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ABSTRACT 

 

NEURAL NETWORK SOLUTION FOR FIXED-FINAL TIME OPTIMAL 

CONTROL OF NONLINEAR SYSTEMS 

 

Publication No. ______ 

 

Tao Cheng  

 

The University of Texas at Arlington, 2006 

 

Supervising Professor: Frank L. Lewis 

In this research, practical methods for the design of 2H  and ∞H  optimal state 

feedback controllers for unconstrained and constrained input systems are proposed. The 

dynamic programming principle is used along with special quasi-norms to derive the 

structure of both the saturated 2H  and ∞H  optimal controllers in feedback strategy 

form. The resulting Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Isaacs (HJI) 

equations are derived respectively. 

Neural networks are used along with the least-squares method to solve the 

Hamilton-Jacobi differential equations in the 2H  case, and the cost and disturbance in 

the ∞H  case. The result is a neural network unconstrained or constrained feedback 

controller that has been tuned a priori offline with the training set selected using Monte 
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Carlo methods from a prescribed region of the state space which falls within the region 

of asymptotic stability. 

The obtained algorithms are applied to different examples including the linear 

system, chained form nonholonomic system, and Nonlinear Benchmark Problem to 

reveal the power of the proposed method. 

Finally, a certain time-folding method is applied to solve optimal control 

problem on chained form nonholonomic systems with above obtained algorithms. The 

result shows the approach can effectively provide controls for nonholonomic systems.
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 σ ........................... neural network activation function 
 
 σ ........................... neural network activation functions vector 
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 HJB ....................... Hamilton-Jacobi-Bellman 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Significance and Contribution of the Research 

In this research, a practical design method to design 2H  and ∞H  optimal state 

feedback controllers for unconstrained and constrained input systems is proposed. The 

value function of the associated optimization problem is solved in a least-squares sense 

resulting in nearly optimal neural network state feedback controllers that are valid over 

a prescribed region of the state space. These feedback controllers are more appropriate 

for engineering applications. Hence, this work tries to bridge the gap between 

theoretical optimal control and practical implementations of optimal controllers. A 

unified framework for constructing neural network controllers that are nearly 2H  and 

∞H  optimal for unconstrained and constrained input systems is provided. 

The constrained input optimization of dynamical systems has been the focus of 

many papers during the last few years. Several methods for deriving constrained control 

laws are found in Saberi, Lin and Teel [76], Sussmann, Sontag and Yang [84] and 

Bernstein [15]. However, most of these methods do not consider optimal control laws 

for general constrained nonlinear systems. Constrained-input optimization possesses 

challenging problems, a great variety of versatile methods have been successfully 

applied in Athans [5], Bernstein [16], Dolphus [33] and Saberi [77]. Many problems can 

be formulated within the Hamilton-Jacobi-Bellman (HJB) and Lyapunov’s frameworks, 
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but the resulting equations are difficult or impossible to solve, such as Lyshevski 

[60][61][62]. 

The optimal control of constrained input systems is theoretically well established. 

The controller can be found by applying the Pontryagin’s minimum principle. This 

usually requires solving a split boundary differential equation and the result is an 

open-loop optimal control [53]. 

Optimal 2L -gain disturbance attenuation controllers are also treated in this work. 

This comes under the framework of ∞H  optimal control. The ∞H  norm has played 

an important role in the study and analysis of robust optimal control theory since its 

original formulation in an input-output setting by Zames [91]. More insight into the 

problem was given after the ∞H  linear control problem was posed as a zero-sum 

two-person differential game by Başar [10]. The nonlinear counterpart of the ∞H  

control theory was developed by Van der Schaft [87]. He utilized the notion of 

dissipativity, introduced by Willems [90][89], Hill and Moylan for nonlinear systems 

[41], to formulate the ∞H  control theory into a nonlinear 2L -gain optimal control 

problem. He made use of the fact that the ∞H  norm in the frequency domain is 

nothing but the 2L -induced norm from the input time-function to the output-time 

function for initial zero state. The 2L -gain optimal control problem requires solving a 

Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI) equation. 

Conditions for the existence of smooth solutions of the Hamilton-Jacobi equation were 

studied through invariant manifolds of Hamiltonian vector fields and the relation with 
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the Hamiltonian matrices of the corresponding Riccati equation for the linearized 

problem [87]. Later some of these conditions were relaxed by Isidori and Astolfi [45], 

into critical and noncritical cases. Viscosity solutions of the HJI equation were 

considered in [7][8]. 

Although the formulation of the nonlinear theory of ∞H  control has been well 

developed, solving the HJI equation remains a challenge. Several methods have been 

proposed to solve the HJI equation. In the work by Huang [44], the smooth solution is 

found by solving for the Taylor series expansion coefficients in a very efficient and 

organized manner. Another interesting method is by Beard and coworkers [13]. Beard 

proposed to iterate in policy space to solve the HJI successively, he then proposed a 

numerically efficient algorithm that solves the sequence of linear differential equations 

using Galerkin techniques which requires computing numerous integrals over a well 

valid region of the state space. 

In this research, special nonquadratic performance functionals are used to encode 

the various constraints on the optimal control problem. Using the dynamic 

programming principle, the structure of the feedback strategy for the optimal control 

law is derived.  

 

1.2. Approach 

In this dissertation, fixed-final time constrained optimal control laws using neural 

networks to solve Hamilton-Jacobi equations for general affine in the unconstrained and 

constrained nonlinear systems are proposed. A neural network is used to approximate 
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the time-varying cost function using the method of least-squares on a pre-defined region. 

The result is a neural network nearly optimal constrained feedback controller that has 

time-varying coefficients found by a priori offline tuning. 

 

1.2.1. 2H  Optimal Control: Hamilton-Jacobi-Bellman (HJB) equation 

The approach here is based on HJB equation for the control input along with neural 

networks. In this case, the value function of the associated HJB equation is solved. As 

the order of the neural network is increased, the least-square solution of the HJB 

equation converges uniformly to the exact solution of the inherently nonlinear HJB 

equation. The result is a nearly optimal state feedback controller that has been tuned a 

priori off-line. 

 

1.2.2. ∞H  Optimal Control: Hamilton-Jacobi-Isaacs (HJI) equation 

The approach here is based on HJI equation on the input and the disturbance. Neural 

networks are used to approximately solve the finite-horizon optimal ∞H  state 

feedback control problem. The method is based on solving a related 

Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. 

The neural network approximates the corresponding game value function on a certain 

domain of the state-space and results in a control computed as the output of a neural 

network. An H∞ optimal control is obtained for the constrained input systems and the 

resulting available storage solves for the value function of the associated HJI equation 

of the associated zero-sum game. The saddle point strategy corresponding to the related 
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zero-sum differential game is derived, and shown to be the unique feedback saddle 

point.  
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CHAPTER 2 

FIXED-FINAL TIME OPTIMAL CONTROL OF NONLINEAR SYSTEMS 
USING NEURAL NETWORK HJB APPROACH 

 

2.1. Introduction 

In many practical engineering problems, one is interested in finding finite-time optimal 

control laws for nonlinear systems. It is known that this optimization problem [53], 

requires solving a time-varying Hamilton-Jacobi-Bellman (HJB) equation that is hard to 

solve in most cases. Approximate HJB solutions for the infinite horizon time-invariant 

case have been found using many techniques such as those developed by Saridis and 

Lee [80], Beard et. Al [11][15], Beard, Bertsekas and Tsitsiklis [17], Munos  et. al [65] 

and Kim, Lewis and Dawson [47]. Huang and Lin [44] provided a Taylor series 

expansion of the HJI equation which is closely related to the HJB equation. A local 

∞H  controller is derived in [3] using perturbation methods. 

Successful neural networks (NN) controllers not based on optimal techniques have 

been reported in Chen and Liu [26], Lewis, Jagannathan and Yesildirek [52], Ge [40]. It 

has been shown that NN can effectively extend adaptive control techniques to 

nonlinearly parameterized systems. NN applications to an optimal control via the HJB 

equation were first proposed by Werbos [63]. Parisini and Zoppoli [70] used NN to 

derive optimal control laws for discrete-time stochastic nonlinear systems. 

In this chapter, we use NN to approximately solve the time-varying HJB equation 

in unconstrained and constrained cases. It is shown that using a NN approach, one can 
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simply transform the problem into solving an ordinary differential equation (ODE) 

equation backwards in time. The coefficients of this ODE are obtained by the weighted 

residuals method and a Kronecker product formulation [22]. 

We were motivated by the important results in [11]. However, in contrast to that 

work, we are able to approximately solve the time-varying HJB equation, and do not 

need to perform policy iteration using the so-called GHJB equation followed by control 

law updates.  We accomplish this by using a neural network approximation for the 

value function which is based on a universal basis set, and by introduction of the 

Kronecker product to handle bilinear terms.  The Galerkin integrals used in [11] are 

complicated to evaluate for bilinear terms.  We also demonstrate uniform convergence 

results over a Sobolev space. 

 

2.2. Background on Fixed-Final-Time HJB Optimal Control 

Consider an affine in the control nonlinear dynamical system of the form 

)()()( tuxgxfx +=& ,                                              (2-1) 

where nx ℜ∈ , nxf ℜ∈)( , mnxg ×ℜ∈)(  and the input ( ) mRtu ∈ . The dynamics 

( )xf  and ( )xg  are assumed to be known and ( ) 00 =f . Assume that ( ) ( ) ( )tuxgxf +  

is Lipschitz continuous on a set nℜ⊆Ω  containing the origin, and that system (2-1) is 

stabilizable in the sense that there exists a continuous control on Ω  that asymptotically 

stabilizes the system. It is desired to find the constrained input control ( )tu  that 

minimizes a generalized functional 
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[ ]∫ ++= ft

tff dtuWxQttxttxV
0

)()()),(()),(( 00 φ                          (2-2) 

with )(xQ , )(uW  positive definite on Ω , i.e. 0≠∀x , Ω∈x , 0)( >xQ  and 

0)(0 =⇒= xQx .  

 

Definition 2.1. Admissible Controls. 

A control ( )tu  is defined to be admissible with respect to (2-2) on Ω , denoted by 

)(ΩΨ∈u , if ( )tu  is continuous on Ω , 0)0( =u , ( )tu  stabilizes (2-1) on Ω , and 

Ω∈∀ 0x , ( ) ),( 00 ttxV  is finite. 

Under regularity assumptions, i.e. ( ) ( )Ω∈ 1, CtxV , an infinitesimal equivalent to 

(2-2) is [53] 

( ) ( ) ( ) ( ) ( )( )tuxgxf
x

txVL
t

txV T

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=
∂

∂
−

,, .                          (2-3) 

where ( ) ( )uWxQL += . This is a time-varying partial differential equation with 

( )txV ,  the cost function for any given ( )tu  and is solved backward in time from 

ftt = . By setting ftt =0  in (2-2) its boundary condition is seen to be 

( )( ) ( )( )ffff ttxttxV ,, φ= .                                          (2-4) 

According to Bellman’s optimality principle [53], the optimal cost is given by 

( )
( )

( ) ( ) ( ) ( )( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+=
∂

∂
− tuxgxf

x
txVL

t
txV

T

tu

** ,
min

, ,                   (2-5) 

which yields the optimal control. 
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( ) ( ) ( )
x

txVxgRtxu T

∂
∂

−= −
*

1* ,
2
1,                                      (2-6) 

where ( )txV ,*  is the optimal value function, R  is positive definite and assumed to be 

symmetric for simplicity of analysis.. Substituting (2-6) into (2-5) yields the 

well-known time-varying Hamilton-Jacobi-Bellman (HJB) equation [53] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,,
4
1,, *

1
***

=
∂

∂
∂

∂
−+

∂
∂

+
∂

∂ −

x
txVxgRxg

x
txVxQxf

x
txV

t
txV T

T

.  (2-7) 

This equation and (2-6) provide the solution to fixed-final time optimal control for 

general nonlinear systems. However, close form solution for equation (2-7) is in general 

impossible to find. In [29][30][31][28][32], we showed how to approximately solve this 

equation using NN. 

 

Remark 2.1.   The HJB equation requires that ( )txV ,  is continuously differentiable 

function. Usually, this requirement is not satisfied in constrained optimization because 

the control function is piecewise continuous. But control problems do not necessarily 

have smooth or even continuous value functions, (Huang [43], Bardi [8]). Lio [54] used 

the theory of viscosity solutions to show that for infinite horizon optimal control 

problems with unbounded cost functional, under certain continuity assumptions of the 

dynamics, the value function is continuous on some set Ω , ( ) ( )Ω∈CtxV ,* . Bardi [8] 

showed that if the Hamiltonian is strictly convex and if the continuous viscosity 

solution is semi-concave, then ( ) ( )Ω∈ 1* , CtxV  satisfying the HJB equation 

everywhere. In this chapter, all derivations are performed under the assumption of 
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smooth solutions to (2-7). A similar assumption was made by Van der schaft [87] and 

Isidori [45].  

 

2.3. Nonlinear Fixed-Final-Time HJB Solution by NN Least-Squares 
Approximation 

 
The HJB equation (2-11) is difficult to solve for the cost function ( )txV , . In this 

chapter, NN are used to solve approximately for the value function in (2-11) over Ω  

by approximating the cost function ( )txV ,  uniformly in t . The result is an efficient, 

practical, and computationally tractable solution algorithm to find nearly optimal state 

feedback controllers for nonlinear systems. 

2.3.1. NN Approximation of the Cost Function ( )txV ,  

It is well known that a NN can be used to approximate smooth time-invariant functions 

on prescribed compact sets (Hornik [42]). Since the analysis required here is restricted 

to the region of asymptotically stable (RAS) of some initial stabilizing controller, NN 

are natural for this application. In [78], it is shown that NNs with time-varying weights 

can be used to approximate uniformly continuous time-varying functions. We assume 

that ( )txV ,  is smooth, and so uniformly continuous on a compact set. Therefore one 

can use the following equation to approximate ( )txV ,  for [ ]fttt ,0∈  on a compact set 

nℜ⊂Ω  

( ) ( ) ( ) ( ) ( )xtwxtwtxV L
T
L

L

j
jjL σσ ==∑

=1

, .                               (2-8) 
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This is a NN with activation functions ( ) ( )Ω∈ 1Cxjσ , ( ) 00 =jσ . The NN weights are 

( )tw j  and L  is the number of hidden-layer neurons. ( ) ( ) ( ) ( )[ ] T
LL xxxx σσσ ...21≡σ  

is the vector of activation function, ( ) ( ) ( ) ( )[ ]TLL twtwtwt ...21≡w  is the vector of NN 

weights.  

The next result shows that initial conditions ( )0tx  can be selected to guarantee that 

( ) Ω∈tx  for [ ]fttt ,0∈ . 

 

Lemma 2.1  Let nℜ⊂Ω  be a compact set. Then ∃  Ω⊂Ω 0 , s. t, for system (2-1), 

( ) Ω∈tx , [ ]fttt ,0∈ , ( ) 00 Ω∈∀ tx . 

The set ( )xjσ  is selected to be independent. Then without loss of generality, they 

can be assumed to be orthonormal, i.e. select equivalent basis functions to ( )xjσ  that 

are also orthonormal [11]. The orthonormality of the set ( ){ }∞
1

xjσ  on Ω  implies that 

if a function ( ) ( )Ω∈ 2, Ltxψ  then 

( ) ( ) ( ) ( )∑
∞

=
Ω

=
1

,,,
j

jj xxtxtx σσψψ , 

where ∫ΩΩ
⋅= dxfggf T,  is inner product, and the series converges pointwise, i.e. 

for any 0>ε  and Ω∈x , one can choose N  sufficiently large to guarantee that 

( ) ( ) ( ) εσσψ <∑
∞

+=
Ω

1
,,

Nj
jj xxtx  for all [ ]fttt ,0∈ , see [12]. 
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Note that, since one requires ( ) ttxV ∂∂ ,  in (2-7), the NN weights are selected to 

be time-varying. This is similar to methods such as assumed mode shapes in the study 

of flexible mechanical systems [6]. However, here ( )xLσ  is a NN activation vector, 

not a set of eigenfunctions. That is, the NN approximation property significantly 

simplifies the specification of ( )xLσ . For the infinite final time case, the NN weights 

are constant [1]. The NN weights will be selected to minimize a residual error in a 

least-squares sense over a set of points sampled from a compact set 0Ω  inside the RAS 

of the initial stabilizing control [38]. 

Note that 

( ) ( ) ( ) ( ) ( )txt
x

x
x

txV
L

T
LL

T
LL wσw

σ
∇≡

∂
∂

=
∂

∂ ,
,                             (2-9) 

where ( )xLσ∇  is the Jacobian ( ) xxL ∂∂σ , and that 

( ) ( ) ( )xt
t

txV
L

T
L

L σw&=
∂

∂ ,
.                                          (2-10) 

Therefore approximating ( )txV ,  by ( )txVL ,  uniformly in t  in the HJB equation 

(2-7) results in 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )txe

xQtxxgRxgxt

Rdvvxfxtxt

L

L
T
L

T
L

T
L

u T
L

T
LL

T
L

,
2
1

2

1

0

=

−⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅⋅∇+

−∇−−

−

−∫

wσφσw

φσwσw&

               (2-11) 

or 

( ) ( ) ( ) ( )txextwtxVHJB L

L

j
jjL ,,

1
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∑

=

σ ,                            (2-12) 
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where ( )txeL ,  is a residual equation error. From (2-6) the corresponding optimal 

control input is 

)()()(
2
1),( 1 txxgRtxu L

T
L

T
L wσ∇−= − .                               (2-13) 

To find the least-squares solution for ( )tLw , the method of weighted residuals is 

used [38]. The weight derivatives ( )tLw&  are determined by projecting the residual 

error onto ( ) ( )ttxe LL w&∂∂ ,  and setting the result to zero 0Ω∈∀x  and [ )fttt ,0∈∀  

using the inner product, i.e. 

( )
( ) ( ) 0,,
,

=
∂
∂

Ω

txe
t
txe

L
L

L

w&
.                                         (2-14) 

From (2-11) we can get 

( ) ( )xtxe
L

L

L σ
w

=
∂

∂
&

,
.                                               (2-15) 

Therefore we obtains 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0,

,
4
1

,,

1

=−+

∇⋅∇+

∇−+−

Ω

Ω

−

ΩΩ

xxQ

xtxxgRxgxt

xxfxtxxt

L

LL
T
L

T
L

T
L

LL
T
LLL

T
L

σ

σwσσw

σσwσσw&

.                (2-16) 

So that 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
Ω

−

Ω

Ω

−−

Ω

Ω

−

Ω

⋅−

∇⋅∇⋅+

⋅∇⋅−

=

xxQxx

xtxgRxgxtxx

txxfxxx

t

LLL

LL
T
L

T
L

T
LLL

LLLLL

L

σσσ

σwσσwσσ

wσσσσ

w

,,

,
4
1,

,,

1

11

1

&

,    (2-17) 
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with boundary condition ( )( ) ( )( ) ( ) ( )( )fLf
T
Lffff txtttxttxV σw== ,, φ . Note that, given a 

mesh of ( )ftx  (see section 3.3), the boundary condition allows one to determine 

( )fL tw . 

Therefore, the NN weights are simply found by integrating this nonlinear ODE 

backwards in time. 

We now show that this procedure provides a nearly optimal solution for the 

time-varying optimal control problem if L  is selected large enough. 

 

2.3.2. Uniform Convergence in t  For Time-Varying Function of the Method of 
Least-Squares 

 
In what follows, one shows convergence results as L  increases for the method of least 

squares when NN are used to uniformly approximate the cost function in t . The 

following definitions and facts are required. 

Let ( )xtF ,  be piecewise continuous in t  and satisfy the Lipschitz condition 

( ) ( ) yxLtyFtxF −≤− ,., , 

{ }rxxRxByx n ≤−∈=∈∀ 0¦, , [ ]10 , ttt∈∀ , where FFF ,2 = . Then, there exists 

some 0>δ  such that the state equation ( )txFx ,=&  with ( ) 00 xtx =  has a unique 

solution over [ ]δ+00 , tt . Provided the Lipschitz condition holds uniformly in t  for all 

t  in a given interval of time, function ( )txF ,  is called globally Lipschitz if it is 

Lipschitz on nR . (Khalil [46]). 
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Definition 2.2. Convergence in the Mean for Time-Varying Functions. 

A sequence of functions ( ){ }txf n ,  that is Lebesgue integrable on a set Ω , ( )Ω2L , is 

said to converge (uniformly in t ) in the mean to ( )txf ,  on Ω  if 0>∀ε , t∀ , 

( )tN ,ε∃ : ( ) ( ) ( ) ε<−⇒>
Ω2

,,
Ln txftxfNn . 

 

Definition 2.3. Uniform Convergence for Time-Varying Functions. 

A sequence of functions ( ){ }txf n ,  converges to ( )txf ,  (uniformly in t ) on a set Ω  

if 0>∀ε , t∀ , ( )tN ,ε∃ : ( ) ( ) ε<−⇒> txftxfNn n ,,  Ω∈∀x , or equivalently 

( ) ( ) ε<−Ω∈ txftxf nx ,,sup . 

 

Definition 2.4. Sobolev Space. 

( )ΩpmH , : Let Ω  be an open set in nℜ  and let ( )Ω∈ mCu . Define a norm on u  by 

( )∑ ∫
≤≤

Ω
⎟
⎠
⎞⎜

⎝
⎛=

m

pp

pm
dxxuDu

α

α

0

1

,
, ∞<≤ p1 . 

This is the Sobolev norm in which the integration is Lebesgue. The completion of 

( )Ω∈ mCu : ∞<
pm

u
,

 with respect to 
pm,

⋅  is the Sobolev space ( )ΩpmH , . For 

2=p , the Sobolev space is a Hilbert space. 

The convergence proofs of the least-squares method are done in the Sobolev 

function space ( )Ω2,1H  setting [2], since one requires to prove the convergence of 

both ( )txVL ,  and its gradient. The following Technical Lemmas are required. 



 

 16

Technical Lemma 2.1.  

Given a linearly independent set of L  functions { }Lf . Then for the series L
T
L fa , it 

follows that 
( ) ( ) 00 22

22
→⇔→

ΩΩ LLLL
T
L afa . 

Proof: See [1].                                                         ■ 

 

Technical Lemma 2.2. 

Suppose that ( ){ } 0
1
≠∇ L

j xσ , then ( ){ }L
j x

1
σ -linearly independent ⇒  

( ){ }L
j x

1
σ∇ -linearly independent. 

Proof. See [11].                                                        ■ 

 

Technical Lemma 2.3. 

If ( ) ( ) ( )∑∞

=
=

1j jj xtwxW φ  and ( )xjφ  are continuous on Ω , then ( ) ( )∑∞

+= 1Lj jj xtw φ  

converges to zero uniformly in t  on Ω  iff 

1)   ( )xW  is continuous on Ω . 

2)   ( ) ( ) ( )Ω∈∑∞

=
PDxtw

j jj1
φ , 

where ( )ΩPD  means pointwise decreasing on Ω . 

Proof:   See [11].                                                      ■ 

 

The following assumptions are required. 
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Assumption 2.1. The system’s dynamics and the performance integrands ( ) ( )uWxQ +  

are such that are solution of the cost function which is continuous and differentiable. 

Therefore, belonging to the Sobolev space ( )Ω∈ 2,1HV . Here ( )xQ  and ( )uW  

satisfy the requirement of existence of smooth solutions. 

 

Assumption 2.2. We can choose a complete coordinate elements ( ){ } ( )Ω∈∞ 2,1
1

Hxjσ  

such that the solution ( ) ( )Ω∈ 2,1, HtxV  and ( ) ( ){ }nxtxVxtxV ∂∂∂∂ ,,...,, 1  can be 

uniformly approximated in t  by the infinite series built from ( ){ }∞
1

xjσ . 

 

Assumption 2.3. The coefficients ( )tw j  are uniformly bounded in t  for all L . 

The first two assumptions are standard in optimal control and Neural Networks 

control literature. Completeness follows from [42]. 

 

We now show the following convergence results. 

Lemma 2.2  Convergence of Approximate HJB Equation. 

Given ( )Ω∈ψu . Let ( ) ( ) ( )∑
=

=
L

j
j

T
jL xtwtxV

1
, σ  satisfy ( )( ) ( ) 0,, =

Ω
xtxVHJB LL σ  

and ( )( ) ( ) 0,, =
Ω

xttxV LffL σ , 

and let ( ) ( ) ( )∑∞

=
=

1
,

j j
T
j xtctxV σ  and ( ) ( ) ( ) ( )[ ]TLL tctctct ...21≡c  satisfy 

( )( ) 0, =txVHJB  and ( )( ) ( )( )ffff ttxttxV ,, φ= . 
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Then 

( )( ) 0, →txVHJB L  uniformly in t  on 0Ω  as L  increases. 

Proof. The hypotheses imply that ( )( )txVHJB L ,  are in ( )Ω2L . Note that 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
Ω

=
Ω

−

= Ω

= ΩΩ

+

⋅∇⋅∇⋅−

∇+

=

∑

∑
∑

xxQ

twxxxgRxgxtw

xxfxtw

xxtwxtxVHJB

j

L

k kj
T
k

T
k

T
k

L

k jk
T
k

L

k jk
T
kjL

σ

σσσ

σσ

σσσ

,

,
4
1

,

,,,

1
1

1

1
&

,          (2-18) 

Since the set ( ){ }∞
1

xjσ  are orthogonal, ( ) ( ) 0, =
Ω

xx jk σσ . 

Then 

( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )∑

∑ ∑

∑ ∑
∑ ∑

∑

∞

+= Ω

∞

+= =
Ω

−

∞

+= = Ω

∞

+= = Ω

∞

= Ω

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇−

∇+

=

=

1

1 1
1

1 1

1 1

1

),(

,
4
1

,

,

)(),,()),((

Lj jj

Lj j
L

k kj
T
k

T
k

T
k

Lj j
L

k jk
T
k

Lj j
L

k jk
T
k

j jjLL

xxxQ

xtwxxxgRxgxtw

xxxfxtw

xxxtw

xxtxVHJBtxVHJB

σσ

σσσσ

σσσ

σσσ

σσ

&

, (2-19) 

Since the set ( ){ }∞
1

xjσ  are orthogonal, ( ) ( ) 0, =
Ω

xx jk σσ . 

Therefore 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )∑

∑ ∑

∑ ∑

∞

+= Ω

=

∞

+=
Ω

−

=

∞

+= Ω

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∇∇⋅+

⋅∇≤

1

1 1
12

1 1

),(

,
4
1

,)),((

Lj jj

L

k jLj j
T
k

T
kk

L

k jLj jkkL

xxxQ

xxxxgRxgxtw

xxxfxtwtxVHJB

σσ

σσσσ

σσσ

 

∴ ( ) ( )( )∑∞

+= Ω
++≤

1
),()()(

Lj jj xxxQVecxCDxAB σσ ,                   (2-20) 



 

 19

where 

( )twA k
Lk

max
,1 ≤≤

= , 

( )
( ) [ ]

( ) ( ) ( )( ) ( )∑ ∑=

∞

+= ΩΩ×∈
∇=

L

k jLj jk
Ttxt

xxxfxxB
1 1

,,
,sup

0

σσσ , 

( )twC k
Lk

2

1
max

≤≤
= , 

( )
[ ]

( ) ( ) ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇∇= ∑ ∑=

∞

+=
Ω

−

Ω×∈

L

k jLj j
T
k

T
k

Tt
xt

xxxxgRxgxD
1 1

1

,
,

,
4
1sup

0

σσσσ . 

Suppose ( ) ( )xfxkσ∇ , ( ) ( ) ( ) ( )xxgRxgx T
k

T
k σσ ∇∇ −1

4
1  and )(xQ  are in )(2 ΩL , 

the orthonormality of the set ( ){ }∞
1

xjσ  implies that )(xB  and the second and third 

term on the right-hand side can be made arbitrarily small by an appropriate choice of 

L .  

Therefore 

0)()( →⋅+⋅ xDCxBA  and ( ) 0),(
1

→∑∞

+= ΩLj jj xxQ σσ . 

So 0)),(( →txVHJB L  uniformly in t  on Ω  as L  increases.                ■ 

 

Lemma 2.3  Convergence of NN Weights 

Given ( )0ΩΨ∈u  and suppose the hypotheses of Lemma 2.2 hold. Then 

( ) ( ) 0
2
→− tt LL cw  uniformly in t  as L  increases. 

Proof: Define 

( ) ( )( )txVHJBtxe LL ,, =  and ( ) ( )( ) ( )( )ffffLL ttxttxVtxe ,,,ˆ φ−= .          (2-21) 
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Then ( ) ( ) ( ) ( ) 0,,ˆ,, ==
ΩΩ

xtxextxe LLLL σσ . From the hypotheses one has that 

( )( ) ( )( ) ( )txetxVHJBtxVHJB LL ,,, =−  

( )( ) ( )( ) ( )( )ttxettxVttxV fLffL ,ˆ,, =− ,                                 (2-22) 

substituting the series expansion for ( )txVL ,  and ( )txV , , and moving the terms in the 

series that are greater than L  to the right-hand side one obtains 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅∇⋅⊗−⊗−

∇−+−

− )()()()(
4
1)()()()(

)()())()(()())()((

1 xxgRxgxVectttt

xfxttxtt

T
L

T
L

T
L

T
L

T
L

T
L

L
T

LLL
T

LL

σσccww

σcwσcw &&

 

∑

∑∑
∞

+=
−

∞

+=

∞

+=

⎟
⎠
⎞

⎜
⎝
⎛ ∇∇⋅+

∇++=

1
12

11

)()()()(
4
1)(

)()()()()(),(

Lj
T
j

T
jj

Lj j
T
jLj j

T
jL

xxgRxgxtc

xfxtcxtctxe

σσ

σσ&

                   (2-23) 

The final condition is 

( ) ( )( ) ( ) ( ) ( ) ( )xtctxextt
Lj jfjLLf

T
Lf

T
L ∑∞

+=
+=−

1
,ˆ σσcw .                  (2-24) 

Taking the inner product of both sides over 0Ω , and taking into account the 

orthonormality of the set ( ){ }∞
1

xjσ , one obtains 

∑

∑
∞

+=
Ω

−

∞

+= Ω

Ω

−

Ω

∇∇+

∇=

⊗−⊗⋅∇∇−

−∇+−

1
12

1

1

)(),()()()(
4
1)(

)(),()()(

))()()()(()()),()()()((
4
1

))()(()(),()())()((

Lj

T

L
T
j

T
jj

Lj

T

Ljj

LLLL

T

L
T
j

T
L

LL
T

LLLL

xxxgRxgxtc

xxfxtc

ttttxxxgRxgxVec

ttxxfxtt

σ

σ

ccwwσσσ

cwσσcw

σσ

σ

&&

 

with final condition 

( ) ( ) 0=− fLfL tt cw .                                             (2-25) 
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Let T
LL xxfxA

Ω
∇= )(),()( σσ , where A  is scalar. 

Define )()( tt LL cw −=ξ , consider the equation 

0)(
0),()(

=
=+⋅+

ft
tftA

ξ
ξξξ&

,                                          (2-26) 

where  

))()()()((

)()),()()()((
4
1),( 1

xxxx

xxxgRxgxVectf

LLLL

T

L
T
L

T
L

ccww

σσσ

⊗−⊗⋅

∇∇−=
Ω

−ξ
 

is continuously differentiable in a neighborhood of a point ),( 00 tξ . Since )(tA  is also 

piecewise continuous functions of t , over any finite interval of time [ ]ftt ,0 , the 

elements of )(tA  and ),( tf ξ  are bounded. Hence, atA ≤)( , btf ≤),(ξ  and 

yxayxtAyxtAtyftxf −≤−≤−=− )())((),(),(  , 

nRyx ∈∀ , , [ ]fttt ,0∈∀  

also 

hbxatxfxtAtxf ≤+≤+= 000 ),()(),( , 

for each finite 0x , [ ]fttt ,0∈∀ . 

Therefore, the system has a unique solution over [ ]ftt ,0 . Since ft  can be arbitrarily 

large, we can also conclude that if )(tA  and ),( txf  are piecewise continuous 

0tt ≥∀ , then the system has a unique solution 0tt ≥∀ , so (24) can satisfy a local 

Lipschitz condition [46]. 

Noting that 
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∑∑ ∞

+=
Ω

−∞

+= Ω
∇∇+∇

1
12

1
)(),()()()(

4
1)()(),()()(

Lj

T

L
T
j

T
jjLj

T

Ljj xxxgRxgxtcxxfxtc σσ σσσ

is continuous in t , we invoke the standard result from the theory of ordinary 

differential equations that a continuous perturbation in the system equations and the 

initial state implies a continuous perturbation of the solution (Arnold [4]). Note that 

( )

( )

( )

( )t

xxxgRxgxtc

xxfxtc

xxxgRxgxtc

xxfxtc

L
Lj j

T
j

T
jj

LLj

T
LLj

L
Lj L

T
j

T
jj

Lj

T

Ljj

ρ

σσ

σσ

σσ

σ

=

∇∇+

∇⋅≤

⎟
⎠
⎞

⎜
⎝
⎛ ∇∇+

∇

Ω

∞

+=
Ω

−

Ω

∞

+= Ω

Ω

∞

+=
Ω

−

∞

+= Ω

∑

∑

∑

∑

2

2

2

1
12

1

1
12

1

)(),()()()(
4
1)(

)(),()()(

)(,)()()()(
4
1)(

)(),()()(

σ

σ

σ

 

here ( ) 0→tρ  as L  increases. 

This implies that for all 0>ε , there exists a 0)( >tρ  such that [ ]fttt ,0∈∀ , 

ε<−
2

)()( tt LL cw .                                             (2-27) 

So 0)()(
2
→− tt LL cw  uniformly in t  on Ω  as L  increases.               ■ 

 

Now we are in a position to prove our main results. 

Lemma 2.4 Convergence of Approximate Value Function. 

Under the hypotheses of Lemma 2.2, one has 

( ) ( ) ( ) 0,,
2

→−
ΩLL txVtxV  uniformly in t  on Ω  as L  increases. 

Proof. From Lemma 2.3, we have ( ) ( ) 0
2
→− tt LL cw , 
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( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )∫ ∑

∫ ∑∫

∫

Ω

∞

+=

Ω

Ω

∞

+=Ω

ΩΩ

+

−−=

+−≤

−=−

dxxtc

ttxxtt

dxxtcdxxtt

dxtxVtxVtxVtxV

Lj jj

LL
T
LL

T
L

T
L

Lj jjL
T

LL

LLL

2

1

2

1

2

22

,

,,,,
2

σ

σ

cwσσcw

σcw
.               (2-28) 

By the mean value theorem, Technical Lemmas 3.3, Ω∈∃ξ such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,,
2

1
2

2
2

2
→⋅Ω+−=− ∑∞

+=Ω Lj jjLLLL tctttxVtxV ξσλcw  

uniformly in t  on 0Ω  as L  increases.                                    ■ 

 

Lemma 2.5 Convergence of Value Function Gradient. 

Under the hypotheses of Lemma 2.2, 

( ) ( )
( )

0,,

2

→
∂

∂
−

∂
∂

ΩL

L

x
txV

x
txV

 uniformly in t  on 0Ω  as L  increases. 

Proof. From Lemma 2.3, we have ( ) ( ) 0
2
→− tt LL cw ,  

( ) ( )
( )

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( )
( )

( ) ( )
( )

( ) ( ) ( )( )
( )

( ) ( )∫ ∑

∑

∑

Ω

∞

+=
Ω

Ω

∞

+=
Ω

Ω

∞

+=Ω

∇+−∇=

∇+−∇≤

∇−−∇=
∂

∂
−

∂
∂

dxtcxttx

tcxttx

tcxttx
x

txV
x

txV

Lj
j

T
jLLL

T
L

LLj
j

T
jLLL

T
L

LLj
j

T
jLL

T
L

L

L

2

1

2

2

1

2

2

1

2

2

2

2

22

,,

σ

σ

σ

cwσ

cwσ

cwσ

 

By the mean value theorem, Technical Lemmas 2.1, 2.2 and 2.3, Ω∈∃ξ  such that 

( ) ( )
( )

( ) ( ) ( )( )
( )

( ) ( ) ( )
2

1

2
2

2
2

,, ∑
∞

+=
Ω

Ω

∇Ω+−∇=
∂

∂
−

∂
∂

Lj
j

T
jLLL

T
L

L

L tcxttx
x

txV
x

txV
σλcwσ . 
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Since ( )xT
Lσ∇  is linearly independent and ( ) ( ) 0

2
→− tt LL cw , 

then 

( ) ( )
( )

0,,

2

→
∂

∂
−

∂
∂

ΩL

L

x
txV

x
txV  uniformly in t  on 0Ω  as L  increases.       ■ 

Through Theorem 2.1 and 2.2 we have shown that the HJB approximating solution 

(2-12) guarantees convergence in Sobolev space 2,1H . 

 

Lemma 2.6 Convergence of Control Inputs. 

If the conditions of Lemma 2.2 are satisfied and 

( ) ( ) ( )
x

txV
xgRtxu LT

L ∂
∂

−= − ,
2
1, 1 , 

( ) ( ) ( )
x

txVxgRtxu T

∂
∂

−= − ,
2
1, 1 . 

Then ( ) ( ) ( ) 0,,
2

→−
ΩLL txutxu  in t  on 0Ω  as L  increases. 

Proof. 

Denote ( ) ( ) ( )
x

txV
xgRx LT

L ∂
∂

−= − ,
2
1 1α  and ( ) ( ) ( )

x
txVxgRx T

∂
∂

−= − ,
2
1 1α . 

By Theorem 2.2 and the fact that ( )xg  is continuous and therefore bounded on Ω , 

hence 

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

0,,
2
1

,
2
1,

2
1

22
1

2
11

22

2

→
∂

∂
−

∂
∂

−≤

∂
∂

+
∂

∂
−

ΩΩ

−

Ω

−−

L

L

L

T

L

TLT

x
txV

x
txVxgR

x
txVgR

x
txV

xgR

 

( ) ( ) 0→−⇒ xaxLα . 
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Because ( )⋅φ  is smooth, and under the assumption that its first derivative is bounded, 

then we have ( )( ) ( )( ) ( ) ( )( )xxMxx LL αααα −≤−φφ . Therefore 

( ) ( ) ( ) 0
2

→−
ΩLL xx αα  

( )( ) ( )( ) ( ) 0
2

→−⇒
ΩLL xx αα φφ , 

hence ( ) ( ) ( ) 0,,
2

→−
ΩLL txutxu  in t  on 0Ω  as L  increases.                ■ 

At this point we have proven uniform convergence in t  in the mean of the 

approximate HJB equation, the NN weights, the approximate value function and the 

value function gradient. This demonstrates uniform convergence in t  in the mean in 

Sobolev space ( )Ω2,1H . In fact, the next result shows even stronger convergence 

properties, namely uniform convergence in both x  and t . 

 

Lemma 2.7 Convergence of State Trajectory. 

Let ( )txL  be the state using control (2-13), suppose the hypotheses of Lemma 2.2 hold. 

Then 

0)()( →− txtx L  uniformly in t  on Ω  as L  increases. 

Proof: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
x

txVxgRxgxftuxgxftx T

∂
∂

−=+= − ,
2
1 1&  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L

L
L

T
LLLLL x

txV
xgRxgxftuxgxftx

∂
∂

−=+= − ,
2
1 1&  

( ) ( )00 txtxL =  



 

 26

Since ( ) ( ) LL xxLxfxf −≤−  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

+

∂
∂

−⋅

−−≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

−−=

−

−

−

−−

L

L
L

T
L

L

L

L

LL
L

T
L

T
L

L

x
txV

x
txVxgRxg

x
txVxgxgR

xxL

x
txV

xgRxg
x

txVxgRxgxfxf

txtx

,,
2
1

,
2
1

,
2
1,

2
1

1

2

2

2

2
1

11

&&

 

Define  

( ) ( ) ( )txtxtx L−=~ ,  

Consider the equation 

( ) ( )xtxhxLx ρ=+− ,~~~&  

( ) 0~
0 =tx  

where 

( ) ( ) ( )( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⋅−= −

x
txVxgxgRtxh L

,
2
1,~ 2

2

2

2
1  

( ) ( ) ( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

−= −

L

L
L

T
L x

txV
x

txVxgRxgx
,,

2
1 1ρ   

are continuously differentiable in a neighborhood of a point ( )00 ,~ tx . Over any finite 

interval of time [ ]ftt ,0 , the elements of ( )txh ,~  are bounded. Therefore (26) has a 

unique solution. From Lemma 2.5, ( ) 0→xρ  as L  increases. We invoke the standard 

result from the theory of ordinary differential equations, as in Lemma 2.3 proof, so that 

0~ →x  uniformly in t  on Ω  as L  increases.                             ■ 
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Lemma 2.8  Uniform Convergence. 

Since a local Lipschitz condition holds on (2-29), then 

( ) ( ) 0,,sup →−
Ω∈

txVtxVL
x

, 
( ) ( ) 0,,

sup →
∂

∂
−

∂
∂

Ω∈ x
txV

x
txVL

x
 

and ( ) ( ) 0,,sup →−
Ω∈

txutxuL
x

. 

Proof. This follows by noticing that ( ) ( ) 02

2
→− tct LLw  uniformly in t  and the 

series with jc  is uniformly convergent in t , and Technical Lemma 2.1.           ■ 

The final result shows that if the number L  of hidden layer units is large enough, 

the proposed solution method yields an admissible control. 

 

Lemma 2.9 Admissibility of ( )txuL , . 

If the conditions of Lemma 2.2 are satisfied, then ( )000 ,: ΩΨ∈≥∃ LuLLL . 

Proof. Define 

( ) ( )( ) ( ) ( )[ ]∫ ++= ft

tff dtuWxQutxttuxV
0

,,,, 0φ We must show that for L  

sufficiently large, ( ) ∞<LuxV ,  when ( ) ∞<uxV , . But the solution of (2-1) depends 

continuously on u , i.e., small variations in u  result in small variations in solution of 

(2-1). Also since ( ) ( )
2

02 Ω
⋅

LLu  can be made arbitrarily close to ( ) ( )
2

02 Ω
⋅

L
u , ( )LuxV ,  

can be made arbitrarily close to ( )uxV , . Therefore for L  sufficiently large, 

( ) ∞<LuxV ,  and hence ( )txuL ,  is admissible.                              ■ 
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2.3.3. Optimal Algorithm Based on NN Approximation 

Solving the integration in (2-20) is expensive computationally, since evaluation of the 

2L  inner product over 0Ω  is required. This can be addressed using the collocation 

method [38]. The integrals can be well approximated by discretization. A mesh of 

points over the integration region can be introduced on 0Ω  of size xΔ . The terms of 

(2-21) can be rewritten as follows 

[ ]TLL xxA
p1 xx |)(......|)( σσ= ,                                      (2-29) 

[ ]TLL xfxxfxB
p1 xx |)()(......|)()( σσ= ,                              (2-30) 

( )( )

( ) ( )( )

T

T
L

T
L

T
L

T
L

xxgRxgx

xxgRxgx
C

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∇∇

∇∇
=

−

−

p

1

x
1

x
1

|)()(
4
1......

|)()()(
4
1

σσ

σσ
,                       (2-31) 

[ ]TxQxQD
p1 xx |)(...|)(= ,                                         (2-32) 

where p  in px  represents the number of points of the mesh. Reducing the mesh size, 

we have 

xtAAxxt L
T

x
LL

T
L Δ⋅⋅−=−

→ΔΩ
)()(lim)(),()(

0
wσσw && ,                    (2-33) 

xtBAxxfxt L
T

x
LL

T
L Δ⋅⋅−=∇−

→ΔΩ
)()(lim)(),()()(

0
wσσw ,              (2-34) 

xtCtA

xtxgRxgxt

L
T
L

T

x

LL
T
L

T
L

T
L

Δ⋅=

∇⋅∇

→Δ

Ω

−

)()(lim

)(),()()()()(
4
1

0

1

ww

σwσσw
,                   (2-35) 

xDAxxQ T

x
L Δ⋅⋅−=−

→ΔΩ
)(lim)(),(

0
σ .                              (2-36) 
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This implies that (2-16) can be converted to 

DAAAtCtAAABAtAAt TT
L

T
L

TTT
L

T
L

111 )()()()()()()( −−− −+−= wwww& .   (2-37) 

This is a nonlinear ODE that can easily be integrated backwards using final condition 

)( fL tw  to find the least-squares optimal NN weights. Then, the nearly optimal value 

function is given by 

)()(),( xttxV L
T
LL σw= , 

and the nearly optimal control by 

)()()(
2
1)( 1 txxgRtu L

T
L

T
L wσ∇−= − .                                 (2-38) 

Note that in practice, we use a numerically efficient least-squares relative to solve (2-37) 

without matrix inversion. 

 

Remark 2.2.   The closed-loop Neural Network least-squares policy gives correct 

answer as long as Ω∈x , this control policy would be valid as long as ( )tx  remains in 

Ω  for all t . This means the set of initial condition Ω , which guarantees that 

( ) Ω∈tx  for all ( )tx  is smaller than Ω  itself. This can be enlarged by carefully 

selecting larger size of Neural Network. 

 

2.3.4. Numerical Examples 

We now show the power of our NN control technique for finding nearly optimal 

fixed-final time constrained controllers. Two examples are presented. 
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2.3.4.1. Linear System 

a) We start by applying the algorithm obtained above for the linear system 

1 1 2 1

2 1 2 2

2 3
5 6 2

x x x u
x x x u
= + +
= + +

&

&
.                                             (2-39) 

Define performance index 

( )( ) ( ) ( ) ( ) ( )∫ ++=
T

t

TT
ff

T
f dtRuuQxxtxtStxttxV

02
1

2
1, 00 , 

Here Q  and R  are chosen as identity matrices. The steady-state solution of the 

Riccati equation can be obtained by solving the algebraic Riccati equation (ARE). The 

result is ⎥
⎦

⎤
⎢
⎣

⎡
6777.38234.2
8234.21610.3

. Our algorithm should give the same steady-state value. 

To find a nearly optimal time-varying controller, the following smooth function is 

used to approximate the value function of the system 

( ) 2
23212

2
1121, xwxxwxwxxV ++= . 

This is a NN with polynomial activation functions, and hence ( ) 00 =V .  

Note that if PxxV T= , then 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3
2

2
1

2

2
ww

ww
P . 

In this example, three neurons are chosen and ( ) [ ]0,10,10=fL tw . Our algorithm was 

used to determine the nearly optimal time-varying control law by backwards integrating 

to solve (2-37). A least-square algorithm was used to compute ( )tLw&  at each 

integration time. From Figure 2-1 it is obvious that about six seconds from ft , the 

weights converge to the solution of the algebraic Riccati equation. The control signal is 
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Figure 2-1   Linear System Weights 
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Figure 2-2   State Trajectory of Linear System 
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Figure 2-3   Optimal NN Control Law 

PxgRu T1

2
1 −−= .                                                (2-40) 

The states and control signal are shown in Figures 2-2 and 2-3. 

 

2.3.4.2. Nonlinear Chained System 

One can apply the results of this chapter to a mobile robot, which is a nonholonomic 

system [48]. It is known [23] that there does not exist a continuous time-invariant 

feedback control law that minimizes the cost. Some methods for deriving stable controls 

of nonholonomic systems are found in Bloch [18][19], Egeland [35], Escobar [36], 

Fierro and Lewis [37], Murray [66][67], Pomet [72] and Sordalen [81]. Our method will 

yield a time-varying gain. From Moylan [32], under some sufficient conditions, a 

nonholonomic system can be converted to chained form as 
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vxx
vx
ux

13

2

1

=
=
=

&

&

&

.                                                      (2-41) 

Define performance index 

( )∫ ++=
T

tff dtuWxQttxttxV
0

))(()),(()),(( 00 φ . 

Here Q  and R  are chosen as identity matrices. To solve for the value function of the 

related optimal control problem, we selected the smooth approximating function 

3
3
221

3
3220

3
3119

3
21183

3
1172

3
116

2
321153

2
211432

2
113

2
3

2
212

2
3

2
111

2
2

2
110

4
39

4
28

4
17326315214

2
33

2
22

2
11321 ),,(

xxwxxwxxwxxwxxwxxw

xxxwxxxwxxxwxxwxxwxxwxw

xwxwxxwxxwxxwxwxwxwxxxV

++++++

+++++++

+++++++=

.  (2-42) 

The selection of the NN is usually a natural choice guided by engineering experience 

and intuition. This is a NN with polynomial activation functions, and hence ( ) 00 =V . 

This is a power series NN with 21 activation functions containing powers of the state 

variable of the system up to the fourth order. Convergence was not observed using a NN 

with only second-order powers of the states. The number of neurons required is chosen 

to guarantee the uniform convergence of the algorithm. In this example, 

]0;0;0;0;0;0;0;0;0;0;0;0;10;10;10;0;0;0;10;10;10[)( =fL tw  

and 30=ft  seconds. 
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Figure 2-4   Nonlinear System Weights 
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Figure 2-5   State Trajectory of Nonlinear System 
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Figure 2-6   Optimal NN Control Law 

Figure 2-5 indicates that weights converge to constant when they are integrated 

backwards. The time-varying controller (2-38) is then applied using interpolation. 

Figure 2-5 shows that the systems’ states response, including 1x , 2x  and 3x  are all 

bounded. It can be seen that the states do converge to a value close to the origin. Figure 

2-6 shows the optimal control converges to zero. 

 

2.4. Conclusion 

In this chapter, optimal control of unconstrained input systems is discussed, a neural 

network approximation of the value function is introduced, and the method is employed 

in a least-squares sense over a mesh with certain size on Ω . We are able to 

approximately solve the time-varying HJB equation, and do not need to perform policy 
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iteration using the so-called GHJB equation followed by control law updates. The 

Galerkin integrals used in [11] are complicated to evaluate for bilinear terms. 
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CHAPTER 3 

NEURAL NETWORK SOLUTION FOR FINITE-FINAL TIME H-INFINITY 
STATE FEEDBACK CONTROL 

 

3.1. Introduction 

This chapter is an extension to chapter 2, where it is shown how to use NN to 

approximately solve the time-varying HJB equation arising in optimal control without 

policy iterations. In this chapter, we present the main algorithm for the approximate 

solution of the HJI equation for ∞H  controllers and provide uniform convergence 

results and stabilities results over a Sobolev space. Finally, the resulting approach is 

simulated on a Rotational/Translational Actuator (RTAC) nonlinear benchmark system 

[85] with the relevant simulation results demonstrated. The simulation results are 

effective. 

 

3.2. 2L -gain and Dissipativity of Controlled Nonlinear Systems 

Consider the following controlled nonlinear system with disturbance, 

( ) ( ) ( ) ( ) ( )

( )uxz
xy

tdxktuxgxfx

,ψ=
=

++=&

                                       (3-1) 

qpn RdRyUuRx ∈∈∈∈ ,,, . 

where ( )ux,ψ  is such that ( ) ( ) ( ) ( ) 22 tuxhxhtz T +=  for some function ( )xh . This 

is equivalent to the absence of cross terms of x  and u  in other ∞H  formulations. 
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We further assume that ( ) ( ) 00,0,00 == ψf . Here ( )ty  is the measured output, which 

we assume to be the full state vector of the system. Moreover 0=x  is assumed to be 

an equilibrium point. The penalty output ( )tz  is a function of the state and the control 

input ( )tu . Note that we require the assumption that there are no cross terms of the state 

and the control as far as calculating ( )tz  is concerned. The dynamics (1) are depicted 

in Figure 3-1. 

 

 
 
 
 
 

Figure 3-1. State feedback nonlinear ∞H  controller 

We require the following background. 

 

Definition 1. A closed-loop system, i.e. for some ( )tu , system (1) has an 2L -gain γ≤ , 

where 0≥γ , if 

( ) ( )∫∫ ≤ ff tt
dttddttz

0

22

0

2 γ  

for all 0≥ft  and all ( )ftLd ,02∈ .                 ■ 

For linear systems, there are explicit formulae to compute *γ (Chen [25]). 

Throughout this chapter we shall assume that γ  is fixed. 

 

Definition 3.1. System (3-1) with supply rate ( ) ( ) ( ) 222 tztdtw −= γ  is said to be 

( ) ( ) ( )
( )uxzxy

dxkuxgxfx
,,

,
ψ==

++=&

( )ylu =

d

u

z  

y  
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dissipative if there exists 0≥V , called the storage function, such that 

( ) ( ) ( )( )f

t

t
txVdttwxV f ≥+ ∫

0
0                                            ■ 

We are interested in determining a control u  which under the worst of uncertainty, or 

disturbance d , renders the performance functional 

( )( ) ( )( ) ( ) ( ) ( ) ( )( ) tdtdtuxhxhttxttxV ft

t

T
ff ∫ −++=

0

222
00 ,, γφ             (3-2) 

nonpositive for all ( ) ( )∞∈ ,02Ltd . Note that ( )( ) ( )( )ffff ttxVttx ,, =φ . In other words, 

2L -gain γ≤  for some prescribed γ . In terms of the storage function of the system, (3-2) 

becomes 

( )( ) ( )( ) ( ) ( ) ( ) ( )( ) 0,,
0

222
00 ≤−++− ∫

ft

t

T
ff dttdtuxhxhttxVttxV γ .         (3-2) 

This also has an infinitesimal equivalence which is 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 0,, 2222 ≤−++++
∂

∂
+

∂
∂ tdtuthdxkuxgxf

x
txV

t
txV T

γ .  (3-4) 

 

Definition 3.2. Admissible Controls. 

A control ( )tu  is defined to be admissible with respect to (3-3) on Ω , denoted by 

)(ΩΨ∈u , if 

 ( )tu  is continuously differentiable on Ω . 

 0)0( =u , ( )tu  stabilizes (1) on Ω . 

 ( )( ) ( ) ( ) ( ) ( )( ) ∞<−++ ∫
ft

t

T
ff dttdtuxhxhttx

0

222, γφ Ω∈∀ 0x . 

 The 2L  gain is bounded by a prescribed value *γγ > .                     ■ 
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The available storage is a result of the following optimal control problem 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −++= ∫

ft

t

T
ffdu

dttdtuxhxhttxtdtuV
0

222* ,maxmin, γφ , (3-5) 

Equation (3-5) is a two-variable optimal control problem. The uniqueness of the game 

value of (3-5) has been demonstrated [45]. For that one uses the well-established theory 

of zero-sum differential games which can be interpreted as either minimax or maximin 

optimization respectively 

( )duxV
du

,,maxmin 0  or ( )duxV
ud

,,minmax 0 .                          (3-6) 

For such strategy needs to be a unique saddle point of the Hamiltonian of the 

optimization, and the corresponding upper and lower game value needs to satisfy the 

same HJI equation. The optimal control solution is unique if 

( ) ( ) ( )*
0

**
0

*
0 ,,,,,, duxVduxVduxV ≤≤ .                             (3-7) 

This is equivalent to 

( ) ( )duxVduxV
duud

,,maxmin,,minmax 00 = .                            (3-8) 

The pair ( )** , du  that satisfies (3-7) is called a game-theoretic saddle point. 

Define the Hamiltonian function 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 222,

,,,

tdtuxhxhtdxktuxgxf
x

txV
dupxH

T
T

γ−++++
∂

∂
=

.      (3-9) 

The first-order necessary conditions that follow from stationarity for this optimization 

problem are 

0=
∂
∂

u
H , 0=

∂
∂

d
H .                                              (3-10) 
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Minimizing the Hamiltonian of the optimal control problem with regard to u  and d  

gives 

( ) ( ) ( ) 02, * =+
∂

∂ tu
x

txVxg T ,                                        (3-11) 

( ) ( ) ( ) 02, *2 =−
∂

∂ td
x

txVxk T γ ,                                      (3-12) 

so 

( ) ( ) ( )
dx

txVxgtu T ,
2
1* ∂

−= ,                                         (3-13) 

( ) ( ) ( )
dx

txVxktd T ,
2

1
2

* ∂
=

γ
.                                        (3-14) 

In order to achieve (3-7), we need to have *
2

*
1 HH = , where HH

ud
minmax*

1 = , and 

HH
du

maxmin*
2 = . 

Second-order necessary conditions are 

02

2

≥
∂
∂

u
H , 02

2

≤
∂
∂

d
H .                                            (3-15) 

These conditions become sufficient when they are replaced with strict inequalities. This 

is equivalent to 

( ) ( ) ( )*
0

**
0

*
0 ,,,,,, duxHduxHduxH ≤≤ .                           (3-16) 

For finite time problem, a saddle point in the Hamiltonian H  implies a saddle point in 

the performance ( )txV , . 

When ( ) 0,,, *** =dupxH , we have the Hamilton-Jacobi-Isaacs equation 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) 0

,,

2*22*

**

=−++

++
∂

∂
+

∂
∂

tdtuxhxh

tdxktuxgxf
x

txV
t

txV

T

T

γ
.                      (3-17) 

From (3-13) and (3-14), (3-17) becomes 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0,ˆˆ,

,,,

**

**
*

=+
∂

∂
∂

∂
−

∂
∂

+
∂

∂
=

xhxh
x

txVxgxg
x

txV

xf
x

txV
t

txVtxVHJI

TT
T

T

,                      (3-18) 

with boundary condition ( )( ) ( )( )ffff ttxttxV ,, φ= .  

Here ( ) ( ) ( ) ( ) ( ) ( )TTT xkxkxgxgxgxg 24
1

4
1ˆˆ

γ
−= . 

Equations (3-13) (3-14) and (3-18) provide the solution to finite-horizon optimal control 

for general nonlinear systems. However, equation (3-18) is generally impossible to 

solve for nonlinear systems. 

 

3.3. NN Least-Squares Approximate HJI Solution 

Now we use unconstrained case  for NN approximation. The HJI equation (3-18) is 

difficult to solve for the cost function ( )txV , . In this section, NNs are used to solve 

approximately for the value function in (3-18) over Ω  by approximating the cost 

function to find nearly optimal ∞H  state feedback controllers for nonlinear systems. 

3.3.1. NN Approximation of ( )txV ,  

In chapter 2 it is noted that 

( ) ( ) ( ) ( ) ( )txt
x

x
x

txV
L

T
LL

T
LL wσwσ

∇≡
∂

∂
=

∂
∂ , ,                            (3-19) 



 

 43

where ( )xLσ∇  is the Jacobian 
( )
x

xL

∂
∂σ

, and that 
( ) ( ) ( )xt
t

txV
L

T
L

L σw&=
∂

∂ ,
. 

For the ( ) ( )( ) 0,, =tdtxVHJI , the solution ( )txV ,  is replaced with ( )txVL ,  having a 

residual error 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )txe

xhxhtxxgxgxt

xfxtxt

L

T
L

T
L

T
L

T
L

L
T
LL

T
L

,
ˆˆ

=
+−

∇+

wσσw

σwσw&

,                       (3-20) 

or 

( ) ( ) ( ) ( ) ( )txetdxtwtxVHJI L

L

i
jjL ,,,

1
=⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

σ ,                         (3-21) 

where ( )txeL ,  is a residual equation error. The weight derivatives ( )tLw&  are 

determined by projecting the residual error onto ( )
( )t

txe
L

L
w&∂

∂ ,  and setting the result to 

zero Ω∈∀x  using the inner product, i.e. 

( )
( ) ( ) 0,,,

=
∂
∂

Ω

txe
t
txe

L
L

L

w&
.                                         (3-22) 

From (3-20) we can get 

( ) ( )x
txe

L
L

L σ
w

=
∂

∂
&

, .                                               (3-23) 

Therefore one obtains 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 0,

,ˆˆ

,,

=+

∇∇−

∇+

Ω

Ω

ΩΩ

xxhxh

xtxxgxgxt

xxfxtxxt

L
T

LL
T
L

T
L

T
L

LL
T
LLL

T
L

σ

σwσσw

σσwσσw&

                 (3-24) 

So that 
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( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )txxhxhxx

xtxgxgxtxx

txxfxxx

t

LL
T

LL

LL
T
L

T
L

T
LLL

LLLLL

L

wσσσ

σwσσwσσ

wσσσσ

w

⋅⋅−

∇∇⋅+

⋅∇⋅−

=

Ω

−

Ω

Ω

−

Ω

Ω

−

Ω

,,

,ˆˆ,

,,

1

1

1

&

.          (3-25) 

with boundary condition ( )( ) ( )( )ffff ttxttxV ,, φ= . 

Therefore, the NN weights are simply found by integrating this nonlinear ODE 

backwards in time. In practice, one does not invest ( ) ( )
Ω

xx LL σσ , , but uses efficient 

least-square methods to solve (3-24). 

We now show that this procedure provides a nearly optimal solution for the 

time-varying optimal control problem if time-varying L  is selected large enough. 

 

3.3.2. Convergence of the Method of Least-Squares 

In what follows, we show convergence results as L  increases for the method of 

least-squares when NN are used to approximate the cost of function.  

 

Lemma 3.1. Convergence of Approximate HJI Equation. 

Given ( )Ω∈ψu . Let ( ) ( ) ( )∑
=

=
L

j
j

T
jL xtwtxV

1
, σ  satisfy 

( )( ) ( ) 0,, =
Ω

xtxVHJI LL σ  and ( ) ( ) 0, =
Ω

xtV LfL σ , let ( ) ( ) ( )∑∞

=
=

1
,

j j
T
j xtctxV σ  

and note that ( )( ) 0, =txVHJI  and ( )( ) ( )( )ffff ttxttxV ,, φ= . 
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Define ( ) ( ) ( ) ( )[ ]TLL tctctct ...21≡c . If Ω  is compact, ( )xQ  are continuous on Ω  and 

are in the space ( ){ }∞
1

xspan jσ , and if the coefficients ( )tw j  are uniformly bounded 

for all L , then 

( )( ) 0, →txVHJI L  on Ω  as L  increases. 

Proof. The hypothesis implies that ( )( ) ( ){ }∞∈
1

, xspantxVHJI jL σ . Note that  

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Ω= Ω

= Ω= Ω

Ω

+⋅∇∇⋅−

∇+

=

∑
∑∑

xxhxhtwxxxgxgxtw

xxfxtwxxtw

xtxVHJI

j
TL

k kj
T
k

T
k

T
k

L

k jk
T
k

L

k jk
T
k

jL

σσσσ

σσσσ

σ

,,ˆˆ

,,

,,

1

11
& ,  (3-26) 

Then 

( )( ) ( )( ) ( ) ( )∑∞

= Ω
=

1
,,,

j jjLL xxtxVHJItxVHJI σσ  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )∑
∑ ∑
∑ ∑
∑ ∑

∞

+= Ω

∞

+= = Ω
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+= = Ω
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+= = Ω
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⋅∇+
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1

1 1

1 1

1 1

,

,ˆˆ

,

,
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Lj j
L

k kj
T
k

T
k

T
k

Lj j
L

k jk
T
k

Lj j
L

k jk
T
k

xxxhxh

xtwxxxgxgxtw

xxxfxtw

xxxtw

σσ

σσσσ

σσσ

σσσ&

. (3-27) 

Since the set ( ){ }∞
1

xjσ  are orthogonal, ( ) ( ) 0, =
Ω

xx jk σσ . 

Therefore 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )∑

∑ ∑

∑ ∑

∞

+= Ω
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1 1
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1 1
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Lj jj
T

L

k jLj j
T
k

T
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L

k jLj jkk

xxxhxh

xxxxgxgxtw

xxxfxtw

σσ

σσσσ

σσσ
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( ) ( ) ( ) ( ) ( ) ( )( )∑∞

+= Ω
++≤

1
,

Lj jj
T xxxhxhVecxCDxAB σσ ,               (3-28) 

where 

( )twA k
Lk

max
,1 ≤≤

= , 

( )
( ) [ ]

( ) ( ) ( )( ) ( )∑ ∑=

∞

+= ΩΩ×∈
⋅∇=

L

k jLj jk
Ttxt

xxxfxxB
1 1

,,
,sup

0

σσσ , 

( )twC k
Lk

2

1
max

≤≤
= , 

( ) [ ]
( ) ( ) ( ) ( ) ( )( ) ( )( )∑ ∑=

∞

+= ΩΩ×∈
⋅∇∇=

L

k jLj j
T
k

T
k

Ttxt
xxxxgxgxD

1 1
,,

,ˆˆsup
0

σσσσ  

Suppose ( ) ( )xfxkσ∇ , ( ) ( ) ( ) ( )xxgxgx T
k

T
k σσ ∇∇ ˆˆ  and ( ) ( )xhxhT  are in ( )Ω2L , the 

orthonormality of the set ( ){ }∞
1

xjσ  implies that ( )xB , ( )xD  and the third term on the 

right-hand side can be made arbitrarily small by an appropriate choice of L . Therefore 

( ) ( ) 0→⋅+⋅ xDCxBA  and ( ) ( ) ( ) ( ) 0,
1

→∑∞

+= Ω
xxxhxh

Lj jj
T σσ . 

So ( )( ) 0, →txVHJI L .                                                  ■ 

 

Lemma 3.2. Convergence of NN Weights. 

Given ( )ΩΨ∈u  and suppose the hypothesis of Lemma 3.1 hold. Then 

( ) ( ) 0
2
→− tt LL cw  as L  increases. 

Proof: Define ( ) ( )( )txVHJItxe LL ,, =  and  

( ) ( )( ) ( )( )ffffLL ttxttxVtxe ,,,ˆ φ−= .                                 (3-29) 

Then ( ) ( ) ( ) ( ) 0,,ˆ,, ==
ΩΩ

xtxextxe LLLL σσ . From the hypothesis we have that 
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( )( ) ( )( ) ( )
( )( ) ( )( ) ( )txettxVttxV

txetxVHJItxVHJI

LffffL

LL

,ˆ,,
,,,

=−
=−

,                                   (3-30) 

substituting the series expansion for ( )txVL ,  and ( )txV , , and moving the terms in the 

series that are greater than L  to the right-hand side we obtain 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
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T
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T
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LLL
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σcwσcw

σσ&

&&

 

( ) ( )( ) ( ) ( ) ( )xtctxett
Lj jfjLLf

T
Lf

T
L ∑∞

+=
+=−

1
,ˆ σσcw .                     (3-31) 

Taking the inner product of both sides over Ω , and taking into account the 

orthonormality of the set ( ){ }∞
1

xjσ , we obtain [22] 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑ ∞

+= Ω

∞

+= Ω

Ω

Ω

∇∇⋅−∇⋅=

⊗−⊗∇∇−

−∇+−

1
2

1
,ˆˆ,

,ˆˆ

,

Lj

T

L
T
j

T
jjLj

T

Ljj

LLLL

T

L
T
j

T
L

LL
T

LLLL

xxxgxgxtcxxfxtc

ttttxxxgxgxVec

ttxxfxtt

σσ

ccwwσσσ

cwσσcw

σσσ

&&

( ) ( ) 0=− fLfL tt cw .                                                 (3-32) 

Let ( ) ( ) ( ) T
LL xxfxA

Ω
∇= σσ , , where A  is scalar. 

Define ( ) ( )tt LL cw −=ξ , consider the equation 

( )
( ) 0

0,
=

=+⋅+

ft
tfA

ξ
ξξξ&

,                                            (3-33) 

where  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )ttttxxxgxgxVectf LLLL

T

L
T
j

T
L ccwwσσσ ⊗−⊗∇∇−=

Ω
,ˆˆ,ξ  
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 is continuously differentiable in a neighborhood of a point ( )00 , tξ . Since this is an 

ordinary differential equation, satisfying a local Lipschitz condition [46], it has a unique 

solution, namely ( ) [ ]ftttt ,,0 0∈∀=ξ . Noting that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑ ∞

+= Ω

∞

+= Ω
∇∇⋅−∇⋅

1
2

1
,ˆˆ,

Lj

T

L
T
j

T
jjLj

T

Ljj xxxgxgxtcxxfxtc σσ σσσ  

is continuous in t , we invoke the standard result from the theory of ordinary 

differential equations that a continuous perturbation in the system equations and the 

initial state implies a continuous perturbation of the solution (Arnold [4]). This implies 

that for all 0>ε , there exists a ( ) 0>tp  such that [ ]fttt ,0∈∀ , 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )t
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j
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jj
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jj
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≤
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∇⋅

Ω
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+= Ω

Ω
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σ

σ

σ

σ

,                (3-34) 

( ) ( ) ε<−⇒
2

tt LL cw . 

So ( ) ( ) 0
2
→− tt LL cw .                                                ■ 

 

Lemma 3.3. Convergence of Disturbance 

If the conditions of Lemma 3.1 are satisfied and  

( ) ( ) ( )
x

txVxktd LT
L ∂

∂
=

,
2

1
2γ

, 
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( ) ( ) ( )
x

txVxktd T

∂
∂

=
,

2
1

2γ
. 

Then ( ) ( ) ( ) 0
2

→−
ΩLL xdxd  on Ω  as L  increases. 

Proof. 

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )
( )Ω

∞

+=Ω

Ω

∑ ∇+−∇≤

−

22

2

1
22 2

1
2

1

LLj
j

T
j

L
LL

T
L

T

LL

xxktcttxxk

tdtd

σ
γγ

cwσ
, 

So ( ) ( ) ( ) ( )∑
∞

=

∇=
1

22
1

j
j

T
j xxktctd σ

γ
 implies that the second term on the right-hand side 

converges to 0. By Lemma 3.2 and 4, we know that 

( ) ( ) ( )( )
( )

0
2

→−∇
ΩLLL

T
L ttx cwσ . 

Since ( )xk T  in continuous on [ ]ftt ,0×Ω  and hence uniformly bounded, we have that 

( ) ( ) ( ) ( )( )
( )

0
2

→−∇
ΩLLL

T
L

T ttxxk cwσ .                                  ■ 

At this point we have proven convergence in the mean of the approximate HJI 

equation, the NN weights, the approximate value function, the value function gradient 

and control inputs are proved in chapter 2. This demonstrates convergence in the mean 

in Sobolev space ( )Ω2,1H . In fact, the next result shows even stronger convergence 

properties. 

 

Lemma 3.4. Uniform Convergence. 

Since a local Lipschitz condition holds on (3-25), then 
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( ) ( ) 0,,sup →−
Ω∈

txVtxVL
x

, 
( ) ( ) 0,,

sup →
∂

∂
−

∂
∂

Ω∈ x
txV

x
txVL

x
, 

( ) ( ) 0sup →−
Ω∈

tutuL
x

, ( ) ( ) 0sup →−
Ω∈

tdtd L
x

 

Proof. This follows by noticing that ( ) ( ) 02

2
→− tct LLw  and the series with ( )tc j  is 

uniformly convergent, and [42].                                            ■ 

The final result shows that if the number L  of hidden layer units is large enough, 

the proposed solution method yields an admissible control. 

 

Lemma 3.5. Admissibility of ( )tuL  and ( )td L  

If the conditions of Lemma 3.1 are satisfied, then 

( ) ( ) ( ) ( )ΩΨ∈ΩΨ∈≥∃ tdtuLLL LL ,,: 00 . 

Proof. Define 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )∫ −++= ft

t

T
ff dttdtuxhxhttxttxV

0

222
00 ,, γφ . 

We must show that for L  sufficiently large, ( ) ∞<LuxV ,  when ( ) ∞<uxV , . But 

( )( )ff ttx ,φ  depends continuously on W , i.e., small variations in W  result in small 

variations in φ . Also since ( ) ( )
2

2 Ω
⋅

LLu  can be made arbitrarily close to ( ) ( )
2

2 Ω
⋅

L
u  and 

( ) ( )
2

2 Ω
⋅

LLd  can be made arbitrarily close to ( ) ( )
2

2 Ω
⋅

L
d , ( )LuxV ,  can be made 

arbitrarily close to ( )uxV , . Therefore for L  sufficiently large, ( ) ∞<LuxV ,  and 

hence ( )tuL  and ( )td L  are admissible.                                    ■ 
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3.3.3. Optimal Algorithm Based on NN Approximation 

Solving the integration in (3-24) is expensive computationally. Since evaluation of the 

2L  inner product over Ω  is required. This can be addressed using the collocation 

method [38]. The integrals can be well approximated by discretization. A mesh of points 

over the integration region can be introduced on Ω  of size xΔ . The terms of (3-24) 

can be rewritten as follows 

( ) ( )[ ]TLL xxA
p1 xx |......| σσ= ,                                       (3-35) 

( ) ( ) ( ) ( )[ ]TLL xfxxfxB
p1 xx |......| σσ= ,                               (3-36) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]TT
L

T
L

T
L

T
L xxgxgxxxgxgxC

p1 xx |ˆˆ......|ˆˆ σσσσ ∇∇∇∇= ,     (3-37) 

( ) ( ) ( ) ( )[ ]TD
p1 x

T
x

T |xhxh......|xhxh=                                 (3-38) 

where p  in px  represents the number of points of the mesh. Reducing the mesh size, 

we have 

( ) ( ) ( ) ( ) ( ) xtAAxxt L
T

x
LL

T
L Δ⋅⋅−=−

→ΔΩ
wσσw && lim,

0
,                     (3-39) 

( ) ( ) ( ) ( ) ( ) ( ) xtBAxxfxt L
T

x
LL

T
L Δ⋅⋅−=∇−

→ΔΩ
wσσw lim,

0
,                (3-40) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xtCtAxtxgxgxt L
T
L

T

x
LL

T
L

T
L

T
L Δ⋅=∇∇

→ΔΩ
wwσwσσw lim,ˆˆ

0
,    (3-41) 

( ) ( ) ( ) ( ) xDAxxhxh T

x
L

T Δ⋅⋅−=−
→ΔΩ

lim,
0

σ .                          (3-42) 

This implies that (3-24) can be converted to 

( ) ( ) ( ) ( ) 0=−+⋅−⋅− DAtCtAtBAtAA T
L

T
L

T
L

T
L

T wwww& ,               (3-43) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) DAAAtCtAAABAtAAt TT
L

T
L

TTT
L

T
L

111 −−−
−+−= wwww& .     (3-44) 

This is a nonlinear ODE that can easily be integrated backwards using final condition 

( )fL tw  to find the least-squares optimal NN weights.  

 

3.4. Simulation-Benchmark Problem 

In this example, we will show the power of our NN control technique for finding nearly 

optimal finite-horizon ∞H  state feedback controller for the Rotational/Translational 

Actuator shown in Figure 3-2. This was defined as benchmark problem in [24]. 

 

 

 

 

 

 

 

 

Figure 3-2   Rotational actuator to control a translational oscillator 
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Here the state 1x  and 2x  are the normalized distance r  and velocity of the cart r& , 

θ=3x , θ&=4x . 

Define performance index 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )∫ −++= ft

t

T
ff dttdtuxhxhttxttxV

0

222
00 ,, γφ . 

To solve for the value function of the related optimal control problem, we selected the 

smooth approximating function 
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(3-45) 

The selection of the NN is usually a natural choice guided by engineering experience 

and intuition. This is a NN with polynomial activation functions, and hence ( ) 00 =V . 

This is a power series NN with 45 activation functions containing powers of the state 

variable of the system up to the fourth order. The number of neurons required is chosen  
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Figure 3-3   r , θ  State Trajectories 
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Figure 3-4   r& , θ&  State Trajectories 
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Figure 3-5   ( )tu  Control Input 
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Figure 3-6   Disturbance Attenuation 
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to guarantee the uniform convergence of the algorithm. In this example, 

( )
]0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0

;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;10;10;10;10[=fL tw
 

and 100=ft  seconds. 

Figure 3-3 and 3-4 shows the states trajectories when the system is at rest and 

experiencing a disturbance ( ) ( ) tettd −= sin5 . Figure 3-5 and 3-6 shows the control 

signal and attenuation respectively. The graphs imply it is 2L -gain bounded by 2γ . 

 

3.5. Conclusion 

In this chapter, neural networks are used to approximately solve the finite-horizon 

optimal ∞H  state feedback control problem. The method is based on solving a related 

Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. 

The neural network approximates the corresponding game value function on a certain 

domain of the state-space and results in a control computed as the output of a neural 

network. It is shown that the neural network approximation converges uniformly to the 

game-value function and the resulting controller provides closed-loop stability and 

bounded 2L  gain. The result is a nearly exact ∞H  feedback controller with 

time-varying coefficients that is solved a priori offline. 
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CHAPTER 4 

NEURAL NETWORK SOLUTION FOR FIXED-FINAL TIME 
CONSTRAINED OPTIMAL CONTROL 

 

4.1. Introduction 

This chapter is an extension to chapter 2 and 3. The constrained input optimization of 

dynamical systems has been the focus of many papers during the last few years. Several 

methods for deriving constrained control laws are found in Saberi and Bernstein [15]. 

However, most of these methods do not consider optimal control laws for general 

constrained nonlinear systems. Constrained-input optimization possesses challenging 

problems, a great variety of versatile methods have been successfully applied in Athans 

[5], Bernstein [16], Dolphus [33] and Saberi [77]. Many problems can be formulated 

within the Hammilton-Jacobi (HJ) and Lyapunov’s frameworks, but the resulting 

equations are difficult or impossible to solve, such as Lyshevski [60][61][62]. In this 

chapter, we use NN to approximately solve the time-varying HJ equation for 

constrained control nonlinear systems. It is shown that using a NN approach, one can 

simply transform the problem into solving a nonlinear (ODE) backwards in time. 

 

4.2. Background on Fixed-Final Time Constrained Optimal Control 

Consider now the case when the control input is constrained by a saturated function 

( )⋅φ , e.g. tanh , etc. To guarantee bounded controls, [1][56] introduced a generalized 

nonquadratic functional 
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( ) ( )∫ −=
u T RdvvuW
0

2 φ , 

( ) ( ) ( )[ ] T
mvvv φφ L1=φ , 

( ) ( ) ( )[ ]muuu 1
1

11 −−− = φφ Lφ , 

where mv ℜ∈ , mℜ∈φ , and ( )⋅φ  is a bounded one-to-one function that belongs to 

( )1≥pC p  and ( )Ω2L . Moreover, it is a monotonic odd function with its first 

derivative bounded by a constant M . Note that ( )uW  is positive definite because 

( )u1−φ  is monotonic odd and R  is positive definite. 

4.2.1. HJB Case 

When (4-1) is used, (2-2) becomes 

( )( ) ( )( ) ( ) ( )∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ ++= −ft

t

u T
ff dtRdvvxQttxφttxV

0 000 2,, φ .                 (4-1)               

and (2-5) becomes 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

∂
∂

++=
∂

∂
− ∫ − tuxgxf

x
txVRdvvxQ

t
txV

T
u T

tu

*

0

* ,2min, φ .     (4-2) 

Minimizing the Hamiltonian of the optimal control problem with regard to u  gives 

( ) ( ) ( ) 02, *1
*

=+
∂

∂ − u
x

txVxg T φ , 

so 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−= −

x
txVxgRtu T

*
1* ,

2
1φ , mUu ℜ⊂∈ .                        (4-3) 

This is constrained as required. 
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When (4-3) is used, (4-2) becomes  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0,
2
1,

2,,,

*
1

*

0

**
*

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⋅⋅

∂
∂

−

+
∂

∂
+

∂
∂

=

−

−∫

xQ
x

txVxgRg
x

txV

Rdvvf
x

txV
t

txVtxVHJB

T
T

u T
T

φ

φ
.                 (4-4) 

If this HJB equation can be solved for the value function ( )txV , , then (4-3) gives the 

optimal constrained control. This HJB equation cannot generally be solved. There is 

currently no method for rigorously solving for the value function of this constrained 

optimal control problem. 

 

Lemma 2.1 The smooth bounded control law (4-3) guarantees at least a strong relative 

minimum for the performance cost (4-1) for all ℜ⊂∈ Xx  on [ )ftt ,0 . Moreover, 

if an optimal control exists, it is unique and represented by (4-3). 

Proof. See [60].                                                        ■ 

 

4.2.2. HJI Case 

Define the Hamiltonian function 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) 22

0
2

,,,,

tddvvxhxh

tdxktuxgxf
x

txVdupxH

u TT

T

γ−++

++
∂

∂
=

∫ −φ
.                     (4-5) 

Minimizing the Hamiltonian of the optimal control problem with regard to u  and d  

gives 
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( ) ( ) ( ) 02, * =+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ tu

x
txVxg Tφ ,                                     (4-6) 

( ) ( ) ( ) 02, *2 =−
∂

∂ td
x

txVxk T γ ,                                       (4-7) 

so 

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
x

txVxgtu T ,
2
1* φ ,                                       (4-8) 

( ) ( ) ( )
x

txVxktd T

∂
∂

=
,

2
1

2
*

γ
.                                 (4-9) 

When ( ) 0,,, *** =dupxH , we have the Hamilton-Jacobi-Isaacs equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) 02

,,

2*2

0

**

=−++

++
∂

∂
+

∂
∂

∫ − tddvvxhxh

tdxktuxgxf
x

txV
t

txV

u TT

T

γφ
.                      (4-10) 

From (4-8) and (4-9), (4-10) becomes 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0,,
4

1

,
2
1,2

,,,

**

2

**

0

**
*

*

=+
∂

∂
∂

∂
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

−+

∂
∂

+
∂

∂
=

∫ −

xhxh
t

txVxkxk
t

txV

dx
txdVxgxg

x
txVdvv

xf
x

txV
t

txVtxVHJI

TT
T

T
T

u T

T

γ

φφ ,                (4-11) 

with boundary condition ( )( ) ( )( )ffff ttxttxV ,, φ= .  

Equations (4-8), (4-9) and (4-10) provide the solution to finite-horizon optimal control 

for general nonlinear systems. However, equation (4-11) is generally impossible to 

solve for nonlinear systems. There is currently no method for rigorously solving for the 

value function of this constrained optimal control problem. 

It can be easily shown that 
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( ) ( ) ( ) ( )∫∫ ∫ ≤⎟
⎠
⎞

⎜
⎝
⎛ + − ff tt u TT dttddtdvvxhxh

0

22

0 0

*

2 γφ ,                    (4-12) 

When ( ) 00 =x , therefore the quasi- 2L -gain γ≤ . Controllers derived using (4-11) are 

suboptimal ∞H  controllers. If the suboptimal controller is found for the smallest γ , 

then it is called the optimal ∞H  controller. 

 

4.3. Nonlinear Fixed-Final-Time Solution by NN Least-Squares Approximation 

Like in unconstrained case 

( ) ( ) ( )tt
xx

xV
L

T
LL

T
LL wσwσ

∇≡
∂
∂

=
∂

∂ ,                                  (4-13) 

where ( )xLσ∇  is the Jacobian ( )
x

xL
∂

∂σ , and that 

( ) ( ) ( )xt
t

xV
L

T
L

L σw&=
∂

∂ .                                            (4-14) 

4.3.1. HJB Case 

Therefore approximating ( )txV ,  by ( )txVL ,  in the HJB equation (4-4) results in 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )txe

xQtxxgRxgxt

Rdvvxfxtxt

L

L
T

L
T

L
T
L

u T
L

T
LL

T
L

,
2
1

2

1

0

=

−⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅⋅∇+

−∇−−

−

−∫

wσφσw

φσwσw&

,              (4-15) 

or 

( ) ( ) ( ) ( ) ( )txetuxtwtxVHJB L

L

j
jjL ,,,

1
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

σ ,                         (4-16) 

where ( )txeL ,  is a residual equation error. From (4-3) the corresponding constrained 
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optimal control input is 

( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ ∇−= − txxgRtu L

T
L

T
L wσφ 1

2
1 .                               (4-17) 

Therefore one obtains 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0,

,
2
1

,2,,

1

0

=−+

⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅∇+

−+∇−+−

Ω

Ω

−

Ω

−

ΩΩ ∫

xxQ

xtxxgRxgxt

xRdvvxxfxtxxt

L

LL
T
L

T
L

T
L

L

u T
LL

T
LLL

T
L

σ

σwσφσw

σφσσwσσw&

.    (4-18) 

So that 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
Ω

−

Ω

Ω

−−

Ω

Ω

−−
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Ω
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⎠
⎞

⎜
⎝
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−
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=

∫

xxQxx

xtxxgRxgxtxx

xRdvvxx

txxfxxx

t

LLL

LL
T
L

T
L

T
LLL

L

u T
LL

LLLLL

L

σσσ

σwσφσwσσ

σφσσ

wσσσσ

w

,,

,
2
1,

,2,

,,

1

11

0

1

1

&

  (4-19) 

with boundary condition ( )( ) ( )( )ffff ttxttxV ,, φ= . 

 

4.3.2. HJI Case 

For the ( ) ( )( ) 0,, =tdtxVHJI , the solution ( )txV ,  is replaced with ( )txVL ,  having a 

residual error 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )txexhxhtxxkxkxt

txxgRxgxt

Rdvvxfxtxt

L
T

L
T
L

T
L

T
L

L
T
L

T
L

T
L

u T
L

T
LL

T
L

,
4

1
2
1

2

2

1

0

=+∇∇+

⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅⋅∇−

+∇+

−

−∫

wσσw

wσφσw

φσwσw

γ

&

,          (4-20) 
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or 

( ) ( ) ( ) ( ) ( )txetdxtwtxVHJI L

L

i
jjL ,,,

1
=⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

σ ,                         (4-21) 

Therefore one obtains 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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L
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LLL
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LLL
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σσσ

σwσσwσσ

σwσφσwσσ

σφσσ

wσσσσ

w

,,

,
4

1,

,
2
1,

,2,

,,

1

2
1

11

0

1

1

γ

&

,   (4-22) 

with boundary condition ( )( ) ( )( )ffff ttxttxV ,, φ= . 

Also we get 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ ∇−= txgtu L

T
L

T wσφ
2
1*  and ( ) ( ) ( )txktd L

T
L

T wσ∇= 2
*

2
1
γ

. 

This yields a feedback controller that is formulated from a neural network. 

 

4.4. Numerical Examples 

We now show the power of our NN control technique for finding nearly optimal 

fixed-final time constrained controllers. Two examples are presented. 

4.4.1. HJB Case 

In this section, two examples are shown to illustrate the algorithm, both of them applies 

constrained case. 
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4.4.1.1. Linear System 

a) We start by applying the algorithm obtained above for the linear system 

133

2212

3211 2

uxx
uxxx

xxxx

+=
+−=
++=

&

&

&

.                                               (4-23) 

Define performance index 

( )( ) ( )( ) ( ) ( )∫ ∫ ⎟
⎠
⎞⎜

⎝
⎛ ++= −T

t

u T
ff dtRdvvxQttxttxV

0 000 2,, φφ .                 (4-24) 

Here 33*10 ×= IQ  and 22×= IR , where I  is identity matrices. It is desired to control 

the system with input constraints 51 ≤u , 202 ≤u . In order to ensure the constrained 

control, a nonquadratic cost performance term (4-24) is used. To show how to do this 

for the general case of 5≤u , we use ( )LAA 1tanh⋅  for ( )Lφ . Hence the 

nonquadratic cost is 

( ) ( )∫ −⋅=
u T RdvAvAuW
0

tanh2 .  

The plot is shown in Figure 4-1. This nonquadratic cost performance is used in the 

algorithm to calculate the optimal constrained controller. The algorithm is run over the 

region 0Ω  defined by 22 1 ≤≤− x , 22 2 ≤≤− x , 22 3 ≤≤− x . To find a nearly 

optimal time-varying controller, the following smooth function is used to approximate 

the value function of the system 

( ) 326315214
2
33

2
22

2
1121 , xxwxxwxxwxwxwxwxxV +++++= . 

This is a NN with polynomial activation functions, and hence ( ) 00 =V .  



 

 65

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

u

W

 

Figure 4-1   Nonquadratic cost 
 

In this example, six neurons are chosen and ( ) [ ]0,0,0,10,10,10=fL tw . Our 

algorithm was used to determine the nearly optimal time-varying constrained control 

law by backwards integrating to solve (2-37). The required quantities A , B , C , D , E  

in (2-37) were evaluated for 5000 points in 0Ω . A least-square algorithm from 

MATLAB was used to compute ( )tLw&  at each integration time. The solution was 

obtained in 30 seconds. From Figure 4-2 it is obvious that about 25 seconds from ft , 

the weights converge to constant. The states and control signal obtained by a forward 

integration are shown in Figures 4-3 and 4-4. The control is bounded as required. 



 

 66

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Time

W
w1
w2
w3
w4
w5
w6

 

Figure 4-2   Constrained Linear System Weights 
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Figure 4-3   State Trajectory of Linear System with Bounds 
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Figure 4-4   Optimal NN Control Law with Bounds 

 

b) Now let 100=A  so that the control constraints are effectively removed. The 

algorithm is run and the plots of 11P , 22P , 33P  and function of time are shown in 

Figure 4-5. These plots converge to steady state values of 0573.6911 =P , 6208.422 =P , 

5008.622 =P . These correspond exactly to the algebraic Riccati equation solution 

obtained by standard optimal control methods [53], which is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

5008.62448.21491.12
2448.26208.48164.12
1491.128164.120573.69

P . 



 

 68

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Time

W
P11
P22
P33

 

Figure 4-5   Unconstrained Control System Weights 

 

4.4.1.2. Nonlinear Chained System 

One can apply the results of this chapter to a mobile robot, which is a nonholonomic 

system [48]. It is known [23] that there does not exist a continuous time-invariant 

feedback control law that minimizes the cost. Some methods for deriving stable controls 

of nonholonomic systems are found in Bloch [18][19], Egeland [35], Escobar [36], 

Fierro and Lewis [37], Murray [66][67], Pomet [72] and Sordalen [81]. Our method will 

yield a time-varying gain. From Murray [32], under some sufficient conditions, a 

nonholonomic system can be converted to chained form as 

213

22

11

uxx
ux
ux

=
=
=

&

&

&

.                                                     (4-25) 
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Define performance index (4-24). Here Q  and R  are chosen as identity matrices. 

It is desired to control the system with control limits of 11 ≤u , 22 ≤u . A similar 

nonquadratic cost performance term is used as in the last example. Here the region 0Ω  

is defined by 22 1 ≤≤− x , 22 2 ≤≤− x , 22 3 ≤≤− x . To solve for the value function 

of the related optimal control problem, we selected the smooth approximating function 

( )

3
3
221

3
3220

3
3119

3
21183

3
1172

3
116

2
321153

2
2114

32
2
113

2
3

2
212

2
3

2
111

2
2

2
110

4
39

4
28

4
17

326315214
2
33

2
22

2
11321 ,,

xxwxxw

xxwxxwxxwxxwxxxwxxxw

xxxwxxwxxwxxwxwxwxw

xxwxxwxxwxwxwxwxxxV

++

++++++

+++++++

+++++=

.        (4-26) 

The selection of the NN is usually a natural choice guided by engineering 

experience and intuition. This is a NN with polynomial activation functions, and hence 

( ) 00 =V . This is a power series NN with 21 activation functions containing powers of 

the state variable of the system up to the fourth order. Convergence was not observed 

using a NN with only second-order powers of the states. The number of neurons 

required is chosen to guarantee the uniform convergence of the algorithm. In this 

example, ( ) ]0;0;0;0;0;0;0;0;0;0;0;0;10;10;10;0;0;0;10;10;10[=fL tw and 30=ft  seconds. 

The required quantities A , B ,C , D , E  in (2-37) were evaluated for 5000 points in 

0Ω . Figure 4-6 indicates that the weights converge to constants when they are 

integrated backwards. Figure 4-7 shows that the systems’ states response, including 

1x , 2x  and 3x  are all bounded. It can be seen that the states do converge to a value 

close to the origin. Figure 4-8 shows the optimal control is constrained as required and 

converges to zero. 
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Figure 4-6   Nonlinear System Weights 
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Figure 4-7   State Trajectory of Nonlinear System 
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Figure 4-8   Optimal NN Constrained Control Law 

 

4.4.2. HJI Case 

In this example, we will show the power of our NN control technique for finding nearly 

optimal finite-horizon ∞H  state feedback controller for the Rotational/Translational 

Actuator shown in Figure 4-9. This was defined as benchmark problem in [24]. 

( ) ( ) ( ) ( ) ( )tdxktuxgxfx ++=& , ( ) 2≤tu , 

( ) 22
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2
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2
2

2
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q
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2.0
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=

mMmeI
meε , 10=γ , 

( ) T
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xxxx
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xxx
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Figure 4-9   Rotational actuator to control a translational oscillator. 

Here the state 1x  and 2x  are the normalized distance r  and velocity of the cart r& , 

θ=3x , θ&=4x . 

Define performance index 

( )( ) ( )( ) ( ) ( ) ( ) ( )∫ ∫ ⎟
⎠
⎞⎜

⎝
⎛ −++= −ft

t

u TT
ff dttddvvxhxhttxttxV

0

22

000 2,, γφ φ . 

It is desired to control the system with input constraints ( ) 5.0≤tu . Here we use 

( )LAA 1tanh  for ( )Lφ , hence the nonquadratic functional is 

( ) ( )∫ −=
u T RdvAvAuW
0

tanh2 . 

This nonquadratic cost performance is used in the algorithm to calculate the optimal 

constrained controller. The algorithm is run over the region Ω  defined by 22 ≤≤− x . 



 

 73

To find a nearly optimal time-varying controller, the following smooth function is used 

to approximate the value function of the system 
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The selection of the NN is usually a natural choice guided by engineering experience 

and intuition. This is a NN with polynomial activation functions, and hence ( ) 00 =V . 

This is a power series NN with 45 activation functions containing powers of the state 

variable of the system up to the fourth order. The number of neurons required is chosen 

to guarantee the uniform convergence of the algorithm. In this example, 

( )
]0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0

;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0[=fL tw
, 

and 100=ft  seconds. 

Figure 4-10 and 4-11 shows the states trajectories when the system is at rest and 

experiencing a disturbance ( ) ( ) tettd −= sin5 . Figure 4-12 and 4-13 shows the control 

signal and attenuation respectively. The graphs imply it is 2L -gain bounded by 2γ . 
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Figure 4-10   r , θ  State Trajectories 
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Figure 4-11   r& , θ&  State Trajectories 
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Figure 4-12   ( )tu  Control Input 
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Figure 4-13   Disturbance Attenuation 
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4.5. Conclusion 

In this chapter, optimal control of constrained input systems is discussed, a neural 

network approximation of the value function is introduced, and the method is employed 

in a least-squares sense over a mesh with certain size on Ω . Linear and chained form 

system examples are shown. 
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CHAPTER 5 

SUBOPTIMAL CONTROL OF CHAINED SYSTEM WITH 
TIME-FOLDING METHOD 

 

5.1. Introduction 

In this chapter, we develop fixed-final time nearly optimal control laws for a class of 

nonholonomic chained form systems by using neural networks to approximately solve 

an HJB equation. A certain time-folding method is applied to recover uniform complete 

controllability for the chained form system. This method requires an innovative design 

of a certain dynamic control component. Using this time-folding method, the chained 

form system is mapped into a controllable linear system for which controllers can 

systematically be designed to ensure exponential or asymptotic stability as well as 

nearly optimal performance. The result is a neural network feedback controller that has 

time-varying coefficients found by a priori offline tuning. The results of this chapter are 

demonstrated on an example. 

 

5.2. Problem Description 

Stabilization of chained system remains to be a difficult and interesting problem 

because of the following technical issues: 

(1) Topologically, the chained system cannot be stabilized under any continuous 

control ( )xuu =  due to its nonlinear characteristics. 
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(2) While the system is nonlinearly controllable everywhere, the system as it is not 

globally feedback linearizable (though local feedback linearizable is possible as 

shown by the σ -process but singularity manifold remains in all the neighborhoods 

around the origin), and nonlinear controllability does not necessarily translate into 

systematic control design. 

(3) Chained system is not linearly controllable around the origin. 

 Above three issues make the chained system complex, the main problem is the 

product term of the chained system can’t converge to zero. In this chapter, we use 

time-folding method to solve this problem. 

Using Time-folding method, the chained form system is mapped into a controllable 

linear time-varying system for which control can systematically be designed to ensure 

exponential or asymptotic stability as well as optimal performance. Simulations show 

that the method is feasible. 

 

5.3. Neural Network Algorithm for Chained Form System with Time-Folding 
Method 

 
Brockett’s theorem indicates that nonholonomic systems cannot be asymptotically 

stabilized around a fixed point under any smooth (or even continuous) 

time-independent state feedback control law. In this section, a smooth nearly-optimal 

time-varying control is designed to stabilize the chained form system using a 

time-folding method [73][74], With a new dynamic control design, a global nonlinear 

time transformation is found to transform the chained form system into a controllable 

linear time-varying system. 
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5.3.1. Chained Form System Description 

Consider the following 2-input 3-dimensional nonholonomic chained form system: 

23

132

11

ux
uxx

ux

=
=
=

&

&

&

,                                                   (5-1) 

where [ ] nT
nxxx ℜ∈= ...1  is the state, [ ] 2

21 ℜ∈= Tuuu  is the control input. The 

objective of this chapter is to present time-varying and continuous feedback controls 

that globally stabilize system (5-1) and are optimal with respect to certain performance 

indices. It is straightforward to extend the proposed results to m -input Nonholonomic 

systems that can be transformed into the chained form. 

The chained form system (5-1) can be decomposed into the following two 

interconnected subsystems: 

11 ux =& ,                                                        (5-2) 

2112 uBzAuz +=& ,                                                (5-3) 

Where [ ] [ ]TT xxzzz 3221 == , and ⎥
⎦

⎤
⎢
⎣

⎡
=

00
10

1A , ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

1B . 

 

5.3.2. Dynamic Control Design 

In this subsection, two dynamic feedback control components 1u  and 2u  will 

sequentially be designed to form the proposed asymptotically stabilizing control. As the 

first step, dynamic feedback control 1u  is chosen to be of the following form: 

( ) 11ˆ utu λ= ,                                                   (5-4) 
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( ) ( ) 222ˆ uatutu +== λ ,                                         (5-5) 

( ) att +=λ ,                                                  (5-6) 

where 1û , 2û  are transformed controls, and a  is constant.  From (39), letting 

( )at += lnτ , then 

( ) 211 ˆˆ,
ˆ

uBzAa
d

zd
+= τγ

τ
,                                           (5-7) 

Where ( ) ( )tzz =τˆ , ( )a,τγ  is scale factor. 

With the above transformation, the control should be changed to: 

( ) ( ) ( ) ( )( )txgRttu L
T
L

T wσφ ∇−= −1

2
1 λ .                              (5-8) 

 

5.4. Simulation 

We now show the power of our NN control technique using time-folding method for 

finding nearly optimal fixed-final time controllers to a mobile robot, which is a 

nonholonomic system [48]. Its kinematics model can be transformed into chained form 

(37) with 3=n . It is known [23] that there does not exist a continuous time-invariant 

feedback control law that minimizes the cost. Our method will yield a time-varying 

gain.  

For a nonholonomic system, define performance index 

( )∫ ++=
T

tff dtuWxQttxttxV
0

))(()),(()),(( 00 φ . 

Here Q  and R  are chosen as identity matrices. To solve for the value function of the 

related optimal control problem, we selected the smooth approximating function 
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.   (5-9) 

The selection of the NN is usually a natural choice guided by engineering experience 

and intuition. This is a NN with polynomial activation functions, and hence ( ) 00 =V . 

This is a power series NN with 21 activation functions containing powers of the state 

variable of the system up to the fourth order. The number of neurons required is chosen 

to guarantee the uniform convergence of the algorithm. In this example, 

]0;0;0;0;0;0;0;0;0;0;0;0;10;10;10;0;0;0;10;10;10[)( =fL tw  

and 30=ft  seconds. 

In the simulation, initial condition of the state is set to be ( ) [ ]Tpitx 2/110 −= . 

Figure 5-1 indicates that weights converge to constants when they are integrated 

backwards. Figure 5-2 and 5-3 show that the system’s state response, including 1x , 2x  

and 3x , are all bounded. It can be seen that the state 3x ’s steady value can be 

controlled by changing  a  in eq. (42). When  61.0=a , 3x  does converge to the 

origin. Figure 5-4 shows the nearly-optimal control converges to zero.  
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Figure 5-1   Nonlinear System Weights 
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Figure 5-2   State trajectories under the time folding control ( 5.0=a ) 
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Figure 5-3   State trajectories under the time folding control ( 61.0=a ) 
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Figure 5-4   Optimal NN Control Law 
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5.5. Conclusion 

In this chapter, nonholonomic chained systems are solved by investigating uniform 

complete controllability and developing relevant results. Illustrative example shows 

that linear controllability does not hold for stabilization of the chained system but can 

be recovered under time scaling transformation. The time-folding method yields a 

continuous asymptotically-stabilizing control without the need of using any state 

transformation. 
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CHAPTER 6 

CONTRIBUTIONS AND FUTURE WORK 

 

6.1. Contributions 

In this dissertation, neural networks are used to obtain optimal control with 

unconstrained and constrained control. The main theme of this research is based on 

solving a related Hamilton-Jacobi-Bellman or Hamilton-Jacobi-Isaacs equation of the 

corresponding finite-horizon zero-sum game. It is shown that the neural network 

approximation converges uniformly to the game-value function and the resulting nearly 

optimal feedback controller provides closed-loop stability. The result is a nearly 

optimal controller with time-varying coefficients that is solved a priori offline. 

The contribution of this research can be summarized in the following points: 

1. In chapter two, it is shown that the HJB equation can be solved by using neural 

networks, fixed-final time optimal control laws are achieved. The result is a 

neural network feedback controller that has time-varying coefficients found by 

a priori offline tuning. Convergence results are shown.  

2. In chapter three, neural networks are used to approximately solve the 

finite-horizon optimal ∞H  state feedback control problem. The method is 

based on solving a related Hamilton-Jacobi-Isaacs equation of the 

corresponding finite-horizon zero-sum game. The neural network approximates 

the corresponding game value function on a certain domain of the state-space 
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and results in a control computed as the output of a neural network. The results 

of this chapter are applied to the Rotational/Translational Actuator benchmark 

nonlinear control problem. 

3. In chapter four, we use NN to approximately solve the time-varying HJ equation 

for constrained control nonlinear systems. It is shown that using a NN approach, 

one can simply transform the problem into solving a nonlinear ordinary 

differential equation (ODE) backwards in time. 

4. In chapter five, time-folding method is introduced to solve chained system 

problem. Regularly, the state with product term can’t converge to zero perfectly, 

with this method, the issue was solved, the state can converge to any value as 

we like. 

 

6.2. Future Work 

In future, stability, controllability and optimality of chained system with time-folding 

method need to be proved. 

Further more, one can consider the case of online training of the neural network. So 

far, the algorithms considered in this dissertation were offline techniques. Also, it 

would be interesting to apply the algorithm to discrete-time nonlinear system. 

Also, nonlinear control system in discrete case can be studied. We can consider the 

use of nonlinear networks towards obtaining nearly optimal solutions to the control of 

nonlinear discrete-time systems. The method can be based on least-squares 

approximation solution of HJB equation..
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