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ABSTRACT

NEURAL NETWORK SOLUTION FOR FIXED-FINAL TIME OPTIMAL

CONTROL OF NONLINEAR SYSTEMS

Publication No.

Tao Cheng

The University of Texas at Arlington, 2006

Supervising Professor: Frank L. Lewis

In this research, practical methods for the design of H, and H_ optimal state
feedback controllers for unconstrained and constrained input systems are proposed. The
dynamic programming principle is used along with special quasi-norms to derive the
structure of both the saturated H, and H_ optimal controllers in feedback strategy
form. The resulting Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Isaacs (HJI)
equations are derived respectively.

Neural networks are used along with the least-squares method to solve the
Hamilton-Jacobi differential equations in the /, case, and the cost and disturbance in
the H_ case. The result is a neural network unconstrained or constrained feedback

controller that has been tuned a priori offline with the training set selected using Monte

il



Carlo methods from a prescribed region of the state space which falls within the region
of asymptotic stability.

The obtained algorithms are applied to different examples including the linear
system, chained form nonholonomic system, and Nonlinear Benchmark Problem to
reveal the power of the proposed method.

Finally, a certain time-folding method is applied to solve optimal control
problem on chained form nonholonomic systems with above obtained algorithms. The

result shows the approach can effectively provide controls for nonholonomic systems.
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NOMENCLATURE
state vector of the dynamical system
the 2-norm of vector x
transpose of the vector x
value or cost of x
Jacobian of V' with respectto x
2-norm on the Hardy space
oo-norm on the Hardy space
compact set of the state space
continuous and differentiable up to the m” degree on Q
neural network weight
neural network weight vector
neural network activation function
neural network activation functions vector
gradient of ¢ with respectto x
Hamilton-Jacobi-Bellman
Hamilton-Jacobi-Isaacs
Domain of Validity
there exists

supremum of a function with respectto x on Q

xi



minimum with respect to u

maximum with respect to d

integral J-a(x)b(x)dx for scalar a(x) and b(x)
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CHAPTER 1

INTRODUCTION

1.1. Significance and Contribution of the Research

In this research, a practical design method to design H, and H_ optimal state

feedback controllers for unconstrained and constrained input systems is proposed. The
value function of the associated optimization problem is solved in a least-squares sense
resulting in nearly optimal neural network state feedback controllers that are valid over
a prescribed region of the state space. These feedback controllers are more appropriate
for engineering applications. Hence, this work tries to bridge the gap between
theoretical optimal control and practical implementations of optimal controllers. A

unified framework for constructing neural network controllers that are nearly H, and

H_ optimal for unconstrained and constrained input systems is provided.

o0

The constrained input optimization of dynamical systems has been the focus of
many papers during the last few years. Several methods for deriving constrained control
laws are found in Saberi, Lin and Teel [76], Sussmann, Sontag and Yang [84] and
Bernstein [15]. However, most of these methods do not consider optimal control laws
for general constrained nonlinear systems. Constrained-input optimization possesses
challenging problems, a great variety of versatile methods have been successfully
applied in Athans [5], Bernstein [16], Dolphus [33] and Saberi [77]. Many problems can

be formulated within the Hamilton-Jacobi-Bellman (HJB) and Lyapunov’s frameworks,



but the resulting equations are difficult or impossible to solve, such as Lyshevski
[60][61][62].

The optimal control of constrained input systems is theoretically well established.
The controller can be found by applying the Pontryagin’s minimum principle. This
usually requires solving a split boundary differential equation and the result is an
open-loop optimal control [53].

Optimal L, -gain disturbance attenuation controllers are also treated in this work.
This comes under the framework of H_ optimal control. The H_ norm has played
an important role in the study and analysis of robust optimal control theory since its
original formulation in an input-output setting by Zames [91]. More insight into the

problem was given after the H_ linear control problem was posed as a zero-sum
two-person differential game by Basar [10]. The nonlinear counterpart of the H
control theory was developed by Van der Schaft [87]. He utilized the notion of
dissipativity, introduced by Willems [90][89], Hill and Moylan for nonlinear systems
[41], to formulate the /H_ control theory into a nonlinear L,-gain optimal control
problem. He made use of the fact that the H_ norm in the frequency domain is
nothing but the L,-induced norm from the input time-function to the output-time
function for initial zero state. The L, -gain optimal control problem requires solving a

Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI) equation.
Conditions for the existence of smooth solutions of the Hamilton-Jacobi equation were

studied through invariant manifolds of Hamiltonian vector fields and the relation with



the Hamiltonian matrices of the corresponding Riccati equation for the linearized
problem [87]. Later some of these conditions were relaxed by Isidori and Astolfi [45],
into critical and noncritical cases. Viscosity solutions of the HJI equation were
considered in [7][8].

Although the formulation of the nonlinear theory of H_ control has been well

developed, solving the HJI equation remains a challenge. Several methods have been
proposed to solve the HJI equation. In the work by Huang [44], the smooth solution is
found by solving for the Taylor series expansion coefficients in a very efficient and
organized manner. Another interesting method is by Beard and coworkers [13]. Beard
proposed to iterate in policy space to solve the HJI successively, he then proposed a
numerically efficient algorithm that solves the sequence of linear differential equations
using Galerkin techniques which requires computing numerous integrals over a well
valid region of the state space.

In this research, special nonquadratic performance functionals are used to encode
the various constraints on the optimal control problem. Using the dynamic
programming principle, the structure of the feedback strategy for the optimal control

law is derived.

1.2. Approach
In this dissertation, fixed-final time constrained optimal control laws using neural
networks to solve Hamilton-Jacobi equations for general affine in the unconstrained and

constrained nonlinear systems are proposed. A neural network is used to approximate



the time-varying cost function using the method of least-squares on a pre-defined region.
The result is a neural network nearly optimal constrained feedback controller that has

time-varying coefficients found by a priori offline tuning.

1.2.1. H, Optimal Control: Hamilton-Jacobi-Bellman (HJB) equation

The approach here is based on HIB equation for the control input along with neural
networks. In this case, the value function of the associated HJB equation is solved. As
the order of the neural network is increased, the least-square solution of the HIB
equation converges uniformly to the exact solution of the inherently nonlinear HIB
equation. The result is a nearly optimal state feedback controller that has been tuned a

priori off-line.

1.2.2. H_ Optimal Control: Hamilton-Jacobi-Isaacs (HJI) equation
The approach here is based on HJI equation on the input and the disturbance. Neural
networks are used to approximately solve the finite-horizon optimal H_ state

feedback control problem. The method is based on solving a related
Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game.
The neural network approximates the corresponding game value function on a certain
domain of the state-space and results in a control computed as the output of a neural
network. An H,, optimal control is obtained for the constrained input systems and the
resulting available storage solves for the value function of the associated HJI equation

of the associated zero-sum game. The saddle point strategy corresponding to the related

4



zero-sum differential game is derived, and shown to be the unique feedback saddle

point.



CHAPTER 2
FIXED-FINAL TIME OPTIMAL CONTROL OF NONLINEAR SYSTEMS
USING NEURAL NETWORK HJB APPROACH

2.1. Introduction

In many practical engineering problems, one is interested in finding finite-time optimal
control laws for nonlinear systems. It is known that this optimization problem [53],
requires solving a time-varying Hamilton-Jacobi-Bellman (HJB) equation that is hard to
solve in most cases. Approximate HJB solutions for the infinite horizon time-invariant
case have been found using many techniques such as those developed by Saridis and
Lee [80], Beard et. Al [11][15], Beard, Bertsekas and Tsitsiklis [17], Munos et. al [65]
and Kim, Lewis and Dawson [47]. Huang and Lin [44] provided a Taylor series
expansion of the HJI equation which is closely related to the HIB equation. A local

H_ controller is derived in [3] using perturbation methods.

Successful neural networks (NN) controllers not based on optimal techniques have
been reported in Chen and Liu [26], Lewis, Jagannathan and Yesildirek [52], Ge [40]. It
has been shown that NN can effectively extend adaptive control techniques to
nonlinearly parameterized systems. NN applications to an optimal control via the HIB
equation were first proposed by Werbos [63]. Parisini and Zoppoli [70] used NN to
derive optimal control laws for discrete-time stochastic nonlinear systems.

In this chapter, we use NN to approximately solve the time-varying HIB equation

in unconstrained and constrained cases. It is shown that using a NN approach, one can



simply transform the problem into solving an ordinary differential equation (ODE)
equation backwards in time. The coefficients of this ODE are obtained by the weighted
residuals method and a Kronecker product formulation [22].

We were motivated by the important results in [11]. However, in contrast to that
work, we are able to approximately solve the time-varying HIB equation, and do not
need to perform policy iteration using the so-called GHJB equation followed by control
law updates. We accomplish this by using a neural network approximation for the
value function which is based on a universal basis set, and by introduction of the
Kronecker product to handle bilinear terms. The Galerkin integrals used in [11] are
complicated to evaluate for bilinear terms. We also demonstrate uniform convergence

results over a Sobolev space.

2.2. Background on Fixed-Final-Time HJB Optimal Control

Consider an affine in the control nonlinear dynamical system of the form
x=f(x)+gxu(), (2-1)
where xeR", f(x)eR", g(x)eR™ and the input u(t)e R" . The dynamics
f(x) and g(x) are assumed to be known and f(0)=0. Assume that f(x)+ g(x)u(t)
is Lipschitz continuous on a set Q < *R” containing the origin, and that system (2-1) is
stabilizable in the sense that there exists a continuous control on Q that asymptotically
stabilizes the system. It is desired to find the constrained input control u(z) that

minimizes a generalized functional



P (x(t)uty) = 9Cx(e )t )+ [ [0+ ) e (2-2)

with Q(x), W(u) positive definite on Q, ie. Vx#0, xeQ, O(x)>0 and

x=0=0(x)=0.

Definition 2.1. Admissible Controls.
A control u(t) is defined to be admissible with respect to (2-2) on €, denoted by
ue¥Y(Q), if u(t) is continuous on Q, u(0)=0, u(t) stabilizes (2-1) on Q, and
Vx, €Q, V(x(t,)1,) is finite.

Under regularity assumptions, i.e. ¥(x,z)e C'(Q), an infinitesimal equivalent to

(2-2) is [53]

_ov(et) (Mj( 7()+ g(lt)). (2-3)

ot ox
where L =Q(x)+ W(u) This is a time-varying partial differential equation with
V(x,t) the cost function for any given u(t) and is solved backward in time from
t=t,.Bysetting 7, =7, in(2-2) its boundary condition is seen to be
rlale, bt )=olale, b, ). (2-4)

According to Bellman’s optimality principle [53], the optimal cost is given by

RIACON -mm[u{mjrmxwg<x>u<t>>}, @2-5)

ot u(t) ox

which yields the optimal control.



u' (1) = —%ngf(x)% (2-6)

where 7" (x,) is the optimal value function, R is positive definite and assumed to be

symmetric for simplicity of analysis.. Substituting (2-6) into (2-5) yields the

well-known time-varying Hamilton-Jacobi-Bellman (HJB) equation [53]

ov(x,t) ovixt) 1ov(xe)" Lo OV (x,t)
a7 o f(x)+Q(x)—ZTg(x)R g(x) T_O' (2-7)

This equation and (2-6) provide the solution to fixed-final time optimal control for
general nonlinear systems. However, close form solution for equation (2-7) is in general
impossible to find. In [29][30][31][28][32], we showed how to approximately solve this

equation using NN.

Remark 2.1.  The HJB equation requires that ¥ (x,z) is continuously differentiable
function. Usually, this requirement is not satisfied in constrained optimization because
the control function is piecewise continuous. But control problems do not necessarily
have smooth or even continuous value functions, (Huang [43], Bardi [8]). Lio [54] used
the theory of viscosity solutions to show that for infinite horizon optimal control
problems with unbounded cost functional, under certain continuity assumptions of the
dynamics, the value function is continuous on some set Q, V" (x,¢)e C(Q). Bardi [8]
showed that if the Hamiltonian is strictly convex and if the continuous viscosity
solution is semi-concave, then ¥ "(x,z)eC'(Q) satisfying the HIB equation

everywhere. In this chapter, all derivations are performed under the assumption of



smooth solutions to (2-7). A similar assumption was made by Van der schaft [87] and

Isidori [45].

2.3. Nonlinear Fixed-Final-Time HJB Solution by NN Least-Squares
Approximation

The HJB equation (2-11) is difficult to solve for the cost function V(x,t). In this
chapter, NN are used to solve approximately for the value function in (2-11) over Q
by approximating the cost function ¥(x,z) uniformly in ¢. The result is an efficient,
practical, and computationally tractable solution algorithm to find nearly optimal state
feedback controllers for nonlinear systems.

2.3.1. NN Approximation of the Cost Function 7 (x,?)

It is well known that a NN can be used to approximate smooth time-invariant functions
on prescribed compact sets (Hornik [42]). Since the analysis required here is restricted
to the region of asymptotically stable (RAS) of some initial stabilizing controller, NN
are natural for this application. In [78], it is shown that NNs with time-varying weights
can be used to approximate uniformly continuous time-varying functions. We assume

that ¥(x,z) is smooth, and so uniformly continuous on a compact set. Therefore one

can use the following equation to approximate ¥ (x,z) for te [to ,th on a compact set

QcR”

Vi e0)= 2w, o, ()= (0o, () @-8)

10



This is a NN with activation functions o (x)eC'(Q), o ; (0)=0. The NN weights are

w; (t) and L is the number of hidden-layer neurons. o, (x)=[o,(x)o, (x)..0, (x)]"

is the vector of activation function, w, (f)= [w1 (t)w, ()., (t)]T is the vector of NN

weights.

The next result shows that initial conditions x(¢,) can be selected to guarantee that

xt)eQ for tel,z,].

Lemma 2.1 Let QcR" be a compact set. Then 3 Q, < Q, s. t, for system (2-1),
x)eq, tely.t,], vx(,)eQ,.
The set o, (x) is selected to be independent. Then without loss of generality, they

can be assumed to be orthonormal, i.e. select equivalent basis functions to o (x) that
are also orthonormal [11]. The orthonormality of the set {O'j (x)}:o on Q implies that

if a function w(x, t) el, (Q) then

v(et) =Y {plxi)o, (x), 0, ()

i=1

where < f, g> 0= IQ g f" dx is inner product, and the series converges pointwise, i.e.

for any £€>0 and xeQ, one can choose N sufficiently large to guarantee that

0

z<1//(x,t),aj(x)>gaj(x <¢ forall te[to,tfj,see [12].

Jj=N+1

11



Note that, since one requires 0¥ (x,¢)/0¢ in (2-7), the NN weights are selected to
be time-varying. This is similar to methods such as assumed mode shapes in the study
of flexible mechanical systems [6]. However, here o, (x) is a NN activation vector,
not a set of eigenfunctions. That is, the NN approximation property significantly
simplifies the specification of © L(x). For the infinite final time case, the NN weights
are constant [1]. The NN weights will be selected to minimize a residual error in a

least-squares sense over a set of points sampled from a compact set Q, inside the RAS

of the initial stabilizing control [38].

Note that
V T
0 L(Xat):aoL(x)wL(t)EV(Ff(X)WL(t)’ e
ox Ox

where Vo, (x) isthe Jacobian &6, (x)/dx, and that

)7, (). (2-10)

Therefore approximating V(x,t) by V, (x,t) uniformly in ¢ in the HJB equation

(2-7) results in

W0, ()= w0V, ()7 ()2 o (0 )Res
WV, () sle) o LR g (vl )00 e

:eL('x’t)

or

HJB(VL (x,1)=

M-

w, (t)O'j(x)J =e, (x,t), (2-12)

12



where e, (x,t) is a residual equation error. From (2-6) the corresponding optimal

control input is
1
u, (x,1) =—5R*1gT(x)vG{(x)wL(z)- (2-13)

To find the least-squares solution for w, (¢), the method of weighted residuals is

used [38]. The weight derivatives w L(t) are determined by projecting the residual

error onto e, (x,7)/w, () and setting the result to zero VxeQ, and Vielt,,t f)

using the inner product, i.e.

de, (x,1) 3
< o (1) ,eL(x,t)>Q =0. (2-14)
From (2-11) we can get
_aealv,(v’i’f) —6, (). (2-15)

Therefore we obtains
(-1 (0, (o, (), + (- Wl Ve, (x)r(x)s, (),
Ve, (e & (] e, (e, () (-16)
+(-0lx)o, (), =0

So that

13



with boundary condition V(x(tf ), ty ) = ¢(x(tf ), t; ) =w/ (tf )c . (x(tf )) Note that, given a

mesh of x(t f) (see section 3.3), the boundary condition allows one to determine

WL(tf)'

Therefore, the NN weights are simply found by integrating this nonlinear ODE
backwards in time.

We now show that this procedure provides a nearly optimal solution for the

time-varying optimal control problem if L is selected large enough.

2.3.2. Uniform Convergence in ¢ For Time-Varying Function of the Method of
Least-Squares

In what follows, one shows convergence results as L increases for the method of least
squares when NN are used to uniformly approximate the cost function in ¢. The
following definitions and facts are required.

Let F (t, x) be piecewise continuous in ¢ and satisfy the Lipschitz condition

9

||F(x, t)— F(y,.t) || < L||x -y

Vx,yeB= {x €R"| ||x—x0 || < r}, Vte [to,tl ], where ||F||2 = <F,F> . Then, there exists
some &>0 such that the state equation x=F(x,#) with x(t,)=x, has a unique
solution over [z,,, + 8]. Provided the Lipschitz condition holds uniformly in ¢ for all

t in a given interval of time, function F(x,¢) is called globally Lipschitz if it is

Lipschitzon R".(Khalil [46]).

14



Definition 2.2. Convergence in the Mean for Time-Varying Functions.

A sequence of functions {f, (x,¢)} that is Lebesgue integrable on a set Q, L,(Q), is
said to converge (uniformly in ¢) in the mean to f (x,t) on Q if Ve>0, V¢,

iN(e,t): n>N=

£ (e, 1) = £ (x,2) ”Lz(ﬂ) <eg.

Definition 2.3. Uniform Convergence for Time-Varying Functions.

A sequence of functions {f, (x,7)} convergesto f (x,¢) (uniformly in ) on a set Q

if Ye>0, V¢, AN(,1): n>N=

£, (x, t)—f(x, t) | <& VxeQ, or equivalently

fn(x,t)—f(x,t) | <¢g.

Sup xeQ

Definition 2.4. Sobolev Space.

H™?(Q): Let Q beanopensetin R” andlet ueC"(Q). Defineanormon u by

1
M., = 5 (o) ) * . 12 p<oo

This is the Sobolev norm in which the integration is Lebesgue. The completion of
ueC"(Q): ||u||mp <o with respect to ||-||m,p is the Sobolev space H"’(Q). For
p =2, the Sobolev space is a Hilbert space.

The convergence proofs of the least-squares method are done in the Sobolev
function space H"’ (Q) setting [2], since one requires to prove the convergence of

both V, (x,t) and its gradient. The following Technical Lemmas are required.

15



Technical Lemma 2.1.

Given a linearly independent set of L functions { L}. Then for the series a, f,, it
Ik 2
follows that af f, | =0 [a,[; ) —0.

Proof: See [1]. u

Technical Lemma 2.2.
Suppose  that {VJ ; (x)}lL #0 , then {a ; (x)}lL -linearly independent =
{V o, (x)}f -linearly independent.

Proof. See [11]. ]

Technical Lemma 2.3.
If W(x)=z:j;1 w, (t)(,/}j (x) and 9, (x) are continuous on Q, then Zim w, (t)¢j (x)

converges to zero uniformly in ¢ on Q iff

1)  W(x) is continuouson Q.

2) Zw, w, (t)¢j (x)e PD(Q),

J=1
where PD(Q) means pointwise decreasing on 2.

Proof:  See [11]. ]

The following assumptions are required.

16



Assumption 2.1. The system’s dynamics and the performance integrands Q(x)+ W (u)
are such that are solution of the cost function which is continuous and differentiable.
Therefore, belonging to the Sobolev space Ve H" (Q) Here O(x) and W(u)

satisfy the requirement of existence of smooth solutions.

Assumption 2.2. We can choose a complete coordinate elements {0 i (x)}jo e H(Q)
such that the solution V(x,z)e H(Q) and {0V (x,t)/0x, ,...,0V(x,t)/éx,} can be

uniformly approximated in ¢ by the infinite series built from {O'j (x)}jo .

Assumption 2.3. The coefficients ‘wj. (t)‘ are uniformly bounded in ¢ forall L.

The first two assumptions are standard in optimal control and Neural Networks

control literature. Completeness follows from [42].

We now show the following convergence results.

Lemma 2.2 Convergence of Approximate HIB Equation.

L

Given uew(Q). Let V,(x,t)= Z w) (t)o"j (x) satisfy <HJB(VL (x,2)),0, (x)> =0

and <VL (x(tf ), i ),GL(X)>Q =0,
and let  V(x,t)= Zj; cf (t)aj (x) and ¢, ()= e, (t)e, (¢)..c, (t)]T satisfy

HIB(V (x,1))=0 and V(x(¢, ), )=olx(e, )z, ).

17



Then

|HJB xt |—>0 uniformly in ¢+ on €, as L increases.

Proof. The hypotheses imply that HJB(V, (x,¢)) arein L,(Q2). Note that
(OB, (v )hor (), = 30 ! (o, (s, (),
+ 2w KV, (x)f (x)o, (),
-3 WO V0 W (Ve (Kho () ()
+{0(x)o; (x)),

(2-18)

Since the set {0 j(x)}lw are orthogonal, <ak(x),aj(x)> =0.

Q

Then

~(HIBW, (5,00, (x)) o, ()
> S 0o >Q)a_;<x>
e B w0, (k) (), (), o, () o
[0 ve e (el e ) w0 G
+3, {ow),0,(x) o (x)

Since the set {O‘ ; (x)}w are orthogonal, <O'k (x), o, (x)>Q =0.

1

Q

Therefore

|HIB(V, (x,1))| <

(Zzzl Wi (t)Zj'):Lﬂ <V0'k (X)f(x), o, (X)>Q O, (x))

+

* ‘z;c:ul <Q(x), g; (x)>9 G (XX

<AB(x)+CD(x)+Vecqz (0.0, (x )> j(x)(), (2-20)
18



where

A= max|w, (l)| ,
1<k<L,

(Vo W e, (), )

B x = sup
(t,x)elty,T

w,f (t)( R

k=1

C = max
1<k<L

D= sup
(%)

e[to ,T]XQ

[ZZI (z <§wk (IR (90 (o 6) o o).

Suppose Vo, (x /VO‘k x)R'g"(xVo!(x) and Q(x) are in L,(Q),
the orthonormality of the set {a(/. (x)};ﬂ implies that B(x) and the second and third

term on the right-hand side can be made arbitrarily small by an appropriate choice of
L.

Therefore

j—>0.

A-B(x)+C-D(x)—> 0 and ‘Z}lm (0@).0,(x)), o

So |HJB(VL (x,t))|—>0 uniformly in # on Q as L increases. [

Lemma 2.3 Convergence of NN Weights

Given u e ‘P(Q)O and suppose the hypotheses of Lemma 2.2 hold. Then
||w (t)-¢, (t)||2 — 0 uniformly in ¢ as L increases.

Proof: Define

e, (x,t)= HIB(V, (x,2)) and &, (x,0)=V,(xl¢, )z, )-olxle, }2,). (2-21)
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Then (e, (x,1),6,(x)), =(é,(x.1).6,(x)), =0. From the hypotheses one has that
HIB(V, (x,t))- HIB(V (x,1))= e, (x,?)
v (xle, be) = (ele, be)=e, (xle, L), (2-22)
substituting the series expansion for ¥, (x,z) and V(x,t), and moving the terms in the

series that are greater than L to the right-hand side one obtains

(WL () - éL (t))TGL (x) + (WL () - . (t))TVGL (x)f(x)
- (Wi OOW, () —¢c, (1) ®¢; (t))- V%‘G Vo, (x)g(x)R™ -g" (x)Vo; (x)J
=e,(x,)+ Z;Héf (t)o,(x)+ Z;Hcf (Vo ,(x)f(x)

w 1 (2-23)
+ Z/_:Lﬂcf (1)- (ZVGI (x)g(x)R™'g" (x)Ve', (x)J

The final condition is
(Wg (tf )_ci (tf ))GL (x) =e, (x, t)"' Z?:LH ¢ (tf )O-j (x) (2-24)
Taking the inner product of both sides over ,, and taking into account the

orthonormality of the set {O' ; (x)};” , one obtains

(W, (1)=&, (D) +(Ve, (x) f(x),6,(x)), (W, () —¢, (1))

T

_ <i Vec(Ve, (x)g(x)R'g" (x)Ve' (x)),0, (x)> (W, (O®W, (1) —¢, () ®c, (1))

Q

- Z;O:LH € (t)<Vo-j (x)f(x),0, (X)>;

ao 1 _
+> e ¢ (1 )<ZVG ;(0g(0)Rg" (Vo] (x),0, (X)>Q
with final condition

w,(,)-¢c,(t,)=0. (2-25)

20



Let A= <VG L () f(x),0, (x)>£T2 , where A is scalar.
Define &=w, (¢t)—c, (), consider the equation

v A()-E+ [(£0)=0

2-26
st,)=0 (220

where

T

f&.n= —<i Vec(Vo , (x)g(x)R™g" (x)Va (x)),0, (X)>

(W, ()W, (x)—¢,(x)®¢, (X))

Q

is continuously differentiable in a neighborhood of a point (&,,7,). Since A(¢) is also

piecewise continuous functions of ¢, over any finite interval of time [to,t fJ, the

elements of A(¢) and f(&,¢) are bounded. Hence,

A@)|<a,

f(&0)|<b and

|7 Cet) =1 G = A0 = )] < [ADx = v < alke = o

Vx,yeR", Viel,t,]

also

|f o 0| =] A@)x, + f(x,0)|| < g, |+ <,

for each finite x,, Vte lto g J

Therefore, the system has a unique solution over [to,t fJ. Since ¢, can be arbitrarily
large, we can also conclude that if A(¢) and f(x,¢f) are piecewise continuous
Vt2>t,, then the system has a unique solution V¢2>¢,, so (24) can satisfy a local

Lipschitz condition [46].

Noting that
21



T

> OVe @ f().6,(), + Y, (r)<iwj (MR g’ (Vo] <x>,cL<x>>

is continuous in ¢, we invoke the standard result from the theory of ordinary

Q

differential equations that a continuous perturbation in the system equations and the

initial state implies a continuous perturbation of the solution (Arnold [4]). Note that

Y60V, ().e,),
+ Zj:m cf (t)<(%V0'j X)g(x)R'g" (x)V O'jT (x)} c, (x)>

Qi (o)

<20 Vo rme |

+

e (t)<%w, (X)g0R" g’ (Vo ()0, (x)>

= plt)

here p(t)—0 as L increases.

QL (@)

This implies that for all & > 0, there existsa po(¢f) >0 such that V¢e lto Ny J ,
W, @) —¢c, @), <e. (2-27)

So ||W ,(t)—c L(t)||2 — 0 uniformly in # on Q as L increases. ]

Now we are in a position to prove our main results.
Lemma 2.4 Convergence of Approximate Value Function.

Under the hypotheses of Lemma 2.2, one has

||VL(x,t)—V(x,t]|L2(Q)—>O uniformly in ¢+ on Q as L increases.

Proof. From Lemma 2.3, we have "WL (t)-c, (t1|2 -0,

22



||VL (x,2)— V(x,t) LZ(Q)Z = J.Q|VL (x,7)— V(x,l‘x2 dx

<[ v e o, e+ [ 57, e, 0o, (o) ax .
= (W (O)=cf (o, (x)o] (x)_(w, ()¢, () |
X, e 00, ()
By the mean value theorem, Technical Lemmas 3.3, 3¢& € Qsuch that
W, )Vt o =l ()¢, (@), + z(g).\zj% ¢, (g)f 50
uniformly in ¢ on Q, as L increases. D

Lemma 2.5 Convergence of Value Function Gradient.

Under the hypotheses of Lemma 2.2,

| — 0 uniformlyin # on Q, as L increases.
L(@)

|V, (x.1) ov(x,t)
” Ox ox

Proof. From Lemma 2.3, we have "WL (t)-¢, (t]|2 -0,

2 2

oV, (x.1) oV (x,1)
‘ Ox Ox ‘

Vol (x)w, (e, ()~ ivff_,f(x)c_,.(rﬂ

J=L+1 L, (Q)

L ()

2

< “ch(X)(WL(Z)_cL(t)) Hiz(g) *

iv@f(x)c,(zﬂ

J=L+1

=|Ve] (x)w, ()¢, (I)MZ(Q) * -[Q iVJf ek, (t){ “

Jj=L+1

L(Q)

By the mean value theorem, Technical Lemmas 2.1, 2.2 and 2.3, 3& € Q such that

||6VL (x,2) B oV (x,t)
” ox ox

5907 ]

j=L+1

I L O RGT

L, ()
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Since Vo' (x) is linearly independent and ||W (t)-¢, (tm , >0,

then

||8VL (x,2) B 6V(x,t)|
” Ox ox ”L,(m

—y 0 uniformlyin # on €, as L increases. n

Through Theorem 2.1 and 2.2 we have shown that the HIB approximating solution

(2-12) guarantees convergence in Sobolev space H"*.

Lemma 2.6 Convergence of Control Inputs.

If the conditions of Lemma 2.2 are satisfied and

0, ()= L R () 2P0,

u(x,t) = —%R_lgT(x)—aVa(;C’t) .

L) (0 in £ on Q) as L increases.

Then ||uL (x, t)— u(x, tX

Proof.

Denote aL(x):_%ngT(x)aVLa—ix’t) and a(x)=—%R1gT(x)aVa(;C,f).

By Theorem 2.2 and the fact that g(x) is continuous and therefore bounded on €,

hence
H_lRl o )6VL(x,t) Lot r OV(xi) ’
2 2 ax LZ(Q)
< —lR“gT(x)12 forieg)_ortea”
2 L,(Q) ” Ox Ox L,(Q)
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Because ¢(-) is smooth, and under the assumption that its first derivative is bounded,

then we have ||(|)(a L(x)- (p(a(x)m <M ||(a L (x)- a(x)m . Therefore
v, (x) - )
= (e, (x))-o(a(x))

Lo 0

-0,

L,()

hence ||uL (x, t)—u(x,t)|

L(Q)—>O in t on Q, as L increases. [
2

At this point we have proven uniform convergence in ¢ in the mean of the
approximate HJB equation, the NN weights, the approximate value function and the

value function gradient. This demonstrates uniform convergence in ¢ in the mean in
Sobolev space H'“’ (Q) In fact, the next result shows even stronger convergence

properties, namely uniform convergence in both x and ¢.

Lemma 2.7 Convergence of State Trajectory.

Let x, (t) be the state using control (2-13), suppose the hypotheses of Lemma 2.2 hold.
Then

x(t)—x,()— 0 uniformlyin 7 on Q as L increases.

Proof:

X(t)z f(x)+ g(x)u(t): f(x)_%g(X)R_lgT(x)aVa(i’t)

)OV(xL,t)

£, (0)= £(5,)+ g, ()= 1, )= gl R (6,) 7

Xr (to): x(to)
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Since f(X)—f(xL)S L||x‘xL ||

i(e) =, (¢)
= ()= /x,)- (%g(x)zelgf () Lo rrtgr (v, )2 biin) ”)j

ox 2 ox,
Ly, oVix,t
U el e, )220
SL”x—xL”—
1 0o oV (x,t) oVix,.1)
L C

Define

%(t) = x(1) - x, (0),
Consider the equation

- L+ h(7.r) - o)

x(z,)=0

where
i) = 3 Qo) e, )22 0)
o=~ 3t g 202) )

are continuously differentiable in a neighborhood of a point (fo,to). Over any finite
interval of time [to,th, the elements of A(X,t) are bounded. Therefore (26) has a

unique solution. From Lemma 2.5, p(x)—>0 as L increases. We invoke the standard
result from the theory of ordinary differential equations, as in Lemma 2.3 proof, so that

||)~c||—>0 uniformly in # on Q as L increases. [
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Lemma 2.8 Uniform Convergence.

Since a local Lipschitz condition holds on (2-29), then

sup|VL (xat)—V(x,tX -0, sup|aVL (X,t)_ 6V(x,t)|

—>0
xeQ xeQ ax ax |

and sup|uL (x,2)— u(x,tl —0.
xeQ)

Proof. This follows by noticing that ||w L(t)=c, (2) ||§ — 0 uniformly in ¢ and the
series with ¢, is uniformly convergent in ¢, and Technical Lemma 2.1. [

The final result shows that if the number L of hidden layer units is large enough,

the proposed solution method yields an admissible control.

Lemma 2.9 Admissibility of u, (x,).
If the conditions of Lemma 2.2 are satisfied, then 3L, :L>L,,u, € ‘I’(QO )

Proof. Define
V(x,u)=¢(t0,tf,x(t 7 ),u)+_|’:f [O(x)+W(u)ldt We must show that for L

sufficiently large, V(x,u . )< oo when V(x,u)< . But the solution of (2-1) depends

continuously on u, i.e., small variations in u result in small variations in solution of

2
L()’

(2-1). Also since ||u () ||iz( o,) Can be made arbitrarily close to ||u() V(x,u,)

can be made arbitrarily close to F(x,u). Therefore for L sufficiently large,

V(x,u, )< andhence u,(x,¢) isadmissible. [
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2.3.3. Optimal Algorithm Based on NN Approximation

Solving the integration in (2-20) is expensive computationally, since evaluation of the
L, inner product over Q, is required. This can be addressed using the collocation
method [38]. The integrals can be well approximated by discretization. A mesh of
points over the integration region can be introduced on Q, of size Ax. The terms of

(2-21) can be rewritten as follows
A=lo, (0, s, @I, [ (2-29)

B=lo, @)/, w0, @], [, (2-30)

i(voL(x)g(x)R'lgT(xWoi(x))h]
- , (2-31)

...... i (VGL (x)g(x)R"g" (x)Vo] (x)) ’xp

p=lowl, -0, | (2-32)

where p in x, represents the number of points of the mesh. Reducing the mesh size,

we have
(¥ (0,05, (), = fim (4 4)-, ()-Ax. (2-33)
<—W§(1)V6L(X)f (X),GL(x)>Q = lim —(4"B)-w,(¢)- Ax, (2-34)

x>0

<%W§ (Ve (x)g()R™ - g" (x)Vo,w,(¢).0, (X)>

a, (2-35)
=HliF A"wWl(OCw (1) Ax
(-0(x),6, (%)), =Hlim —(A" -D)-Ax. (2-36)

Ax|—0
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This implies that (2-16) can be converted to

W, ()=—(A" D)W, (A" B+ (A" A AW (O)Cw, () (A" AT A'D.  (2-37)
This is a nonlinear ODE that can easily be integrated backwards using final condition
w,(¢,) to find the least-squares optimal NN weights. Then, the nearly optimal value
function is given by

V,(x,t)=w, (e, (x),

and the nearly optimal control by
1
ML(t)=—ER'1gT(X)V6f(X)WL(t)~ (2-38)

Note that in practice, we use a numerically efficient least-squares relative to solve (2-37)

without matrix inversion.

Remark 2.2. The closed-loop Neural Network least-squares policy gives correct
answer as long as x € Q, this control policy would be valid as long as x(t) remains in
Q for all #. This means the set of initial condition €, which guarantees that
x(t)eQ for all x(t) is smaller than Q itself. This can be enlarged by carefully

selecting larger size of Neural Network.
2.3.4. Numerical Examples

We now show the power of our NN control technique for finding nearly optimal

fixed-final time constrained controllers. Two examples are presented.
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2.3.4.1. Linear System
a) We start by applying the algorithm obtained above for the linear system

X, =2x, +3x, +u, (2-39)
X, = 5x,+6x, +2u,

Define performance index

V(x(ty 1) = lx(tf )s(e, Jele, )+ lj "(x" Ox+u" Rudt ,

21
Here Q and R are chosen as identity matrices. The steady-state solution of the

Riccati equation can be obtained by solving the algebraic Riccati equation (ARE). The

3.1610 2.8234

result is
{2.8234 3.6777

} . Our algorithm should give the same steady-state value.

To find a nearly optimal time-varying controller, the following smooth function is

used to approximate the value function of the system
V(x1 , Xy ) = WX, + WX, X, + WX
This is a NN with polynomial activation functions, and hence ¥(0)=0.
w
. T Wl %
Note thatif V' =x" Px,then P= - .
2 2 W3

In this example, three neurons are chosen and w L(tf): [1 0,10, O]. Our algorithm was
used to determine the nearly optimal time-varying control law by backwards integrating
to solve (2-37). A least-square algorithm was used to compute W, (t) at each

integration time. From Figure 2-1 it is obvious that about six seconds from ¢,, the

weights converge to the solution of the algebraic Riccati equation. The control signal is
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Figure 2-1  Linear System Weights
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Time

Figure 2-2  State Trajectory of Linear System
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Optimal Control
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Figure 2-3  Optimal NN Control Law
1 -1 T
u =—§R g Px. (2-40)

The states and control signal are shown in Figures 2-2 and 2-3.

2.3.4.2. Nonlinear Chained System

One can apply the results of this chapter to a mobile robot, which is a nonholonomic
system [48]. It is known [23] that there does not exist a continuous time-invariant
feedback control law that minimizes the cost. Some methods for deriving stable controls
of nonholonomic systems are found in Bloch [18][19], Egeland [35], Escobar [36],
Fierro and Lewis [37], Murray [66][67], Pomet [72] and Sordalen [81]. Our method will
yield a time-varying gain. From Moylan [32], under some sufficient conditions, a

nonholonomic system can be converted to chained form as
32



X=v . (2-41)

Define performance index
T
V(aty)ety) = 9x(t ).t )+ [ Q)+ W ).
Here O and R are chosen as identity matrices. To solve for the value function of the

related optimal control problem, we selected the smooth approximating function

— 2 2 2 4 4
V(X),X,,X5) = WX] +W,oX5 + WyX5 + W0, + WeX Xy + WeX, X5 + WX, + WX,
4 2.2 2.2 2.2 2 2 2
+ WoXs + WX X5 + W) X XS + W)X, X, + WX, XX, + WX XX, + WX, x,x; . (2-42)

3 3 3 3 3 3
T W X)Xy T Wi X Xy + Wig X 1 X, + WioX X3 + Wy X, X3 + Wy X5 X,

The selection of the NN is usually a natural choice guided by engineering experience

and intuition. This is a NN with polynomial activation functions, and hence 7(0)=0.

This is a power series NN with 21 activation functions containing powers of the state
variable of the system up to the fourth order. Convergence was not observed using a NN
with only second-order powers of the states. The number of neurons required is chosen
to guarantee the uniform convergence of the algorithm. In this example,

w, (¢,)=[10;10;10;00,0;10;10;10;0;0;0,0,0;0;0,00;0;0;0]

and t; =30 seconds.
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Figure 2-6 ~ Optimal NN Control Law
Figure 2-5 indicates that weights converge to constant when they are integrated

backwards. The time-varying controller (2-38) is then applied using interpolation.

Figure 2-5 shows that the systems’ states response, including x,;, x, and x; are all

bounded. It can be seen that the states do converge to a value close to the origin. Figure

2-6 shows the optimal control converges to zero.

2.4. Conclusion

In this chapter, optimal control of unconstrained input systems is discussed, a neural
network approximation of the value function is introduced, and the method is employed
in a least-squares sense over a mesh with certain size on Q. We are able to

approximately solve the time-varying HJB equation, and do not need to perform policy
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iteration using the so-called GHJB equation followed by control law updates. The

Galerkin integrals used in [11] are complicated to evaluate for bilinear terms.
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CHAPTER 3
NEURAL NETWORK SOLUTION FOR FINITE-FINAL TIME H-INFINITY
STATE FEEDBACK CONTROL

3.1. Introduction

This chapter is an extension to chapter 2, where it is shown how to use NN to
approximately solve the time-varying HIB equation arising in optimal control without
policy iterations. In this chapter, we present the main algorithm for the approximate
solution of the HJI equation for H_ controllers and provide uniform convergence
results and stabilities results over a Sobolev space. Finally, the resulting approach is
simulated on a Rotational/Translational Actuator (RTAC) nonlinear benchmark system
[85] with the relevant simulation results demonstrated. The simulation results are

effective.

3.2. L,-gain and Dissipativity of Controlled Nonlinear Systems

Consider the following controlled nonlinear system with disturbance,

i = f(x)+ g(xule) + kx)d (1)
y=Xx (3-1)
z=y(xu)

xeR",ueU,yeR",deR".
where (x,u) is such that ||z(t)|2 = h(x)" h(x)+||u(t)|2 for some function A(x). This
is equivalent to the absence of cross terms of x and u in other A formulations.
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We further assume that £(0)=0,(0,0)=0. Here y(¢) is the measured output, which
we assume to be the full state vector of the system. Moreover x =0 is assumed to be

an equilibrium point. The penalty output z(t) is a function of the state and the control
input u(t) Note that we require the assumption that there are no cross terms of the state
and the control as far as calculating ||z(t1| is concerned. The dynamics (1) are depicted

in Figure 3-1.

e | k=) rglokrkx)a, [ A

y=x,z=l//(x,u)

u=1(y)

Figure 3-1. State feedback nonlinear H_ controller

We require the following background.

Definition 1.A closed-loop system, i.e. for some u(t), system (1) hasan L, -gain <y,

where y >0, if
Iot’ |2(e)| e < 2 Iot’ |t (e)|” e
forall 7, >0 andall del, (0, tf). m

For linear systems, there are explicit formulae to compute » (Chen [25]).

Throughout this chapter we shall assume that y is fixed.

Definition 3.1. System (3-1) with supply rate w(t): ;/2||af(t)||2 —||z(tl|2 is said to be
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dissipative if there exists 7 >0, called the storage function, such that

(e, )+ [ wlede 2 v (e, ) .

ty
We are interested in determining a control # which under the worst of uncertainty, or

disturbance d, renders the performance functional

V(x(to 1ty ) = plle, b2, )+ _[;” (hT (o)) + Jule))” = 2 |ae)] )dt (3-2)
nonpositive for all d(¢)e L,(0,). Note that ¢( ( ) ) ( ( ),t ) In other words,

L,-gain<y for some prescribed y.In terms of the storage function of the system, (3-2)

becomes

Plale bt )7 (sl bt )+ [ Gne) ) 7o) e < 0. (32)

This also has an infinitesimal equivalence which is

V) VTGl 10 o kb )+ O — e <0. G

Definition 3.2. Admissible Controls.

A control u(t) is defined to be admissible with respect to (3-3) on Q, denoted by
ue¥YQ),if

® u(¢) is continuously differentiable on Q.

e u(0)=0, u(t) stabilizes (1) on Q.

° ¢(x(tf ), t; )+ J‘;f (hT (x)h(x)+ ||u(t)||2 —7’ ||d(t)|2 )dt <o Vx, €Q.

® The L, gainisbounded by a prescribed value y>y". [
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The available storage is a result of the following optimal control problem
p(ueh )= mimma( glale, b, )+ [ (7 )+ [ =720 e ). -9

Equation (3-5) is a two-variable optimal control problem. The uniqueness of the game
value of (3-5) has been demonstrated [45]. For that one uses the well-established theory
of zero-sum differential games which can be interpreted as either minimax or maximin
optimization respectively

minm;"tx V(x,,u,d) or maa,lxmin V(xy,u,d). (3-6)

For such strategy needs to be a unique saddle point of the Hamiltonian of the
optimization, and the corresponding upper and lower game value needs to satisfy the
same HJI equation. The optimal control solution is unique if

V(xo,u*,d)éV(xo,u*,d*)SV(xo,u,d*). (3-7)
This is equivalent to

m;txmin V(xo,u,d)zminmflx V(x,,u,d). (3-8)

The pair (u* ,d *) that satisfies (3-7) is called a game-theoretic saddle point.

Define the Hamiltonian function
H (x, pu,d )

= V) (1) gl MO+ 1 )+ ) 72

ox

(3-9)

The first-order necessary conditions that follow from stationarity for this optimization
problem are

oM _ ot _

=0, =0. 3-10
Ou od 510
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Minimizing the Hamiltonian of the optimal control problem with regard to # and d

gives

¢ (1) ()

p» =0, (3-11)
kT(x)M—Zyzd*(t): 0, (3-12)
ox
SO
u'(t)= —%g(X)T aV(g;C’t), (3-13)
d*(l‘)= 1 k()C)T GV(X,[) (3_14)
2y° dx

In order to achieve (3-7), we need to have H, = H,, where H, = max min A , and

u

* .
H, =minmax H .
d

u

Second-order necessary conditions are

0'H 0*H
P >0, e <0. (3-15)

These conditions become sufficient when they are replaced with strict inequalities. This

is equivalent to
H(xo,u*,d)ﬁH(xo,u*,d*)SH(xo,u,d*). (3-16)
For finite time problem, a saddle point in the Hamiltonian A implies a saddle point in

the performance ¥ (x,z).

When H® (x, )2 u,d’ ): 0, we have the Hamilton-Jacobi-Isaacs equation

41



oV (x,t) N 5VT(x’f)(f(x)+ gloc) () + k(x)d*(f))

Ot ox
+ hT(x)h(x)JrHu*(tX‘z ~y’

From (3-13) and (3-14), (3-17) becomes

d’"(t)ﬂ2 =0

HJI(V*(x,t))z GV;(tx,t)+ GV*(;Ex,t)f(x)

_@Va_f”) 2 2 (i) =0

with boundary condition V(x(t s ), t; )= ¢(x(t s ), t; )

Here g(x)e(x) =+ g()e(x)’ ——— k(xk(x)".

(3-17)

(3-18)

Equations (3-13) (3-14) and (3-18) provide the solution to finite-horizon optimal control

for general nonlinear systems. However, equation (3-18) is generally impossible to

solve for nonlinear systems.

3.3. NN Least-Squares Approximate HJI Solution

Now we use unconstrained case for NN approximation. The HJI equation (3-18) is

difficult to solve for the cost function V(x,t). In this section, NNs are used to solve

approximately for the value function in (3-18) over by approximating the cost

function to find nearly optimal H  state feedback controllers for nonlinear systems.

3.3.1. NN Approximation of V(x,t)

In chapter 2 it is noted that

aVLaECx,t) _ ach(x)wL(t) = Vo (x)w, (1),
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where Vo, (x) is the Jacobian 865 (x) , and that aVLa(;’t) =w!(t)o,(x).
x

For the HJI(V(x,t),d(¢))=0, the solution V(x,¢) is replaced with ¥, (x,z) having a

residual error

Wi (t)o, (x)+ wi Ve, (x)/(x)
—wi (o, (x)g(x)g" (o] (x)w, (0] + A" (x)hlx), (3-20)

=e; (x,t)
or

L

HJI(VL ()= 3w (o, (x),d(t)j e (v1), (3-21)

i=1
where e, (x,z) is a residual equation error. The weight derivatives W, (¢) are

determined by projecting the residual error onto €. (x.1) ow (1) and setting the result to
L

zero Vx () using the inner product, i.e.

<6e% (o) (x,t)> -0. (3-22)

ow, (¢)

From (3-20) we can get

—aeév-(vi’t) —6,(x). (3-23)

Therefore one obtains
(Wi (o, (x)o, (), +(w.(0)Ve, (x)f(x)e,(x))

—(wi (Ve (x)g(x)2 ()Vc (¥, (1)o, (), (3-24)
+(h" (x)h(x)o, (x)) =

So that
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v, (t) =

(o, (x)o,(x))," (Ve,(x)/(x)o, (), w,.()

(o, (xko, (), (Wi (6)Ve, (x)g(x)g" (x)Vaiw, (1), (x)) -
(o, (x)o, (), " (h" (Mhlx)o, (), - w, (1)

with boundary condition V(x(t ; ),t ; ) = ¢(x(t s ), t; )

s

(3-25)

—+

Therefore, the NN weights are simply found by integrating this nonlinear ODE

backwards in time. In practice, one does not invest (o, (x)o, (x)> ,» but uses efficient

least-square methods to solve (3-24).
We now show that this procedure provides a nearly optimal solution for the

time-varying optimal control problem if time-varying L is selected large enough.

3.3.2. Convergence of the Method of Least-Squares
In what follows, we show convergence results as L increases for the method of

least-squares when NN are used to approximate the cost of function.

Lemma 3.1. Convergence of Approximate HJI Equation.

L
Given uey(Q).Let V,(x,t)=> w!(t)o,(x) satisfy

J=1

<HJI(VL (x,2)).0, (x)>Q =0 and <VL (tf ),GL()C)>Q =0, let V(x,z)= Z; cf (t)oj (x)

and note that HJI(V(x,¢))=0 and V(x(tf ltf ) = ¢(x(tf l t; )
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Define ¢, (¢)= [c, (t)e, (t)..c, (t)]T. If Q is compact, Q(x) are continuous on Q and
are in the space span{a i (x)}jo, and if the coefficients ‘wj (t)‘ are uniformly bounded

for all L, then

|HJ1(VL(x,t)]—>0 on Q as L increases.

Proof. The hypothesis implies that HJI(V, (x,¢)) € span {G i (x)};” Note that

<HJ](VL (xat))’af(x»ﬂ -
IO LIOLION
_221 ()<Vo_k() (

Then

LIV, (x.1)) = \z (HII(V, (x.0)). 0, (x), o, (x)(

>, i e (), (), ) o, ()
- ZJ Llﬁklwk )<V0'k )/ (x) O'j(x)>g) .(3-27)

DI ,”wk (Vo (v >g<x)gf<x>w<> @), 0o,
+Zj:L+l< ’O-./(x)>g O-J(X)

2w @\ Vo () f (), (), . (3-26)
(x

)¢ )Vvk() S0, w )+ (0" (@h(x).o, (x)),

Since the set {aj (x)}jo are orthogonal, <0k (x), o, (x)> =0.

Q

Therefore

Y (), (), 0, (o)
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< 4B(x)+ CD()+ Ve 7, (W (h(x)or (), 0, (4] (3-28)
where

A=max|w,(¢),
1<k<L,

B x = sup
(t.x)elto. 7]

w,f (tj 5
EL 2 (Vo Wewe @val (e, (), o, (5]

Suppose Vo, (x)f(x), Vo, (x)g(x)g" (x)Vo] (x) and A" (x)k(x) are in L,(Q), the

Zk 1(21 L+1 x)’Gj(x)>Q)'O-j(xX )

C = max
1<k<L

= sup
t x e[to T]XQ

orthonormality of the set {O'j (x)}jo implies that B(x), D(x) and the third term on the
right-hand side can be made arbitrarily small by an appropriate choice of L. Therefore
A-B(x)+C-D(x) >0 and \z} (T @h(e)e, () o, (x) - o\ .

So |[HJI(V,(x,t)] > 0. =

Lemma 3.2. Convergence of NN Weights.

Given u < '¥(Q) and suppose the hypothesis of Lemma 3.1 hold. Then
Iw,(¢)-c,(¢)), >0 as L increases.
Proof: Define e, (x,#)= HJI(V,(x,¢)) and

=V, (xle, L, )-lxle, e, ). (3-29)
Then (e, (x,t).6,(x)), =(é,(x.7),6,(x)), =0. From the hypothesis we have that
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HIIV, (x,1))- HII(V (x,2)) = e, (x,¢)

VL(x(tf),tf)—V(x(tf),tf): é,(x,1) ’

substituting the series expansion for ¥, (x,z) and ¥(x,¢), and moving the terms in the

(3-30)

series that are greater than L to the right-hand side we obtain

(W, ()-¢,()) o ( ) (wL(t) e, (o))’ Vcl(x)f(x)

~(Wi () ®wi(r)- ci(t) ( (x)g(x)g" (x)Vo7 (x)
_el(x t) Z =L+1 J x) Z, L+l J O-J(x)f(x)
-2 ,()(Vo (x )g( )& (xVe] (x))

Wile,)-cile, o, =&,(x0)+ X7, et o (). (3-31)

Taking the inner product of both sides over Q, and taking into account the
orthonormality of the set {0' ; (x)};” , we obtain [22]
(W, (1)=&, () +(Vo, () (), (g (W, ()¢, ()

~(VeelVa, (x)3(x)e" (x)Ve] (x)ho, (), (w, () ® W, ()¢, () ®c, (1))
=30 (Vo (7)o, (), -2, er(0)- (Vo (1)) (Vo] (), (x),

w,(t,)- L(zf)zo. (3-32)
Let 4= <V6L(x)f(x),cL(x)>;, where A is scalar.

Define &=w,(t)—c, (t), consider the equation

i(:f;;fo+f(§,t)=0, (3.33)
where
f(é:at): <Vec(V6 ( ) )76 > W, ®WL(Z)_CL(I)®CL(t))
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is continuously differentiable in a neighborhood of a point (éo,to). Since this is an

ordinary differential equation, satisfying a local Lipschitz condition [46], it has a unique

solution, namely f(t) =0,Vte [to Ny J Noting that

3,00 (Vo 0 k)e, (), -3, el (Vo (xe(x)g” 1)V (), (x),

is continuous in ¢, we invoke the standard result from the theory of ordinary
differential equations that a continuous perturbation in the system equations and the
initial state implies a continuous perturbation of the solution (Arnold [4]). This implies

that for all & >0, there existsa p(f)>0 such that Vze [to g J,

<
=304 0o, e (Vo] (e W) |
SHZ;H% (0)-(Vo,(x)f(x)o, (x)), Lo : (3-34)
5 01 (v Wl v who (5],
<pl1)
= [, ()-c, ()], <¢
So w.(0)-e. (1], >0 .

Lemma 3.3. Convergence of Disturbance

If the conditions of Lemma 3.1 are satisfied and
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2y ox
Then [d,(x)-d(x)|, ,, —0 on Q as L increases.
Proof.
. 0) =0, o
<| 5o Rl - 0)]  +|5s YW ()

1

So d(t)= 2

ic ; (t)kT (x)V o, (x) implies that the second term on the right-hand side
Jj=1

converges to 0. By Lemma 3.2 and 4, we know that

HVGZ(X)(WL(Z‘)—CL(t)X‘ —0.

L,(Q)

Since k' (x) in continuous on Qx [to )t fJ and hence uniformly bounded, we have that

Hkr(x)VGf(x)(wL(t)—cL (t)X‘ —0. m

L(Q)
At this point we have proven convergence in the mean of the approximate HJI
equation, the NN weights, the approximate value function, the value function gradient

and control inputs are proved in chapter 2. This demonstrates convergence in the mean
in Sobolev space H"’ (Q) In fact, the next result shows even stronger convergence

properties.

Lemma 3.4. Uniform Convergence.

Since a local Lipschitz condition holds on (3-25), then
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|6VL (x,2) B oV (x,t)

X 8x|

sup|VL (x,t)— V(x,t)| — 0, sup

xeQ xeQ

-0,

sup|uL (t)—u(t)| —0, sup|dL (t)—d(tl -0
xeQ

xeQ
Proof. This follows by noticing that ||w L()=c, (tmi — 0 and the series with ¢; (t) is

uniformly convergent, and [42]. [
The final result shows that if the number L of hidden layer units is large enough,

the proposed solution method yields an admissible control.

Lemma 3.5. Admissibility of u,(t) and d, (¢)
If the conditions of Lemma 3.1 are satisfied, then
AL, :L>Ly,u,(t)e ¥(Q)d,(t) e P(Q).

Proof. Define
Pt k)= ol e, o T 07 o)+l =2 e

We must show that for L sufficiently large, V(x,u L)<oo when V(x,u)<oo. But

¢(x(t s ), t f) depends continuously on W, i.e., small variations in W result in small

variations in ¢ . Also since ||u . ()E can be made arbitrarily close to ||u()||i @ and

2()

||dL()|i (@ ¢an be made arbitrarily close to ||d() V(x,u,) can be made

2
L(Q)’
arbitrarily close to ¥(x,u). Therefore for L sufficiently large, V(x,u,)<o and

hence u,(z) and d,(¢) are admissible. [
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3.3.3. Optimal Algorithm Based on NN Approximation

Solving the integration in (3-24) is expensive computationally. Since evaluation of the

L, inner product over Q is required. This can be addressed using the collocation

method [38]. The integrals can be well approximated by discretization. A mesh of points

over the integration region can be introduced on Q of size Ax. The terms of (3-24)

can be rewritten as follows

(3-35)

(3-36)

(3-37)

(3-38)

where p in x, represents the number of points of the mesh. Reducing the mesh size,

we have

(-w] (o, (x)0,(x)_ = 1im — (47 4)-w, (1) Ax,

a0

<—Wf(t)VcL(x)f(x),cL(x»Q = lim —(ATB)-WL(t)-Ax,

|Ax|—0

(Wi Ve, (x)g(x)g" (x)Veiw, ()o, (x)), = tim AW (r)Cw, (1) Ax,

a0

<—hr(x)h(x),0L(x)>Q = lim —(AT D)Ax

|Ax|—0
This implies that (3-24) can be converted to

—A"A-w, (t)-A"B-w,(t)+ AW (t)Cw,(t)-4"D=0,
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(3-40)

(3-41)

(3-42)
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w, () =—(474) ' w, ()4 B+ (4" 4) AW ()Cw, (1)-(474) 4D, (3-44)
This is a nonlinear ODE that can easily be integrated backwards using final condition

W, (t s ) to find the least-squares optimal NN weights.

3.4. Simulation-Benchmark Problem
In this example, we will show the power of our NN control technique for finding nearly

optimal finite-horizon H_ state feedback controller for the Rotational/Translational

Actuator shown in Figure 3-2. This was defined as benchmark problem in [24].

Figure 3-2  Rotational actuator to control a translational oscillator

i= [ (x)+ g+ k(x)d(e),

u|£2

zlz=x+0.1x] +0.1x +0.1x; + ||u(t)|

2
q’

=02, y=10,

gzn%/(l+me2XM+m)
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T
2 2
— X, +é&x, sinx, gcosx3(x1 - &x, smx3)

f=]x
2 4
1-¢?cos® x, 1-¢?cos® x,
l T
— £C0SX
g: O 2 23 0 2 2 ?
-7 cos” x, -7 cos” x;
1 T
—£COSX
k= 0 2 2 O 2 23
-7 cos” x; l1-¢&"cos” x,

Here the state x; and x, are the normalized distance r and velocity of the cart 7,
x,=60, x,=6.

Define performance index

sl bty = ol b, Vo [ 07 GG+ o) =) b

lo
To solve for the value function of the related optimal control problem, we selected the

smooth approximating function

_ 2 2
V(Xl ,xz,x3 ,X4 ) = Wlxl + W2x1X2 + W3x1x3 + W4x1x4 + W5X2 + W6X2.X3
2 2 4 3 3
+W7x2x4 +W8x3 +W9x3x4 +W10x4 +W11x1 +W12x1 x2 +W13x1 x3
n Se 4 2,2 2 n 2 n 2.2 2
WigXy Xy T Wis Xy Xy T WigXy Xy Xy T Wip Xy Xp Xy T WigXy X3 T WigXy X3 Xy
4.2 3 2 2 2
+ Woo X, Xy + Wy X, X5 4 Way X, X5 X5 + W3 X, X5 X, + Wy X, X, X5 4 Was X, X, X5 X, (3-45)
2 3 2 2 3 4 3
T Woe X X5 X, + Wpr Xy X5 + Wyg Xy X3 Xy + Wyg Xy X3 X, + Wi X, X, Wy Xy + Wi X5 Xy
n Se 4 2.2 2 2.2 3 2
Wiz Xy Xy T Wi Xy X3 T Wis Xy X3 Xy Wag Xy Xy T Wip Xy Xy T Wig X X3 Xy
2 3 2.2 3 2 2 3
T Wi Xy X3 Xy + Wyg Xy Xy Wy Xy Xy + Wi Xo X3 + WisXo X3 Xy + Wy Xo X3 Xy, + WysXo X,y
The selection of the NN is usually a natural choice guided by engineering experience

and intuition. This is a NN with polynomial activation functions, and hence ¥(0)=0.

This is a power series NN with 45 activation functions containing powers of the state

variable of the system up to the fourth order. The number of neurons required is chosen
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Figure 3-4 7, @ State Trajectories
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to guarantee the uniform convergence of the algorithm. In this example,

W, (tf ) =[10;10;10;10;0;0,0;0;0,0;0;0;0;0,0;0;0,0;0;0,0;0;
0;0,0;0,0;0;0,0;0,0;0,0;0,0;0,0;0;0,0;0,0;0;0]

and t; =100 seconds.

Figure 3-3 and 3-4 shows the states trajectories when the system is at rest and

experiencing a disturbance d(t)=5sin(t)e”. Figure 3-5 and 3-6 shows the control

signal and attenuation respectively. The graphs imply itis L,-gain bounded by 5.

3.5. Conclusion

In this chapter, neural networks are used to approximately solve the finite-horizon
optimal H  state feedback control problem. The method is based on solving a related
Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game.
The neural network approximates the corresponding game value function on a certain
domain of the state-space and results in a control computed as the output of a neural
network. It is shown that the neural network approximation converges uniformly to the
game-value function and the resulting controller provides closed-loop stability and

bounded L, gain. The result is a nearly exact H_ feedback controller with

time-varying coefficients that is solved a priori offline.
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CHAPTER 4
NEURAL NETWORK SOLUTION FOR FIXED-FINAL TIME
CONSTRAINED OPTIMAL CONTROL

4.1. Introduction

This chapter is an extension to chapter 2 and 3. The constrained input optimization of
dynamical systems has been the focus of many papers during the last few years. Several
methods for deriving constrained control laws are found in Saberi and Bernstein [15].
However, most of these methods do not consider optimal control laws for general
constrained nonlinear systems. Constrained-input optimization possesses challenging
problems, a great variety of versatile methods have been successfully applied in Athans
[5], Bernstein [16], Dolphus [33] and Saberi [77]. Many problems can be formulated
within the Hammilton-Jacobi (HJ) and Lyapunov’s frameworks, but the resulting
equations are difficult or impossible to solve, such as Lyshevski [60][61][62]. In this
chapter, we use NN to approximately solve the time-varying HJ equation for
constrained control nonlinear systems. It is shown that using a NN approach, one can

simply transform the problem into solving a nonlinear (ODE) backwards in time.

4.2. Background on Fixed-Final Time Constrained Optimal Control
Consider now the case when the control input is constrained by a saturated function

o(), e.g. wnh, etc. To guarantee bounded controls, [1][56] introduced a generalized

nonquadratic functional
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W(u)= 2j0u¢ - (V)Rdv ,

o(v)=[p(v.)--9(v, )",

07 (w)=[p" ()97 (u,)],
where ve R",9 e R"”, and ¢() is a bounded one-to-one function that belongs to
C?(p>=1) and L,(Q). Moreover, it is a monotonic odd function with its first
derivative bounded by a constant M . Note that W(u) is positive definite because

@ '(u) is monotonic odd and R is positive definite.

4.2.1. HJB Case

When (4-1) is used, (2-2) becomes
(e o) =plele, bt e[| 0+ 2[ o ()Rav . (4-1)

and (2-5) becomes

0 Vgs t) _ r?(itg{Q(x) +2[ ¢ (v)Rdv+ —aV(;)’:)*T (f(x)+ g(x)u(t))J : (4-2)

Minimizing the Hamiltonian of the optimal control problem with regard to u gives

gT(x)aV(x,t) +2(p’1(u*):0,
ox

SO

o) =—<I{%R‘1g(x)T o) } vevcw. @)

This is constrained as required.

58



When (4-3) is used, (4-2) becomes

_ oV (wt) o' (

HIB( " (x,1)) x.!) S +2[ 97 (v)Rav

- Va(x’t)-g-tp(—ngT(X) & (x’t)}Q(x):O
X 2 ox

If this HJB equation can be solved for the value function V(x,t), then (4-3) gives the

optimal constrained control. This HIB equation cannot generally be solved. There is
currently no method for rigorously solving for the value function of this constrained

optimal control problem.

Lemma 2.1 The smooth bounded control law (4-3) guarantees at least a strong relative

minimum for the performance cost (4-1) forall xe X cR on lto,t ; ) Moreover,

if an optimal control exists, it is unique and represented by (4-3).

Proof. See [60]. |

4.2.2. HJI Case

Define the Hamiltonian function

e, pannd)= 20 ()4 glele) + k(x(0)

ox . (4-5)
1 (hlx)+ 2] 97 (v =72 |

Minimizing the Hamiltonian of the optimal control problem with regard to u and d

gives
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w(gT (X)Mj +2u’(t)=0, (4-6)

ox
kT(x)M—zyzd*(t)=o, 4-7)
ox
SO
u'(r)= —<pGgT(x)aVa(j’t)j , (4-8)
ey L OV (x2) _
d"(t)= 2 k (x)—ax . (4-9)

When H® (x, pou,d ): 0, we have the Hamilton-Jacobi-Isaacs equation

8V(x,t) N oV’ (X,l) (f(x)+ g(x)u* (t)+ k(x)d* (t))

ot Ox : (4-10)
+h" (x)h(x)+ ZJ.O“(p’T (v)av —y*|d" (t)“2 =0

From (4-8) and (4-9), (4-10) becomes

HJI(V*(x,t))= 6V*a(tx,t) N 6V*;)Ex,t) ()

+2J'()H*(P_T(v)dv——aV a}fx,t) x)'(P(%gr(x)—dVdix’t)j’ (4-11)
. x,t)

gl

1 oV (x,t), ;v ry 0V (
I (xk

+47/2 ot (x) () ot

+h" (x)h(x)=0

with boundary condition V(x(tf ), t, )z ¢(x(tf ), t, )

Equations (4-8), (4-9) and (4-10) provide the solution to finite-horizon optimal control
for general nonlinear systems. However, equation (4-11) is generally impossible to
solve for nonlinear systems. There is currently no method for rigorously solving for the
value function of this constrained optimal control problem.

It can be easily shown that
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[ (hf(x)h(x)+ 2 g (v)dvjdt <[ o) ae (4-12)

0

When x(0)= 0, therefore the quasi-L,-gain<y. Controllers derived using (4-11) are
suboptimal H_ controllers. If the suboptimal controller is found for the smallest y,

then it is called the optimal H_ controller.

4.3. Nonlinear Fixed-Final-Time Solution by NN Least-Squares Approximation

Like in unconstrained case

T
W20 ()= velw, ), (13)
ox ox

where Ve, (x) is the Jacobian 0o, (X%x , and that

L), ). 14

4.3.1. HJB Case

Therefore approximating V(x,t) by V, (x,t) in the HJB equation (4-4) results in

W0, ()~ w0V, ()7 ()2 o ()Ras
w0V, ()-0)-o SR (Vo (o, () - 00, @15
=€ (x:t)

HJB[VL (x,0)=>"w,(t)o, (x),u(t)J =¢,(x,1), (4-16)

where e, (x,t) is a residual equation error. From (4-3) the corresponding constrained
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optimal control input is
1
0,0)=—¢{ B¢ (¥ (o, ) (417)
Therefore one obtains

(~Wi(e, (x)ko, (), +(~wi(Ve, (x)/(x)o, (x))_+ <—2 [‘o7 (v)Rdv.o, (x)>g

(WO, sl L1 (Lo, 0, () @y
+(-0x)o,(x), =0

o, (ke (<), ' (2f 0 (Rav.o, () (*+19)
Hou(5ho 0], (WO, o) el{ 11 (vl (o, )}, o)
(o, (x)o,(x))," - (Qx)o, (x)),

with boundary condition V(x(t s l t; ) = ¢(x(tf ), i )

4.3.2. HJI Case
For the HJI(V(x,t),d(¢))=0, the solution V(x,¢) is replaced with ¥, (x,z) having a
residual error

Wi (0o, (x)+ W] (6)Ve, (x)/(x)+ 2] ‘0" (v)Rav

w0V, ()-e)-of 11" VL (o, (0) , (420)

+ #wi (e, ()" (x)Ve ] (x)w, (1) + k" (x)n(x)=e, (x.7)
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HJI[VL (10)= 3w (0o, (x),d(t)j e (v1), (421)

i=1

Therefore one obtains

o, (o, (1), Vo, ()7 (), (), - w, )
o,(x)a, (x)," (2] 07 ()Rdv.o, (3
Hou(5ho o), (w0, (Sl
o sho ()L Ve, G (v o, (b, )

~(0, (), () " (0" (Wilx) o, (x)

with boundary condition V(x(t s l t; ) = ¢(x(tf ), i, )

R-lgf<x>v62(x>wL<t)j,cL(x>> . @)

Also we get

u*(t):_¢(%gf(x)ngwL(t)j and d*(t)=271/2 K (VeTw, (1),

This yields a feedback controller that is formulated from a neural network.

4.4. Numerical Examples

We now show the power of our NN control technique for finding nearly optimal
fixed-final time constrained controllers. Two examples are presented.

4.4.1. HJB Case

In this section, two examples are shown to illustrate the algorithm, both of them applies

constrained case.
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4.4.1.1. Linear System
a) We start by applying the algorithm obtained above for the linear system
X, =2x, +x, + X,

X, =X, =X, +u, . (4-23)

X3 = X5 +u,

Define performance index

V(x(z, ) 2,)= ¢(x(tf ) Ly )+.[ '

fo

(Q(x)+ 2 j O“qu (v)Rdv)dz . (4-24)
Here 0=10*1,, and R=1,,, where [ is identity matrices. It is desired to control

the system with input constraints |u1| <5,

u2| <20. In order to ensure the constrained
control, a nonquadratic cost performance term (4-24) is used. To show how to do this
for the general case of |u| <5, we use A-tanh(l/4---) for @(--). Hence the
nonquadratic cost is

W(u)=2[ 'A-tanh " (v/4)Rdv.

The plot is shown in Figure 4-1. This nonquadratic cost performance is used in the

algorithm to calculate the optimal constrained controller. The algorithm is run over the

region Q, defined by —-2<x, <2, -2<x,<2, -2<x,<2. To find a nearly

optimal time-varying controller, the following smooth function is used to approximate

the value function of the system
V(x X )=wx2+wx2+wx2+wxx + WX, Xy + WX, X
1>7%2 1741 27v2 373 474172 571773 67v27v3

This is a NN with polynomial activation functions, and hence ¥(0)=0.
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Figure 4-1  Nonquadratic cost

In this example, six neurons are chosen and w L(tf)z[IO,IO,lO,O,O,O]. Our

algorithm was used to determine the nearly optimal time-varying constrained control
law by backwards integrating to solve (2-37). The required quantities 4,B,C,D,E

in (2-37) were evaluated for 5000 points in Q. A least-square algorithm from
MATLAB was used to compute W, (¢) at each integration time. The solution was
obtained in 30 seconds. From Figure 4-2 it is obvious that about 25 seconds from 7,

the weights converge to constant. The states and control signal obtained by a forward

integration are shown in Figures 4-3 and 4-4. The control is bounded as required.
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Optimal Control with Bounds
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Figure 4-4  Optimal NN Control Law with Bounds

b) Now let 4=100 so that the control constraints are effectively removed. The

algorithm is run and the plots of A,, P,, P,; and function of time are shown in

Figure 4-5. These plots converge to steady state values of P, =69.0573, P,, =4.6208,

P,, =6.5008. These correspond exactly to the algebraic Riccati equation solution
obtained by standard optimal control methods [53], which is

69.0573 12.8164 12.1491
P=|12.8164 4.6208 2.2448 |.
12.1491 2.2448 6.5008
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4.4.1.2. Nonlinear Chained System

One can apply the results of this chapter to a mobile robot, which is a nonholonomic
system [48]. It is known [23] that there does not exist a continuous time-invariant
feedback control law that minimizes the cost. Some methods for deriving stable controls
of nonholonomic systems are found in Bloch [18][19], Egeland [35], Escobar [36],
Fierro and Lewis [37], Murray [66][67], Pomet [72] and Sordalen [81]. Our method will
yield a time-varying gain. From Murray [32], under some sufficient conditions, a

nonholonomic system can be converted to chained form as

X, =u,
X, =u, . (4-25)
Xy = XU,
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Define performance index (4-24). Here O and R are chosen as identity matrices.

It is desired to control the system with control limits of |u1|£1, u2|s2. A similar

nonquadratic cost performance term is used as in the last example. Here the region Q,
is defined by —2<x, <2, -2<x, <2, —-2<x, <2. To solve for the value function
of the related optimal control problem, we selected the smooth approximating function

V(X,,X,, %, ) = WX+ W, X2 4+ WyX2 + W, X, X, + WX, Xy + WX, X,

F WX, WeXS + WoXy + WX Xa + Wy X[ XS + W XaXs WX, XXy 4-26)

+ W14x1x22x3 + W15x1x2x32 + W16x13x2 + W17x13x3 + W18x1x§ + W19x1x§

+ WXy X5 + Wy, X5 X,

The selection of the NN is usually a natural choice guided by engineering
experience and intuition. This is a NN with polynomial activation functions, and hence
V(O) = 0. This is a power series NN with 21 activation functions containing powers of
the state variable of the system up to the fourth order. Convergence was not observed
using a NN with only second-order powers of the states. The number of neurons
required is chosen to guarantee the uniform convergence of the algorithm. In this
example, w L(tf):[10;10;1O;O;O;O;l0;10;1O;O;O;O;O;O;O;O;O;O;O;O;O] and ¢, =30 seconds.
The required quantities A4,B,C,D,E in (2-37) were evaluated for 5000 points in
Q,. Figure 4-6 indicates that the weights converge to constants when they are
integrated backwards. Figure 4-7 shows that the systems’ states response, including
x,,x, and x; are all bounded. It can be seen that the states do converge to a value

close to the origin. Figure 4-8 shows the optimal control is constrained as required and

converges to zero.
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4.4.2. HJI Case

In this example, we will show the power of our NN control technique for finding nearly
optimal finite-horizon H  state feedback controller for the Rotational/Translational

Actuator shown in Figure 4-9. This was defined as benchmark problem in [24].

X = f(x)+ g(x)u(t)+ k(x)d(t), u(t)' <2,
) 2 2 2 2
zlz=x+0.1x +0.1x] +0.1x; +||u(t)|q,
=0.2, y=10,

8zn%/(l+me2XM+m)

—x, + &x; sinx, £COSX, (x1 — &x; sin x3)
X4 2 2
l-¢&"cos” x,

T

b

f:|:x2

1-¢&7 cos® x,
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T
g:{o —£COS X, 0 | } ,

1-&” cos’ x, 1-&” cos® x,
T
r=lo 1 0 __£cosx
1-&” cos” x, 1-&” cos” x,

OEON

Figure 4-9  Rotational actuator to control a translational oscillator.

Here the state x;, and x, are the normalized distance » and velocity of the cart 7,
x, =60, x,=0.

Define performance index

V(o) = glele b, ) [ (1 )+ 2] " (v =) .

Ty
It is desired to control the system with input constraints |u(t)|£0.5. Here we use

Atanh(l/4---) for @(---), hence the nonquadratic functional is
W(u)=2] Atanh " (v/4)Rdv.

This nonquadratic cost performance is used in the algorithm to calculate the optimal

constrained controller. The algorithm is run over the region Q defined by -2<x<2.
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To find a nearly optimal time-varying controller, the following smooth function is used

to approximate the value function of the system

_ 2 2 2
V(3,520,550 ) = WX+ WyX, X, + WX, Xy + WX, X, + WeXa + WXy Xy + WX, X, + WX
+ + 2 4 S 4 ey e 4 2,2 | 2
WoX3 Xy T WipXy T WXy T WXy Xy T WigXy Xy + Wiy Xy Xy T Wisk Xy + WigXy X, X3
+ 2 + 2.2 2 + 4.2 3 2. . 2
Wi Xy Xy Xy T Wigky Xy T WigXy X3X, T WygXy Xy T Wy XXy + Wy Xy Xo Xy Wos Xy Xy Xy
2 2 3 2 2
F Wy XX, X5 + Was X Xy X3 X, + WogX X, X, + Wy X, X5+ WagX X3 X, + Woo X, X3 X,
+ 3 4 ey e 4 2,2 o 2 2,2 o 3
Wi X1 Xg W31 Xy T Wiy Xp X3 T Wis Xp Xy T Wi Xy X3 T Wi Xy X3 Xy Wag Xy Xy T Wip Xy Xy
2 2 3 2.2 3
T Wi Xy X3 Xy + Wyg X X3 Xy + Weg Xy Xy Wy Xy Xy + Wy X) X3

2 2 3
F Wi X, XXy + Wy X X3 X, + WysX, X,

The selection of the NN is usually a natural choice guided by engineering experience
and intuition. This is a NN with polynomial activation functions, and hence ¥ (0)=0.

This is a power series NN with 45 activation functions containing powers of the state
variable of the system up to the fourth order. The number of neurons required is chosen
to guarantee the uniform convergence of the algorithm. In this example,

w, (tf ): [0;0,0;0;0;0;0,0;0;0,0;0;0;0;0,0;0;0,0;0;0;0;
0;0;0,0,0;0;0,0,0;0;0;0,0;0;0;0,0;0;0;0,00;0] ’

and t; =100 seconds.

Figure 4-10 and 4-11 shows the states trajectories when the system is at rest and

experiencing a disturbance d(t)= 5sin(t)e”. Figure 4-12 and 4-13 shows the control

signal and attenuation respectively. The graphs imply it is L, -gain bounded by »°.
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Nearly Optimal Controller with Constrains
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4.5. Conclusion

In this chapter, optimal control of constrained input systems is discussed, a neural
network approximation of the value function is introduced, and the method is employed
in a least-squares sense over a mesh with certain size on . Linear and chained form

system examples are shown.
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CHAPTER 5
SUBOPTIMAL CONTROL OF CHAINED SYSTEM WITH
TIME-FOLDING METHOD

5.1. Introduction

In this chapter, we develop fixed-final time nearly optimal control laws for a class of
nonholonomic chained form systems by using neural networks to approximately solve
an HJB equation. A certain time-folding method is applied to recover uniform complete
controllability for the chained form system. This method requires an innovative design
of a certain dynamic control component. Using this time-folding method, the chained
form system is mapped into a controllable linear system for which controllers can
systematically be designed to ensure exponential or asymptotic stability as well as
nearly optimal performance. The result is a neural network feedback controller that has
time-varying coefficients found by a priori offline tuning. The results of this chapter are

demonstrated on an example.

5.2. Problem Description

Stabilization of chained system remains to be a difficult and interesting problem
because of the following technical issues:

(1) Topologically, the chained system cannot be stabilized under any continuous

control u =u(x) due to its nonlinear characteristics.
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(2) While the system is nonlinearly controllable everywhere, the system as it is not
globally feedback linearizable (though local feedback linearizable is possible as
shown by the o -process but singularity manifold remains in all the neighborhoods
around the origin), and nonlinear controllability does not necessarily translate into
systematic control design.

(3) Chained system is not linearly controllable around the origin.

Above three issues make the chained system complex, the main problem is the
product term of the chained system can’t converge to zero. In this chapter, we use
time-folding method to solve this problem.

Using Time-folding method, the chained form system is mapped into a controllable
linear time-varying system for which control can systematically be designed to ensure
exponential or asymptotic stability as well as optimal performance. Simulations show

that the method is feasible.

5.3. Neural Network Algorithm for Chained Form System with Time-Folding
Method

Brockett’s theorem indicates that nonholonomic systems cannot be asymptotically
stabilized around a fixed point under any smooth (or even continuous)
time-independent state feedback control law. In this section, a smooth nearly-optimal
time-varying control is designed to stabilize the chained form system using a
time-folding method [73][74], With a new dynamic control design, a global nonlinear
time transformation is found to transform the chained form system into a controllable
linear time-varying system.
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5.3.1. Chained Form System Description

Consider the following 2-input 3-dimensional nonholonomic chained form system:

X, =u,
Xy = X3uy (5-1)
Xy =U,

where x:[xl...xn ]T eR" is the state, u =[u1 uz]T e R’ is the control input. The
objective of this chapter is to present time-varying and continuous feedback controls
that globally stabilize system (5-1) and are optimal with respect to certain performance
indices. It is straightforward to extend the proposed results to m -input Nonholonomic
systems that can be transformed into the chained form.

The chained form system (5-1) can be decomposed into the following two

interconnected subsystems:
X, =u, (5-2)

z=u,A4,z+Bu,, (5-3)

Where z=[z, 2] =[x, x],and A1:{g (1)}: Blz[o}-

5.3.2. Dynamic Control Design

In this subsection, two dynamic feedback control components u, and u, will
sequentially be designed to form the proposed asymptotically stabilizing control. As the

first step, dynamic feedback control u, is chosen to be of the following form:

i, = A, (5-4)
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i, = Ath, =(t+au,, (5-5)

At)=t+a, (5-6)
where u,, u, are transformed controls, and a is constant. From (39), letting
r=1In(t +a), then

E o (e.a)Az+ B, (5-7)
dr
Where 2(z)=z(¢), y(z,a) isscale factor.

With the above transformation, the control should be changed to:

ult) = —%(p(ﬁ,(t)Rl 2"Ve" (w, (1)). (5-8)

5.4. Simulation

We now show the power of our NN control technique using time-folding method for
finding nearly optimal fixed-final time controllers to a mobile robot, which is a
nonholonomic system [48]. Its kinematics model can be transformed into chained form
(37) with n=3. It is known [23] that there does not exist a continuous time-invariant
feedback control law that minimizes the cost. Our method will yield a time-varying
gain.

For a nonholonomic system, define performance index
T
V(a(t)ity) = 9xlt ).t )+ [ () + W ().

Here Q and R are chosen as identity matrices. To solve for the value function of the

related optimal control problem, we selected the smooth approximating function
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_ 2 2 2 4
V(X,X5,X3) = WX, + WoX5 +WX7 4+ W, XX, + WX, X3 + WX, X5, + W)X,
4 4 2.2 2.2 2.2 2 2
+ WXy + WoXy + WX, X5 + W X)Xy WX X5 + WX XX, Fwxxyx;, . (5-9)

F WX, X, X5 W X)Xy + WX X+ WX, X+ WX, X5 + WX, Xs + Wy XaX,
The selection of the NN is usually a natural choice guided by engineering experience
and intuition. This is a NN with polynomial activation functions, and hence ¥ (0)=0.

This is a power series NN with 21 activation functions containing powers of the state
variable of the system up to the fourth order. The number of neurons required is chosen
to guarantee the uniform convergence of the algorithm. In this example,

w, (¢,) =[10;10;10;0;0,0;10;10;10;0;0,0,0,0;0;0,00;0;0;0]
and ¢, =30 seconds.
In the simulation, initial condition of the state is set to be x(to): [1 -1 pi/ Z]T.

Figure 5-1 indicates that weights converge to constants when they are integrated

backwards. Figure 5-2 and 5-3 show that the system’s state response, including x,, x,
and x,, are all bounded. It can be seen that the state x;’s steady value can be
controlled by changing a in eq. (42). When a=0.61, x, does converge to the

origin. Figure 5-4 shows the nearly-optimal control converges to zero.
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5.5. Conclusion

In this chapter, nonholonomic chained systems are solved by investigating uniform
complete controllability and developing relevant results. Illustrative example shows
that linear controllability does not hold for stabilization of the chained system but can
be recovered under time scaling transformation. The time-folding method yields a
continuous asymptotically-stabilizing control without the need of using any state

transformation.
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

6.1. Contributions

In this dissertation, neural networks are used to obtain optimal control with
unconstrained and constrained control. The main theme of this research is based on
solving a related Hamilton-Jacobi-Bellman or Hamilton-Jacobi-Isaacs equation of the
corresponding finite-horizon zero-sum game. It is shown that the neural network
approximation converges uniformly to the game-value function and the resulting nearly
optimal feedback controller provides closed-loop stability. The result is a nearly
optimal controller with time-varying coefficients that is solved a priori offline.

The contribution of this research can be summarized in the following points:

1. In chapter two, it is shown that the HIB equation can be solved by using neural
networks, fixed-final time optimal control laws are achieved. The result is a
neural network feedback controller that has time-varying coefficients found by
a priori offline tuning. Convergence results are shown.

2. In chapter three, neural networks are used to approximately solve the

finite-horizon optimal H_ state feedback control problem. The method is

based on solving a related Hamilton-Jacobi-Isaacs equation of the
corresponding finite-horizon zero-sum game. The neural network approximates

the corresponding game value function on a certain domain of the state-space
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and results in a control computed as the output of a neural network. The results
of this chapter are applied to the Rotational/Translational Actuator benchmark
nonlinear control problem.

3. In chapter four, we use NN to approximately solve the time-varying HJ equation
for constrained control nonlinear systems. It is shown that using a NN approach,
one can simply transform the problem into solving a nonlinear ordinary
differential equation (ODE) backwards in time.

4. In chapter five, time-folding method is introduced to solve chained system
problem. Regularly, the state with product term can’t converge to zero perfectly,
with this method, the issue was solved, the state can converge to any value as

we like.

6.2. Future Work
In future, stability, controllability and optimality of chained system with time-folding
method need to be proved.

Further more, one can consider the case of online training of the neural network. So
far, the algorithms considered in this dissertation were offline techniques. Also, it
would be interesting to apply the algorithm to discrete-time nonlinear system.

Also, nonlinear control system in discrete case can be studied. We can consider the
use of nonlinear networks towards obtaining nearly optimal solutions to the control of
nonlinear discrete-time systems. The method can be based on least-squares

approximation solution of HIB equation..
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