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Abstract

This paper is concerned with synthesis of output feedback controllers for descriptor systems to attain dissipativity of the
closed-loop system. A necessary and sufficient condition is provided in terms of LMIs for the existence of a controller satisfying
dissipativity and admissibility (an internal stability) of the closed-loop system. Unlike previous results, the condition does
not depend on the choice of the descriptor realization. The derived LMI condition with a rank constraint for synthesis is a
generalization of those for LMI-based H∞ control of state-space systems to descriptor systems.
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1 Introduction

Descriptor representation of dynamical systems is more
general and often more natural than state-space sys-
tems (See e.g., Lewis (1986)). The descriptor form is
useful to represent and to handle systems such as me-
chanical systems, electric circuits, interconnected sys-
tems, and so on. Moreover, descriptor representation is
utilized in some of recent results on analysis of time-
delay systems (e.g., Fridman & Shaked (2002)) and gain-
scheduled control based on linear parameter-varying sys-
tems (Masubuchi, Akiyama, & Saeki, 2003; Masubuchi,
Kato, Saeki, & Ohara, A., 2004). These new applications
exhibit further importance and usefulness of descriptor
systems.

Among basic notions of state-space systems gener-
alized to descriptor systems, dissipativity is one of
the most important properties of dynamical systems
and plays crucial roles in various problems of analy-
sis and synthesis of control systems, including posi-
tive and bounded realness. For state-space systems,
Kalman-Popov-Yakuvobich (KYP) Lemma and re-
lated results provide characterization of positive or
bounded realness in terms of state-space realization
(Anderson, 1967; Willems, 1971; Rantzer, 1996). Also
for descriptor systems there have been proposed several
criteria for properties related to dissipativity in such
as Takaba, Morihira, & Katayama (1994); Masubuchi,
Kamitane, Ohara, & Suda (1997); Wang, Yung, & Chang

(1998); Uezato, & Ikeda (1999); Rehm, & Allgöwer
(2000); Rehm (2000); Rehm, & Allgöwer (2002); Zhang,
Lam, & Xu (2002); Freund, & Jarre (2004). However,
most of existing results require a certain assumption
or restriction on the realization of descriptor systems,
while KYP Lemma for state-space systems is valid inde-
pendently of the choice of the realization. On the other
hand, a new matrix inequality condition is proposed
recently in (Masubuchi, 2004; Masubuchi, 2006) that is
necessary and sufficient for dissipativity of a descriptor
system with any realization of a descriptor system.

In this paper, we consider output feedback controller
synthesis for descriptor systems to attain dissipativity of
the closed-loop system. Based on the criterion shown in
Masubuchi (2006), a necessary and sufficient condition
is derived in terms of LMIs with a rank constraint for
existence of a controller satisfying dissipativity and ad-
missibility 1 of the closed-loop system. Unlike previous
results, the proposed condition does not depend on the
choice of the descriptor realization and thus the remedy
of those results are removed.

The proposed LMI condition for the synthesis problem
generalizes the results of H∞ synthesis for state-space
systems in Gahinet & Apkarian (1994); Iwasaki & Skel-
ton (1994) to synthesis for descriptor systems with dis-

1 An internal stability of descriptor systems (See e.g. Ma-
subuchi et al. (1997).)

1



sipativity specification, including a rank condition cor-
responding to the order of the dynamic part of a con-
troller. The derivation of the existence criterion is based
on the ‘variable elimination’ methodology, which is a
key technique in H∞ synthesis of state-space systems
and has been applied to synthesis for descriptor sys-
tems (Rehm, 2000; Rehm, & Allgöwer, 2002). However,
the LMI of the dissipativity criterion (Masubuchi, 2004)
that our results are based on has structure for which
output feedback synthesis has never been considered be-
fore. Hence we provide methods to handle the new LMI
for synthesis of descriptor systems.

The rest of the paper is organized as follows. Section 2 is
devoted to preliminaries including the disspativity crite-
rion for descriptor systems. Section 3 provides the main
result: Description of control systems and the problem
statement are given in Subsections 3.1 and 3.2, respec-
tively. The existence condition is shown in Subsection
3.3, followed by the proof in Subsections 3.4 and 3.5.
The main result is illustrated via numerical examples in
Section 4. Lastly Section 5 concludes the paper.

Notation. For a matrix X , we denote by X−1, XT, X−T

and X∗ the inverse, the transpose, the inverse of the
transpose and the conjugate transpose of X , respec-
tively. Let HeX stand for X +XT for square X . In addi-
tion, X = (∗)T and X+(∗)T mean X = XT and X+XT,
respectively. For a symmetric matrix represented block-
wise, offdiagonal blocks can be abbreviated with ‘∗’, such

as

[
X11 X12

XT
12 X22

]
=

[
X11 X12

∗ X22

]
=

[
X11 ∗
XT

12 X22

]
. For a

matrix M ∈ Rm×n with m > n, let M⊥ be a matrix
satisfying M⊥

[
(M⊥)T M

]
=
[

I 0
]
. For M ∈ Rm×n

with m < n, define M⊥ := ((MT)⊥)T. The n × n iden-
tity matrix is represented by In. The zero matrix of the
size m × n is 0m×n.

2 Preliminaries

Consider the following descriptor system:

{
Eẋ = Ax + Bw,

z = Cx + Dw,
(1)

where x ∈ Rn is the descriptor variable, w ∈ Rm is
the input and z ∈ Rp is the output of the system. Let
E ∈ Rn×n and rankE = r.

Definition 1 (1◦) The pencil sE − A is regular if
det(sE − A) is not identically zero.

(2◦) Suppose that sE − A is regular. The exponential
modes of sE − A are the finite eigenvalues of sE − A,
namely, s ∈ C such that det(sE − A) = 0.

(3◦) Let a vector v1 satisfy Ev1 = 0. Then the infinite
eigenvalues associated with the generalized eigenvectors
vk satisfying Evk = Avk−1, k = 2, 3, 4, . . . are impulsive
modes of sE − A.

(4◦) The descriptor system (1) is impulse-free if the pen-
cil sE − A is regular and has no impulsive modes.

(5◦) The pencil sE − A is said to be admissible if the
pencil sE−A is regular, impulse-free and has no unstable
exponential modes.

Next, let S = ST ∈ R(m+p)×(m+p) and consider the
following quadratic supply rate:

s(w, z) =

[
w

z

]T

S

[
w

z

]
=

[
w

z

]T [
S11 S12

ST
12 S22

][
w

z

]
,

(2)

where the partition of S corresponds to the sizes of w, z.

Definition 2 The descriptor system (1) is said to be
dissipative with respect to the supply rate s(·, ·) if the
descriptor system (1) is impulse-free and for any w ∈
L2[0, T ] it holds that

∫ T

0
s(w(t), z(t))dt ≤ 0 for ∀T ≥ 0

provided x(0) = 0.

The time-domain condition in Definition 2 is equivalent
to the following condition in the frequency-domain:

[
I

G(jω)

]∗
S

[
I

G(jω)

]
≤ 0, ∀ω ∈ R ∪ {∞}, (3)

where G(s) = C(sE − A)−1B + D. The dissipativ-
ity condition can represent several performance cri-
teria, such as the H∞ norm condition and the ex-
tended strict positive realness (ESPR in short (Zhang
et al., 2002)) with setting S appropriately. There have
been proposed several matrix inequality criteria for
H∞ norm condition (Masubuchi et al., 1997; Rehm,
& Allgöwer, 2000; Rehm, & Allgöwer, 2002; Rehm,
2000; Takaba et al., 1994; Uezato, & Ikeda, 1999),
ESPR (Wang et al., 1998; Zhang et al., 2002) and
dissipativity (Rehm, & Allgöwer, 2002; Rehm, 2000).
However, matrix inequalities shown in these previ-
ous results need a certain additional condition on D-
matrix to show necessity, such as D = 0 (Masubuchi
et al., 1997; Rehm, & Allgöwer, 2000; Rehm, &
Allgöwer, 2002; Uezato, & Ikeda, 1999) or ‖D‖ < γ
(Rehm, 2000; Takaba et al., 1994) for H∞ norm, where
γ is the norm bound, D + DT > 0 for ESPR (Wang
et al., 1998; Zhang et al., 2002) and D = 0, S12 = 0
(Rehm, & Allgöwer, 2002; Rehm, 2000). Such draw-
back of existing criteria is removed in the recent result
for admissibility and dissipativity shown in Masubuchi
(2006):
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Lemma 1 The following two conditions are equivalent:

(i) The descriptor system (1) is admissible and satisfies

[
I

G(jω)

]∗
S

[
I

G(jω)

]
< 0 (4)

for any ω ∈ R ∪ {∞}.
(ii) There exist matrices X ∈ Rn×n and W ∈ Rn×m sat-

isfying

ETX = XTE ≥ 0, ETW = 0, (5)

M +

[
XT

WT

] [
A B

]
+ (∗)T < 0, (6)

where

M =

[
0 I

C D

]T

S

[
0 I

C D

]
. (7)

In this paper we consider only strict inequalities for dis-
sipativity as in (6).

3 Main Result

3.1 Control system in the descriptor form

Based on the new criterion for admissibility and dissipa-
tivity of descriptor systems shown in the previous sec-
tion, we consider synthesis of an output feedback con-
troller to attain admissibility and dissipativity of a con-
trol system in the descriptor form. Let us represent the
plant as follows:




Eẋ = Ax + B1w + B2u,

z = C1x + D11w + D12u,

y = C2x + D21w,

(8)

where x ∈ Rn is the descriptor variable, w ∈ Rm1 is the
external input, u ∈ Rm2 is the control input, z ∈ Rp1

is the controlled output and y ∈ Rp2 is the measured
output. Let E ∈ Rn×n and rankE = r. We consider the
following output feedback controller:

{
Ecẋc = Acxc + Bcy,

u = Ccxc + Dcy,
(9)

where Ec ∈ Rnc×nc with rankEc = rc and xc ∈ Rnc .
Connecting this controller to the plant (8) forms the

closed-loop system as follows:

{
Eclẋcl = Aclxcl + Bclw,

z = Cclxcl + Dclw,
(10)

where xcl =
[

xT xT
c

]T
∈ Rncl , ncl = n + nc and

Ecl =

[
E 0

0 Ec

]
, Acl =

[
A + B2DcC2 B2Cc

BcC2 Ac

]
,

Bcl =

[
B1 + B2DcD21

BcD21

]
,

Ccl =
[

C1 + D12DcC2 D12Cc

]
,

Dcl = D11 + D12DcD21.

3.2 Problem statement

Let us consider the supply rate (2) for S ∈ R(m1+p1)×(m1+p1).

Assumption 1 (1◦) S22 ≥ 0. (2◦)
[
ST

12 ST
22

]T
has full

column rank.

Let T22 ∈ Rq×p1 be a matrix satisfying S22 = T T
22T22.

Remark 1 The supply rates for the two important spe-
cific dissipativity conditions of H∞ norm and positive re-
alness meet (1◦) of Assumption 1 (See Subsection 3.3).
The LMI (6) implies ATX + XTA < 0 and hence X is
nonsingular. When the second item is not satisfied, one
can always redefine the controlled output z so that the
same supply rate is defined for the new z with a new S
satisfying the assumption.

Now the synthesis problem is stated as follows: given a
plant in the descriptor form (8) and a quadratic supply
rate (2), find a controller (9) for which the closed-loop
system (10) is admissible and satisfies dissipativity with
respect to the supply rate (2).

It is easy to see from Lemma 1 that the synthesis problem
is solvable if and only if there exist matrices Xcl and Wcl

satisfying

ET
clXcl = XT

clEcl ≥ 0, ET
clWcl = 0, (11)

HeUX + diag{0ncl×ncl
, S11,−Iq} < 0, (12)

where

UX :=




0 XT
cl

S12 WT
cl

T22 0



[

Dcl Ccl

Bcl Acl

][
0 Im1 0

Incl
0 0ncl×q

]
.
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This LMI condition is equivalent to (5)–(6) in Lemma 1
applied to the closed-loop system (10). Since Xcl is non-
singular if (12) holds, the condition (11)–(12) is equiva-
lent to the following:

EclY
T
cl = YclE

T
cl ≥ 0, EclZ

T
cl = 0, (13)

HeUY + diag{0ncl×ncl
, S11,−Iq} < 0, (14)

where

UY :=




0 Incl

S12 0

T22 0



[

Dcl Ccl

Bcl Acl

][
0 Im1 0

Y T
cl ZT

cl 0ncl×q

]

and Ycl, Zcl are set by

Ycl = X−T
cl , Zcl = −WT

clX
−T
cl . (15)

It is easy to see that the left hand sides of (11) and
(12) are congruent to each other and that EclZ

T
cl = 0 is

equivalent to ET
clWcl = 0.

3.3 Existence condition

In this subsection, we show the existence condition of
a controller satisfying admissibility and dissipativity of
the closed-loop system. Under Assumption 1, define the
following matrices from S:

M :=


 [ S12

T22

] [ S12

T22

]⊥
T 
 , (16)

[
N1 N2

]
:=
[

I 0
]
M−T, (17)[

H11 H12

HT
12 H22

]
:= M−1

[
S11 0

0 −I

]
M−T. (18)

Note that

[
S12

T22

]
has full column rank iff so does

[
S12

S22

]
.

Now we show the main theorem, which provides an exis-
tence condition of a controller that solves the synthesis
problem stated in the previous subsection. The criterion
is given in terms of LMIs and a rank condition.

Theorem 1 The following statements (I) and (II) are
equivalent:

(I) There exists a controller (9) for which the closed-loop
system (10) is admissible and satisfies dissipativity for
the supply rate (2).

(II) There exist matrices X, Y , W , Z with appropriate
sizes satisfying the following LMIs and LMEs:

[
ET 0

0 E

][
X I

I Y T

]
= (∗)T ≥ 0, (19)

ETW = 0, EZT = 0, (20)
NB(LB + LT

B + HB)NT
B < 0, (21)

NT
C(LC + LT

C + HC)NC < 0 (22)

and the rank condition:

rank

[
ET 0

0 E

][
X I

I Y T

]
≤ r + rc, (23)

where

NB :=

[
NB0 0

0 I

]
, NB0 :=

[
B2

D12

]⊥
,

NC :=

[
NC0 0

0 I

]
, NC0 :=

[
C2 D21

]⊥
,

LB :=



[

A

C1

]
Y T

0

[
B1 + AZT

D11 + C1Z
T

] [
N1 N2

]
[

0 0
]


 ,

LC :=




XTA

S12C1 + WTA

T22C1

XTB1 0

S12D11 + WTB1 0

T22D11 0


 ,

HB :=




0 0 0

0 H11 H12

0 HT
12 H22


 , HC :=




0 0 0

0 S11 0

0 0 −I


 .

If the conditions (19)–(22) are fulfilled, a controller in
the descriptor form (9) with rankEc ≤ rc solving the syn-
thesis problem is constructed from a solution X, Y , W ,
Z. Furthermore, also a controller in the state-space form
with order no more than rc is derived from the solution.

We provide the procedure to obtain a controller sat-
isfying the condition (I) in Subsection 3.5 with prov-
ing the sufficiency, while the proof of the necessity is
shown in Subsection 3.4. The proof is based on applica-
tion of the matrix elimination lemma (Gahinet & Apkar-
ian, 1994; Iwasaki & Skelton, 1994) to LMIs (11)–(12)
and (13)–(14).

Below we show the LMIs (21) and (22) for specific supply
rates. Setting S = diag{−γ2I, I} and matrices M , Ni,
Hij appropriately, we see that the inequalities (21) and
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(22) for H∞ synthesis are

NB




He(AY T) Y CT
1 B1 + AZT

∗ −I D11 + C1Z
T

∗ ∗ −γ2I


NT

B < 0, (24)

NT
C




He(XTA) XTB1 + WTA CT
1

∗ He(WTB1) − γ2I DT
1

∗ ∗ −I


NC < 0, (25)

respectively. For ESPR, it is easy to see that the condi-
tions (21) and (22) are equivalent to

NB0

(
He

[
AY T −(B1 + AZT)

C1Y
T −(D11 + C1Z

T)

])
NT

B0 < 0,

NT
C0

(
He

[
XTA XTB1

WTA − C1 WTB1 − D11

])
NC0 < 0,

respectively, with S =
[

0 −I
−I 0

]
.

The inequalities of the existence condition for H∞ syn-
thesis are similar to those in previous papers for descrip-
tor systems. The crucial difference is that the new in-
equality condition has variables W and Z. With these
variables the LMI condition (19)–(22) is equivalent to
the solvability of the synthesis problem without depend-
ing on the realization of the plant. Actually, denoting by
γ∗ the infimum of H∞ norm from w to z that the closed-
loop system can attain via feedback (9), we see that (24)
and (25) never hold if W and Z are set zero and the re-
alization of (8) is such that ‖D11‖∞ > γ∗; see Section 4.

As in the state-space case, the order of the dynamic part
of the controller corresponds to the rank condition (23).
This makes the whole inequality condition nonconvex.
When the order rc is not required to be less than r, the
rank condition (23) is removed and the other inequalities
are convex.

Also similarly to the H∞ control of state-space systems,
an appropriate subset of the condition (II) of Theorem 1
gives a feasibility condition of the full-information prob-
lem; namely, consider the control input u = Fx + Gw
with constant gains F and G. Then it is easy to see that
there exists a pair of gains (F,G) with which the diss-
pativity of the closed-loop system holds iff there exist X
and W satisfying ETX = XTE ≥ 0, ETW = 0 and (21).
An LMI condition derived via the change-of-variables
method has been shown for the full-information problem
in Masubuchi (2006). A dual result holds for an observer
problem with disspativity specification on the observa-
tion error.

Lastly in this subsection, we note that when E = I,
which means that the descriptor plant is reduced to a
state-space one, the existence condition (19)–(22) coin-
cides with that for state-space systems (Gahinet & Ap-
karian, 1994; Iwasaki & Skelton, 1994). The equalities in
(20) imply that W and Z vanish for E = I.

3.4 Proof of the necessity

Suppose that there exists a controller (9) for which the
closed-loop system is admissible and dissipative. Then
LMI conditions (11)–(12) and (13)–(14) hold for some
(Xcl, Wcl) and (Ycl, Zcl), respectively, with satisfying the
identities in (15). For the purpose of the proof, without
loss of generality we can assume E = diag{Ir, 0s×s} and
Ec = diag{Irc , 0sc×sc}, where r+s = n and rc+sc = nc.
In accordance with this form and the equality constraints
in (11) and (13), represent the variables Xcl, Wcl, Ycl,
Zcl with subblocks as follows:

Xcl =




Xp11 0 Xpc11 0

Xp21 Xp22 Xpc21 Xpc22

Xcp11 0 Xc11 0

Xcp21 Xcp22 Xc21 Xc22


 , (26)

Wcl =
[

0 WT
p2 0 WT

c2

]T
, (27)

Ycl =




Yp11 Yp12 Ypc11 Ypc12

0 Yp22 0 Ypc22

Ycp11 Ycp12 Yc11 Yc12

0 Ycp22 0 Yc22


 , (28)

Zcl =
[

0 Zp2 0 Zc2

]
. (29)

From the inequality conditions in (11) and (13), matrices

X11 =

[
Xp11 Xpc11

Xcp11 Xc11

]
, Y11 =

[
Yp11 Ypc11

Ycp11 Yc11

]
(30)

are positive definite and satisfy X11Y11 = I, from which
we see (19) and (23) for


X =

[
Xp11 0

Xp21 Xp22

]
, W =

[
0

Wp2

]
,

Y =

[
Yp11 Yp12

0 Yp22

]
, Z =

[
0 Zp2

]
.

(31)

The equality conditions in (20) are obvious from the def-
inition of W and Z in (31) and the equalities on Wcl and
Zcl in (11) and (13). Lastly, to prove (21) and (22), let
us recall Gahinet & Apkarian (1994); Iwasaki & Skelton
(1994) for the matrix elimination lemma:
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Lemma 2 Let Q̄ ∈ RN×N , B̄ ∈ RN×M , C̄ ∈ RP×N

and Ỹ ∈ RN×N be given, where Q̄ is symmetric, Ỹ is
nonsingular and B̄ and C̄ are of full column and row
rank, respectively. Suppose that

Q̃ = Ỹ Q̄Ỹ T, B̃ = Ỹ B̄, C̃ = C̄Ỹ T. (32)

Then there exists a matrix K ∈ RM×P satisfying Q̄ +
HeB̄KC̄ < 0 if and only if

(C̄⊥)TQ̄C̄⊥ < 0, B̃⊥Q̃(̃B̃⊥)T < 0. (33)

The proof is completed by identifying the matrices in
Lemma 2 for our problem. Define

K =

[
Dc Cc

Bc Ac

]
(34)

and determine matrices (Q̄, B̄, C̄) and (Q̃, B̃, C̃) so that
Q̄ + HeB̄KC̄ and Q̃ + HeB̃KC̃ coincide with the left-
hand sides of (14) and (12), respectively. Then it is easy
to see that (32) holds for

Ỹ =




Ycl 0 0

Zcl Im1 0

0 0 Iq


 (35)

and we derive

NB(LB + LT
B + HB)NT

B = B̃⊥Q̃(B̃⊥)T, (36)
NT

C(LC + LT
C + HC)NC = (C̄⊥)TQ̄C̄⊥, (37)

which prove (21) and (22) via Lemma 2.

3.5 Construction of a controller with proof of the suffi-
ciency

Here we show a procedure to derive a controller satisfy-
ing admissibility and dissipativity of the closed-loop sys-
tem when the conditions (19)–(22) hold, which provides
a constructive proof for the sufficiency. Again without
loss of generality, we assume E = diag{Ir, 0s×s} and
seek a controller with setting Ec = diag{Irc , 0sc×sc}.
According to the block form of E and Ec, the variables
X , Y , W , Z satisfying the equality conditions (19) and
(20) are represented as in (31), where we can assume the
submatrices Xp22 and Yp22 are nonsingular; see Masub-
uchi et al. (1997). Let us consider the condition (19) and
(23). The block structure of E implies that the condition
(19)–(23) is equivalent to:

[
Xp11 I

I Yp11

]
≥ 0, rank

[
Xp11 I

I Yp11

]
≤ r + rc. (38)

As in the results for state-space systems of Gahinet &
Apkarian (1994); Iwasaki & Skelton (1994), by setting
subblocks X∗11 and Y∗11 for ‘∗’=‘pc’, ‘cp’, ‘c’ appropri-
ately, we derive positive definite matrices X11 and Y11

in (30) so that X11Y11 = Ir+rc . Set the rest of the sub-
blocks below to define Xcl, Wcl, Ycl and Zcl as (26)–(29):

Xpc21 = 0, Xpc22 = Is,

Xcp21 = −(Y T
p22Xp21 + Y T

p12∆
−T
Y ),

Xcp22 = Is − Y T
p22Xp22,

Xc21 = Y T
p12∆

−T
Y Y T

cp11Y
−T
c11 , Xc22 = −Y T

p22,

Y T
cp12 = 0, Y T

cp22 = Is,

Y T
pc12 = −(Xp21Y

T
p11 + Xp22Y

T
p12),

Y T
pc22 = Is − Xp22Y

T
p22,

Y T
c12 = −Xp21Y

T
cp11, Y T

c22 = −Xp22,

Wc2 = −(Zp2 + Y T
p22Wp2),

ZT
c2 = −(Xp22Z

T
p2 + Wp2),

where

∆Y = Yp11 − Ypc11Y
−1
c11Ycp11(> 0).

Then matrices Xcl, Ycl, Wcl, Zcl satisfy (15). Moreover,
setting K by (34), Ỹ by (35) and Q̄, B̄, C̄, Q̃, B̃, C̃, as
stated in the last part of the proof of the necessity, we
see that the equality in (32) and the inequalities in (33)
hold in Lemma 2. Thus we derive Ac, Bc, Cc, Dc. Lastly,
eliminating the static part of the descriptor variable xc

with perturbing Ac if necessary (Masubuchi et al., 1997),
we obtain a proper (impulse-free) controller satisfying
the closed-loop admissibility and dissipativity.

4 Numerical examples

Let us consider the plant (8) with E = diag{I5, 02×2}
and the following:

A =




0 1 0 0 0 0 0

−2 −5 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 1 0 −3 −2 1 0

0 0 0 0 0 −1 0

0 0 −1 0 1 0 0




,

B1 =

[
0 0 0 0 0 1 0

0 0 0 0 0 0 0

]T

, B2 =
[
0 1 0 0 1 0 1

]T
,

C1 =

[
0 0 0 2 1 1 − κ 0

0 0 0 0 0 0 0

]
, C2 =

[
0 0 0 0 0 0 1

]
,
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κ

γ

W=0, Z=0 (conventional)

proposed

Fig. 1. Optimal γ v.s. κ

D11 =

[
κ 0

0 0

]
, D12 =

[
0

1

]
, D21 =

[
0

1

]T

,

where κ is a scalar. This system has an identical transfer
function independent of κ as shown below:

[
z

y

]
=




s2+3s+5
s2+2s+3 0 s3+8s2+14s+4

s4+7s3+15s2+19s+6

0 0 1
s2

s2+2s+3 1 s(s4+8s3+21s2+21s+6)
s4+7s3+15s2+19s+6



[

w

u

]
.

Thus the optimal H∞ norm of the controlled system
should be the same in spite of different values of κ.

We solved the LMI-LME condition of Theorem 1 for H∞
norm condition: (19), (20), (24) and (25) without the
rank constraint for integer κ from −10 to 10 and ob-
tained the same optimal value γ∗ = 1.7064 along with
state-space controllers satisfying the H∞ norm condi-
tion with closed-loop admissibility. On the other hand,
solving LMIs with W = 0 and Z = 0, which corre-
sponds to the case of using conventional H∞ norm con-
ditions, yields values of optimal γ larger than γ∗ when
‖D‖∞ > γ∗. These results of optimal γ for each κ via
the conventional and proposed methods are plotted in
Fig. 1.

5 Conclusions

In this paper, we considered a synthesis problem of
output feedback controllers for descriptor systems to
attain closed-loop dissipativity and admissibility. We
provided a necessary and sufficient condition for the
existence of such a controller, based on the recent re-
sult on the dissipativity analysis of descriptor systems
(Masubuchi, 2006). The proposed LMI condition is a
generalization of the widely-known results for state-
space systems of Gahinet & Apkarian (1994) and Iwasaki

& Skelton (1994). It is inherit from the criterion for
analysis that the LMI condition does not depend on the
choice of realization of the plant in the descriptor form.
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