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Preface

This book is intended to give a comprehensive overview of errors-in-variables
(EIV) problems in system identification. This problem is about modeling of
dynamic systems when all measured variables and signals are noise-corrupted.
A number of different approaches are described and analyzed. The area has been a
central one in my own research for a long time, and this experience has influence
my own way of thinking of how to describe and categorize the many proposed
methods available in the literature. The area continues to be active today, and there
is a steady inflow of articles on EIV for dynamic systems, to leading conferences as
well as to journals.

As a proper background the reader is expected to have at least elementary
knowledge of system identification. The textbooks (1999) and Séderstrom and
Stoica (1989) can be recommended. They cover much more than what is required in
this context.

This book starts with giving a background for the errors-in-variables
(EIV) problem. First static systems are treated in some detail. The dominating
part of this book copes with dynamic systems. The EIV problem as such is carefully
analyzed, and it is demonstrated that some additional assumption(s) must be
imposed if a unique solution is to be found. Several approaches and EIV methods
are presented and analyzed. This book ends with a chapter on users’ perspectives
for applying EIV methods in practice. See also Sect. 1.2 for a more detailed
description of this book.

It is a pleasure to express my gratitude to many colleagues with whom I over
the years have discussed, learned from, and published work together with on errors-in-
variables problems. These colleagues include Juan Carlos Agiiero, Brian D. O.
Anderson, Theodore Anderson, Keith Burnham, Mats Cedervall, Han-Fu Chen, Bart
De Moor, Manfred Deistler, Roberto Diversi, Mats Ekman, Hugues Garnier, Marion
Gilson, Tryphon Georgiou, Graham Goodwin, Roberto Guidorzi, Christiaan Heij,
Hékan Hjalmarsson, Mei Hong Bjerstedt, Alireza Karimi, Erlendur Karlsson, David
Kreiberg, Alexander Kukush, Tomas Larkowski, Erik K. Larsson, Jens Linden,
Kaushik Mahata, Ivan Markovsky, Magnus Mossberg, Rik Pintelon, Agnes Rensfelt,
Cristian Rojas, Wolfgang Scherrer, Johan Schoukens, Virginija Simonyté, Joachim
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viii Preface

Sorelius, Umberto Soverini, Petre Stoica, Stephane Thil, Klaske van Heusden, Sabine
Van Huffel, Kiyoshi Wada, Fan Yang Wallentin, and Wei Xing Zheng.

I am truly indebted to many colleagues who have read earlier versions of the
book, in whole or in part, and pointed out a large number of errors and unclear
points, and also generously given me proposals for additional ideas. For example,
the last chapter of the book was written and included based on such feedback. The
reviewers who provided this indispensable help are Juan Carlos Agiiero, Roberto
Diversi, Hakan Hjalmarsson, David Kreiberg, Ivan Markovsky, Magnus Mossberg,
Giorgio Picci, Rik Pintelon, Johan Schoukens, and Umberto Soverini.

I would also like to thank the personnel at Springer (Oliver Jackson,
Meertinus Faber, Geethajayalaxmi Govindarjan, Komala Jaishankar, Ravikrishnan
Karunanandam, and Balaganesh Sukumar) for a smooth cooperation in producing
the book.

It happens sometimes that I have found manuscripts with ‘error-in-variables’,
rather than ‘errors-in-variables’ in the title (yes, it has happened also in my own draft
papers!). As is explained in the book, for EIV systems it is indeed a key aspect that
there are errors on both input and output measurements, and therefore one must
use plural! During the work with the book manuscript I have corrected quite a
number of errors, and it is my sincere hope that not too many remain, even though
there may still be more than a single one! During my scientific career I have mainly
been active in the control community, and therefore I believe in feedback. In
particular, I would welcome the readers’ comments on the text and possibly pointing
out any remaining error. I can be reached on the e-mail address: torsten.
soderstrom@it.uu.se.

Some years ago I told my family that I was planning to write another book. Some
suggested that this time I should write a thriller. A plot was laid out about a murder
that was detected at the opening ceremony of a major control conference. I quickly
turned down this idea, that was not so serious anyway. It would demonstrate my
inability to write something exciting from a fiction point of view. Furthermore, the
theme does not match my general impressions from almost half a century with the
control community. I have mainly found it to be characterized by friendly and
helpful people. I have dedicated this book to my extended family (grandchildren are
included): Andreas,..., Olof. You are the A and O to me!

Vattholma and Uppsala, Sweden Torsten Soderstrom
December 2017
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Notation

ECN Complex Gaussian distribution

E Expectation operator

E[] Conditional expectation

e Basis of natural logarithm

e(?) White noise (a sequence of independent random variables)

€; Unit vector (ith element equal to 1)

Y2, K) Gaussian process with mean value function  and covariance function
K

G(g™") Transfer function operator

ey Vector of dimension N with all elements equal to 1

H(g™") Transfer function operator, noise shaping filter

h Sampling interval

I Weighting function coefficient, H(g™') = Y2 lug™*

I Identity matrix

1, n X n identity matrix

i Imaginary unit

J Information matrix

L Log likelihood function

A4 Laplace transform

mxn Matrix has dimension m by n

N Number of data points

A" (m,P)  Normal (Gaussian) distribution with mean value m and covariance
matrix P

N Null space

| Covariance matrix of state or state prediction error

Pr Probability

q Shift operator, gx(1) = x(t+ 1)

q! Backward shift operator, g~ 'x(t) = x(t — 1)

R Range space

XiX
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Euclidean n-dimensional space

Linear space of n x m-dimensional matrices
Covariance matrix

Sample covariance matrix (estimate of R)

Sample covariance matrix based on N data points
Covariance vector

Noise variance ratio

Sylvester matrix associated with polynomials A and B
Time variable (integer valued for discrete-time models)
Trace (of a matrix)

Input signal (possibly vector-valued)

Noise-free input signal

Input measurement noise
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State vector
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Output measurement noise
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covariance matrix P
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Prediction error

Covariance matrix of innovations
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Summary of Assumptions

The different general assumptions introduced in the book are summarized here for
the reader’s convenience. References are also provided to where the definitions are
introduced.

Assumptions on the System

AS1. The system is linear and asymptotically stable [Chap. 3].

AS2. The system is causal, so yo(¢) depends on ug(s) for s <z, but not on future
values of uy(-) [Chap. 3].

AS3. The noise-free input and output signals are linked by

A(g")yo(r) = Blg " uo(1).

All system modes are observable and controllable; i.e., A(z) and B(z) have no
common factor. The polynomial degrees n, and n; are known [Chap. 3].

AS4. The system transfer function G(z) has no pair of zeros reflected in the unit
circle; that is, if G(z;) = 0, then G(z;') # 0 [Chap. 4].

ASS. If the system is non-causal, then G(z) has no pair of poles reflected in the unit
circle; that is, p; and py! cannot both be poles of G(z) [Chap. 4].

AS6. The order of the transfer functions fulfills

order(GH) = order(G) + order(H)

[Chap. 5].

Assumptions on the Noise

AN1. The noise sequences i(f), y(¢) are stationary random processes, with zero
mean values and spectra ¢; () and ¢;(w), respectively. Further, #(r) and y(r) are
mutually uncorrelated [Chap. 3].

AN2. The measurement noises are Gaussian distributed [Chap. 4].
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Naturally, at most one of the next three noise assumptions applies at a given
situation.
AN3a. Both j(¢) and i(r) are ARMA processes, as in (4.25) and (4.26) [Chap. 4].
AN3b. The output noise y(¢) is an ARMA process, while the input noise i(z) is
white. This means that n; = n,, = 0 in (4.26) [Chap. 4].
AN3c. Both y(7) and i(r) are white noise sequences. This means that ny = n;, =0
in (4.25) and ng = n, = 0 in (4.26) [Chap. 4].
AN4. Both 3(¢) and & are white noise sequences. The ratio of their variances,
r = Ay/’u, is known [Chap. 4].

Assumptions on the Noise-free Input

AITl. The true input ug(¢) is a stationary process of zero mean, with spectral density
¢, (). The input u(z) is assumed to be persistently exciting of a suitable order,
which means that ¢, (w) > 0 for a sufficient number of frequencies [Chap. 3].
AI2. The input uy(7) is uncorrelated with the measurement noise sources #(z) and
¥(¢) [Chap. 4].

AI3. The true input uy(¢) is Gaussian distributed [Chap. 4].

AI4. The true input uy(¢) is an ARMA process; that is, it can be modeled as

D(q "uo(t) = C(qg "e(t)

where e(f) is a white noise signal [Chap. 4].

AIS. The noise-free signal uo(¢) is a periodic function. The length of the period is
denoted N. It is assumed that M periods of the data u(r),y(¢) are available. Hence
the total data length is NM. In each period u(z) is a stationary process [Chap. 12].
AI6. The measurement noise signals #(¢) and y(¢) are uncorrelated with the
noise-free input uo(s) for all 7 and s. Further, the measurement noise signals within
different periods are uncorrelated [Chap. 12].

Assumptions on the Experimental Conditions

AE1. The data comes from one (single) experiment [Chap. 3].

AE2a. There is more than one experiment. The spectrum of the noise-free input is
different in the different experiments [Chap. 4].

AE2b. There is more than one experiment. The measurement noises u(z), y(¢) are
uncorrelated between different experiments. The true noise-free input u(z) is
correlated between the experiments [Chap. 4].

AE3. The noise-free signal u(¢) is a periodic function. It is assumed that M periods
of the data u(r),y(¢) are available. In each period u(#) is a stationary process
[Chap. 12].
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Applicability
Many assumptions are assumed to be generally valid throughout the text, while a

few are valid only locally, when explicitly stated so. The table below summarizes
the status of the assumptions.

Validity General Default Locally

Topic

System AS1, AS2 AS3 AS4, ASS5, AS6

Noise AN1 AN3c AN2, AN3a, AN3b, AN4
Noise-free input AIl, AI2 AI3, Al4, AI5

Experiment AE1 AE2a, AE2b, AE3
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