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Abstract

A direct algorithm to estimate continuous-time ARMA (CARMA) models is proposed in
this paper. In this approach we first pass the observed data through an input-to-state filter
and compute the state covariance matrix. The properties of the state covariance matrix are
then exploited to estimate the half-spectrum of the observed data at a set of user-defined
points on the right-half plane. Finally, the continuous-time parameters are obtained from
the half-spectrum estimates by solving an analytic interpolation problem with a positive
real constraint. As shown by simulations, the proposed algorithm delivers much more reli-
able estimates than indirect modeling approaches, which rely on estimating an intermediate
discrete-time model.

Keywords: Continuous-time processes, identification, input-to-state filtering, ARMA
modeling.
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1 Introduction

The identification of continuous-time stochastic processes is a fundamental research issue which
has received considerable interest recently. Since many natural processes are continuous-time,
it is of interest in many practical applications to identify a continuous-time model instead of a
discrete-time model [15]. Although the signal is in continuous-time, in practice one works with
sampled data. One popular approach is to identify a discrete-time system from uniformly sampled
data, as shown in [15] and references therein. Subsequently, the estimated discrete-time model is
converted back to a continuous-time model via a nonlinear transformation [24]. This approach will
be referred to as the indirect approach. Apart from the obvious difficulty of solving nonlinear equa-
tions, this approach also suffers from several other setbacks: (i) At a fast sampling rate, the poles
and the zeros of the associated discrete-time system cluster close to the point 1+i0 in the complex
plane, leading to a numerically ill-conditioned identification problem; (ii) The continuous-time pa-
rameters can be very sensitive to the sampled data. These issues have been discussed in detail in
[4, 3, 26, 17, 16, 24]. A second approach is to identify the continuous-time parameter directly. The
basic idea here is to replace the differentiation operator with the delta operator [5, 11]. Several
methods have been developed using this approach for autoregressive models, see [4, 3, 26, 17].
This approach is advantageous in many cases as it is computationally efficient and one avoids
nonlinear transformations if the underlying model is autoregressive. This technique also benefits
from non-uniform sampling [17, 15]. However, it is not well understood how we can extend this
technique for an ARMA model since the mapping from the continuous-time zeros to the equivalent
discrete-time zeros is complicated. It is also not known how to guarantee the positivity of the es-
timated spectrum. Therefore, for ARMA models, the only available time domain approach seems
to be the indirect method described above [16, 24]. A frequency domain method is proposed in [23].

If we consider a discrete-time process, we can ensure the stability of the estimated autoregressive
model in a fairly simple way [20, 27, 18]. But unlike the discrete-time counterpart, the mapping
from the lagged covariance estimates to the system parameters for a continuous-time system is
more complicated. Hence, the standard discrete-time algorithms cannot be extended directly.
In this paper, we propose a direct approach for modeling continuous-time stochastic processes.
Specifically, we provide an estimation algorithm with the following properties: (i) It is compu-
tationally efficient; (ii) The stability of the estimated model is guaranteed; (iii) It can handle
irregularly sampled data; (iv) It is possible to circumvent the problems associated with the sam-
pling zeros for an ARMA model.

Our approach uses the framework of input-to-state filtering [8, 10, 9] where we first estimate the
half-spectrum and its derivatives evaluated at some pre-specified points in the right-half plane.
This is achieved using a linear operation on the covariance matrix of the output of an input-to-
state filter. Subsequently, we present an approach for estimating a stable rational model from
the estimates of the half-spectrum. In this step, we apply linear interpolation combined with a
regularization step similar to that proposed in [28, 21]. If the resulting model is unstable then a
recent spectral zero assignment algorithm [1], (see also [7]), is used to compute a stable model.
The approach can also be used when the data are irregularly sampled. We provide additional
insights in the estimation of the half-spectrum, and discuss the numerical and statistical issues
involved in the estimation of such statistics. We also carry out an asymptotic statistical analysis
of second-order. The proposed algorithm is tested using numerical simulations.
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2 Input-to-state filters

The discussion in this section is applicable to any continuous-time wide-sense stationary stochastic
process u(t). As a special application, we apply the results derived in this section to continuous-
time ARMA processes in later sections. Analogous results for discrete-time processes have been
derived in [8, Theorem 1], see also [10, Corollary 1] and [9]. The results mentioned above are
somewhat more general than what we require for this paper. The proofs in the aforementioned
references have been extended to the continuous-time case [9, Section V].

Consider a scalar and real-valued1 continuous-time stochastic process u(t) having an autocorrela-
tion function

rτ := E {u(t + τ)u(t)}.
Then, the spectrum of the process is defined as

φ(s) :=

∫

∞

−∞

dτ rτe
−sτ , Re(s) = 0.

In this work we use the so-called half-spectrum f(s) of u(t), which is defined as

f(s) :=

∫

∞

0

dτ rτe
−sτ , Re(s) ≥ 0.

Consequently, it is readily verified that

φ(s) = f(s) + f(−s), Re(s) = 0. (2.1)

In the following we estimate f(s) and its derivatives at a predefined set of points {sk}m
k=1 from

the observed continuous-time signal u(t). The points {sk}m
k=1 are referred to as the interpolation

points and satisfy Re(sk) > 0, ∀k. The main idea here is to use an input-to-state filter

ż(t) = Fz(t) + gu(t), (2.2)

where F has eigenvalues at {−sk}m
k=1 and the pair (F, g) is controllable. We assume that the filter

in (2.2) has a pole of order nk at −sk, while the order of the filter is n, i.e., F is a n × n matrix,
and

∑m

k=1 nk = n. We show that the covariance matrix of the output z(t) can be used to extract
the estimates of f(sk) and its derivatives. In particular, a pole of order nk at −sk enables us to
extract the derivatives of f(s) up to order nk − 1 evaluated at sk. The following proposition is the
first step in that direction.

Proposition 1. Assume that f(∞) is bounded. Let E be the unique positive definite solution to
the Lyapunov equation

FE + EF ′ + gg′ = 0. (2.3)

Then there exist scalar-valued functions {wk}n−1
k=0 of F and f(s) such that

P := E {z(t)z′(t)} = WE + EW ′, (2.4)

where

W :=
1

2πi

∮

CR

dsf(−s)[sI − F ]−1 =
n−1
∑

k=0

wkF
k. (2.5)

1However, the results in this section can be generalized for a complex-valued stochastic process in a fairly
straightforward manner.
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with CR being the infinite semicircular contour encircling the entire right-half plane traversed
in the clockwise direction. Moreover, the coefficients {wk}n−1

k=0 are invariant of the choice of the
coordinates of z(t).

Proof: The proof of (2.4) and (2.5) is similar to Theorem 1 in [8]; see also [19] for a more direct
proof. To show the invariance of {wk}n−1

k=0 , consider the state sequence z1(t) of the input-to-state
filter (F1, g1), where

F1 = LFL−1, g1 = Lg

for some nonsingular matrix L. Let the covariance matrix of z1(t) be P1. It follows that P1 = LPL′

and the solution E1 to the Lyapunov equation F1E1 + E1F
′

1 + g1g
′

1 = 0 satisfy E1 = LEL′. Then
(2.4) gives

P1 = W1E1 + E1W
′

1,

where W1 = LWL−1. Now from (2.5) we can verify our assertion that W1 =
∑n−1

k=0 wkF
k
1 .

Next, we state a method for computing {f(sk)}m
k=1 and its derivatives.

Theorem 1. Let F be chosen such that its Jordan form has the block-diagonal structure

diag
{

J(−s1, n1), · · · , J(−sm, nm)
}

, (2.6)

where for each k ∈ {1, 2, . . . ,m}, the matrix J(−sk, nk) is an elementary nk × nk Jordan block
having −sk along the main diagonal, ones along the first upper subdiagonal, and zeros elsewhere.
Define the polynomial

̟(s) :=
n−1
∑

k=0

wks
k.

Denote the rth derivative of f(s) evaluated at s = sk by f (r)(sk). Then

f (r)(sk) = (−1)r̟(r)(−sk), 0 ≤ r < nk, 1 ≤ k ≤ m. (2.7)

Proof: The proof is similar to Theorem 2 in [8]; see also [19] for a direct proof.

Remarks:

1. If we allow multiple Jordan blocks of F with the same eigenvalue −sk, then the information
present in the associated Jordan blocks is redundant, and we are unable to extract n pieces
of statistics about f(s). See the proof in [19] for details.

2. Extracting statistics from the data for modeling discrete-time processes is often accomplished
by estimating the covariances of the observed data. The theory of input-to-state filtering
is not necessary in this development [18]. However, Theorem 1 is vital for continuous-time
processes.

Next we express the vector of f (j)(sk) as a linear function of the coefficients {wk}n−1
k=0 . Define

fk :=
[

f (0)(sk) · · · f (nk−1)(sk)
]

′

, w :=
[

w0 · · · wn−1

]

′

. (2.8)

4



From (2.7) we get fk = Dkw for k = 1, . . . ,m, where Dk is a nk × n matrix defined as

[Dk]ij = (−1)i−1

[

di−1

dsi−1

{

sj−1
}

]

s=−sk

.

Real-valued implementation of the input-to-state filter requires a self-conjugate set of interpolation
points. However, if sj is the complex conjugate of sk, then fj is the complex conjugate of fk. Hence
it is sufficient to consider the interpolation points having nonnegative imaginary parts. Let the
number of real-valued interpolation points be nr, and the number of interpolation points with
strictly positive imaginary parts be nc. Clearly, m = nr + 2nc. Without loss of generality, we
assume that {sk}nc

k=1 are real-valued, and {sk}nr+nc

k=nr+1 have strictly positive imaginary parts. Define
the vectors

fR := [ f′1 · · · f′nr
]′, fC := [ f′nr+1 · · · f′nr+nc

]′, f := [ f ′

R Re(f ′

C) Im(f ′

C) ]. (2.9)

From the above discussion it follows that

f = Dw, (2.10)

D = [ D′

1 · · · D′

nr
Re(D′

nr+1) · · · Re(D′

nr+nc
) Im(D′

nr+1) · · · Im(D′

nr+nc
) ]′.

Using the results derived so far, we propose an algorithm below for estimating of f . The jus-
tification behind the algorithm will be given in Section 3. In the algorithm we implement the
input-to-state filter in the controllable canonical form. Let the characteristic polynomial of F be

∆(s) :=
n

∏

k=1

(s + sk) = sn +
n

∑

k=1

δks
n−k. (2.11)

The state space matrices for the input-to-state filter in the controllable canonical form are then
given by

F⋆ =











−δ1 · · · −δn−1 −δn

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











, g⋆ =











1
0
...
0











.

The associated state vector and the state covariance are denoted by z⋆(t) and P⋆, respectively:

ż⋆(t) = F⋆z⋆(t) + g⋆u(t), P⋆ := E {z⋆(t)z
′

⋆(t)}. (2.12)

From (2.4) and (2.5) we have

P⋆ =
n−1
∑

k=0

wk{F k
⋆ E⋆ + E⋆(F

′

⋆)
k}, (2.13)

where E⋆ is the solution to the Lyapunov equation

F⋆E⋆ + E⋆F
′

⋆ + g⋆g
′

⋆ = 0. (2.14)

Therefore, computing w from P⋆ amounts to solving a least-squares problem. In Section 3 we show
that it is enough to consider only the diagonal elements in the matrix-valued equation (2.13). In
the following for a n × n real-valued matrix H we denote

d[H] = [ [H]1,1 · · · [H]n,n ]′.
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Considering only the diagonal elements of (2.13) we get

d[P⋆] = X⋆w, X⋆ := [ d[2E⋆] d[F⋆E⋆ + E⋆F
′

⋆] · · · d[F n−1
⋆ E⋆ + E⋆(F

′

⋆)
n−1] ]. (2.15)

Since F⋆ and g⋆ being user defined, X⋆ is assumed to be known in the following algorithm. We
assume further that the observed process u(t) is known for t ∈ [0, T ].

Algorithm.

1. Compute the state output z⋆(t) in (2.12), and obtain an estimate of P⋆ by computing

P̂⋆ :=
1

T

∫ T

0

dt z⋆(t)z
′

⋆(t). (2.16)

2. Compute the estimates of w and f as

ŵ = X−1
⋆ d[P̂⋆], f̂ = Dŵ. (2.17)

From a practical point of view one might prefer to implement (2.16) in discrete-time, where the
integral is approximated by a Riemannian summation

P̌⋆ =
1

N

N−1
∑

k=0

z⋆(kts)z
′

⋆(kts),

where ts is the sampling interval and T = Nts. In fact, P̌⋆ is a consistent estimate of P⋆. Fur-
thermore, if ts is sufficiently small then P̌⋆ and P̂⋆ have similar statistical properties. Taking
ts → 0 does increase N , but the accuracy of P̌⋆ remains the same. This is because z⋆(kts) is highly
correlated with its neighboring samples when ts → 0, and an increase in N does not influence the
estimation accuracy [29].

It is often assumed that the observed data are the sampled version of the continuous-time process.
Then it is required to implement the input-to-state filter (2.12) using a discretization technique
[22, p.33],[6]. The systematic errors introduced due to such approximation are not significant [6]
for practical values of ts. Analysis of such systematic errors is beyond the scope of this paper.
However, if the continuous-time signal is available to the user, it is possible to avoid systematic
errors by implementing (2.12) using analog devices for which several efficient architectures are
readily available [13, p.35]. The output z⋆(t) from the input-to-state filter can then be sampled
for the computation of P̂⋆.

3 Some computational and statistical aspects

In this section we focus on the computational and the statistical aspects involved in the estimation
of the half-spectrum. The primary aim is to justify the algorithm for computing ŵ and f̂ proposed
in Section 2. First we examine the rank of the system of equations to be solved in order to
determine ŵ. We also comment on the choice of the coordinates of the state of the input-to-state
filter. Finally, we determine the second-order statistics of ŵ and f̂ . To this end we need some
additional notation. Define

H :=
{

H ∈ R
n×n : [H]i,j = (−1)jhi+j−1 for some real {hk}2n−1

k=1

}

H0 := {H ∈ H : [H]i,j = 0 when i + j is odd} .
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A key property of the set H0 is that if H ∈ H0 and i + j = 2ℓ for some positive integer ℓ ≤ n.
then

[H]i,j = (−1)j−ℓ[H]ℓ,ℓ.

It is also straightforward to verify that H ∈ H implies H + H ′ ∈ H0.

Proposition 2. The matrix P⋆ defined in (2.12) is a member of H0.

Proof: Denote the differentiation operator by p. Since (F⋆, g⋆) is in the controllable canonical
form we have

z⋆(t) = [ z1(t) · · · zn(t) ]′, zj(t) :=
pn−j

∆(p)
u(t),

where the polynomial ∆(·) is defined in (2.11). By the definition of P⋆ we get

[P⋆]jk = E {zj(t)zk(t)} =
1

2π

∫

∞

−∞

dωφ(iω)
(iω)n−j(−iω)n−k

|∆(iω)|2 . (3.1)

Note that the spectrum φ(ω) is an even function of ω. Therefore, if j + k is an odd integer the
integral vanishes because the integrand is an odd function of ω. If j + k = 2ℓ for some integer ℓ,
then we have

(iω)n−j(−iω)n−k = ω2n−2ℓ(i)2n−2ℓ(−1)n−k = ω2n−2ℓ(−1)k−ℓ.

Consequently, it follows from (3.1) that

[P⋆]jk =
(−1)k−ℓ

2π

∫

∞

−∞

dω
ω2n−2ℓφ(iω)

|∆(iω)|2 = (−1)k−ℓ E
{

pn−ℓ

∆(p)
u(t) · pn−ℓ

∆(p)
u(t)

}

= (−1)k−ℓ[P⋆]ℓℓ.

From the last equality it is straightforward to verify that P⋆ ∈ H0.

Remark: If u(t) is a continuous-time white noise (i.e. derivative of the Weiner process) of unit
variance, then P⋆ = E⋆; see (2.14). Consequently, E⋆ ∈ H0.

In the following proposition we show that the matrices involved in (2.13) belong to H0.

Proposition 3. The matrix Xk := F k
⋆ E⋆ ∈ H for any positive integer k.

Proof: In this proof we use the Matlab notation H(j : k, :), j ≤ k to denote the sub-matrix of H
composed of the jth to kth rows of H. Similarly, H(:, j : k), j ≤ k denotes the sub-matrix of H
composed of the jth to kth columns of H. From the structure of F⋆ we have for k ≥ 0 that

Xk+1(2 : n, :) = F⋆(2 : n, :)Xk = [ In−1 0(n−1)×1 ]Xk = Xk(1 : n − 1, :). (3.2)

Next, we show using mathematical induction that

Xk+1(:, 2 : n) = −Xk(:, 1 : n − 1). (3.3)

Consider the case k = 0. Note that X0 = E⋆ is a symmetric matrix. Also,

X1 + X ′

1 = −g⋆g
′

⋆ ⇒
[X1(:, 2 : n)]′ = −X1(2 : n, :) = −X0(1 : n − 1, :) = −[X0(:, 1 : n − 1)]′,
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where in the third equality we have used (3.2). Therefore, (3.3) holds for k = 0. Now assume that
(3.3) holds for k = 0, 1, . . . , ℓ − 1. Then

Xℓ+1(:, 2 : n) = F⋆Xℓ(:, 2 : n) = −F⋆Xℓ−1(:, 1 : n − 1) = −Xℓ(:, 1 : n − 1).

Hence, (3.3) follows by induction. Now X0 = E⋆ ∈ H. Applying (3.2) and (3.3) recursively it is
readily verified that Xk ∈ H for all k ≥ 0. Hence the proposition follows.

It follows from Proposition 3 that Xk+X ′

k ∈ H0 for all k. Since P⋆ ∈ H0, the number of independent
equations in the matrix equation (2.13) is only n. If z(t) = Lz⋆(t) for some nonsingular L, then
using (2.13) and Proposition 1 we get

LP⋆L
′ =

n−1
∑

k=0

wkL(Xk + X ′

k)L
′ ⇒ [L ⊗ L]vec[P⋆] =

n−1
∑

k=0

wk[L ⊗ L]vec[Xk + X ′

k]. (3.4)

This is a weighted version of (2.13). Note that we denote the matrix Kronecker product by ⊗.
Since the underlying system of equations is not overdetermined, the weighting has no effect on the
final solution. However, in a practical scenario, the true covariance matrix P⋆ is unknown, and we
work with an estimate P̂⋆ not necessarily belonging to H0. Then we might expect that solving an
overdetermined system with proper weighting (3.4) may give more accurate estimates of {wk}n−1

k=0 .

We explore the second-order statistical properties of P̂⋆ to examine this aspect. We first state the
following basic result.

Proposition 4. Let uA(t), uB(t) uC(t) and uD(t) be jointly Gaussian real and scalar-valued
continuous-time stationary stochastic processes. Let us define

P̂AB(τ) :=
1

T

∫ T

0

dt uA(t + τ)uB(t), PAB(τ) := E {uA(t + τ)uB(t)}.

The cross-spectrum ΦAB(iω) of uA(t) and uB(t) is given by

ΦAB(iω) =

∫

∞

−∞

dω PAB(τ)e−iωτ .

Assume that each of the functions PAC(τ)PBD(τ) and PAD(τ)PBC(τ) tends to zero as τ → ∞ at
a rate faster than τ−2. Then as T → ∞ the asymptotic covariance between P̂AB(0) and P̂CD(0)
is given by

E {P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)} =
1

2πT

∫

∞

−∞

dω [ΦAC(iω)ΦDB(iω) + ΦAD(iω)ΦCB(iω)] .

Proof: By straightforward algebra we have

E {P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)} = E {P̂AB(0)P̂CD(0)} − PAB(0)PCD(0)

=
1

T 2

∫ T

0

∫ T

0

dt1dt2 [E {uA(t1)uB(t1)uC(t2)uD(t2)} − E {uA(t1)uB(t1)}E {uC(t2)uD(t2)}]

=
1

T 2

∫ T

0

∫ T

0

dt1dt2 [E {uA(t1)uC(t2)}E {uB(t1)uD(t2)} + E {uA(t1)uD(t2)}E {uB(t1)uC(t2)}]

=
1

T 2

∫ T

0

∫ T

0

dt1dt2 [PAC(t1 − t2)PBD(t1 − t2) + PAD(t1 − t2)PBC(t1 − t2)]

=
1

T 2

∫ T

−T

dt(T − t) [PAC(t)PBD(t) + PAD(t)PBC(t)] ,
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where in the second equality we have used a well-known formula for the fourth order moment of
a jointly Gaussian random variables [12]. Since the functions PAC(τ)PBD(τ) and PAD(τ)PBC(τ)
tends to zero as τ → ∞ at a rate faster that τ−2, we can write as T → ∞

E {P̂AB(0) − PAB(0)}{P̂CD(0) − PCD(0)}

=
1/T

4π2

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

dt dω1 dω2 ei(ω1+ω2)t [ΦAC(iω1)ΦBD(iω2) + ΦAD(iω1)ΦBC(iω2)]

=
1

2πT

∫

∞

−∞

∫

∞

−∞

dω1 dω2 δ(ω1 + ω2) [ΦAC(iω1)ΦBD(iω2) + ΦAD(iω1)ΦBC(iω2)]

=
1

2πT

∫

∞

−∞

dω [ΦAC(iω)ΦBD(−iω) + ΦAD(iω)ΦBC(−iω)] .

Hence, the proposition follows.

Since P⋆ ∈ H0, each element along an anti-subdiagonal of P̂⋆ gives the estimates of the same
quantity (up to a sign factor). Our next proposition explores the correlation structure of the
elements in {[P̂⋆]ij : i + j = 2ℓ} for a fixed ℓ.

Proposition 5. Let P̂⋆ be given by (2.16). Then for i + j = k + l = 2ℓ it holds that

cov
{

[P̂⋆]ij , [P̂⋆]kl

}

= (−1)j−lcov
{

[P̂⋆]ℓℓ , [P̂⋆]ℓℓ

}

, as T → ∞, (3.5)

where cov(x1, x2) denotes the covariance between two random variables x1 and x2. Furthermore,
for the diagonal elements of P̂⋆ it holds for T → ∞ that

cov
{

[P̂⋆]ii , [P̂⋆]jj

}

=
2

T
var

{

p2n−i−j

∆2(p)
us(t)

}

, (3.6)

where us(t) is a stationary stochastic process having a spectral density Φ2
u(iω).

Proof: Recall that [z⋆(t)]i = {pn−i/∆(p)}u(t), where p denotes the differentiation operator.
Consider the case i + j = k + l = 2ℓ. Then (−1)k = (−1)2ℓ−l = (−1)−l = (−1)l. Proposition 4
gives

cov
{

[P̂⋆]ij , [P̂⋆]kl

}

=
1

2πT

∫

∞

−∞

dω
|Φu(iω)|2

|∆(iω)|4
[

(iω)2n−i−l(−iω)2n−j−k + (iω)2n−i−k(−iω)2n−j−l
]

=
1

2πT

∫

∞

−∞

dω
|Φu(iω)|2

|∆(iω)|4
(iω)4n−i−j−k−l

[

(−1)j+k + (−1)j+l
]

=
1

2πT

∫

∞

−∞

dω
|Φu(iω)|2

|∆(iω)|4
(iω)4(n−ℓ)

[

(−1)j−l + (−1)j−l
]

=
2(−1)j−l

2πT

∫

∞

−∞

dω
ω4(n−ℓ) |Φu(iω)|2

|∆(iω)|4
(3.7)

Now putting j = l = ℓ in (3.7) we get (3.5). The calculation leading to (3.6) is similar i.e.,

cov
{

[P̂⋆]ii , [P̂⋆]jj

}

=
1

2πT

∫

∞

−∞

dω
|Φu(iω)|2

|∆(iω)|4
[

(iω)2n−i−j(−iω)2n−i−j + (iω)2n−i−j(−iω)2n−i−j
]

,
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which gives (3.6).

Since P⋆ ∈ H0, every element of the set Sℓ := {(−1)k−ℓ[P̂⋆]j,k : j + k = 2ℓ} gives an estimate of
[P⋆]ℓ,ℓ. However, from (3.5) it follows that the asymptotic covariance matrix of the elements in Sℓ

is of rank one. Hence, it is not possible improve the statistical accuracy of estimated [P⋆]ℓ,ℓ by
taking a linear combination of the elements in Sℓ. In practice T must be large enough to ensure the
reliability of the extracted statistics. For such practical values of T the inference made from the
asymptotic analysis is still valid. Numerical simulation results also confirm this observation. Thus,
we conclude that there is no improvement in statistical accuracy if we solve the overdetermined
system of equations (3.4), and the coordinates of z(t) have no effect on the statistical accuracy of
ŵ. The observations so far justify the algorithm described in Section 2.

Proposition 6. As the observation time T → ∞ the asymptotic covariance matrix Cŵ of
√

Tŵ
in (2.17) is given by

Cŵ = X−1CP (X ′)−1, (3.8)

where P̂⋆ is given in (2.16) and CP is the asymptotic covariance matrix of
√

Td[P̂⋆], which is a
Hankel matrix given by

[CP ]i,j = 2 var

{

p2n−i−j

∆2(p)
us(t)

}

. (3.9)

where us(t) is a stationary stochastic process having spectral density Φ2
u(iω). Consequently, the

asymptotic covariance matrix of
√

T f̂ is given by

Cf = DCŵD′. (3.10)

Proof: The expression for CP in (3.9) follows directly from (3.7), while (3.8) and (3.10) are con-
sequences of (2.17).

4 Fitting a rational model

Assume that u(t) has a strictly proper rational spectrum of order ν, i.e.,

φ(s) =
c(s)c(−s)

a(s)a(−s)
, (4.1)

where

a(s) = sν +
ν

∑

k=1

aks
ν−k, c(s) =

ν
∑

k=1

cks
ν−k.

Then the half-spectrum f(s) also admits a strictly proper rational representation as

f(s) =
b(s)

a(s)
, b(s) =

ν
∑

k=1

bks
ν−k.

such that
ϕ(s) := c(s)c(−s) = a(s)b(−s) + b(s)a(−s). (4.2)

Our approach in this work is to identify the real-valued parameters {ak}ν
k=1 and {bk}ν

k=1 from the
data. Subsequently we can evaluate the right-hand side of the equation (4.2). Then a spectral fac-
torization of (4.2) will lead to the parameters {ck}ν

k=1. Note that the right-hand side of (4.2) needs

10



to be positive real in order to ensure the existence of a stable spectral factor. Another important
issue is to ensure the stability of the estimated polynomial a(s). The problem of computing a(s)
and b(s) from the interpolation conditions originating from f(s) and its derivatives evaluated at
{sk}m

k=1 is in fact a linear problem. However, when we impose the stability constraint on a(s) and
positivity constraint on the right-hand side of (4.2), we have to solve a Nevanlinna-Pick interpo-
lation problem with a degree constraint [2, 14], which is more difficult.

In order to keep the description simple, we do not consider interpolation conditions involving first
and higher order derivatives of f(s). However, the following discussion can be generalized2 to
account for the interpolation conditions involving first and higher order derivatives of f(s). Thus
from now on we consider the case nk = 1 for k ∈ {1, . . . ,m}.

Let f̂k be the estimate of f(sk). Once n ≥ 2ν, it is straightforward to solve

f̂ka(sk) = b(sk), k ∈ {1, . . . , n}, (4.3)

in the least-squares sense. It is also straightforward to incorporate weightings and solve a weighted
least-squares problem. In order to derive the statistical properties of the resulting estimates, we
need to express the problem in terms of the real-valued vector f̂ . For that we need some notation.
Define

ψk := [ sν−1
k · · · sk 1 ], ΨR := [ ψ′

1 · · · ψ′

nr
]′, ΨC := [ ψ′

nr+1 · · · ψ′

nr+nc
]′.

γR := [ sν
1 · · · sν

nr
]′, γC := [ sν

nr+1 · · · sν
nr+nc

]′, γ := [ γ′

R Re(γ′

C) Im(γ′

C) ]′

F :=





diag(fR) 0 0
0 diag{Re(fC)} −diag{Im(fC)}
0 diag{Im(fC)} diag{Re(fC)}



 , Ψ :=





ΨR

Re(ΨC)
Im(ΨC)



 .

See (2.9) for definitions of fR and fC . In the following we denote the estimate of F derived from
f̂ by F̂. Let us introduce

θ1 := [ a1 · · · aν b1 · · · bν ]′, G = [ −FΨ Ψ ], Ĝ = [ −F̂Ψ Ψ ].

It can be verified that Gθ1 = Fγ. Consequently, the least-squares estimate of θ1 is given by

θ̂1 = [Ĝ′∆Ĝ]−1Ĝ′∆F̂γ,

where ∆ is a positive-definite weighting matrix chosen by the user. The following proposition
quantifies the asymptotic covariance matrix of θ̂1.

Proposition 7. Define the matrix U as

UR =







a(s1)
...

a(snr
)






, UC =







a(snr+1)
...

a(snr+nc
)






, U =





diag(UR) 0 0
0 diag{Re(UC)} −diag{Im(UC)}
0 diag{Im(UC)} diag{Re(UC)}



 .

2To illustrate how to set up a linear problem in terms of interpolation constraints involving derivatives of f(s)
note that

df(s)

ds
a(s) +

da(s)

ds
f(s) =

db(s)

ds
.

Here we estimate f(s) and df(s)/ds for known s values, giving the interpolation conditions. Thus, the above
equation is still linear in {ak}ν

k=1
and {bk}ν

k=1
. Now the procedure can be repeated successively for higher order

derivatives.
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Then the asymptotic covariance matrix of
√

T θ̂1 is given by

Cθ̂1
= TE {(θ̂1 − θ1)(θ̂1 − θ1)

′} = [G′∆G]−1G′∆UCfU
′∆G[G′∆G]−1. (4.4)

The optimum choice of ∆ is given by

∆ = (UCfU
′)−1.

and the associated covariance matrix of the optimum estimate of
√

Tθ1 is [G′(UCfU
′)−1G]−1.

Proof: In this proof we denote θa = [ a1 · · · aν ]′. Using a standard technique of deriving
the asymptotic accuracy of the least-squares based estimates [27, p.285] one can show that the
asymptotic estimation error is given by

θ̂1 − θ1 = [Ĝ′∆Ĝ]−1Ĝ′∆(F̂γ − Ĝθ1)

≈ [G′∆G]−1G′∆(F̂γ − Ĝθ1)

= [G′∆G]−1G′∆(F̂ − F)(γ + Ψθa) = [G′∆G]−1G′∆U(f̂ − f).

Now it is straightforward to derive (4.4). The remaining part of the proposition follows from the
theory of the best linear unbiased estimates [18, p.555].

The implementation of the optimally weighted least-squares estimator requires a bootstrapping
procedure. First we need an initial estimate of the system parameters obtained without any
weighting. This knowledge is used to compute Cf , which is then used to implement the optimally
weighted estimator.

Let â(s), b̂(s) and ϕ̂(s) denote the estimates of a(s), b(s) and ϕ(s), respectively, derived from θ̂1.
However the requirement for spectral factorization

ϕ̂(s) > 0, Re(s) = 0. (4.5)

may not hold in general. This can be fixed by using a regularization procedure described below.
The idea here is to perturb the coefficients of ϕ̂(s), so that (4.5) is enforced. This actually amounts
to solving a linear matrix inequality (LMI). In fact we can use the results in [28], (see also [21]),
for estimation of moving average processes. Using a bilinear transformation s = (z − 1)/(z + 1)
let us define

ϕ̂d(z) :=
(z + 1)2ν

zν
ϕ̂

{

z − 1

z + 1

}

= [(1 + z)(1 + z−1)]ν ϕ̂

{

z − 1

z + 1

}

=
ν

∑

j=−ν

βjz
j.

It is straightforward to verify the symmetric structure of ϕ̂d(z), also that ϕ̂d(z) is real-valued for
|z| = 1. Using the property of the bilinear transformation we can express (4.5) equivalently as

ϕ̂d(z) > 0, |z| = 1. (4.6)

However, (4.6) is equivalent to the constraint that ϕ̂d(e
−iω) is the spectral density function of a

moving average process. This problem occurs naturally in identifying an order ν moving average
process where {βj}ν

j=0 represent the covariances estimated from the data. Also it is not guaranteed

that (4.6) holds. Therefore one looks for the modified coefficients {β̂j}ν
j=0 such that

ν
∑

j=0

(βj − β̂j)
2
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is minimized subject to the constraint

ν
∑

j=−ν

β̂jz
j > 0, |z| = 1.

The above optimization problem can be cast as a semidefinite programming problem [28], thus
can be solved numerically in a computationally efficient way. We denote the spectral density
computed using the optimal solution by ϕ̌d(z). An inverse bilinear transformation gives a refined
version ϕ̌(s) of ϕ̂(s) such that ϕ̌(iω) > 0 for all real-valued ω. We compute ϕ̌(s) as

ϕ̌(s) =
zν

(z + 1)2ν
ϕ̌d(z)

∣

∣

∣

∣

z= 1+s

1−s

From ϕ̌(s) we can compute a consistent estimate č(s) of c(s) by solving the spectral factorization
problem

ϕ̌(s) = č(s)č(−s).

For a large enough observation length the condition (4.5) is satisfied since θ̂1 comes sufficiently
close to θ1 due to the consistency properties. Then the regularization procedure is not needed.
Therefore, the asymptotic covariance expression in Proposition 7 remains valid. Also by the
same reasoning we can extend the result to derive the asymptotic covariance of the estimated
c-parameters. This is done in the following proposition. Here for the simplicity of notation we
extend the definitions of ak, bk and ck so that ak = bk = ck = 0 if k > ν and k < 0. Also
b0 = c0 = 0 and a0 = 1.

Proposition 8. Denote θa = [ a1 · · · aν ]′, θb = [ b1 · · · bν ]′ and θc = [ c1 · · · cν ]′. Also
define

θ = [ θ′a θ′b θ′c ]′,

and let θ̂ denote the estimate of θ derived in above. Let us define the matrix valued function V(·)
such that the ν × ν matrix V(θa) is defined element-wise as

[V(θa)]jk = (−1)ν−k a2j−k, (4.7)

and similarly define V(θb) and V(θc). Then the asymptotic covariance matrix of
√

T θ̂ is given by

Cθ̂ := TE {(θ̂ − θ)(θ̂ − θ)′} = V Cθ̂1
V ′,

where Cθ̂1
is given in Proposition 7, and

V =





I 0
0 I

V−1(θc)V(θb) V−1(θc)V(θa)



 . (4.8)

Proof: Denote the estimation error in θa, θb and θc by θ̃a, θ̃b and θ̃c, respectively. Also ã(s),
b̃(s) and c̃(s) will denote the associated perturbations in the polynomials a(s), b(s) and c(s),
respectively. Then we have the following asymptotic perturbation expansion of the first order:

a(s)b̃(−s) + a(−s)b̃(s) + b(s)ã(−s) + b(−s)ã(s) = c(s)c̃(−s) + c(−s)c̃(s). (4.9)
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Now we equate the coefficients of {sk}2ν
k=0 on both sides of (4.9). In matrix notation we have

{S1(θa) + S2(θa)}
[

0

θ̃b

]

+ {S1(θb) + S2(θb)}
[

0

θ̃a

]

= {S1(θc) + S2(θc)}
[

0

θ̃c

]

, (4.10)

where S1(θa), S2(θa) are (2ν + 1) × (ν + 1) matrices defined element-wise as

[S1(θa)]jk = (−1)ν−j+kaj−k, [S2(θa)]jk = (−1)ν+1−kaj−k.

Then for an even j we see that

[S1(θa)]jk + [S2(θa)]jk = {(−1)ν−2ν+k + (−1)ν+1−k}aj−k = {(−1)ν−k + (−1)ν+1−k}aj−k = 0.

Similarly, for an odd j we have

[S1(θa)]jk = (−1)ν−2ν−1+kaj−k = (−1)ν+1−kaj−k = [S2(θa)]jk.

Therefore, every even numbered row of (4.10) vanishes. Also the first row of (4.10) vanishes,
because the coefficient of s2ν+1 vanishes on both sides of (4.9). Now retaining only the relevant
terms in (4.10) corresponding to the 3-rd, 5-th, . . ., (2ν + 1)-th rows we get

V(θa)θ̃b + V(θa)θ̃b = V(θc)θ̃c ⇒ θ̂ − θ = V (θ̂1 − θ1),

where [V(θa)]jk = [S2(θa)]2j+1,k+1 = (−1)ν−ka2j−k. Now (4.8) is straightforward from the last
equality, since V(θc) is nonsingular by construction (4.7).

If the roots of â(s) obtained from the linear interpolation approach are in the left-half plane, then
we get a consistent estimate of the CARMA process transfer function as č(s)/â(s). However, â(s)
may have roots in the right-half plane in some rare occations. In that case a second regulariza-
tion step is required. One popular but heuristic approach to handle this problem is to reflect
the unstable roots of â(s) to the left-half-plane about the imaginary axis. Another possibility
is to use the spectral zero assignability approach in [7]. Note that we have a reliable estimate
č(s) of c(s). Therefore, the convex optimization algorithm in [1] can be used to re-estimate a(s)
using ν + 1 interpolation data. A natural way to choose this subset of size ν + 1 is be to pick
up the interpolation data with lower statistical variation. The expression (3.10) can be used for
that purpose. Numerical simulations show that the heuristic strategy of reflecting the unstable
poles of â(s) to the left-half plane works as good as the Byrnes-Georgiou-Lindquist algorithm in [1].

If we want to fit an AR model, the spectral zeros are a priori known. Then there is no need for
estimating c(s). It is also possible to extract an accurate estimate of the AR model using the
Byrnes-Georgiou-Lindquist algorithm [1].

5 An illustrative example

In this section we illustrate the proposed direct modeling approach using numerical simulations.
To conduct the simulation we first need to simulate the sampled version of a continuous-time
stochastic process u(t). We do so by using the method in [25, 15] as follows. First we express the
continuous-time process u(t) in state space:

ζ̇(t) = Acζ(t) + bce(t),
u(t) = ccζ(t),

(5.1)
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(a) Proposed approach
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(b) Prediction error method

Figure 1: Comparison of the mean of the estimated spectrum (dashed line) and the true spectrum
(solid line). The mean ± standard deviation of the estimated spectrum is shown in dotted lines.

where ζ(t) is the state vector, and e(t) is a unity variance continuous-time white noise, i.e. E {e(t+
τ)e(t)} = δ(τ). Note that δ(·) is the Dirac’s delta function. Let the process be sampled at a
sampling interval ts. We want to seek for an equivalent discrete-time state space model such that
the second-order statistics of the discrete-time model output are the same as that of the underlying
continuous-time process at the sampling instants. This discrete-time model is given by [25, 15]

ζ{(k + 1)ts} = eActsζ(kts) + ed(kts),
u(kts) = ccζ(kts),

(5.2)

where ed(kts) is a vector-valued discrete-time white noise sequence with E {ed(t)e
′

d(t)} = Rd.
The covariance matrix Rd is related to the underlying continuous-time model via two Lyapunov
equations as follows:

AcQ + QA′

c + bcb
′

c = 0, (5.3)

Q = eActsQeA′

cts + Rd (5.4)

More precisely, we need to solve for Q in (5.3), and subsequently compute Rd from (5.4). We
point out that Q = E {ζ(t)ζ ′(t)}, which is easy to verify from (5.3).

In order to compute the estimates of the half-spectrum at the selected interpolation points we
need to compute the output of the input-to-state filter using the samples u(kts) at the sampling
instants. This is done by a popular discretization technique known as state variable filtering
(SVF); see [6] and references therein. In the discretization of the input-to-state filter, the input
signal is assumed to vary linearly in between the sampling instants (commonly referred to as the
first-order hold).

In the simulations we consider a CARMA model with [see also (4.1)]

a(s) = s3 + 0.3s2 + 9s + 0.9, c(s) = s2 + 0.5s + 6.
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The observation time is 500 sec, and the sampling interval is 0.05 sec. This means that the
total number of samples is 104. We estimate the half-spectrum at the interpolation points
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 1 ± 2i, 1 ± 3i, 1 ± 4i}. No derivative constraint is used in the estima-
tion process. The interpolation data are then used to fit a CARMA model using the procedure
outlined in Section 4. The performance of the proposed algorithm is compared with that of the
so-called Prediction Error Method (PEM) based approach [16, 24]. Although PEM is known as
the most accurate estimator, it does not always have a solution [16, 24]. Approximately 25%
of our simulations fail to give a PEM solution. The results presented here are based on only
those realizations for which we get a PEM solution. The estimation results obtained from 100
Monte-Carlo simulations are shown in Figure 1, where the true spectrum is compared with the
estimated mean value ± standard deviation. As can be seen in Figure 1, the estimation accuracy
of the proposed approach is comparable with the prediction error method. For about 2% of the
cases PEM deviates significantly from the true parameter vector (the optimization routine fails
to reach the global minimum). These special cases excluded in the evaluation of the statistical
performance. In Table 1 we show the analytical and empirical standard deviations of the proposed
estimates. The performance of the proposed approach is similar to PEM as far as estimation of

a1 a2 a3 c1 c2 c3

True value 0.3 9 0.9 1 0.5 6
Mean 0.3186 9.0331 0.9961 0.9740 0.5887 5.9368

Std-Dev (empirical) 0.0396 0.1240 0.2393 0.0290 0.1201 0.2211
Std-Dev (analytical) 0.0408 0.1126 0.1876 0.0224 0.1152 0.1792

Table 1: Parameter estimation performance of the proposed algorithm.

{ak}3
k=1 are concerned. However, PEM is slightly better than the proposed method in estimation

of {ck}3
k=1 when it gives a solution. The analytical standard deviations of the proposed estimates

match well with the empirical standard deviations in Table 1. The algorithms are implemented
using Matlab 6.1 on a 2.8 GHz Pentium IV processor with 1 GB RAM. The discrete-time PEM
estimate is computed using the pem routine in the System Identification Toolbox. The average
time required to compute the proposed estimate is 0.2 sec, while it takes 1.0 sec on average to
compute the PEM estimate.

6 Conclusions

In this paper we have proposed a novel direct approach for modeling continuous-time stochastic
processes. The main idea is to use an input-to-state filter to compute the half-spectrum in some
prescribed points in the right-half plane. The estimated samples of the half-spectrum are then
used to obtain a rational model of the half-spectrum using linear interpolation with a positivity
constraint. This is done by solving a semidefinite programming problem. The unique feature of the
approach is two fold. Firstly, it is not required to estimate an intermediate discrete-time model.
Thus, we can avoid many numerical difficulties associated with an indirect method. Secondly, it
offers estimates which are comparable to PEM in terms of accuracy. However the PEM technique
often fails to give a solution, which is not the case with the proposed method. One important
open research question is to understand how the interpolation points affect the estimation results.
More interpolation points tend to give better estimates (but at an expense of more computation).
However, it is not clear how to best choose their locations.
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[4] H. Fan, T. Söderström, and Y. Zhou. Continuous-time AR process parameter estimation in
presence of additive white noise. IEEE Transactions on Signal Processing, pages 3392–3398,
December 1999.

[5] A. Feuer and G. C. Goodwin. Sampling in digital signal processing and control. Birkhäuser,
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