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Abstract

The H2-optimal controller for systems with preview, in which the knowledge of external input is available in advance for the controller, is
derived. The single input case is first considered and solved by transforming the problem into a non-standard LQR problem. Based on the
single input result, the multiple inputs case and the multiple preview times case are treated. In every case considered, the controller consists
of a static state feedback plus a finite impulse response block. The paper also provides a formula for the optimal H2-norm that clearly shows
how the performance gain owing to the previewed input varies as the preview time increases.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: H2-optimal control; Preview systems

1. Introduction

In certain control problems, all or parts of the external in-
put signals are known in advance. An example is a tracking
problem where the tracked trajectory is known in advance. Ex-
ploiting this knowledge might improve the control system per-
formance. However, most controller design techniques do not
take it into account. Control systems that do exploit the advance
knowledge of the input are commonly designated as preview
control systems. This paper aims to derive the H2-optimal con-
troller for systems with previewed input. While previewing the
input signals may increase the performance of a control sys-
tem, it also increases the complexity of the controller. For this
reason, the performance gain has to be significant enough to
justify the increased controller complexity. Therefore, the fol-
lowing questions, which are paraphrased from questions posed
in Anderson and Moore (1979) in studying the advantage of
smoothing over filtering, are highly relevant. How does the
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performance gain owing to the previewed input with preview
time h vary as h increases? What is the maximum achievable
performance gain, i.e., what is the performance gain associated
with infinite preview time (h → ∞)? Besides the primary
objective of obtaining the H2-optimal controller, this paper also
aims to answer these questions.

Several results have been put forward to incorporate the ad-
vance knowledge of the external input signals into H∞ and
H2 designs. The H∞ preview control problem was consid-
ered in Kojima and Ishijima (2003a, 2003b), Shaked and de
Souza (1995) and Cohen and Shaked (1997). Later, a game
theoretic solutions in both continuous and discrete time were
proposed in the papers of Tadmor and Mirkin (2005a, 2005b).
The closely related problem of H∞ fixed-lag smoothing was
treated in Mirkin (2003), Theodor and Shaked (1994), Tadmor
and Mirkin (2005a, 2005b) and Mirkin and Tadmor (2004).
In particular, the paper (Mirkin & Tadmor, 2004) provides an
explicit computation of the optimal cost as a function of the
preview time.

In the field of H2 design, the H2 fixed-lag smoothing prob-
lem has been solved in the 60s (see Anderson & Moore, 1979
and references therein). Lately, there have been several re-
sults that treat the H2 control problem of preview systems.
In the discrete time framework, the paper by Mosca and
Casavola (1995) solved the linear quadratic tracking problem
with preview in the deterministic setting, while the paper of
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Mosca and Zappa (1989) treated the problem in stochastic set-
ting. The latter was extended to cover the minimax version
of the problem in Mosca, Casavola, and Giarre (1990). See
also Mosca (1995) and Samson (1982). Apart from the discrete
time setting used in these publications, the main differences
between the problems considered in the aforementioned publi-
cations and our problem are that only single preview time cases
is considered (in contrast with the multiple preview times case
also considered in our problem) and that the mathematical ma-
chinery used in most of these publications hinges on Kučera’s
Diophantine equation (Kučera, 1991), which is completely dif-
ferent from our approach. In the continuous time framework,
the paper of Kojima and Ishijima (1999) treated an LQ problem
with stored disturbance, while in Kojima (2004) an H2 preview
control problem, which is equivalent to the single input con-
trol problem considered in this paper, was solved. However,
the result in Kojima (2004) is limited to the single input (and
therefore single preview time) case. More recently, the paper
of Marro and Zattoni (2005) treated a feedforward disturbance
rejection problem. Both Kojima (2004) and Marro and Zattoni
(2005) utilized the same ingredient: partitioning the optimiza-
tion time interval into an infinite horizon problem and a fi-
nite horizon problem. In Kojima (2004), the finite horizon part
is solved using orthogonal projection arguments. The idea of
splitting the optimization interval was first employed in Tadmor
(1997) in the context of robust control in the gap and later was
also used for solving the H2 control problem of systems with
multiple i/o delays in Moelja and Meinsma (2005).

In this paper, an alternative derivation of the solution of the
H2 preview feedback control problem is provided. As in Kojima
(2004), the technique of splitting the optimization time interval
into two time intervals with the preview time h as the boundary
is used. The problem is effectively split into two parts: a stan-
dard infinite horizon LQR problem and a finite horizon LQR
problem with a non-standard constraint of a jump in the final
state. The standard infinite horizon part results in state feed-
back part of the optimal controller, while the non-standard finite
horizon part is tackled using the Pontryagin minimum principle
and results in finite impulse response part of the optimal con-
troller. Both the derivation in this paper and in Kojima (2004)
result in the same formulation of the optimal controller for the
single input case. The main difference lies in the formula for
the optimal H2-norm. The formula in Kojima (2004) requires
solving a differential Riccati equation and does not provide a
clear insight in determining the effect of the preview time h on
the H2 performance. The derivation in this paper results in a
different formulation that complements the results in Kojima
(2004). Not only that the formula derived in this paper appears
simpler (it only requires solving a Lyapunov equation), but it
also clearly shows the performance gain owing to the previewed
input. It also allows the computation of the maximum achiev-
able performance corresponding to the infinite preview time.
Furthermore, this paper also treats the multiple inputs case and
the multiple preview times case, which are not treated in pre-
ceding results. As the optimal solution of the H2 preview feed-
back control problem is already known, the main contributions
of this paper are the explicit formula of the optimal H2-norm as
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Fig. 1. The preview control setup (a) and its equivalence (b).

a function of the preview time and the solution for the multiple
inputs and multiple preview times cases. The paper is organized
as follows. After the introduction and some preliminaries, the
single input H2 preview control problem is considered. The re-
sult is then extended to the multiple inputs case and multiple
preview times case in the subsequent sections. The paper is
concluded with a numerical example and concluding remarks.

Preliminaries: Given a linear time invariant system
(LTI) F, its impulse response is denoted by F(t). The
squared H2-norm of a causal LTI system F is equal to
‖F‖2

2 = ∫ ∞
0 trace[F(t)TF(t)] dt . Suppose the input and output

of the system F are, respectively, denoted by w and z, then the
squared H2-norm may also be defined as

‖F‖2
2 =

∑
w=(0,...,�(t),...,0)

∫ ∞

0
z(t)Tz(t) dt . (1)

The unit step function is denoted by 1(t).

2. Problem formulation

The preview control system configuration that is considered
is shown in Fig. 1(a). It is very similar to the standard full
information control system, in which the controller uses the
state x and the external input w as its inputs. The only difference
is that the external signal w is available to the controller h
time units in advance. This fact is represented in Fig. 1(a) by
the negative delay operator esh. To avoid employing a negative
delay operator, the same effect may be achieved by delaying
the external input fed to the plant, while the controller receives
the non-delayed version. This setting is shown in Fig. 1(b).
The control problem itself is formally stated in what follows.
Consider the control system of Fig. 1(b) where the dynamics
of the plant P(s) are governed by the state space equation:

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D2u(t) (2)

and the system parameters satisfy the following standard as-
sumptions:

A1 (C1, A, B2) is detectable and stabilizable;
A2 [

A − j�I B2
C1 D2

]

has full column rank ∀� ∈ R.
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In addition to the standard assumptions above, to simplify the
formulas it is also assumed that

A3 DT
2 D2 = I and CT

1 D2 = 0.

Assumption A3 will be relaxed later. The problem is to find a
stabilizing control K that minimizes the H2-norm of the transfer
function from w to z.

3. Single-input case

In this section the case where B1 is a column vector, i.e.
w is a one-dimensional signal, is considered. To signify the
difference, a lower case b1 is used in place of B1. The H2-norm
of the transfer function from w to z is equal to the L2-norm of
z provided that w(t) is a delta function. Therefore, by setting
w(t)=�(t−h), the H2 optimization problem may be formulated
as an LQR problem with a state jump at t =h. At this point, the
original objective of designing a full information controller that
takes x(t) and w(t+h) as inputs is temporarily set aside. Rather
the attention is focused on finding the optimal u such that the
L2-norm of z is minimized given w(t)=�(t −h). Later it shall
be shown that the optimal control law may be implemented by
a full information controller with preview as in Fig. 1 and thus
producing the desired optimal controller. Given that B1 = b1
and w(t) = �(t − h), the state-space equation (2) becomes

ẋ(t) = Ax(t) + b1�(t − h) + B2u(t),

z(t) = C1x(t) + D2u(t), x(0) = 0, (3)

and given that Q = CT
1 C1, our objective is

min
u

J (x0, u) = min
u

∫ ∞

0
‖C1x(t) + D2u(t)‖2

2 dt

= min
u

∫ ∞

0
x(t)TQx(t) + u(t)Tu(t) dt . (4)

The delta function input at t =h in (3) raises the state such that
x(h+) = x(h−) + b1, so that (3) becomes

ẋ(t) = Ax(t) + B2u(t), z(t) = C1x(t) + D2u(t),

x(0) = 0, x(h+) = x(h−) + b1. (5)

The state-space equation (5) together with the criterion func-
tion (4) constitute an LQR problem. The only difference of the
LQR problem (5), (4) and a standard LQR problem is the state
jump at t = h. One way to circumvent the problem is to use
the technique from Tadmor (1997) and Moelja and Meinsma
(2005) of dividing the optimization time horizon into two re-
gions with t = h as the boundary so that the state jump can be
considered as a boundary condition. It turns out that the optimal
control problem in each time region may be solved essentially
independent from the other.

Lemma 1. Consider the LQR problem corresponding to the
state-space equation (5) and the objective (4). Let M be the
stabilizing solution of the LQR Riccati equation

Q + ATM + MA − MB2B
T
2 M = 0. (6)

Define

u2,opt(t) = −BT
2 Mx(t) (7)

and let u1,opt be the solution of the LQR problem corresponding
to the state-space equation

ẋ(t) = Ax(t) + B2u1(t), x(0) = 0, (8)

with the objective

min
u1

(
(x(h) + b1)

TM(x(h) + b1)

+
∫ h

0
(xTQx + uT

1 u1) dt

)
. (9)

Then the solution of the LQR problem (5), (4) is given by

uopt(t) = [1(t) − 1(t − h)]u1,opt(t) + 1(t − h)u2,opt(t) (10)

and the optimal cost is given by (9).

Proof. Consider the state-space equation (5). Assume tem-
porarily that the optimal state at t = h−, denoted by xopt(h

−),
is known. It follows that xopt(h

+) = xopt(h
−) + b1. For t ∈

[h+, ∞], (5) becomes

ẋ = Ax + B2u, x(h+) = xopt(h
−) + b1, (11)

while the cost over this time region is given by

J[h+,∞] =
∫ ∞

h

(x(t)TQx(t) + u(t)Tu(t)) dt . (12)

The problem of minimizing (12) given (11) is a standard infi-
nite horizon LQR problem, the solution of which is the state
feedback

uopt(t) = −BT
2 Mx(t), t ∈ [h+, ∞], (13)

while the optimal cost is

J[h+,∞],opt = x(h+)TMx(h+)

= [xopt(h
−) + b1]TM[xopt(h

−) + b1], (14)

where M is the solution of the Riccati equation (6). Hence,
it is proved that for t ∈ [h+, ∞] the optimal input is indeed
given by the state feedback (7). It is also clear that the optimal
cost contribution over t = [h+, ∞], which is given by (14),
depends solely on xopt(h

−). It follows that the infinite horizon
LQR problem of minimizing (4) is equivalent to minimizing
the finite horizon cost function

min
u

(∫ h

0
(xTQx + uTu) dt + [x(h) + b1]TM[x(h) + b1]

)
,

from which the optimal input for t ∈ [0, h−] may be
obtained. �

Lemma 1 gives a partial solution to the LQR problem (5),
(4). It is now ascertained that for t ∈ [h, ∞] the optimal input
is a state feedback given by (7). What is left is to solve the finite
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horizon LQR problem (8), (9). The solution is summarized in
the following lemma.

Lemma 2. Consider the LQR problem corresponding to the
state-space equation (8) with the objective (9) where M is the
stabilizing solution of the Riccati equation (6). Define Ap =
A − B2B

T
2 M , then the optimal input of the LQR problem (8),

(9) is given by

u1,opt(t) = −BT
2 Mx(t) − BT

2 e−AT
p(t−h)Mb1. (15)

Proof. We begin by applying the minimum principle to the
optimal control problem (8), (9). It may be shown (see, for
example, Appendix C of Anderson & Moore, 1989), that the
optimal input is given by

u1,opt(t) = BT
2 p(t), (16)

where the co-state p and the optimal state x satisfy the following
equation[

ẋ

ṗ

]
=

[
A B2B

T
2

Q −AT

] [
x

p

]
(17)

with the boundary condition

x(0) = 0, p(h) = −Mx(h) − Mb1. (18)

Notice that except for the boundary condition, the equations are
similar to the standard case where b1 = 0. Furthermore, using
similar arguments as in the standard case, it may be shown that
the differential equation (17), (18) has a unique solution. To
obtain the solution of the differential equation (17), (18), define
the state transformation

q(t) = Mx(t) + p(t). (19)

With the state transformation and keeping in mind that M is the
solution of the Riccati equation (6), the differential equation
(17) is simplified to
[

ẋ

q̇

]
=

[
Ap B2B

T
2

0 −AT
p

] [
x

q

]
(20)

with the boundary condition

x(0) = 0, q(h) = −Mb1. (21)

It follows that the trajectory of q(t) is given by q(t) =
e−AT

ptq(0). The initial condition q(0) may be computed by

setting t =h in q(t)=e−AT
ptq(0) and substituting the boundary

condition (21), resulting in,

q(0) = −eAT
phMb1, (22)

so that the complete expression for q(t) is obtained: q(t) =
−e−AT

p(t−h)Mb1. Using this expression and (19), p(t) may be
computed as

p(t) = −Mx(t) − e−AT
p(t−h)Mb1. (23)

The optimal input u1,opt(t)=BT
2 p(t) is then given by (15). �

w(t +h) B1

x(t)

u(t)

K
−BTΦp 2

−BTM2

Fig. 2. The optimal controller, single preview time case.

Lemma 1 combined with Lemma 2 provides a complete so-
lution to the infinite horizon LQR problem (5), (4). By Lemmas
1 and 2, the optimal u is given by

uopt(t)

= [1(t) − 1(t − h)]u1,opt(t) + 1(t − h)u2,opt(t)

= −[1(t) − 1(t − h)]BT
2 (Mx(t)

+ e−AT
p(t−h)Mb1) − 1(t − h)BT

2 Mx(t)

= −BT
2 Mx(t) − [1(t) − 1(t − h)]BT

2 e−AT
p(t−h)Mb1. (24)

This is the unique optimal u for the control system of Fig. 1
when w(t) = �(t − h). Hence, if we find a full information
controller with preview that also produces the same input if we
set w(t) = �(t − h), then we automatically obtain the desired
H2-optimal controller. In the following theorem, the optimal
controller is derived.

Theorem 3. Consider the control system of Fig. 1(b) where the
plant’s dynamics are governed by (2). Suppose that w is a one-
dimensional signal, i.e. B1 = b1 has a single column. Then the
optimal controller that minimizes the H2-norm of the transfer
function from w to z is the controller in Fig. 2, where �p has
the following impulse response:

�p(t) = [1(t) − 1(t − h)]e−AT
p(t−h)M . (25)

Here M is the stabilizing solution of the Riccati equation (6),
while Ap = A − MB2B

T
2 . Notice that �p has a finite impulse

response with support on [0, h].

Proof. It may be verified that the controller in Fig. 2 generates
the optimal u given by (24) when driven by w(t+h)=�(t). �

The squared optimal H2-norm is equal to the optimal cost
function (9), which is given in the following theorem.

Theorem 4. Consider the control system of Fig. 1(b) where
the plant’s dynamics are governed by (2). Suppose that w is a
one-dimensional signal, i.e. B1 = b1 has a single column. Let
M be the stabilizing solution of the Riccati equation (6), while
Ap = A − MB2B

T
2 . Furthermore, let X be the solution of the

Lyapunov equation:

ApX + XAT
p + B2B

T
2 = 0. (26)

Then the squared optimal H2-norm of the transfer function from
w to z is

Jopt(h) = bT
1 Mb1 − bT

1 M(X − eAphXeAT
ph)Mb1. (27)
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Proof. It follows from (16), (17) that

d

dt
(pTx) = pTẋ + xTṗ = uT

1,optu1,opt + xTQx. (28)

Taking the integral of both sides of (28), the optimal value of
the integral term in (9) is
∫ h

0
(xTQx + uT

1,optu1,opt) dt

= p(h)Tx(h) − p(0)Tx(0) = p(h)Tx(h). (29)

The expression of p(t) is readily available in (23), while the ex-
pression for x(t) may be computed from the differential equa-
tion (20) and the initial condition (21), (22):

x(t) = �11(t)x(0) + �12(t)q(0) = −�12(t)e
AT

phMb1, (30)

�(t) =
[
�11(t) �12(t)

�21(t) �22(t)

]
= eSt , S =

[
Ap B2B

T
2

0 −AT
p

]
. (31)

Plugging (29) into (9) and using (23), (30) to simplify the
expression, the following is obtained:

min
u1

(
(x(h) + b1)

TM(x(h) + b1)

+
∫ h

0
(xTQx + uT

1 u1) dt

)

= bT
1 Mb1 − bT

1 M�12(h)eAT
phMb1, (32)

where M is the solution of the Riccati equation (6), �(t) is
given by (31), and Ap = A − B2B

T
2 M . The formula (32) may

be further simplified by finding a simpler expression for �12.
By defining

W =
[
I −X

0 I

]
,

where X is the solution of the Lyapunov equation (26), it is
straightforward to compute WSW−1 = diag(Ap, −AT

p). Note
that since Ap is Hurwitz, the Lyapunov equation (26) has a
unique solution. Hence, it is straightforward to show that

eSt =
[

eApt Xe−AT
pt − eAptX

0 e−AT
pt

]
,

implying that �12(t)=Xe−AT
pt − eAptX. Plugging this expres-

sion into (32) results in (27). �

Compared to the formula given in Kojima (2004), which
involves solving a differential Riccati equation, the formula
(27) appears simpler and only requires solving the Lyapunov
equation (26) and computing the exponential of a matrix.

Now we investigate the effect of the preview time h on the
H2 performance. It may be shown that the first derivative of the
optimal squared H2-norm with respect to h is �Jopt(h)/�h =
−bT

1 MeAphB2B
T
2 eAT

phMb1 �0. Evidently, the squared optimal
H2-norm as a function of h is non-increasing. In particular, it
may be shown that if (C1, A, B2) is observable and control-
lable, Jopt(h) is strictly decreasing. Thus, as the preview time

increases, the performance increases as well. Moreover, the
first term in the right-hand side of (27) is the optimal squared
H2-norm for h = 0 (i.e. no preview), so that the second term
may be viewed as the performance gain owing to the previewed
input. The minimum achievable H2-norm is obtained if we set
h = ∞ (i.e. infinite preview), which gives Jopt,h=∞ = bT

1 (M −
MXM)b1.

4. Multiple inputs case

The optimal controller for the multiple inputs case is a
straightforward extension of the single-input result. It turns
out that the controller has exactly the same structure as in the
single-input case.

Corollary 5. Consider the control system of Fig. 1(b) where the
plant’s dynamics are governed by (2). The optimal controller
that minimizes the H2-norm of the transfer function from w to
z is the controller in Fig. 2. Here M is the stabilizing solution
of the Riccati equation (6), while the impulse response of �p

is given by (25). Moreover, the squared optimal H2-norm is
given by

tr(BT
1 MB1 − BT

1 M(X − eAphXeAT
ph)MB1), (33)

where Ap =A−B2B
T
2 M , and X is the solution of the Lyapunov

equation (26).

Proof. According to definition (1), the squared H2-norm of the
control system of Fig. 1(b) may be computed by conducting
nw experiments, with nw the dimension of w, as described in
what follows. For the kth experiment, the kth element of w

is set to the delayed delta function �(t − h) while the other
elements are set to zero. The squared H2-norm of the closed
loop system is then obtained by summing up the squared L2-
norm of the output z for all nw experiments. Since for each
experiment only one element of w is active, for each experiment
the control system may be recast into one with scalar external
input w. Hence, the single-input results of the previous section
applies. Using Theorem 3, it is straightforward to prove that for
each experiment, the controller of Fig. 2 generates the optimal
input. This implies that the controller is the optimal controller.
The squared optimal H2-norm is obtained by summing up the
optimal cost for all nw experiments, which individually may be
computed using (27). �

5. Multiple preview times case

In this section, we treat the general case where each compo-
nent of the exogenous input w(t) that is fed to controller may
have different preview times. The equivalent multiple preview
times setup in which w(t) is delayed before being fed to the
plant P is shown in Fig. 3. As in the single preview time case,
the dynamics of the plant P(s) are governed by (2). The dif-
ference is that instead of a single delay operator e−sh, here we
have a multiple delay operator �(s) of the form:

�(s) = diag(e−sh1 , . . . , e−shnw ), (34)



950 A.A. Moelja, G. Meinsma / Automatica 42 (2006) 945–952

wN (t +hN)

w1 (t +h1)
P

z(t)

u(t)

 Λ
x(t)

w(t)

K

Fig. 3. The multiple preview times case.
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Fig. 4. The optimal controller, multiple preview times case.

where nw is the dimension of w and hk �0, k = 1, . . . , nw. It
turns out that the arguments on which the proof of Corollary 5
is based may also be applied. The result is summarized in the
following corollary.

Corollary 6. Consider the control system of Fig. 3 where the
plant’s dynamics are governed by (2) and the delay operator
�(s) is given by (34). The optimal controller that minimizes the
H2-norm of the transfer function from w to z is the controller
in Fig. 4. There, the block �mp is a system with finite impulse
response with the kth column of its impulse response, denoted
by �mp,k(t), is given by

�mp,k(t) = e−AT
p(t−hk)Mb1,k(1(t) − 1(t − hk)), (35)

where M is the solution of the Riccati equation (6), Ap = A −
B2B

T
2 M , and b1,k denotes the kth column of the matrix B1.

Moreover, the squared optimal H2-norm is

tr BT
1 MB1 −

nw∑
k=1

(bT
1,kM(X − eAphkXeAT

phk )Mb1,k), (36)

where X is the solution of the Lyapunov equation (26).

Proof. As in the proof of Corollary 5, the squared H2-norm
of the control system of Fig. 3 may be computed by conduct-
ing nw experiments, as described in what follows. For the kth
experiment, the kth element of w is set to the delayed delta
function �(t −hk) while the other elements are set to zero. The
squared H2-norm of the closed loop system is then obtained by
summing up the squared L2-norm of the output z for all nw ex-
periments. As in the multiple inputs single preview time case,
for each experiment the problem also reduces to a single-input
problem. The only difference is that here the preview time is
different for each experiment. Nevertheless, the results from
Section 3 still apply for each experiment. Applying the single
input results to each experiment related to a particular com-
ponent of w will result in a particular column of the optimal

controller. Using Theorem 3, it is straightforward to ascertain
that the controller of Fig. 4, where the FIR block �mp is de-
scribed by (35), generates the optimal input for each experi-
ment. The squared optimal H2 norm is obtained by summing
up the optimal cost of the nw experiments, resulting in the ex-
pression (36). �

6. Relaxing assumption A3

Assumption A3 allows us to formulate the LQR problem
(3), (4). The assumption may be relaxed using the well-known
method of input substitution. The method works by intro-
ducing the state feedback u(t) = R−1/2v(t) − R−1DT

2 C1x(t)

in (2), where R = DT
2 D2 and v is the new input. With

this change of the input, the state equation becomes ẋ(t) =
Āx(t) + b1�(t − h) + B̄2v(t), x(0) = x0, while the cost cri-
terion is given by minv

∫ ∞
0 x(t)TQ̄x(t) + v(t)Tv(t) dt where

Q̄ = CT
1 (I − D2R

−1DT
2 )C, Ā = (A − B2R

−1DT
2 C1), and

B̄2 = B2R
−1/2. The resulting LQR problem is of the same

form as (3), (4) and hence may be solved using results from
the previous sections.

7. Numerical example

In this section, we present an example of the multiple pre-
view times case. Consider the multiple preview times setup
of Fig. 3. Let the plant P be governed by the state equation
ẋ(t) = Ax(t) + B1w(t) + B2u(t), z(t) = C1x(t) + D2u(t),
where A = 1, B1 = [b1,1 b1,2] = [1 2], B2 = √

3, C1 = [1 0]T,
D2 = [0 1]T. It may be verified that Assumptions A1, A2, and
A3 are satisfied. Furthermore, the multiple delay operator is
given by �(s) = diag(e−sh1 , e−sh2), with h1, h2 �0. Notice
that w1 and w2 may have different preview times. The optimal
controller and the optimal H2 norm may be computed using
Corollary 6. The first step is to compute the stabilizing solu-
tion M of the Riccati equation (6), which in this case becomes
a quadratic equation 1 + 2M − 3M2 = 0. The stabilizing solu-
tion of the above Riccati equation is M = 1. Next we compute
the matrix Ap, which is given by Ap = A − B2B

T
2 M = −2.

The optimal controller is shown in Fig. 4, where the impulse
response of the FIR block �mp may be computed using (35),
�mp(t)=[�mp,1(t) �mp,2(t)], where �mp,1(t)=e2(t−h1)(1(t)−
1(t −h1)) and �mp,2(t)= 2e2(t−h2)(1(t)− 1(t −h2)). To com-
pute the optimal H2 norm we need to compute the solution X
of the Lyapunov equation (26) which in this case is X = 0.75.
The squared optimal H2 norm can then be computed using (36),
which results in the expression

5 − 0.75(1 − e−4h1) − 3(1 − e−4h2). (37)

The first term of (37) is the squared optimal H2 norm for
zero preview times, while the second and the third terms, i.e.
− 3

4 (1 − e−4h1) and −3(1 − e−4h2), are the performance gain
owing to the preview times h1 and h2, respectively. The maxi-
mum achievable squared H2 norm corresponding to h1, h2 =∞
is 1.25. Since the expression (37) is affine in h1 and h2, we
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Fig. 5. The squared optimal H2-norm as a function of the preview times.
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may display the plots of the performance gain owing to each
preview time in a single one-dimensional plot. This plot is
shown in Fig. 5. Notice that increasing the preview times be-
yond around 1 time unit only gives very small performance
gain. This can be explained by observing the general expres-
sion (36). There, the exponential term eAphk is practically zero
if hk?1/|Re �max(Ap)|, where �max(Ap) denotes the eigen-
value of Ap with the largest real part in absolute value. In
our example, |Re �max(Ap)|=2, so that increasing the preview
times beyond several times of 1

2 is practically useless. Fig. 5
also shows that the plot corresponding to h2 is steeper than
the one corresponding to h1. This suggests that increasing the
preview time of the second channel is more advantageous than
increasing the one of the first channel. Thus, it makes sense to
use different preview times for different channels. Now sup-

pose we drive the system with an external input of the form
w(t)=[�(t −h1) �(t −h2)]T. The response z(t)=[x(t) u(t)]T

is shown in Fig. 6 for two values of the pair (h1, h2). One
plot is for the case where both channels are previewed with
the same preview time (h1 = h2 = 0.4) while the other plot
is for the case where the channels are previewed differently
(h1 = 0.4, h2 = 0.8).

8. Concluding remarks

In this paper, the H2 control problem of preview systems is
considered. The single input case is first solved. Based on the
single input results, the multiple inputs case and the multiple
preview times case are treated. The results show that by pro-
viding the external input in advance to the controller, the H2
performance of the control system may be improved. The paper
also provides a formula for the optimal H2-norm that clearly
shows how the performance gain owing to the previewed input
varies as the preview time increases. The results in this paper
are derived using a similar approach to the one used in Moelja
and Meinsma (2005) for solving the H2 control problem for
systems with multiple i/o delays. It is therefore possible to solve
a combined H2 preview/delay problem, where the exogenous
inputs w is previewed and the internal input u is delayed, in
the full information setting using the same approach. This ex-
tension will be reported elsewhere.
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