (but consider the discussion in Section 1.1 on why “look-ahead”

can be detrimental for the type of cooperative control problem we consider).

In some cases the pi values are set a priori by constraints of the problem. In other

cases it is possible to view them as controller design parameters that can be tuned to

improve performance. Recall that the pi parameters are embedded in the Ti variables,

so by changing these parameters any UAV can put more or less emphasis in the time

since last processing, that is, if the pi values are all too small, then the UAV’s will

tend to choose the closest task at any decision time, whereas if all pi values are too

big, then the UAV’s will tend to choose task to process based on the ignoring time

neglecting the travel distance of the tasks.

3.3 Stability Analysis

In this section we present our main result, which is based on the stability (bound-

edness) of the ti variables when the strategy defined in Equation (3.2) is used.

Theorem: Assume that N > M . For the cooperative scheduling strategy in Equa-

tion (3.2) a specific bound on the ultimate longest time that any UAV will ignore

task i ∈ P is given by

lim
t→∞

ti(t) ≤ max{B1, B2}

where

B1 =

(
δ + τ + δc

)
p

(
N∑

i=1

pi

M
− p

)(
NM − M2 + M + 1

)

+
d

pv

(
M(N − M + 1) + p +

N∑
i=1

pi

M
− p

)
+

δ

p
p

B2 =

(
δ + τ + δc + d

v

)
p

(
N∑

i=1

pi

M
− p

)
(NM − M2 + M + 1) +

p

p

(
δ +

d

v

)
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p = mini{pi}, p = maxi{pi}, and d = max{d(xj
v, x

i)}

Proof: Let

V (t) =
N∑

i=1

Ti(t)

The proof to follow focuses on the strategy where the task i∗j is chosen by UAV

j ∈ Q. This proof proceeds by extending the one in Section 2.5. There are, however,

fundamental differences since the scheduling strategy is quite different (it represents

a desire to achieve more than one objective), and the slope of Ti(t) could be different

every time that any UAV is processing a task as pointed out in Section 3.1 whereas

for the problem in Section 2.5 that slope is always constant. One implication of this

last point will be that we do not need a “capacity condition” as we do in Section 2.5.

First, note that

V (t) =
M∑

j=1


Ti∗j (t) +

∑
i∈U(t)

Ti(t)

M


 (3.4)

Define the function Vj(t) for UAV j as

Vj(t) = Ti∗j (t) +
∑

i∈U(t)

Ti(t)

M
(3.5)

Consider the values at the set of decision times Dkj ,

M∑
j=1

Vj(Dkj) =
M∑

j=1


Ti∗j (kj)(Dkj) +

∑
i∈U(D

kj )

Ti(Dkj)

M


 (3.6)

Since Ti∗j (kj)(Dkj+1) = 0,∀j ∈ Q (i∗j(k
j) was the task that was just processed by UAV

j ∈ Q),
M∑

j=1

Vj(Dkj+1) =
M∑

j=1


 ∑

i∈U(D
kj+1

)

Ti(Dkj+1)

M


 (3.7)

Note that by definition U(Dkj+1) = U(Dkjc ) since the unattended set will not

change for every UAV j for t such that, Dkjc ≤ t ≤ Dkj+1. Hence, considering how
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long the tasks have been ignored during this time period,

M∑
j=1

Vj(Dkj+1) =
M∑

j=1


 ∑

i∈U(D
kjc )

[
Ti(Dkjc )

M
+

pi

M
(Dkj+1 − Dkjc )

]
 (3.8)

From Equation (3.5) for any UAV jc at time Dkjc

∑
i∈U(D

kjc )

Ti(Dkjc )

M
= Vjc(Dkjc ) − Ti∗jc (kjc

)(Dkjc ) (3.9)

We use Equations (3.1), (3.8), and (3.9) to obtain

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1


Vjc(Dkjc ) − Ti∗jc (kjc

)(Dkjc )

+
∑

i∈U(D
kjc )

pi

M

(
δ +

d(xjc

v (Dkjc ), xi∗jc (kjc
))

v
+ τ + δc

)


=
M∑

j=1


Vjc(Dkjc ) −


Ti∗jc (kjc

)(Dkjc )

− d(xjc

v (Dkjc ), xi∗jc (kjc
))

v

∑
i∈U(D

kjc )

pi

M




+ (δ + τ + δc)
∑

i∈U(D
kjc )

pi

M


 (3.10)

Focus now on the first
∑

i∈U(D
kjc )

pi

M
term in Equation (3.10) and notice that the

proof can be divided in two cases as follows: a) When
∑

i∈U(D
kjc ) pi ≤ M , ∀kjc

, and

b) when
∑

i∈U(D
kjc ) pi > M , ∀kjc

.

Case a): To start, we seek to remove the first
∑

i∈U(D
kjc )

pi

M
term in Equa-

tion (3.10) in order to make the term in parenthesis the same as our strategy in

Equation (3.2). Note that

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc ) −

(
Ti∗jc (kjc

)(Dkjc ) − d(xjc

v (Dkjc ), xi∗jc (kjc
))

v

)

+ (δ + τ + δc)
∑

i∈U(D
kjc )

pi

M


 (3.11)
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We use the definition of the cooperative scheduling strategy for j = jc in Equa-

tion (3.11)

Ti∗jc (kjc
)(Dkjc ) − d(xjc

v (Dkjc ), xi∗jc (kjc
))

v
≥

1

N − M + 1

∑
ij∈Ua

j (D
kjc )

[
Tij(Dkjc ) − d(xjc

v (Dkjc ), xij(k
jc

))

v

]
,∀ij ∈ Ua

j (Dkj)

But notice that

Ti∗jc (kjc
)(Dkjc ) − d(xjc

v (Dkjc ), xi∗jc (kjc
))

v
≥

Vjc(Dkjc )

(N − M + 1)
− 1

N − M + 1

∑
ij∈Ua

j (D
kjc )

[
d(xjc

v (Dkjc ), xij(k
jc

))

v

]

Combine this with Equation (3.11) to get

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc )

(
1 − 1

N − M + 1

)

+
1

N − M + 1

∑
ij∈Ua

j (D
kjc )

[
d(xjc

v (Dkjc ), xij(k
jc

))

v

]

+ (δ + τ + δc)
∑

i∈U(D
kjc )

pi

M


 (3.12)

Also

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc )

(
1 − 1

N − M + 1

)
+

d

v

+ (δ + τ + δc)

(
N∑

i=1

pi

M
− p

)}
(3.13)

since ∑
i∈U(D

kjc )

pi

M
=

N∑
i=1

pi

M
−

∑
i∈A(D

kjc )

pi

M
≤

N∑
i=1

pi

M
− M

p

M
(3.14)
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Notice here that we can also obtain a tighter bound on the right side of Equation (3.14)

by using the M minimum values of pi rather than Mp.

Define

β =
d

v
+ (δ + τ + δc)

(
N∑

i=1

pi

M
− p

)

Notice that β > 0 and that

M∑
j=1

Vj(Dkj+1) ≤
M∑

j=1

{
Vjc(Dkjc )

(
1 − 1

N − M + 1

)
+ β

}

But, notice that

M∑
j=1

Vj(Dkj+1) ≤
(

1 − 1

N − M + 1

) M∑
j=1

{Vjc(Dkjc )} + Mβ (3.15)

This means that we have a contractive mapping in Equation (3.15). Notice that

by the same arguments explained in Section 2.5, the contractive mapping is also valid

in this case for all t ≥ 0.

Define for k ≥ 0

V (k) =
M∑

j=1

Vjc(Dkjc )

and

V (k + 1) =
M∑

j=1

Vj(Dkj+1)

Now, we use V (k) and V (k + 1) in Equation (3.15) to get

V (k + 1) ≤ γV (k) + ζ (3.16)

where 0 < γ =
(
1 − 1

N−M+1

)
< 1 and ζ = Mβ which are both constants. Equa-

tion (3.16) is a difference inequality with a solution that is bounded for all k by

Equation (2.21). The same comments made in Section 2.5 for the transient and

ultimate bound on V (k) at the decision times hold for this case also. Now,

ζ

1 − γ
= M(N − M + 1)β (3.17)
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Next, we need to consider the times in between the decision times. To do this,

note that for all jc, kjc
, and k

Vjc(Dkjc ) ≤ V (k) (3.18)

Next, consider the case where Vjc

(
Dkjc + δi,jc(kjc

) +
d(xjc

v (D
kjc ),x

i∗jc (kjc
)
)

v

)
occurs at

any t, Dkjc < t < Dkj+1. If this is the case, then for any Ti(t) ≤ f�(t) and any t,

Dkjc ≤ t ≤ Dkjc + δi,jc(kjc
) +

d(xjc

v (D
kjc ),x

i∗jc (kjc
)
)

v
we have

Vjc(t) ≤ Vjc

(
Dkjc + δi,jc(kjc

) +
d(xjc

v (Dkjc ), xi∗jc (kjc
))

v

)
(3.19)

On the other hand, for any t, Dkjc + δi,jc(kjc
) +

d(xjc

v (D
kjc ),x

i∗jc (kjc
)
)

v
≤ t ≤ Dkj+1 if we

let γ = δi,jc(kjc
) +

d(xjc

v (D
kjc ),x

i∗jc (kjc
)
)

v
we have

Vjc(Dkj+1) = Ti∗jc (kjc
) (Dkj+1) +

∑
i∈U(D

kj+1
)

Ti(Dkj+1)

M

= Ti∗jc (kjc
)(Dkjc + γ) −

Ti∗jc (kjc
)(Dkjc + γ)(Dkj+1 − Dkjc − γ)

τi∗jc (kjc
)

+
∑

i∈U(D
kjc +γ)

Ti(Dkjc + γ)

M
+

∑
i∈U(D

kjc +γ)

pi(Dkj+1 − Dkjc − γ)

M

= Vjc(Dkjc + γ) + (Dkj+1 − Dkjc − γ)︸ ︷︷ ︸
>0


 ∑

i∈U(D
kjc +γ)

pi

M

−
Ti∗jc (kjc

)(Dkjc + γ)

τi∗jc (kjc
)

)

(3.20)

Here, we have two possibilities:

Case a.1): If the slope of the task currently being processed is greater or equal

to the sum of the slopes of the unattended tasks over M , i.e.,

Ti∗jc (kjc
)(Dkjc + γ)

τi∗jc (kjc
)

≥
∑

i∈U(D
kjc +γ)

pi

M
, ∀kjc
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then Vjc(Dkj+1) ≤ Vjc(Dkjc + γ). Thus, we obtain that Vjc(t) ≤ Vjc(Dkjc + γ) for any

t, Dkjc ≤ t ≤ Dkj+1.

For this case then

Vjc(Dkjc + γ) = Ti∗jc (kjc
) (Dkjc + γ) +

∑
i∈U(D

kjc +γ)

Ti(Dkjc + γ)

M

= Ti∗jc (kjc
)(Dkjc ) + δpi∗jc (kjc

) +
d(xjc

v (Dkjc ), xi∗jc (kjc
))pi∗jc (kjc

)

v

+
∑

i∈U(D
kjc )

Ti(Dkjc )

M
+

∑
i∈U(D

kjc )

piδ

M
+

∑
i∈U(D

kjc )

d(xjc

v (Dkjc ), xi∗jc (kjc
))pi

vM

= Vjc(Dkjc ) + δ


pi∗jc (kjc

) +
∑

i∈U(D
kjc )

pi

M




+
d(xjc

v (Dkjc ), xi∗jc (kjc
))

v


pi∗jc (kjc

) +
∑

i∈U(D
kjc )

pi

M




≤ Vjc(Dkjc ) + δ

(
p +

N∑
i=1

pi

M
− p

)
+

d

v

(
p +

N∑
i=1

pi

M
− p

)
(3.21)

where both the second and last terms of the right hand side of the equation was

derived by using Equation (3.14).

Next, note that for all jc and t ≥ 0

Ti∗jc
(t) +

∑
i∈U(t)

Ti(t)

M
= Vjc(t)

so that using Equations (3.19) and (3.21)

Ti∗jc
(t) +

∑
i∈U(t)

Ti(t)

M
≤ Vjc(Dkjc ) + δ

(
p +

N∑
i=1

pi

M
− p

)
+

d

v

(
p +

N∑
i=1

pi

M
− p

)

Hence, using Equation (3.17)

lim
t→∞

ti∗jc
(t) ≤ lim

t→∞


ti∗jc

(t) +
∑

i∈U(t)

ti(t)

M


 ≤ M

p
(N − M + 1)β
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+
δ

p

(
p +

N∑
i=1

pi

M
− p

)
+

d

pv

(
p +

N∑
i=1

pi

M
− p

)

≤ M

p
(N − M + 1)

(
d

v
+ (δ + τ + δc)

(
N∑

i=1

pi

M
− p

))

+
δ

p

(
p +

N∑
i=1

pi

M
− p

)
+

d

pv

(
p +

N∑
i=1

pi

M
− p

)

≤
(
δ + τ + δc

)
p

(
N∑

i=1

pi − Mp

)
(N − M + 1)

+
d

pv

(
M(N − M + 1) + p +

N∑
i=1

pi

M
− p

)
+

δ

p

(
p +

N∑
i=1

pi

M
− p

)

(3.22)

Now, we must show that each task will get chosen by some UAV j ∈ Q infinitely often

so that every task becomes i∗jc persistently so that Equation (3.22) provides a bound

for each ti(t) i ∈ P . Note that we have a bound for every kjc
for every ti∗jc (kjc

)(Dkjc )

via Equation (3.22), and using Equation (3.1), Dkj+1 −Dkjc is bounded. This results

in a maximum bound on the time that the unattended set will not be changed.

“Ignored time” for tasks rises so eventually any ignored task in U(t) will be taken off

U(t) and hence become i∗jc .

Case a.2): Now, we study the case when
T

i∗
jc (kjc

)
(D

kjc +γ)

τi∗
jc(kjc

)

<
∑

i∈U(D
kjc

+γ
)

pi

M
, for

some kjc
. If this is the case, then Vjc(Dkj+1) > Vjc(Dkjc + γ). Thus, we obtain

that Vjc(t) ≤ Vjc(Dkj+1) for any t, Dkjc ≤ t ≤ Dkj+1. However, this cannot be

always the case because if Vjc(Dkj+1) > Vjc(Dkjc + γ), ∀kjc
, then the function Vjc is

increasing all the time, which means that all Ti’s in the unattended set grow much

more faster than the value of Ti∗jc
being currently processed. But if this is the case

then sooner or later the condition
T

i∗
jc (kjc

)
(D

kjc +γ)

τi∗
jc(kjc

)

≥ ∑
i∈U(D

kjc
+γ

)
pi

M
will be satisfied
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since any ignored task will later become i∗jc and this is the reason why we say that
T

i∗
jc (kjc

)
(D

kjc +γ)

τi∗
jc(kjc

)

<
∑

i∈U(D
kjc

+γ
)

pi

M
holds for some kjc

.

Now, for this case

Vjc(Dkj+1) = Ti∗jc (kjc
) (Dkj+1) +

∑
i∈U(D

kj +1)

Ti(Dkj+1)

M

= Ti∗jc (kjc
)(Dkjc ) + γpi∗jc (kjc

)

− (Dkj+1 − Dkjc − γ)
Ti∗jc (kjc
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)

+
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i∈U(D
kjc )
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M
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pi

M
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M
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(
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d

v

)
+

(
δ + τ + δc +
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v

)( N∑
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pi

M
− p

)

(3.23)

Next, we apply the same steps taken in Equation (3.22) to obtain that

lim
t→∞

ti∗jc
(t) ≤ M

p
(N − M + 1)β +

p

p

(
δ +

d

v

)
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+

δ
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p (3.24)

where it can be seen that the bound obtained in Equation (3.24) is greater than the

one shown in Equation (3.22) due to the first term in Equation (3.24).
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Case b): Consider
∑

i∈U(D
kjc ) pi > M , ∀kjc

. Note that for this case we have

Ti∗jc (kjc
)(Dkjc ) − d(xjc

v (Dkjc ), xi∗jc (kjc
))

v
> Ti∗j (kj)(Dkj)

− d(xj
v(Dkj), xi∗j (kj))

v
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pi

M

≥ 1
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∑
ij∈Ua

j (D
kjc )


Tij(Dkjc )

− d(xjc

v (Dkjc ), xij(k
jc

))

v

∑
i∈U(D

kjc )

pi

M



(3.25)

It can be easily seen that if we use the strategy shown in Equation (3.25) in Equa-

tion (3.10) then we are solving the problem for the strategy defined in Equation (3.2).

The final result will be, of course, more conservative. As in the last case, we have

here two possibilities and we study them next.

Case b.1): If
T

i∗
jc (kjc

)
(D

kjc +γ)

τ
i∗
jc (kjc

)
≥∑

i∈U(D
kjc +γ)

pi

M
, ∀kjc

, then Vjc(Dkj+1) ≤ Vjc(Dkjc +

γ). Thus, we obtain that Vjc(t) ≤ Vjc(Dkjc + γ) for any t, Dkjc ≤ t ≤ Dkj+1.

Note that for this case Equations (3.17) and (3.18) still hold except that β is

different from the one obtained in part a). Furthermore, we have already derived in

Equation (3.21) that

Vjc

(
Dkjc + δi,jc(kjc

) +
d(xjc

v (Dkjc ), xi∗jc (kjc
))

v

)
≤ Vjc(Dkjc ) + δ

(
p +

N∑
i=1

pi

M
− p

)

+
d

v

(
p +

N∑
i=1

pi

M
− p

)
(3.26)

Now, the procedure to obtain a bound for this case is the same as the one followed

in case a.1) except that for this particular case we have

β =
d

v

(
N∑

i=1

pi

M
− p

)
+ (δ + τ + δc)

(
N∑

i=1

pi

M
− p

)
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where the term that multiplies to d
v

in the first term of the right side of the above

equation is derived from Equation (3.14). Notice that this term was not present in

case a) since
∑

i∈U(D
kjc )

pi

M
< 1.

Hence,
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(3.27)

Case b.2): If
T
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, then Vjc(Dkj+1) >

Vjc(Dkjc + γ). Thus, we obtain that Vjc(t) ≤ Vjc(Dkj+1) for any t, Dkjc ≤ t ≤ Dkj+1.

Therefore, by using both the same arguments and Equation (3.23) as in case a.2) we

obtain that
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where we can see that the bound obtained in Equation (3.28) is greater than the one

obtained in Equation (3.27).

On the other hand, it can be easily seen that if Vjc(Dkjc + γ) does not occur at

any t, Dkjc ≤ t ≤ Dkj+1, then this can not happen all the time since there exists a

time interval different from Dkjc ≤ t ≤ Dkj+1 where this event will take place. Note

that we do not need to study this particular case since this is a special case of the

ones studied in parts a.2) and b.2). This concludes the proof of the theorem. �

Next, we make a few remarks about the ultimate bound obtained. First of all,

note that when the time delays, δ and δc, increase, the bound also increases (e.g.,

network delays can result in ignoring tasks longer). The ultimate bound decreases

if the velocity of a UAV increases since the UAVs can move faster to process tasks.

If the priority values assigned to tasks increase then the ultimate bound does also

since then we may spend more time processing the higher priority tasks and hence

an increased amount of time ignoring the lower priority tasks. If all tasks are spread
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out more (i.e., d increases), then the ultimate bound increases since it takes longer

to travel to process tasks, and this provides a clear idea how task density could affect

the ultimate bound. The ultimate bound increases if the processing time of every

task is increased since the UAVs are busier processing and hence ignore other tasks

longer. If the number of tasks and UAVs are about the same, then the ultimate bound

decreases.

Finally, one important point to highlight here is the fact that the analysis can take

into account the behavior of heterogeneous UAVs (i.e., UAVs with different processing

capabilities for the same task). It also inherently takes into account trade-offs between

task priorities and spatial separation between tasks.

3.4 Simulations

Here, we seek to determine how cooperative strategies perform when we implement

the strategy proposed in Section 3.2.1. In particular, we will show how the cooperative

scheduler will ignore lower priority tasks longer and how ignored time for tasks is

affected by communication delays. On the other hand, we introduce a noncooperative

framework and we are interested in deriving design guidelines for both noncooperative

and cooperative scheduling systems.

3.4.1 Influences of Priorities and Communication Delays on
Cooperative Scheduling Strategies

We run two simulations with the following values: the sampling time is Ts = 0.1

sec., the length of the simulation is 16.67 min., there are N = 6 tasks, M = 4 UAVs,

the switching times for UAVs 1 and 2 are δ1
i,j = δ2

i,j = δ3
i,j = δ4

i,j = 0 sec., and we

consider a fixed communication delay, δc = 60 seconds.

62



The first simulation considers pi = pj = 50, i, j ∈ P . Figure 3.3 shows in the top

6 plots the time since last processing of any UAV for all tasks, and the unattended

tasks in the bottom plot. Next, we let p1 = 10 and we do not change the rest of
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Figure 3.3: Time since last processing (seconds) of every task and the unattended
set.

the values. The result of the simulation can be seen in Figure 3.4. Notice that since

the priority of task 1 has been decreased, this task is ignored more than in the first

simulation. This shows that UAVs can be forced to ignored tasks by assigning low

priority values to tasks. Furthermore, it can be seen that there are intervals where

the waiting time for the unattended set U(t) is greater than δc = 60 seconds due to

the amount of previous requests that have been made by other UAVs, i.e., there are

more than one UAV waiting at a specific time for the set U(t).
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Figure 3.4: Time since last processing (seconds) of every task and the unattended set
when p1 = 10.

Now, we let all the priorities have the same values (pi = pj = 50, i, j ∈ P ) and

we study two cases: small communication delays, δc → 0, as shown in Figure 3.5 and

random but bounded delays, δc ≤ 180 seconds, as shown in Figure 3.6. It is seen

from the figures that the delay decreases the rate at which tasks are processed and

also increases the ignored time of each task.

3.4.2 Comparative Analysis: Noncooperative Vs. Coopera-
tive Strategies

Here, we consider a group of M UAVs not connected over a communication

network. Due to the lack of communication and hence lack of coordinated de-

cision making we call such a strategy “noncooperative.” Each UAV has its own
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Figure 3.5: Time since last processing (seconds) of every task and the unattended set
for small communication delays.

Tij ,∀i ∈ P,∀j ∈ Q and the prioritized time since last processing for each task is

given by Ti(t) = minj{Tij(t)},∀j ∈ Q. Notice that from the task point of view, this

represents how long a task has been ignored by any UAV. For this case, UAVs make

scheduling decision based on Equation (3.2) but considering all tasks at each decision

time, hence there could be cases where one or more UAVs are processing the same

task during a certain time interval.

We seek to determine if cooperative strategies are always superior to noncoop-

erative ones. We would like to answer the following questions: Is it always bene-

ficial to cooperate? If not, what are the conditions under it is not good to coop-

erate? In order to answer these questions we run a Monte Carlo simulation with
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Figure 3.6: Time since last processing (seconds) of every task and the unattended set
for random but bounded communication delays.

the following values: the sampling time Ts = 0.1 seconds, fixed delays δc(s) =

{1, 10, 50, 100, 150, 200, 300, 400}, a set of densities with standard deviation σ(m) =

{500, 1000, 2500, 4000, 5000} (we use a 2D Gaussian distribution for tasks with mean

(x, y) = [5000, 5000] meters), no switching delays, and the simulation length of 2500

seconds. Each case consists of 100 simulations. The number of simulations for each

delay-density combination was chosen to be 100 because the standard deviation of the

performance measures (introduced further) did not change significantly (i.e., settled

to a constant value) beyond 100 simulations as it can be seen in the error-bar plots

shown in Figure 3.7.
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Figure 3.7: Error-bar plot of performance measure and standard deviation for δc =
100 sec. and σ =500 m.

Now, how can we really compare the performance of noncooperative and coop-

erative strategies? In order to do that, we need to introduce a way to evaluate the

performance of the UAVs. There are several ways to measure performance of the

scheduling strategies [15]. Here, we will compute the average of the ignored time

since any task has been processed 1
N

∑N
i=1 Ti(k) at each step k. We will also com-

pute the time average of this quantity (i.e., the time average of the average values,

“average-of-average”) and the maximum average value,“max-of-average”, achieved

over the entire simulation run. We will compute the maximum time that any task

has been ignored at each time step k, maxi{Ti(k)}. We will also compute the time
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average of this quantity (i.e., the time average of the maximum values, “average-of-

max”) and the maximum of the maximum values, “max-of-max”, achieved over the

entire simulation run.

Figure 3.8 shows that different performance measures give different bounds on

the delay for which the cooperative case degrades to the performance of noncoopera-

tive case. For all the cases, the performance measure increases very slowly for lower

values of delays (less or equal to 1 minute), when compared to the higher values of

delays, where there is a steady increase in the performance measure. The effect of

decreasing density only results in a relatively small increase in the different perfor-

mance measures; this increase is due to the targets being spread further apart. As

expected, the average-of-average and max-of-average result in a higher value of the

delay “cross-point,” where the cooperative case degrades to the non-cooperative case,

than the max-of-max and average-of-max since the former considers performance over

average values while the latter considers performance over maximum values (e.g., the

max-of-max quantifies worst-case performance). Notice that there are flat regions or

valleys for small delay values for some of the performance measures. This arises due

to the fact small delays can result in multiple UAVs waiting for the U(t) set at the

same time and while doing this they all hold their corresponding Ti(t) values at zero.

In our case with 4 UAVs and 6 targets this leads to a performance improvement up

to a certain magnitude of delay. If, however, there are many more tasks than UAVs,

then generally, increasing the delay will always lead to performance degradation. In

summary, communication delays have a prominent influence in the degradation of the

cooperative case to the non-cooperative one. The above analysis could be used as

design guidelines to decide when it is beneficial to cooperate and when not to do it.
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Figure 3.8: Performance measures of Monte Carlo simulation.
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CHAPTER 4

ELECTROMECHANICAL ARCADE

We evaluate in this chapter the experimental performance of a set of network-based

cooperative scheduling strategies. This experiment was designed to be an inexpen-

sive testbed for networked cooperative scheduling strategies. Below, we describe the

apparatus, highlight the challenges it presents, and we introduce and implement two

scheduling strategies.

4.1 Experimental Apparatus and Challenges

This experiment is composed of two main devices: guns and targets as shown

in Figure 4.1. Each of them is provided with a laser (Radio Shack # 277-1101)

and a photodetector (Radio Shack # 276-1657). There are in total eight “pop-up”

targets that “appear” (indicated by its laser being on) and “disappear” (laser off)

at frequencies that are independent of each other (driven by simple timing circuits

that can be adjusted by hand to provide different frequencies). The guns can detect

a target appearance if its is pointed directly at it (it has no “peripheral vision”)

via a photodetector mounted on the gun. The two guns are each mounted on the

shaft of a motor (Shinano Kenshi # LA052-040E4N02). Each of these motors has a

quadrature encoder that provides the current angular position of the motor. We use
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a PID controller to point any gun to the target that needs to be shot and these PID

loops are well tuned so their performance will not impact our strategies below. The

photodetectors of all targets (8 digital inputs), the laser and photodetector of each

gun (2 digital inputs and 2 digital outputs), the motor encoder, the output of each

PID controller (1 analog output each) are connected to one DS1104 dSPACE card.

In fact, analog outputs are connected to an Advanced Motion Control # BE12A6

amplifier that drives each motor.

One of 8 targets
Gun 1

Gun 2

Figure 4.1: Illustration of the electromechanical arcade experiment.

All the lasers located at the targets point to the gun photodetector and if one

gun is pointing to a target when it appears, this gun can shoot (turn its laser on) at

that target, which triggers the corresponding photodetector of the shot target. When

the photodetector of a target is triggered, the gun considers that specific target as

“hit” (it gets a point for hitting it) and then the gun will look for the appearance of

another target (which one depends on the scheduling strategies introduced below).

The analogy with arcade games should be clear.
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We assume that the guns do not know any information about the rate of ap-

pearance of all targets (but one could invent strategies for estimating appearance

sequences); however, the guns do know a priori the position of all targets, and the

guns can communicate to each other their decisions about the targets that they are

currently processing or pursuing. The challenges for this experiment are as follows:

1. To schedule in real-time a sequence of firings so as to maximize the number of

points the team gets. Since target detecting and shooting requires movement

of the guns a good schedule will typically minimize the motion of the guns in

maximizing point gain. Feedback is required to overcome, for instance, uncer-

tainty about when targets appear (i.e., open-loop precomputed schedules will

not be effective).

2. To cooperatively schedule the shooting of the guns in the presence of an imper-

fect communication network that allows communication between the two guns.

While the network could be the internet and a computer could be dedicated to

each gun it can also be simulated within one computer. Communication imper-

fections such as random but bounded delays, bandwidth constraints or message

misordering could be considered.

We consider then an “environment” that is highly uncertain (e.g., uncertain target

appearance times) and where we have imperfect communications that make it difficult

for the two guns to coordinate their actions. Due to the presence of so much uncer-

tainty it is generally not possible to accurately predict far into the future, and hence

generally not useful to employ optimization approaches to develop long sequences of
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planned operations either off- or on-line. Finally, note that this cooperative scheduling

problem can be thought of as a type of resource allocation strategy.

4.2 Scheduling Strategies and Results

We view this experiment as a 1-D version of the model introduced in Section 3.1.1

since the guns (UAVs) need to process in a cooperative manner the targets (tasks)

present in the environment. The sampling time used to run the experiment in real-

time is Ts = 0.001 seconds. Notice that the targets are aligned in a line, and hence

the guns travel across that line in order to cooperatively process the pop-up targets.

Using the similarities of this problem with the one defined in Section 3.1.1, we then

know that the number of targets is constant and denote the set of targets as P =

{1, 2, . . . , 8}. The number of guns is constant and we number them and denote the

set of guns as Q = {1, 2}. Each target i is associated with a prioritized time at which

target i was last shot, Ti(t), i ∈ P, t ≥ 0 and we initially let Ti(0) = 0, i ∈ P so that

we act as though initially we had simultaneously shot all the targets, which is clearly

physically impossible. Note, however, that this is a good initialization considering

the fact that below our scheduling strategies will make decisions about which event

to process next based on the sizes of the Ti(t), i ∈ P (i.e., based on how long they

have been ignored).

Note that if no gun was used, then clearly Ti(t) → ∞, i ∈ P, t → ∞ since it will

never shoot a target. The goal of the scheduling strategy is to try to avoid Ti(t) → ∞
for any i ∈ P and indeed it will try to keep the Ti(t) values as small as possible since

this represents that the guns have recently shot each target. Let pi, i ∈ P denote

the priority of processing target i (“processing” means moving to and shooting at
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the target when it appears). Asynchronous decision making is accomplished in a way

similar to the one described in Section 2.2. In this particular case, the gun ju ∈ Q

will hold the set U(t). We assume that whenever the gun � ∈ Q where � �= ju (if

� = ju there is no need for a request) finishes shooting a target at time tf such that

Ti∗� (t
f ) = 0 (i.e., the instant the target is processed), it “broadcasts” (simulated here

with a delay on a communication link) a request for the set U(t) to the gun ju. Let

the amount of time it takes to broadcast the request and receive U(t) be random, but

bounded by a constant δc > 0. In the time interval [tf , tf + δc] that gun � waits for

the unattended set, Ti∗� (t
′
) = 0, t

′ ∈ [tf , tf + δc], which means that the gun � keeps

shooting target i∗ (i.e., its laser remains on during this time) until it receives the set

U(t). This is consistent with our definition of the prioritized time since last shooting

since target i∗ has already been completely processed at time tf and it is not being

ignored during the interval [tf , tf + δc] anymore. The instant that gun � gets U(t), it

becomes gun ju, and makes a decision on what target to process next.

Since the two guns could modify the set U(t) at the same time, we need to use a

mutual exclusion algorithm which coordinates the access of both guns to the set U(t)

in such a way that this set can be accessed and updated by only one gun at a time.

Thus, if gun ju updated the set U(t), it proceeds to send U(t) to the other gun if it

requests it. The gun that receives U(t) updates the set U(t), and passes this set to

the other gun if a new request has been made.

Table 4.1 shows the priorities (from left to right viewed from the place where

the guns are), and the angular positions (θ) where gun 1 (G1)/gun 2 (G2) will find

targets. The pi values were chosen by observing the illuminating of all targets and

assigning higher priorities to the targets that appear more frequently.
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Priority θ(◦) G1/G2

Target 1 0.9 120/120.5
Target 2 0.85 105/98.25
Target 3 0.8 90.25/79.5
Target 4 0.75 74.6/62
Target 5 0.4 58.8/45.45
Target 6 0.4 41.5/30.25
Target 7 0.5 22.3/15
Target 8 0.2 0/-0.05

Table 4.1: Electromechanical arcade: priorities and angular positions of targets.

The processing time to process target i by gun j for this experiment is equal to

τij = 1 msec., which means that it takes for any gun one sampling time to detect and

shoot any target once the gun is pointing at it. The switching delay, δi,j, defined in

Section 3.1.1 is replaced by what we call the “shooting delay,” δi(t), which represents

the delay from the target appearances. For a known target i there is some bound for

δi(t) on the amount of time that it would take for any gun to wait for the appearance of

any target. As a matter of fact, we can obtain that bound (δ) from all the appearance

periods and duty cycle. Let T i, i ∈ P be the target appearance period and Di

denote the percentage of duty cycle of all targets. Hence, δi(t) is bounded by δ =

maxi{T i(1 − Di

100
)}, i ∈ P .

4.2.1 Networked Cooperative Scheduling: Focus on Target
Ignored the Longest

Next, we use a particular scheduling strategy that was defined in [15], which

was inspired by the one defined in [1], and for which stability properties have been
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investigated in Sections 2.5 and 3.3. First, a scheduling strategy that processes the

targets that were ignored more than the average one makes choices of which targets

to process based on Equation (2.5), where we need to replace the variable xi by Ti.

We will use the “process the target ignored the longest” strategy, Equation (2.4),

for this particular case. We have implemented (in the same computer) a routine

that simulates a communication network between the two guns where random but

bounded communication delays can be generated every time the two guns need to

communicate to each other.

Figure 4.2 shows the results when we implement the scheduling strategy intro-

duced in Equation (2.4) and we use a fixed communication delay of 10 seconds (we

used a fixed delay to facilitate comparison to an approach below). Figure 4.2 shows

the Ti(t),∀i ∈ P values as well as the targets selected by the two guns during the

time the experiment is running. Notice that before the experiment starts both guns

are pointing at target 1 and once the experiment starts gun 1 chooses a new target to

process next, while gun 2 has to wait 10 seconds for the arrival of the set U(t) coming

from gun 1. During this 10 seconds, once gun 2 detects target 1, it keeps processing

the same target and this is the reason why T1 = 0 in this interval (recall that any

gun keeps processing the target already shot while it is waiting for the unattended

set). We can draw some important conclusions from the experimental data. First of

all, notice the effect of the priorities values, pi, on the variable Ti. Second, we can see

how a communication delay can affect the performance of the strategy; in particular,

observe how the Ti values contained in the set U(t) are ignored during this time.

Third, we can see how the guns allocate their processing capabilities in order to shoot
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(gain more points) as many targets as possible in a cooperative manner (to see this

study the sequence of choices).
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Figure 4.2: Performance of the ignored the longest strategy.

4.2.2 Networked Cooperative Scheduling: Focus on Closest
Highest Priority Targets

Here, we use the strategy already defined in Section 3.2.1 that seeks to schedule the

next target a gun should process to avoid ignoring high priority targets for too long

and yet to minimize travel time to process targets. We view the electromechanical

arcade experiment as a type of cooperative scheduling of targets for autonomous

vehicles. For this, it is important to pay attention to minimize the travel time between

targets and this motivated us to use the strategy defined in Equation (3.3).
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Figure 4.3 shows the performance when the process the closest highest priority

targets strategy is used. As the previous case, the communication delay is fixed and

equal to 10 seconds and the priority values are also the same. All Ti(t) values and

the targets selected by the guns can be seen in Figure 4.3. Notice that the number

of points in this case (or the times that each target is shot) is at least equal for each

Ti to the number of points obtained in Figure 4.2. In addition to this, we can see

in Figure 4.3 that the value of the peak for each Ti is less than the peaks seen in

Figure 4.2. By trying to minimize travel time we are improving our score. On the

other hand, we can see in Figure 4.3 that the closest targets chosen by the guns occur

more frequently than those shown in Figure 4.2. In fact, compare the sequence of

targets chosen by the guns when t ∈ [0, 25] in both figures and this will be easily

noticed.

Now, how can we better quantify all the facts highlighted in the above paragraph?

In order to do that, we will use the performance measures defined in Section 3.4:

average-of-average, max-of-average, average-of-max, and max-of-max. One additional

performance measure is the number of points (number of targets shot) obtained by

the two guns during the experiment. Table 4.2 shows the results obtained from the

experiments for the two cases above. The process the closest highest priority targets

strategy performs better for all performance measures, including the total number of

points obtained. This shows that seeking to minimize travel time allows significant

point improvement. It is interesting to note that the strategy did not, however,

partition the targets so that each gun always was responsible for the adjacent targets.

What emerges (see bottom right plot in Figure 4.3) is a type of balancing of the

objectives quantified in Equation (2.5).
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Figure 4.3: Performance of the closest highest priority targets strategy.

Ignored the
Longest

Closest
Highest
Priority

Average of average 7.2790 5.2229
Maximum of average 11.1548 8.6899
Average of maximum 14.4616 11.5595
Max of max 23.8718 20.2068
Number of points 25 35

Table 4.2: Performance measures.
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CHAPTER 5

CONCLUSIONS

In this chapter we will summarize the work done throughout this dissertation and

will also introduce some potential future research directions that could contribute to

enhance the design of network-based cooperative resource allocators.

5.1 Summary and Contributions

In this dissertation we studied the design, modeling, mathematical analysis, sim-

ulation, and experimental performance of network-based cooperative resource alloca-

tion strategies.

In Chapter 2 we saw how the implementation of several cooperative resource

allocation strategies can guarantee the stability of the multiprocessor problem. We

focused on one type of cooperative resource allocation problem where via an imperfect

communication network with multiple processors can share the workload presented

by multiple task types. We defined three asynchronous “cooperative” resource allo-

cation strategies, and showed that they led to the cumulative demand being bounded

by a constant, which is in terms of the known parameters. Furthermore, we have

obtained some design guidelines for cooperative schedulers via Monte Carlo simula-

tions. First, a group of highly loaded processors that work in a noncooperative way
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can in some cases produce better performance measures than processors that work

cooperatively. Second, when processors are lightly loaded, cooperative strategies can

often produce better performance measures than noncooperative ones. Notice that in

this dissertation cooperative and noncooperative strategies refer to agents (processors

or UAVs) being connected or not connected to a communication network. The work

done in [1, 15] provided the inspiration for this result. Note, however, that although

the multiple-machine cases in [2], [7], [8], [9], [10], [11] and [3] consider a type of either

serial or parallel production where parts can move from one machine to another one,

they do not take into account the case where multiple machines can work together

to service a set of part types at the same point in the system in the sense that we

considered it here (e.g., via two or more processors processing in parallel task types

from different buffers). To the best of our knowledge, the closest approach to the one

studied in this dissertation can be found in pull production systems [14], where a set

of M machines are working in parallel to serve a set of N buffers with a common input

stream to a specific queue. This approach is different from the analysis considered in

this dissertation from the perspective that first, the policies of pull production sys-

tems are based on response to demand whereas in our case, the policies are based on

current buffer levels and the production is designed for future demands. Second, the

stability analysis in [14] looks for bounds on the queue of backorders or that the queue

will eventually be empty and remains in that condition while the stability analysis

in this dissertation focuses on ultimate bounds on the buffer levels. Last, the work

done in [14] does not consider an imperfect communication network so that there are

not random but bounded delays on messages communicated to coordinate activities

among the processors. One important fact that stands out for the communication
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network of our model is that the amount of information passed along the network is

relatively small.

In Chapter 3 we have also studied stability (boundedness) for network-based co-

operative scheduling strategies that seek to optimize a multiobjective cost function

when all UAVs know a priori detailed information about all tasks in a limited area.

For it, we have assumed that a UAV needs to process a task several times. We

have also shown in Monte Carlo simulations design guidelines for cooperative and

noncooperative strategies based on task density and poor performance in the com-

munication channels. The cooperative scheduling strategies proposed in this chapter

are extensions of those in [1] and try to tackle some research challenges encountered

in cooperative control of UAVs. Hence, to our knowledge, this is the first time that

scheduling methods from manufacturing systems have been adapted for use for au-

tonomous vehicles. Note that we considered an environment that is highly uncertain

(e.g., desynchronization of UAV’s local clock and pop-up targets) and where we have

imperfect communications so that there are random but bounded delays on messages

communicated to coordinate activities among the UAVs. Due to the presence of so

much uncertainty it is generally not possible to accurately predict far into the future,

and hence generally not useful to employ optimization approaches to develop long

sequences of planned coordinated operations either off- or on-line (e.g., like the meth-

ods in [28, 29, 30]). Also, note that the scheduling strategies provide a sub-optimal

solution that seeks to pay attention to high priority tasks minimizing at the same

time the inter-task travel times. However, a “global solution” is not likely to be fea-

sible even if we had full communication capability. This can be due to the resultant

complexity of conducting an optimization of the distributed decision-making a priori
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and on-line. Or, it could be due to the inability to compute and execute globally

optimal solutions on-line due to limited available on-board UAV computing power.

Moreover, the cooperative scheduling strategies introduced in this dissertation are

“cheap” from a computational point of view since the distributed decisions are based

on the computation of either a maximum or an average value of both the ignored time

of processing tasks and inter-task travel times. Finally, these cooperative scheduling

strategies can easily be utilized independent of the number of UAVs. In fact, there is

always only one computation involved in the decision-making process (e.g., a maxi-

mum or average value) and the number of the elements considered in the computation

decreases (increases) when the number of the UAVs (tasks, respectively) increases;

hence, the real-time implementation of these cooperative scheduling strategies do not

expand exponentially in the number of necessary computations when the number of

UAVs or tasks increases. As in the multiprocessor problem, we paid attention to the

significant problem related to link bandwidth found in imperfect communications;

hence, coordinated decisions among UAVs avoid the need for passing extraordinary

amounts of information.

Now we want to pose the following question: is there any connection between

Chapters 2 and 3? If so, how are they connected? We think that there is an important

connection between the two and that connection could be useful for manufacturing

systems. For instance, suppose that there is a group of robots that need to work in

a cooperative manner in order to assemble/disassemble a set of part-types arriving

at a set of buffers. If the buffers are spread over an entire area and the robots need

to travel to the buffers to start processing parts from them, then it is clear that we

could use the cooperative scheduling strategies introduced in Chapter 3 to maximize
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throughput and minimize robots’ travel time. Thus, it would be interesting to explore

these ideas in the collective robotics area.

In Chapter 4 we evaluated and compared the performance of scheduling strategies

defined in [15] and in Chapter 3 in the electromechanical arcade experiment. We im-

plemented algorithms to cooperatively schedule in real-time the shooting of the guns

in the presence of an imperfect communication network that allows communication

between the guns. It was shown how in one experiment multi-objective scheduling

strategies achieved a better performance compared to scheduling strategies that seek

to optimize just one objective. We corroborated that the model defined in Chapter 3

possesses similarities with the electromechanical arcade experiment. This experiment

establishes a basis for future research in networked cooperative scheduling strategies

for graduate studies. To our knowledge, it is the first time such an experiment has

been implemented and taking an electromechanical arcade viewpoint. It is clear that

there are many possible extensions of this experiment.

5.2 Future Research Directions

There are another research topics that we think could be considered in the future

for expanding the modeling and analysis of stability properties of cooperative resource

allocation strategies.

First, we mention the research opportunities that could be explored in the multi-

processor problem.

1. Combination of cooperative and noncooperative strategies: It would

be interesting to study the possibility of obtaining lower bounds on the buffer
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levels when both resource allocation strategies, cooperative and noncooperative,

are combined as it was mentioned at the end of Section 2.7.

2. Synchronous resource allocation strategies: As we pointed out in Sec-

tion 2.3, it would be interesting to explore whether there exists a condition

where idling could produce lower bounds for synchronous strategies rather than

for asynchronous ones based on the previous work done in [5] for the M = 1

case.

3. Implication of the loss of a processor on the stability of the cooper-

ative resource allocation strategy: In Chapter 2, we have provided con-

ditions for the stability of cooperative resource allocation strategies for the

scenario where there are M processors coping with a set of N task types. Both

variables are assumed to be constant when we studied the stability properties

of the strategy. A more realistic problem is to deal with the possibility that M

and N can be time-varying. Clearly, according to Equation (2.1), one problem

that could arise is that the capacity condition would not be satisfied anymore

as we discuss next.

4. Violation of the capacity condition equation: If we consider the sce-

nario where both the number of task types (N) and the processors (M) are

time-varying, then there exists the possibility that the capacity condition is not

satisfied (see Equation (2.1)). Since the parameters ai are fixed, the only avail-

able option that we have is to modify the arrival rates, pi, assigned to each task

type in order to force the capacity condition to be satisfied. The goal would

be to design an off-line algorithm that will define the new arrival rates values
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without deteriorating the past performance measures. This idea of avoiding

a violation in the capacity condition is taken from [17] but using a different

approach. Also, ideas from [11] could be considered as well.

5. Hierarchical distributed resource allocation strategy: Consider the case

where the number of task types is time-varying. For it, there is an upper

level controller trying to balance the workload among the processors. We are

interested in studying the scenario where M processors are processing several

task types in a given environment. The environment has task types that can

arrive dynamically at certain time, i.e., task type i can arrive at a rate pi up

to certain time t1 and after that time that task type is not available to the

processors anymore. Furthermore, the arrival of the task types can be sensed

through a device available in every processor. Thus, processors will receive a

time-varying number of task types N(t). Note that N(t) and N(t + t1), t1 > 0

can have the same value either if processors do not receive any new task type

or if the number of new processed task types is equal to the number of old

unprocessed task types between times t and t+t1. Moreover, if N(t) < N(t+t1)

then processors found new task types, while if N(t) > N(t + t1) then one or

more old task types become out of the sensing range of any processor between

times t and t + t1.

We envision the design of a hierarchical cooperative resource allocation strategy

in order to deal with this kind of problem. We show in Figure 5.1 a two-level

controller as a possible solution. The higher level controller will be in charge

of balancing the workload to be given to each processor while the lower level

controller will be applying the resource allocation strategies. Suppose that each
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Figure 5.1: Hierarchical cooperative resource allocation (RA) viewed as a controller.

processor’s sensor is provided with a limited sensing range, hence the lower level

strategy is not necessary the one defined in Section 2. This is due to the fact that

is possible that P1(t)∩P2(t)∩ . . .∩PM(t) = ∅, where Pi(t) is the set composed

by the task types that are in the sensing range of processor i. Moreover, we

could face the case where |P1(t)∩P2(t)| = |N1(t)| = |N2(t)| (the number of task

types that can be sensed by processor 1 and 2 are the same), in the presence

of this case both processors can process all task types since their respective

capacity conditions could be balanced. Another case that could arise is when

|P1(t) ∩ P2(t)| = D < |N1(t)| and |P1(t) ∩ P2(t)| = D < |N2(t)| (the number of
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task types that are in the common sensing range for processors 1 and 2 is less

than the total number that each can sense separately), then depending on the

result of the balancing of the capacity condition, one processor could process

the set P1(t) while the other one could process the set P2(t) − P1(t) ∩ P2(t) or

vice versa. Another possibility is that one processor could process the set P1(t)

and the other one the set P2(t). In other words, both processors share the task

types contained in the set P1(t)∩P2(t) but again this is going to depend on the

commands from the higher level controller.

6. Pre-assignment of task types to processors in order to minimize the

bounds: We have mentioned above how hierarchical cooperative resource allo-

cation strategies could be used to balance the workload, the tasks’ processing in

this case, among all processors and that we are interested in studying the sta-

bility of such strategies. However, we could use the same hierarchical scheme,

but the role of the upper level controller would be this time to pre-assign groups

of task types to the processors in such a way that the ultimate bound be min-

imized. Note that in the previous workload balancing case, the upper level

controller tries to give the same amount of work to each processor while in this

case, each processor could have a different amount of work.

7. Cooperative resource allocation strategies for the foraging problem:

We have studied in Chapter 2 the stability properties of a general framework

where all processors have a constant processing rate. However, there are cases

where this is not the case and foraging theory is one of them. Consider the case

shown in Figure 5.2, where we can see that once the processor (organism) starts
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processing a task type the buffer level decreases exponentially. This behavior

has been proven to be the case for organisms searching for nutrient sources and

it would be interesting to explore these ideas and to study the stability for this

case.
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Figure 5.2: Illustration of the task type processing caused by the foraging problem.

Next, we list some research opportunities for the UAV problem.

1. Maximizing UAVs throughput: Figure 5.3 shows a great opportunity to

improve the work done in Chapter 3 by deriving stability properties for the

case where the number of tasks is time-variant and when UAVs assign different

priorities to the processing of tasks (i.e., pi(t),∀i ∈ P ) during the mission time

in a limited area. The idea behind these new considerations is to quantify

how much work the group of UAVs can execute together. In other words, we

would like to quantify UAVs task throughput and derive a capacity condition

as in [1] for that scenario. This approach will add flexibility to the problem
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in the sense that the group of UAVs can receive tasks to process from several

sources: home base (e.g., humans demanding the processing of specific tasks),

global sensor, and UAVs on-board sensors. The motivation for having to assign

different priority values for the same task is driven by the fact that we would

like to consider an even more realistic UAV problem. For instance, consider the

scenario where UAVs need to perform search, classify, attack, and verify for the

same task. Initially, one UAV could have assigned a high priority value to a

certain task that is considered of extreme importance for the mission, however,

when this or other UAV performs the classification, it realizes that the task is

not what it was initially thought and that UAV then needs to assign a new

priority value to that task. Thus, we would need to define new variables in our

model as the priority of searching, ps
i (t), the priority of classifying, pc

i(t), the

priority of attacking, pa
i (t), and the priority of verifying, pv

i (t), for task i,∀i ∈ P .

Note, however, that if the number of tasks is fixed as it is in Chapter 3, the

analysis performed there can still hold for bounded pi(t) values. For instance,

we would have to compute pi = maxt≥0{ps
i (t), p

c
i(t), p

a
i (t), p

v
i (t)},∀i ∈ P and

these pi values would be the ones that we could use for the bound derived in

Section 3.3.

2. Consideration of target/threat characteristics: Recall that in our model

we considered tasks in the environment, which is a general terminology tied up

with the fact that our analysis considers a fixed number of tasks during the

mission. Since in a more realistic problem there are targets that are not threats

and vice versa, there are some that are both targets and threats, and there are

even false targets, it would not be a problem to add these characteristics to
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Figure 5.3: Time-variant number of tasks processed by M UAVs.

our model provided that the above problem is solved. Moreover, it would be

interesting to study scenarios that have mobile targets.

3. Controller design trade-offs: In Section 3.2.1 we mentioned how it is possi-

ble to view the pi values as controller design parameters that can be tuned to

improve performance. Since Equation (3.2) seeks to optimize two objectives,

putting more emphasis in one variable may result in degradation of the perfor-

mance metrics; hence, it would be useful to study optimization methods (off-line

or on-line ones) that tune the priorities in order to achieve a better performance

during the mission.

4. Exploitation of information: Here, the idea is to use the priority values

to take advantage of the a priori information that may be available before the
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UAVs are deployed. For instance, a priori information could be used to establish

search-maps across the entire region of interest by assigning priority values to

tasks based on the likelihood of location of tasks.

5. Combination of cooperative and noncooperative strategies: As in the

multiprocessor case, it could be worthy to study the possibility of obtaining

lower bounds on the ignored time of tasks when both resource allocation strate-

gies, cooperative and noncooperative, are combined.

6. Multiobjective resource allocation strategies: There are some applica-

tions where there is the need to define a total cost function that takes into

account the sum of several cost functions. Consider for example the UAV prob-

lem and suppose that there is a way to compute and sum up the cost of the

energy that a UAV must expend to move to a certain place, to avoid the dan-

ger/threat of some tasks, the time since last processing of each task. Then, the

resources (UAVs) are going to be dynamically allocated to the processing of

the tasks depending on the computation of the total cost function. Chapter 3

seeks to optimize the processing of high priority tasks and to minimize gas ex-

penditure. However, we think that the cost of avoiding dangers/threats could

implicitly be represented in the term d(xj
v(t),xi)

v
since this is the time that takes to

UAV j to travel from its current location and orientation to process task i at xi.

Since this travel time needs to be computed by UAV j for any task i ∈ Ua
j (t),

if there is a danger/threat between UAV current position and the course that

this UAV needs to follow to get where task � ∈ Ua
j (t) is, then this will cause the

UAV to modify its course to avoid passing close to the danger/threat, which
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could increase the travel time to that task �. Therefore, the cost of that task �

will decrease according to Equation (3.2) which will decrease the possibility of

this task being chosen by UAV j at time t.

Finally, most of the research directions proposed above could be implemented in

the experimental testbed designed for network cooperative scheduling strategies. Such

implementations could provide more insights for a better understanding of theoretical

developments. They may also provide new research challenges.
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