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Abstract

It is due to the modularity of the analysis that results for cascaded systems have proved their util-
ity in numerous control applications as well as in the development of general control techniques based
on “adding integrators”. Nevertheless, the standing assumptions in most of the present literature
on cascaded systems is that, when decoupled, the subsystems constituting the cascade are uniformly
globally asymptotically stable (UGAS). Hence existing results fail in the more general case when the
subsystems are uniformly semiglobally practically asymptotically stable (USPAS). This situation is
often encountered in control practice, e.g., in control of physical systems with external perturbations,
measurement noise, unmodelled dynamics, etc. This paper generalizes previous results for cascades
by establishing that, under a uniform boundedness condition, the cascade of two USPAS systems
remains USPAS. An analogous result can be derived for USAS systems in cascade. Furthermore,
we show the utility of our results in the PID control of mechanical systems affected by unknown
non-dissipative forces and considering the dynamics of the DC motors.

1 Introduction

Cascaded dynamical systems appear in many control applications whether naturally or intentionally
due to control design. Cascades-based control consists in designing the control law so that the closed
loop system has a cascaded structure. Such strategy has often the advantage of reducing the complexity
of the controller and the difficulty of the stability analysis (see e.g. [6, 7, 9]) as opposed to more general
Lyapunov-based control methods. From a theoretical viewpoint the problem of stability analysis of
cascaded systems has attracted the interest of the community starting with the seminal paper [24]. See
also [20] and references therein. In general terms, a fundamental result that one may retain from the
literature is that cascades of uniformly globally asymptotically stable systems (UGAS) remain UGAS
if and only if the solutions are uniformly globally bounded (UGB). See [19, 21] for the proof of this
statement in the case of autonomous systems and [15] for the case of time-varying systems. In a
similar spirit, see [22] for a local result: a proof that a LAS system perturbed by a converging input
which is such that its solutions remain in the domain of attraction of the nominal system, remains
LAS. Other works on stability of cascades deal, directly or indirectly, with the fundamental problem
of establishing conditions for (uniform global) boundedness of the trajectories. A sufficient condition is
the well-understood notion of input-to-state stability (ISS).

A considerable drawback of most results on stability of cascades available in the literature is that
they rely on the assumption of global stability properties for the separate subsystems. Nevertheless,
in practice, it is often the case that only local (with a specified estimate of the domain of attraction)
or semiglobal properties can be concluded. Semiglobal asymptotic stability pertains to the case when
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one can prove that, by tuning certain parameter of the control system, the estimate of the domain of
attraction can be arbitrarily enlarged. Such parameter is often, but not always, a control gain. We
are not aware of results on semiglobal asymptotic stability nor ISS for cascades of “semiglobal ISS”
systems. Another case which is not covered by most results in the literature of cascaded systems is
that of stability with respect to balls. A notable exception, in a way, is [4] which introduced the notion
of input to state practical stability. However, this notion is different from the one used here in the
sense that the neighborhood of the origin which is stable is not required to be arbitrarily reducible by
a convenient choice of a parameter. More generally, we are not aware of results on semiglobal practical
asymptotic stability of cascades for continuous time-varying systems. For (parameterized) discrete-time
systems the only results that we know of are those presented in [10]. Needless to say that the nature of
discrete-time non-autonomous systems parameterized in the sampling time is fundamentally different.

In this paper we address the stability analysis problem for cascades of time-varying systems that are
uniformly semiglobally practically asymptotically stable (USPAS). We establish that, under a uniform
boundedness condition on its solutions and provided a Lyapunov function for the “perturbed” subsys-
tem, the cascade of two USPAS systems remains USPAS. In the same way, the cascade of two USAS
systems is USAS. Our main result extends in this direction, [15, Lemma 2] and the main results of
[19, 21] which are, in a way, at the basis of many theorems on UGAS of cascades.

The rest of the paper is organized as follows. In next section we present some definitions of stability
and an auxiliary proposition on semiglobal practical asymptotic stability. Our main result is presented
in Section 3. In Section 4 we illustrate the utility of our findings with an example dealing with the PID
control of a mechanical system taking into account the dynamics of the DC motors. The proofs of all
the results are given in Section 5 and we conclude with some remarks in Section 6.

2 Definitions and preliminary results

Notation. A continuous function α : R≥0 → R≥0 is of class K (α ∈ K), if it is strictly increasing and
α(0) = 0; α ∈ K∞ if, in addition, α(s) → ∞ as s → ∞. A continuous function σ : R≥0 → R≥0 is of
class L (σ ∈ L) if it is non-increasing and tends to zero as its argument tends to infinity. A function
β : R≥0 × R≥0 → R≥0 is said to be a class KL function if, β(·, t) ∈ K for any t ≥ 0, and β(s, ·) ∈ L
for any s ≥ 0. We denote by x(·, t0, x0) the solutions of the differential equation ẋ = f(t, x) with initial
conditions (t0, x0). We use |·| for the Euclidean norm of vectors and the induced L2 norm of matrices.
We denote by Bδ the closed ball in R

n of radius δ, i.e. Bδ := {x ∈ R
n | |x| ≤ δ}. We use the notation

H(δ,∆) := {x ∈ R
n | δ ≤ |x| ≤ ∆}. We define |x|δ := infz∈Bδ

|x− z|. When the context is sufficiently
explicit, we may omit to write the arguments of a function.

2.1 Asymptotic stability of balls

For nonlinear time-varying systems of the form

ẋ = f(t, x) , (1)

where x ∈ R
n, t ∈ R≥0 and f : R≥0 × R

n → R
n is piecewise continuous in t and locally Lipschitz in x,

we introduce the following.

Definition 1 (US of a ball) Let δ and ∆ be nonnegative numbers such that ∆ > δ. The ball Bδ is said
to be Uniformly Stable on B∆ for the system (1) if there exists a class K∞ function η such that the
solutions of (1) from any initial state x0 ∈ B∆ and initial time t0 ∈ R≥0 satisfy

|x(t, t0, x0)|δ ≤ η(|x0|) , ∀t ≥ t0 .

Definition 2 (UA of a ball) Let δ and ∆ be nonnegative numbers such that ∆ > δ. The ball Bδ is said
to be Uniformly Attractive on B∆ for the system (1) if there exists a class L function σ such that the
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solutions of (1) from any initial state x0 ∈ B∆ and initial time t0 ∈ R≥0 satisfy

|x(t, t0, x0)|δ ≤ σ(t− t0) , ∀t ≥ t0 .

Definition 3 (UAS of a ball) Let δ and ∆ be nonnegative numbers such that ∆ > δ. The ball Bδ is said
to be Uniformly Asymptotically Stable on B∆ for the system (1) if it is both US and UA on B∆.

Remark 1 The property of UAS of a ball defined above is less restrictive than the time-varying adap-
tation of “asymptotic stability with respect to a set” given in [8] for the case when the set is a ball.
Indeed, in the latter reference, it is imposed that the ball Bδ be positively invariant. Notice also that,
modulo that B∆ and Bδ are closed, Definition 3 is equivalent to ∆ → δ stability as defined in [25]; more
precisely, UAS of Bδ on B∆ implies ∆ → δ stability and ∆ → δ stability implies UAS of Bδ on B∆′ , for
all ∆′ ∈ (δ,∆).

We also emphasize that the UAS of a ball can be characterized by a KL bound as in the case of UAS
of the origin.

Proposition 1 (KL estimate for UAS of a ball) The ball Bδ is UAS on B∆ for the system (1) if and only
if there exists a class KL function β such that the solutions of (1) from any initial state x0 ∈ B∆ and
initial time t0 ∈ R≥0 satisfy

|x(t, t0, x0)|δ ≤ β(|x0| , t− t0) , ∀t ≥ t0 .

Our main result for cascades is formulated based on the following property of boundedness of solutions.

Definition 4 (UB) The solutions of (1) are said to be Uniformly Bounded on the compact set A ⊂ R
n

if there exist a class K function γ and a nonnegative constant µ such that, for any initial time t0 ∈ R≥0

and any initial state x0 ∈ A, it holds that

|x(t, t0, x0)| ≤ γ(|x0|) + µ , ∀t ≥ t0 .

2.2 Semiglobal practical asymptotic stability

Our main result addresses the problem of uniform semiglobal practical asymptotic stability (USPAS)
for parameterized nonlinear time-varying systems of the form

ẋ = f(t, x, θ) , (2)

where x ∈ R
n, t ∈ R≥0, θ ∈ R

m is a constant parameter and f : R≥0 × R
n × R

m → R
n is locally

Lipschitz in x and piecewise continuous in t.

Definition 5 (USPAS) Let Θ ⊂ R
m be a set of parameters. The system (2) is said to be Uniformly

Semiglobally Practically Asymptotically Stable on Θ if, given any ∆ > δ > 0, there exists θ⋆ ∈ Θ such
that Bδ is UAS on B∆ for the system ẋ = f(t, x, θ⋆).

In view of Proposition 1, the above definition is equivalent to the following statement: for any given
pair ∆ > δ > 0, there exists a parameter θ⋆ ∈ Θ and a KL function β such that, for all x0 ∈ B∆ and all
t0 ∈ R≥0, |x(t, t0, x0, θ

⋆)|δ ≤ β(|x0| , t−t0) for all t ≥ t0. We stress that, although this does not explicitly
appear in the notation, the function β is not required to be independent of δ and ∆, as opposed to
some other definitions of semiglobal and/or practical stability existing in the literature, such as [25, 10].
This non-uniformity in δ and ∆ makes our definition of USPAS a more general property since, as it will
appear more clear in the sequel, it allows to make use of Lyapunov functions with bounds that may
depend on the tuning parameter θ.

Systems of the form (2) result, for instance, from control systems in closed loop; in this case, we
can think of θ as control gains or other design parameters. Then we say that (2) is USPAS if the
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estimate of the domain of attraction B∆ and the ball Bδ which is UAS can be arbitrarily enlarged
and diminished, respectively, by a convenient choice of the design parameters. Such situation is fairly
common in control practice; for instance, in output feedback tracking control of mechanical systems
(cf. [26]). For discrete-time systems one also finds it useful to define USPAS with respect to a design
parameter: in this case, the sampling time. See [11, 12] for definitions and a solid framework on USPAS
for discrete-time systems.

Notice also that when, by an abuse of notation, δ = 0 we recover from Definition 5 the notion of
uniform semiglobal asymptotic stability (USAS). If, in addition, ∆ = ∞, we recover the definition of
uniform global asymptotic stability (UGAS).

The following result gives a sufficient condition, in terms of a Lyapunov function, for the dynamical
parameterized system (2) to be uniformly semiglobally practically asymptotically stable on a given set
of parameters. See Section 5.2 for the proof.

Proposition 2 (Lyapunov sufficient condition for USPAS) Suppose that, given any ∆ > δ > 0, there
exist a parameter θ ∈ Θ, a continuously differentiable Lyapunov function1 V : R≥0 × R

n → R≥0, class
K∞ functions αδ,∆, αδ,∆, αδ,∆, and a continuous positive nondecreasing function cδ,∆ such that, for all
x ∈ H(δ,∆) and all t ∈ R≥0,

αδ,∆(|x|δ) ≤ V (t, x) ≤ αδ,∆(|x|) (3)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, θ) ≤ −αδ,∆(|x|) (4)

Assume further that, for any ∆ > 0,

lim
δ→0

α−1
δ,∆ ◦ αδ,∆(δ) = 0 (5)

and that, for any δ > 0,
lim

∆→∞
α−1
δ,∆ ◦ αδ,∆(∆) = ∞ . (6)

Then, the system (2) is USPAS on the parameter set Θ.

It is worth mentioning that the condition αδ,∆(|x|) ≤ V (t, x) ≤ αδ,∆(|x|), which implies (3), often
holds in the analysis of control systems. In particular, it holds for systems with additive bounded
disturbances when USPAS may be inferred using a Lyapunov function for UGAS of the corresponding
unperturbed system. See Section 4 for an example. Condition (4) also appears naturally in the context
of stability of perturbed systems. The last two conditions, (5) and (6), need to be imposed due to the
fact that the Lyapunov function V is not required to be the same for all δ and all ∆. As we show in
the proof, conditions (5) and (6) “compensate” this lack of uniformity to ensure that the estimate of
the domain of attraction B∆ and the set Bδ which is UAS can be arbitrarily enlarged and diminished
respectively.

Remark 2 By noticing that the UAS of Bδ on B∆ implies the UAS of Bδ′ on B∆′ for any δ′ and ∆′

satisfying δ ≤ δ′ < ∆′ ≤ ∆, the conclusion of Proposition 2 remains valid if (3) and (4) hold for all δ
small enough and all ∆ large enough. This relaxed assumption may be useful in practice.

3 Stability of cascades

We now consider cascaded systems of the form

ẋ1 = f1(t, x1, θ1) + g(t, x, θ)x2 (7a)

ẋ2 = f2(t, x2, θ2) (7b)
1It should be clear that V may depend on δ and ∆ as well. We shorten the notation Vδ,∆ to just V for clarity.
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where x := (x1, x2) ∈ R
n1 × R

n2 , θ := (θ1, θ2) ∈ R
n1 × R

m2 , t ∈ R≥0, f1, f2 and g are locally Lipschitz
in the state and piecewise continuous in the time. In order to simplify the statement of our main result,
we first introduce the following notation.

Definition 6 (D-set) For any ∆ > δ ≥ 0, the D-set of (2) is defined as

Df (δ,∆) := {θ ∈ R
m : Bδ is UAS on B∆ for (2)} .

Theorem 1 Under Assumptions 1–4 below, the cascaded system (7) is USPAS on Θ1 ×Θ2.

Assumption 1 The system (7b) is USPAS on Θ2.

Assumption 2 (Lyapunov USPAS of the x1-subsystem) Given any ∆1 > δ1 > 0, there exist a parameter
θ⋆1(δ1,∆1) ∈ Θ1, a continuously differentiable Lyapunov function V1, class K∞ functions αδ1,∆1

, αδ1,∆1
,

αδ1,∆1
and a continuous positive nondecreasing function cδ1,∆1

such that, for all x1 ∈ H(δ1,∆1) and all
t ∈ R≥0, bounds (3), (4) and

∣

∣

∣

∣

∂V1

∂x1
(t, x1)

∣

∣

∣

∣

≤ cδ1,∆1
(|x1|) (8)

hold and, for any positive ∆1,
lim
δ1→0

α−1
δ1,∆1

◦ αδ1,∆1
(δ1) = 0 . (9)

Assumption 3 (Boundedness of the interconnection term) The function g is uniformly bounded both in
time and in parameter, i.e. there exists a nondecreasing function G such that, for all x ∈ R

n1 × R
n2 ,

all θ ∈ Θ1 ×Θ2 and all t ∈ R≥0,
|g(t, x, θ)| ≤ G(|x|) .

Assumption 4 (Boundedness of solutions) There exists a positive constant ∆0 such that, for any given
positive numbers δ1, ∆1, δ2, ∆2, satisfying ∆1 > max{δ1;∆0} and ∆2 > δ2, and for the parameter
θ⋆1(δ1,∆1) as defined in Assumption 2, there exists a parameter θ⋆2 ∈ Df2(δ2,∆2)∩Θ2 (cf. Definition 6)
and a continuous function2 γ∆1,∆2

: R>0 ×R>0 → R≥0 such that

lim
∆1,∆2→∞

γ∆1,∆2
(∆1,∆2) = +∞ , (10)

and the trajectories of (7) with θ = θ⋆ satisfy

|x0| ≤ γ∆1,∆2
(∆1,∆2) ⇒ |x(t, t0, x0, θ

⋆)| ≤ ∆1 , ∀t ≥ t0 .

The proof of Theorem 1 consists in constructing the balls Bδ and B∆ and a KL estimate for the
solutions of the cascaded system, based on the respective balls for the x1 (i.e. (7a) with x2 ≡ 0) and
the x2 subsystems. For clarity of exposition we present this in Section 5.1.

In view of Proposition 2, Assumption 2 corresponds to the Lyapunov sufficient condition for USPAS
of the zero-input x1-subsystem, with the additional condition of a bound on the gradient of V1; we
stress that the requirement corresponding to (6) is no longer needed under Assumption 4. We state the
main result under the more restrictive assumption than simply “USPAS” since our proof relies on the
explicit knowledge of the Lyapunov function V1. Besides [2], we are not aware of a converse theorem for
USPAS, as defined here, that gives all the required properties. In this respect, a converse theorem for
USPAS of time-varying systems follows from [27, Corollary 1] for the case of locally Lipschitz f1, but
it only establishes the two first inequalities of Assumption 2 and does not establish that the functions
used to bound V1 can be chosen such that (9) holds. Yet, both (8) and (9) are little restrictive, and are
satisfied in many concrete applications, as for instance the case study of Section 4.

2It should be clear that γ may depend on δ1 and δ2 as well, but we do not write this dependency explicitly in order to
lighten the notation.
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Remark 3 In view of Remark 2, it is in fact sufficient that the requirements of Assumption 2 hold for
all small δ and all large ∆. Also, it is worth pointing out that Assumption 4 may be relaxed to uniform
boundedness on B∆1

×B∆2
provided that it holds uniformly in ∆1 and ∆2 (i.e., provided that γ and µ

in Definition 4 are independent of ∆1 and ∆2).

Remark 4 An interesting corollary of Theorem 1 is that the cascade of two USAS systems remains
USAS, roughly, provided that the assumptions of Theorem 1, hold with δ1 = δ2 = 0 and that (4) is
replaced by the stronger condition:

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)f1(t, x1, θ1) ≤ −k∆1

V1(t, x1) , ∀ |x1| ≥ δ1 , (11)

A similar adaptation of Proposition 2 may be obtained. The proof of this statement is omitted for
lack of space, but it follows along the same lines3 as the proof of Theorem 1. Furthermore, it is worth
pointing out that, for an autonomous x1−subsystem (i.e., f1(x1, θ1)), the original requirement (4)
remains sufficient.

We present a result that may help to check Assumption 4 in some particular contexts. It requires
the non-positivity of the derivative of a Lyapunov function on a sufficiently large domain. The proof is
given in Section 5.3.

Proposition 3 Let b be a positive constant. Suppose that there exists a continuously differentiable
function V and two class K∞ functions α and α such that, for all t ∈ R≥0 and all x ∈ R

n,

α(|x|) ≤ V (t, x) ≤ α(|x|) (12)

x ∈ H(a, b) ⇒
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ 0 , (13)

where a designates a positive number such that α(a) < α(b). Then, for all t0 ∈ R≥0, the solutions of
(1) satisfy

|x0| ≤ α−1 ◦ α(b) ⇒ |x(t, t0, x0)| ≤ b , ∀t ≥ t0 .

4 Application in robot control

To illustrate the utility of our theorems, we consider the common problem of set-point control of
a rigid-joint robot manipulator under PID control and and taking into account the dynamics of the
actuators. The Lagrangian dynamics of a robot manipulator with n rigid-joints is given by

D(q)q̈ + C(q, q̇)q̇ + g(q) = u (14)

where D(q) ∈ R
n×n is symmetric positive definite for all q ∈ R

n, N(q, q̇) := Ḋ(q) − 2C(q, q̇) is skew-
symmetric for all (q, q̇) ∈ R

n × R
n, u ∈ R

n corresponds to the input torques. As most common in the
literature of robot control, we restrict our attention to systems satisfying the following (cf. [23, 5]).

Standing assumption 1 The functions D(·), C(·, ·), g(·) are at least twice continuously differentiable
and the partial derivatives of their elements are over-bounded by non decreasing functions of4 |q|
and |q̇|. Furthermore, we assume that there exist positive constants dm, dM and kc such that5 for
all q and q̇ ∈ R

n,

dm ≤ |D(q)| ≤ dM , |C(q, q̇)| ≤ kc |q̇| ,

∣

∣

∣

∣

∂g(q)

∂q

∣

∣

∣

∣

≤ kg .

3The application of Lemma 1 (see Section 5.1) is no longer required in view of (11).
4Notice that this is true for matrices containing polynomial and trigonometric functions which is fairly common in

Lagrangian models of physical systems other than mechanical –cf. [3, 14].
5This is true for instance for open kinematic chains with only revolute or only prismatic joints. See e.g. [23, 18].
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We consider that the input torques u ∈ R
n are delivered by Direct-Current (DC) motors, whose

dynamics are given by
Li̇+Ri+ kbq̇ = v (15)

where i ∈ R
n is the vector of rotor currents, L and R are the rotors’ inductances and resistances

respectively6, kbq̇j with j ≤ n is the back-emf voltage in each motor and v is the vector of input
voltages, i.e., the control inputs. Each motor produces an output torque uj = ktij with kt > 0.

Our control problem is to design v so that the robot manipulator stabilizes at a desired constant
set-point (q = q∗, q̇ = 0). The aim is that the robot coordinates approach the reference operating point
from any initial conditions in an arbitrarily large set (limited only by physical constraints). Furthermore,
it is imposed that control be of the PID type. Accordingly, disregarding the DC motor dynamics, the
input torques that achieve the control objective are given by

u∗ = −kpq̃ − kdq̇ + ν (16a)

ν̇ = −kiq̃ , ν(0) := ĝ(q∗) (16b)

where kp, kd and ki are positive design control gains and ĝ(q∗) is the best “guess” of the unknown
constant pre-computed gravitational forces vector.

We stress that the above setting is fairly common in practice of robot control; not only PID control is
probably the most popular control technique but, often, industrial manipulators come with a black-box
controller of PID type, meaning that control design for the user of an industrial robot boils down to
gain-tuning for the built-in PID.

Here, our control objective is achieved via cascaded-based control, relying on our results on USPAS.
The approach consists in designing a reference i∗ := u∗/kt (so that, when ĩ := i− i∗ = 0, we have that
u = u∗) and building a control law v that makes ĩ go to zero.

Proposition 4 Under Standing assumption 1, the system (14), (15) in closed-loop with (16) and

v := R′̃i+Ri∗ + kbq̇ + Li̇∗ , i∗ =
u∗

kt
.

is uniformly semiglobally asymptotically stable (USAS). �

Proposition 4 establishes that, if one knows how to semiglobally asymptotically stabilize a robot using
PID control when neglecting the DC drive dynamics, then the same stability property can be established
when these dynamics are taken into account. In other words, we claim that, given any domain of initial
errors, one can always find control gains (namely kp, ki, kd) such that the point (q = q∗, q̇ = 0) is
uniformly asymptotically stable on this set of initial conditions. Moreover, the tuning of the PID
control gains can be made disregarding the DC drive dynamics.

Sketch of proof. (Proposition 4) For analytical purposes, let ε1 > 0 be sufficiently small and define the
variables s := 1

ε1
q̃ + 1

ki
(g(q∗) − ν) and k′p := kp −

ki
ε1

> 0. Then, the closed-loop system can be written
in the following cascaded form:

D(q)q̈ + C(q, q̇)q̇ + g(q)− g(q∗) + k′pq̃ + kdq̇ − kis = ktĩ (17a)

ṡ = q̃ +
1

ε1
q̇ (17b)

˙̃i = −
R+R′

L
ĩ . (18)

Then, the proof of the proposition can be constructed by applying Theorem 1 and using Remark 4.
For this, three basic properties must be shown: 1) the motor closed-loop system (18) is USAS, 2) the

6For simplicity and without loss of generality we consider that we have n identical motors –i.e. same resistance,
inductance, torque constant, etc.
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robot system in closed loop with the PID controller, i.e. (17) with ĩ ≡ 0, is USAS and 3) the trajectories
of the cascaded system are uniformly bounded.

Sketch of proof of 1): This follows directly by observing that (18) is uniformly globally exponentially
stable for any positive R′.

Sketch of proof of 2): This follows after lengthy calculations that we do not include here for lack of
space and because they follow along similar prooflines as those in [13]. For the purpose of illustrating
the use of Theorem 1 we claim that the result can be established using the Lyapunov function

V1 :=
1

2
q̇⊤D(q)q̇ +

1

2
k′p |q̃|

2 + U(q)− U(q∗)− q̃⊤g(q∗) +
ε1ki
2

s2 + ε1q̃
⊤D(q)q̇ + ε2s

⊤D(q)q̇

where U(·) corresponds to the gravitational potential energy function and ε2 > 0. We emphasize that,
except for the last term and a slightly different notation, the function above comes from [13] and, more
indirectly, from energy-like Lyapunov functions widely used in the robot-control literature. In particular,
conditions for positive definiteness7 and radial unboundedness hold under the Standing assumption 1
and can be derived following [13] and some of the references therein.

It can also be shown that, for any ∆ > 0, there exist k′p, kd and ki such that the time derivative of

V1 along the trajectories of (17) satisfies, for all |x1| :=

√

|q̇|2 + |q̃|2 + |s|2 ≤ ∆1 and all t ≥ 0,

V̇ ≤ −
kd
2

|q̇|2 −
ε1k

′
p

2
|q̃|2 −

ε2ki
2

s2 ,

provided that ε1 and ε2 are chosen small enough, and that the choice of the gains can be made in the
following manner8:

kd = ad + bd∆1 , k′p = ap + bp∆1 , ki = ai + bi∆1 , (19)

where ad, ap, ai, bd, bp, bi are positive constants. In addition, the bound on the gradient (8) directly
follows from the smoothness of V1 and its time-independency. This establishes Assumption 2 when
considering δ1 = 0.

Sketch of proof of 3): This can be established following the same analysis as above, with the same

Lyapunov function, but considering the interconnection term ktĩ on the right hand side of the closed
loop equation (17a). One obtains that, in this case,

V̇ ≤ −
kd
2

|q̇|2 −
ε1k

′
p

2
|q̃|2 −

ε2ki
2

s2 + (|q̇|+ ε1 |q̃|+ ε2 |s|) kt
∣

∣̃i
∣

∣ .

which, in view of the uniform boundedness of ĩ(t), satisfies V̇ ≤ 0 for “large” values of |x1|. This
observation, combined with the linear dependency of the gains (19) in ∆1, allows to fulfill Assumption
4, in view of Proposition 3.

Remark 5 Cascaded-based control of robots taking account of the robot dynamics was first used in [16]
in trajectory control of manipulators with AC drives. In that problem, the motor dynamics is highly
nonlinear and global asymptotic stability of the closed-loop system of (14) with the corresponding ideal
control input u∗ is obtained. However, for the problem that we address here, we are not aware of any
proof of global asymptotic stability of the closed-loop (14) with PID control hence global results for
cascaded systems fail in this setting. See also [1] for a result on control of robots taking into account
the DC motors’ dynamics, but with knowledge of the gravity terms g(q). �

7Positive definiteness of V may be established if k′
p ≥ kg and if ε1, ε2 are sufficiently small.

8We can actually show that the D-set (cf. Definition 6) of (17) is

D(0,∆1) =
{

(kd, kp, ki) ∈ R
3 : kd ≥ ad + bd∆1, k

′
p ≥ ap + bp∆1, ki ≥ ai + bi∆1

}

.
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5 Proofs

5.1 Proof of Theorems 1

We start by introducing the following result, which is a direct adaptation of [17, Proposition 13] and
allows V1 to be transformed into a more convenient form.

Lemma 1 Let δ be a nonnegative constant and X be a subset of Rn \ Bδ. Suppose that there exist a
continuously differentiable function V : R≥0 × X → R≥0 and some class K∞ functions α, α, α such
that, for all x ∈ X and all t ≥ 0,

α(|x|δ) ≤ V (t, x) ≤ α(|x|)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) .

Then, for any positive k, there exists a continuously differentiable function V : R≥0 × X → R≥0 and
class K∞ functions α̃, α̃ such that, for all x ∈ X and all t ≥ 0,

α̃(|x|δ) ≤ V(t, x) ≤ α̃(|x|) (20)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −kV , (21)

and, for any s ∈ R≥0, it holds that

α̃−1 ◦ α̃(s) = α−1 ◦ α(s) . (22)

If, in addition, there exists a continuous nondecreasing function c : R≥0 → R≥0 such that, for all x ∈ X
and all t ≥ 0,

∣

∣

∣

∣

∂V

∂x
(t, x)

∣

∣

∣

∣

≤ c(|x|) ,

then there exists a continuous nondecreasing function c̃ : R≥0 → R≥0 such that, for all x ∈ X and all
t ≥ 0,

∣

∣

∣

∣

∂V

∂x
(t, x)

∣

∣

∣

∣

≤ c̃(|x|) . (23)

�

Proof . Following the prooflines of [17, Proposition 13], we see that the function V can be defined as
ρ ◦ V where

{

ρ(s) = exp
(

∫ s

1
2dq
a(q)

)

, ∀s > 0

ρ(0) = 0 ,

and a is a convenient class K function. The bound (21) can be established following the same reasoning
as in the proof of [17, Proposition 13]. Furthermore, (20) can be satisfied with α̃ := ρ ◦α and α̃ := ρ ◦α
as ρ ∈ K∞, and we therefore have that

α̃−1 ◦ α̃(s) = (ρ ◦ α)−1 ◦ (ρ ◦ α) (s) =
(

α−1 ◦ ρ−1
)

◦ (ρ ◦ α) (s) = α−1 ◦ α(s) .

Concerning the bound on the gradient we have that, for all x ∈ X and all t ∈ R≥0,

∣

∣

∣

∣

∂V

∂x
(t, x)

∣

∣

∣

∣

≤
2V(x)

a(V (x))

∣

∣

∣

∣

∂V

∂x
(t, x)

∣

∣

∣

∣

≤
2α̃(|x|)

a(α(|x|))
c(|x|) ≤ c̃(|x|) ,

where c̃(s) := 2α̃(s)
a(α(δ))c(s), which establishes the result. �

Consider the function V1 generated by Assumption 2 and let Lemma 1 with x = H(∆1, δ1) generate a
function V1, class K∞ functions α̃δ1,∆1

, α̃δ1,∆1
, a positive constant kδ1,∆1

and a continuous nondecreasing

9



function c̃δ1,∆1
such that, for all x ∈ H(δ1,∆1) and all t ∈ R≥0, (20)-(23) hold for V1. From (9) and

(36), it also holds that, for any ∆1 > 0,

lim
δ1→0

α̃−1
δ1,∆1

◦ α̃δ1,∆1
(δ1) = 0 . (24)

In the sequel, in order to lighten the notations, we refer to α̃δ1,∆1
as simply α1, α̃δ1,∆1

as α1, kδ1,∆1
as

k1 and c̃δ1,∆1
as c1. Even though no longer explicit with these new notations, the dependency of these

functions in δ1 and ∆1 should be kept in mind. For any given positive δ1, ∆1, δ2 and ∆2 satisfying
∆1 > max{δ1,∆0} and ∆2 > δ2, let γ∆1,∆2

be generated by Assumption 4 and define

∆ := min {∆1 ; ∆2 ; γ∆1,∆2
(∆1,∆2)} . (25)

Next, choose any θ⋆1 ∈ Θ1 satisfying Assumption 2 and any θ⋆2 ∈ Df2(δ2,∆2)∩Θ2 given by Assumption
4. We show that, provided that δ1, δ2 are sufficiently small and that ∆1, ∆2 are large enough, there
exists δ ∈ (0;∆) such that Bδ is UAS on B∆ for the system (7) with θ⋆ = (θ⋆1, θ

⋆
2). To that end, we

first show that there exists a positive δ3 such that the ball Bδ3 is uniformly stable. More precisely, we
construct η ∈ K∞ and δ3 > 0 such that, for all x0 ∈ B∆,

|x1(t, t0, x0, θ
⋆)|δ3 ≤ η(|x0|) . (26)

Then, we use this property to prove that a ball, larger than Bδ3 , is UA on B∆ and we construct a KL
estimate for the solutions. Finally, we show that the estimates of the domain of attraction and of the
ball to which solutions converge can be arbitrarily enlarged and diminished respectively.

5.1.1 Proof of uniform stability of a ball

The total time derivative of V along the trajectories of (7) with θ = θ⋆ yields

V̇1 =
∂V1

∂t
+

∂V1

∂x1

(

f1(t, x1, θ
⋆
1) + g(t, x, θ⋆)x2

)

.

Therefore it holds that, for all x1 ∈ H(δ1,∆1) and all t ≥ 0

V̇1 ≤ −k1V1 +

∣

∣

∣

∣

∂V1

∂x1

∣

∣

∣

∣

|g(t, x, θ⋆)| |x2|

≤ −k1V1 + c1(|x1|)G(|x|) |x2| .

Defining
Γ := {t ≥ t0 | δ1 ≤ |x1(t, t0, x0, θ

⋆)| ≤ ∆1} ,

and using the shorthand notation x1(t) for x1(t, t0, x0, θ
⋆) and v1(t) := V1(t, x1(t)) we get that, for any

x0 ∈ B∆ and any t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + c1(|x1(t)|)G(|x(t)|) |x2(t)| .

From Assumption 4, and in view of (25), we can see that, for all x0 ∈ B∆, it holds that x(t) ∈ B∆1
.

Hence, for all t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + c1(∆1)G(∆1) |x2(t)| .

Let Assumption 1 generate a class KL function β2 such that9 for any x20 ∈ B∆2
and any t ≥ t0,

|x2(t)| ≤ β2(|x20| , t− t0) + δ2 .

It follows that, for all x0 ∈ B∆ and all t ∈ Γ,

v̇1(t) ≤ −k1v1(t) + c1(∆1)G(∆1)
[

β2(|x20| , t− t0) + δ2
]

(27)

9Notice that |s|
a
≤ b ⇔ |s| ≤ a+ b, ∀s ∈ R

n, a, b ≥ 0.
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which implies that
x(t) ∈ H(δ1,∆1) ⇒ v̇1(t) ≤ −k1v1(t) + c3(|x0|) , (28)

with
c3(s) := c1(∆1)G(∆1)(β2(s, 0) + δ2) , ∀s ≥ 0 .

The rest of the proof of uniform stability consists in integrating (28) over Γ, in order to construct a
bound like (26). To that end, we introduce the following tool, which may be viewed as a comparison
theorem for differential inequalities that hold only out of a ball centered at zero.

Lemma 2 Let δ be a nonnegative constant and X be a subset of Rn containing Bδ. Assume that there
exists a continuously differentiable function V : R≥0×R

n → R≥0, class K∞ functions α and α, a positive
constant k and nonnegative constant c such that, for all x ∈ X and all t ∈ R≥0,

α(|x|δ) ≤ V (t, x) ≤ α(|x|)

and, for all x0 ∈ R
n and all t0 ∈ R≥0,

x(t, t0, x0) ∈ X \ Bδ ⇒ V̇ (t, x(t, t0, x0)) ≤ −kV (t, x(t, t0, x0)) + c .

Then, for all x0 ∈ R
n and t0 ∈ R≥0 such that x(t, t0, x0) ∈ X ∀t ≥ t0, we have that

|x(t, t0, x0)|δ ≤ α−1
(

α(δ) +
c

k

)

+ α−1
(

α(|x0|)e
−k(t−t0) +

c

k

)

, ∀t ≥ t0 .

�

Proof . For simplicity, we write x(·, t0, x0) as x(·) and we define v(·) := V (·, x(·)). We distinguish two
cases: whether the trajectories start from outside or inside Bδ.

Case 1: |x0| > δ.
In this case, there exists10 T0 ∈ (0;∞] such that |x(t)| > δ for all [t0; t0 + T0) and |x(t0 + T0)| = δ.
Hence, using the comparison lemma, we get that v(t) ≤ (v(t0)−

c
k
)e−k(t−t0) + c

k
for all t ∈ [t0; t0 + T0).

Using the bounds on V , it follows that

|x(t)|δ ≤ α−1
(

α(|x0|)e
−k(t−t0) +

c

k

)

, ∀t ∈ [t0; t0 + T0) .

In addition, for each t ≥ t0 + T0, either |x(t)| ≤ δ in which case11 |x(t)|δ ≤ α−1 (α(δ) + c/k), or
|x(t)| > δ. In this second case, we can again invoke the continuity of the solution to see that there
exists a nonempty time-interval [τ ; τ + T ], with T ∈ (0;∞], containing t and such that |x(s)| > δ for all
s ∈ (τ ; τ + T ], with |x(τ)| = δ. Hence, integrating from τ to t ∈ [τ ; τ + T ], we obtain in the same way
as before that, whenever |x(t)| > δ, it holds that

|x(t)|δ ≤ α−1
(

α(δ)e−k(t−τ) +
c

k

)

≤ α−1
(

α(|x0|)e
−k(t−t0) +

c

k

)

. (29)

To sum up, for all t ≥ t0, we have the following:

|x0| > δ ⇒ |x(t)|δ ≤ α−1
(

α(|x0|)e
−k(t−t0) +

c

k

)

. (30)

Case 2: |x0| ≤ δ.

In this case, as long as |x(t)| ≤ δ, we trivially11 have that |x(t)|δ ≤ α−1 (α(δ) + c/k). If |x(t)| > δ at
some instant t > t0, then, again, there exists a nonempty time-interval [τ ; τ + T ], with T ∈ (0;∞] and
τ > t0, containing t and such that |x(s)| > δ for all s ∈ (τ ; τ + T ], with |x(τ)| = δ. Thus, from (29), we
obtain that

|x(t)|δ ≤ α−1
(

α(δ)e−k(t−τ) +
c

k

)

≤ α−1
(

α(δ) +
c

k

)

.

10If |x(t)| > δ forever after, we consider that T0 = ∞.
11This is direct by noticing that α(s) ≤ α(s) for all s ∈ R≥0 and that c/k ≥ 0.
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Hence, for all t ≥ t0,

|x0| ≤ δ ⇒ |x(t)|δ ≤ α−1
(

α(δ) +
c

k

)

. (31)

The conclusion follows from (30) and (31). �

Applying Lemma 2 to (28) with V = V1, k = k1, c = c3(|x0|) and X = B∆, we get in view of
Assumption 4 and (25) that, for all x0 ∈ B∆ and all t0 ∈ R≥0,

|x(t)|δ1 ≤ α−1
1

(

α1(δ1) +
c3(|x0|)

k1

)

+ α−1
1

(

α1(|x0|) +
c3(|x0|)

k1

)

, ∀t ≥ t0 .

Define the following:

δ3 := δ1 + α−1
1

(

α1(δ1) +
c3(0)

k1

)

+ α−1
1

(

c3(0)

k1

)

= δ1 + α−1
1

(

α1(δ1) +
c1(∆1)G(∆1)δ2

k1

)

+ α−1
1

(

c1(∆1)G(∆1)δ2
k1

)

. (32)

and, for all s ∈ R≥0,

η(s) := α−1
1

(

α1(δ1) +
c3(s)

k1

)

+ α−1
1

(

α1(s) +
c3(s)

k1

)

− α−1
1

(

α1(δ1) +
c3(0)

k1

)

− α−1
1

(

c3(0)

k1

)

.

We then conclude that, for any x0 ∈ B∆ and all t0 ∈ R≥0, it holds that

|x1(t)|δ3 ≤ η(|x0|) , ∀t ≥ t0 . (33)

Uniform stability of Bδ3 on B∆ follows by noticing that η is a class K function. This can be seen by
recalling that c3 is a continuous increasing function.

5.1.2 Proof of uniform attractiveness of a ball

Consider again (27). Since β2 is a KL function there is a time t1 ≥ 0, independent of t0 and x0,
such that

β2(∆, t− t0) ≤ δ2 , ∀ t ≥ t0 + t1 .

Hence (27) implies that, for all t ∈ Γ ∩ R≥t0+t1 and all x0 ∈ B∆,

v̇1(t) ≤ −k1v1(t) + 2c1(∆1)G(∆1)δ2 .

Applying again Lemma 2 and recalling that, from Assumption 4, |x1(t0 + t1)| ≤ ∆1, it follows that, for
all x0 ∈ B∆, all t0 ∈ R≥0 and all t ≥ t0 + t1,

|x(t)|δ1 ≤ α−1
1

(

α1(δ1) +
2c1(∆1)G(∆1)δ2

k1

)

+ α−1
1

(

α1(|x(t0 + t1)|)e
−k1(t−t0−t1) +

2c1(∆1)G(∆1)δ2
k1

)

≤ α−1
1

(

α1(δ1) +
2c1(∆1)G(∆1)δ2

k1

)

+ α−1
1

(

α1(∆1)e
−k1(t−t0−t1) +

2c1(∆1)G(∆1)δ2
k1

)

.

Defining

t2 := t1 +
1

k1
ln

(

α1(∆1)

α1(δ1)

)

,

we then see that, for all x0 ∈ B∆,

|x1(t)| ≤ δ4 := δ1 + 2α−1
1

(

α1(δ1) +
2c1(∆1)G(∆1)δ2

k1

)

, ∀t ≥ t0 + t2 . (34)

In other words, we have that

|x1(t, t0, x10)|δ4 = 0 , ∀t ≥ t0 + t2 .

12



Finally, let
δ := max {δ2 ; δ3 ; δ4} , (35)

Then we see that (33) implies that |x1(t)|δ ≤ η(|x0|) for all t ≥ t0. From this and what precedes it is
not hard to see that, for all x0 ∈ B∆,

|x1(t)|δ ≤ η(|x0|)e
−(t−t0−t2) , ∀t ≥ t0 .

Thus, recalling that t2 depends neither on t0 nor on x0, and defining

β(s, t) := max
{

η(s)e−(t−t2) ; β2(s, t)
}

, ∀s, t ≥ 0 ,

we conclude that, for all x0 ∈ B∆,

|x(t)|δ ≤ β(|x0| , t− t0) , ∀t ≥ t0 .

UAS of Bδ on B∆ follows by noticing that β is a class KL function.

5.1.3 Semiglobality and practicality

It is only left to show that δ and ∆ can be arbitrarily reduced and enlarged respectively. It follows
directly from (10) and (25) that, by picking ∆1 and ∆2 large enough, ∆ can be made arbitrarily large.

Concerning δ, we see with (32) and (34) that

δ3 ≤ δ4 = δ1 + 2α−1
1

(

α1(δ1) +
2c1(∆1)G(∆1)δ2

k1

)

.

Hence, in view of (24) and recalling that c1, G, k1 and α1 are independent of δ2, we see that, for the
chosen ∆1 and ∆2, both δ3 and δ4 can be taken as small as wanted by picking δ1 and δ2 sufficiently
small. Hence, in view of (35), it is also the case for δ.

Thus, it suffices to pick the parameters θ⋆1 and θ⋆2 generated by the chosen δ1, ∆1, δ2 and ∆2, to
conclude that, for any ∆ > δ > 0, there exists some parameters θ⋆1 ∈ Θ1 and θ⋆2 ∈ Θ2 such that Bδ is
UAS on B∆ for the system (7) with θ = θ⋆, which establishes the result.

5.2 Proof of Proposition 2

We prove this result by showing that it actually constitutes a special case of Theorem 1. To this
end, first notice that applying Lemma 1 (see Section 5.1) to V ensures the existence of a continuously
differentiable function V such that, for all x ∈ H(δ,∆) and all t ∈ R≥0,

α̃δ,∆(|x|δ) ≤ V(t, x) ≤ α̃δ,∆(|x|)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, θ) ≤ −kδ,∆V(t, x) (36)

∣

∣

∣

∣

∂V

∂x
(t, x)

∣

∣

∣

∣

≤ c̃δ,∆(|x|)

hold with a positive kδ,∆, a continuous nondecreasing function c̃δ,∆ and some class K∞ functions α̃δ,∆

and α̃δ,∆ satisfying
α̃−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ≥ 0 .

Inverting the two sides of this inequality yields:

α̃
−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ≥ 0 .

13



Consequently, in view of (5) and (6), we have that, for all ∆ > 0,

lim
δ→0

α̃−1
δ,∆ ◦ α̃δ,∆(δ) = 0

and, for all δ > 0,

lim
∆→∞

α̃
−1
δ,∆ ◦ α̃δ,∆(∆) = ∞ . (37)

Based on this, let ∆ be any given positive constant and choose δ small enough that

α̃−1
δ,∆ ◦ α̃δ,∆(δ) < ∆ .

Then, the requirements of Proposition 3 are fulfilled and we get that

|x0| ≤ α̃
−1
δ,∆ ◦ α̃δ,∆(∆) ⇒ |x(t)| ≤ ∆ , ∀t ≥ t0 .

In view of (37), we then see that the solutions of (2) satisfy a uniform boundedness as in Assumption 4.
Moreover, from (36), and defining v(t) := V(t, x(t, t0, x0, θ)) and Γ := {t ≥ t0 | x(t, t0, x0, θ) ∈ H(δ,∆)},
we get that

v̇(t) ≤ −kδ,∆v(t) , ∀t ∈ Γ ,

which corresponds to (28) with c3(s) ≡ 0. The rest of the proof follows along the same lines as in
Section 5.1 by noticing that both Assumption 3 and the bound on the gradient were only used in order
to establish (28).

5.3 Proof of Proposition 3

We claim that, whenever V (t, x) = α(b), its derivative along the trajectories of (1), which we
denote by V̇ , is non positive. To this end, notice that (12) implies that, if V (t, x) = α(b), then
x ∈ H(α−1 ◦α(b), b), which is nonempty (since α(b) ≤ α(b)) and included in H(a, b) (since it is assumed
that α(a) < α(b)). Hence, the claim is proved in view of (13). For any t0 ∈ R≥0 and any x0 ∈ R

n, by
defining v(t) := V (t, x(t, t0, x0)), we therefore get that, for all t ≥ t0,

v(t) = α(b) ⇒ v̇(t) ≤ 0 ,

which ensures in its turn, by the continuity of v(t), that

v(t0) ≤ α(b) ⇒ v(t) ≤ α(b) , ∀t ≥ t0 .

The conclusion follows by noticing that, from (12),

|x0| ≤ α−1 ◦ α(b) ⇒ v(t0) ≤ α(b) , and v(t) ≤ α(b) ⇒ |x(t)| ≤ b .

6 Conclusion

We have presented results for uniform semiglobal practical asymptotic stability of nonlinear time-
varying systems. Our main theorem establishes that the cascade of two USPAS systems remains USPAS;
it relies on a condition of local boundedness of the solutions of the cascade and the knowledge of a Lya-
punov function for the perturbed subsystem, in the absence of the interconnection term. As a corollary,
we have that, under similar conditions, the cascade of two uniformly semiglobally asymptotically stable
systems remains USAS. The latter generalizes, in its turn, previous results reported in the literature.
Further research is carried out in the direction of extending these results to global practical properties
and on deriving sufficient conditions for boundedness of solutions.

We have also illustrated the usefulness of our main results in the PID control of manipulators with
external disturbances. The case-study presented here addresses, as far as we know, an important open
problem in the literature of robot control.
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