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Abstract

This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dy-
namical systems that evolve according to ordinary differential equations most of the time, but occasionally exhibit discontinu-
ities (or impulses). We provide a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the
continuous dynamics are ISS but the discrete dynamics that govern the impulses are not, the impulses should not occur too
frequently, which is formalized in terms of an average dwell-time (ADT) condition. Conversely, when the impulse dynamics
are ISS but the continuous dynamics are not, there must not be overly long intervals between impulses, which is formalized
in terms of a novel reverse ADT condition. We also investigate the cases where (i) both the continuous and discrete dynamics
are ISS and (ii) one of these is ISS and the other only marginally stable for the zero input, while sharing a common Lyapunov
function. In the former case we obtain a stronger notion of ISS, for which a necessary and sufficient Lyapunov characterization
is available. The use of the tools developed herein is illustrated through examples from a Micro-Electro-Mechanical System
(MEMS) oscillator and a problem of remote estimation over a communication network.
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1 Introduction

Impulsive systems combine continuous evolution (typi-
cally modeled by ordinary differential equations) with
instantaneous state jumps or resets (also referred to
as impulses). Stability properties of such systems have
been extensively investigated in the literature; see, e.g.,
[3, 7, 25].

When investigating stability of a system, it is important
to characterize the effects of external inputs. The con-
cepts of input-to-state stability (ISS) and integral-input-
to-state stability (iISS), introduced by Sontag in [23]
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and [22], have proved useful in this regard. Originally
introduced for continuous-time systems, they were sub-
sequently also studied for discrete-time systems [12] and
switched systems [17]. However, the possibility of im-
pulses has been excluded in these works. ISS notions for
hybrid systems appeared in [4]. While [4] allows for the
existence of impulses, in [4] signals are defined on hy-
brid time domains, as opposed to the usual time defined
on the real line. This leads to a distinct notion of ISS
and some systems that are ISS in the framework of this
paper are not ISS in the framework of [4]. This issue is
further discussed in Section 5.

In this paper we study input-to-state stability proper-
ties of impulsive systems, with external signals affect-
ing both the continuous dynamics and the state impulse
map. These systems are formally defined in Section 2,
where we also define the notions of ISS and iISS for such
systems.

We provide a set of Lyapunov-based sufficient condi-
tions for establishing ISS and iISS with respect to suit-
able classes of impulse time sequences (see Sections 3
and 4 for ISS, and Section 7 for iISS). It is shown that
when the continuous dynamics are ISS but the impulses
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are destabilizing, the impulsive system is ISS if the im-
pulse times do not occur too frequently, which is formal-
ized in terms of an average dwell-time (ADT) condition
from [9]. Conversely, when the impulses are stabilizing
but the continuous dynamics are destabilizing, the im-
pulsive system is ISS if the impulse times satisfy a novel
“reverse” ADT condition, which prevents overly long in-
tervals between impulse times.

Section 5 considers impulsive systems for which both
the continuous dynamics and the impulses are stabiliz-
ing, and share a common ISS-Lyapunov function. Such
systems are ISS regardless of how often or how seldom
impulses occur. We further show that such systems ex-
hibit a stronger form of ISS for which we provide neces-
sary and sufficient conditions in terms of the existence
of appropriate Lyapunov functions.

We also investigate impulsive systems for which the con-
tinuous dynamics are ISS and the impulse dynamics are
marginally stable for a zero input. We show that such
systems remain ISS for arbitrarily small ADT. We also
consider the dual case, which consists of systems with
ISS impulse dynamics and continuous dynamics that are
marginally stable for a zero input. These systems remain
ISS for arbitrarily large reverse ADT. Lyapunov-based
conditions that cover both cases are provided in Sec-
tion 6.

The motivation to study the class of systems consid-
ered in this paper comes from multiple sources. Impul-
sive systems with external inputs arise naturally in con-
trol systems with communication constraints, as explic-
itly discussed in [10, 16, 19, 28]. A special case of one of
our results (Corollary 3) was already used in [16] to an-
alyze stability of such a system. The results presented
here can be used to construct deterministic versions of
the results that appeared in [28] for stochastic distur-
bances. Impulsive systems with inputs also describe the
evolution of multiple Lyapunov functions for switched
systems with inputs (even if the latter exhibit no state
jumps), which in turn arise in the analysis of switching
control algorithms for uncertain systems [8, 15].

We illustrate the use of the results presented in this paper
through two examples included in Section 8. The first
example studies the effect of the collision of air molecules
with a MEMS oscillator. These collisions can be the main
source of noise in mass-sensing applications. The second
example studies the effect of a TOD protocol in the state
estimation of multiple decoupled systems that share the
same communication medium to transmit measurements
to a remote location where the state estimates are being
built.

2 Basic definitions

We consider the general impulsive system with inputs

{

ẋ(t) = f
(

x(t), w(t)
)

, t 6= tk, k ∈ {1, 2, . . . }

x(t) = g
(

x−(t), w−(t)
)

, t = tk, k ∈ {1, 2, . . . }
(1)

where {t1, t2, t3, . . . } is a strictly increasing sequence of
impulse times in (t0,∞) for some initial time t0; the state
x(t) ∈ R

n is absolutely continuous between impulses;
w(t) ∈ R

m is a locally bounded, Lebesgue-measurable
input; and f and g are functions from R

n × R
m to R

n,
with f locally Lipschitz. The set of impulse times is as-
sumed to be either finite or infinite and unbounded. In
particular, we exclude the possibility of the tk having a
finite accumulation point, often referred to as chatter-
ing. All signals in this paper (including the state x and
the input w) are assumed to be right-continuous and to
have left limits at all times 2 . In view of this, we denote
by (·)− the left-limit operator, i.e., x−(t) = limsրt x(s).
Given a sequence {tk} and a pair of times s, t satisfy-
ing t > s ≥ t0, we will let N(t, s) denote the number of
impulse times tk in the semi-open interval (s, t].

To introduce appropriate notions of ISS, we recall the
following standard definitions: A function α : [0,∞) →
[0,∞) is of class K, and we write α ∈ K, when α is
continuous, strictly increasing, and α(0) = 0. If α is
also unbounded, then we say it is of class K∞ and write
α ∈ K∞. A function β : [0,∞) × [0,∞) → [0,∞) is of
class KL, and we write β ∈ KL, when β(·, t) is of class K
for each fixed t ≥ 0 and β(r, t) decreases to 0 as t → ∞
for each fixed r ≥ 0.

Suppose that a sequence {tk} is given. We say that the
impulsive system (1) is input-to-state stable (ISS) if there
exist functions β ∈ KL and γ ∈ K∞ such that for every
initial condition and every input w, the corresponding
solution to (1) exists globally and satisfies

|x(t)| ≤ β(|x(t0)|, t − t0) + γ
(

‖w‖[t0,t]

)

∀ t ≥ t0 (2)

where ‖ · ‖J denotes the supremum norm on an interval
J .

Since the above definition applies to a fixed sequence
{tk} of impulse times, the ISS property depends on the
choice of the sequence. However, it is often of interest to
characterize ISS over classes of sequences {tk}. To this
end, we say that the impulsive system (1) is uniformly
ISS over a given class S of admissible sequences of im-
pulse times if the ISS property expressed by (2) holds
for every sequence in S with functions β and γ that are
independent of the choice of the sequence.

2 Right-continuity of w is being assumed just for simplicity
of notation and it is not necessary for the results to hold.
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The above ISS properties characterize robustness to in-
puts in the L∞ sense. Another possibility is to consider
“integral” variants, in the spirit of [22]. We say that
the impulsive system (1) is integral-input-to-state stable
(iISS) if there exist functions β ∈ KL and α, γ ∈ K∞

such that for every initial condition and every input w,
we have

α(|x(t)|) ≤ β(|x(t0)|, t − t0) +

∫ t

t0

γ(|w(s)|)ds

+
∑

tk∈[t0,t]

γ(|w−(tk)|) ∀ t ≥ t0. (3)

The notion of uniform iISS over a given class S of im-
pulse time sequences is defined in the same way as for
ISS.

3 Sufficient conditions for ISS

We say that a function V : R
n → R is a candidate expo-

nential ISS-Lyapunov function for (1) with rate coeffi-
cients c, d ∈ R if V is locally Lipschitz, positive definite,
radially unbounded, and satisfies

∇V (x) · f(x,w) ≤ −cV (x) + χ(|w|) ∀x a.e.,∀w

(4a)

V (g(x,w)) ≤ e−dV (x) + χ(|w|) ∀x,w (4b)

for some function 3 χ ∈ K∞. In (4a) and in equations
that follow, “∀x a.e.” should be interpreted as “for ev-
ery x ∈ R

n except, possibly, on a set of zero Lebesgue-
measure in R

n.” For generality, we are assuming that
V is locally Lipschitz but not necessarily differentiable
everywhere. However, from Rademacher’s Theorem we
know that the former is sufficient to guarantee that the
gradient ∇V (x) of V (x) is well defined except on a set of
measure zero. For this reason we qualify the x quantifier
in (4a) with “almost everywhere.”

We do not require the rate coefficients c, d to be non-
negative and therefore V will not necessarily decrease,
even when w = 0. The next result says that when these
coefficients satisfy appropriate constraints, one can still
use V to show that the impulsive system is ISS.

Theorem 1 (uniform ISS) Let V be a candidate ex-
ponential ISS-Lyapunov function for (1) with rate coef-
ficients c, d ∈ R with d 6= 0 4 . For arbitrary constants

3 Taking the same function χ in (4a) and (4b) is no loss of
generality, because we can always consider the maximum of
two functions; however, it is also easy to treat the case of
two different functions, which would lead to slightly more
complicated notation but less conservative estimates for the
gain function γ in (2).
4 The case d = 0 is closely related to the results in Section 6.

µ, λ > 0, let S[µ, λ] denote the class of impulse time se-
quences {tk} satisfying

−dN(t, s) − (c − λ)(t − s) ≤ µ ∀ t ≥ s ≥ t0. (5)

Then the system (1) is uniformly ISS over S[µ, λ]. 2

After proving Theorem 1, we will provide additional in-
sight into the somewhat mysterious condition (5). When
none of the rate coefficients c and d is positive, this con-
dition cannot hold for any impulse time sequence be-
cause the left-hand side will necessarily grow to ∞ as
t − s → ∞. All other combinations of signs for c and
d lead to interesting results. Section 4 explores the case
when one coefficient is strictly positive and the other
strictly negative, in which case we have uniform ISS for
impulse sequences that satisfy appropriate “dwell-time”
conditions. Section 5 addresses the case when both coef-
ficients are strictly positive. In this case, (5) always holds
and the system actually exhibits a form of uniform ISS
that is stronger than the one that appears in Theorem 1.
Finally, Section 6 addresses the marginal cases when one
coefficient is strictly positive and the other one is zero.

Proof of Theorem 1. Pick constants ε > −1, of the same
sign as d, and δ > 0, both sufficiently close to 0 so that
d > d̄ := d

1+ε , c > c̄ := c−δ
1+ε , λ̄ := λ−δ

1+ε > 0. Adding

δ(t−s) to both sides of (5) and then dividing both sides
by 1 + ε, we conclude that

−d̄N(t, s) − c̄(t − s) ≤ µ̄ − λ̄(t − s) ∀ t ≥ s ≥ t0, (6)

where µ̄ := µ/(1 + ε). We can then rewrite (4a) as

∇V (x) · f(x,w) ≤ −c̄V (x) − (c − c̄)V (x) + χ(|w|)

and conclude from Lemma 1 in the Appendix that be-
tween any two consecutive impulses tk−1, tk the function
t 7→ V (x(t)) is absolutely continuous and

V̇ (x(t)) ≤ −c̄V (x(t)) − (c − c̄)V (x(t)) + χ(|w(t)|),

∀ t ∈ (tk−1, tk) a.e. This means that

(c − c̄)V (x(t)) ≥ χ(|w(t)|) ⇒ V̇ (x(t)) ≤ −c̄V (x(t))
(7)

∀ t ∈ (tk−1, tk) a.e. Similarly, from (4b) we conclude that
at every impulse time tk

(e−d̄ − e−d)V (x−(tk)) ≥ χ(|w−(tk)|)

⇒ V (x(tk)) ≤ e−d̄V (x−(tk)). (8)

Let a := (min{c − c̄, e−d̄ − e−d})−1 > 0. Because of the
right-continuity of x and w, there exists a sequence of
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times t0 =: t̂0 ≤ ť1 < t̂1 < ť2 < t̂2 < . . . such that we
have

V (x(t)) ≥ aχ(‖w‖[t0,t]) ∀ t ∈ [t̂i, ťi+1), i = 0, 1, . . .
(9a)

V (x(t)) ≤ aχ(‖w‖[t0,t]) ∀ t ∈ [ťi, t̂i), i = 1, 2, . . .
(9b)

This sequence of times breaks the interval [t0,∞) into
a disjoint union of subintervals. Either this sequence is
infinite and all subintervals are finite, or the sequence is
finite and the last subinterval is infinite. We now analyze
these subintervals separately.

Suppose that ť1 > t0 so that the subinterval [t0, ť1)
is non-empty; otherwise, skip forward to the line be-
low (14). Using (7) and (9a), we conclude that between
any two consecutive impulses tk−1, tk ∈ (t0, ť1], we have

that V̇ (x(t)) ≤ −c̄V (x(t)) ∀ t ∈ (tk−1, tk) a.e. Therefore,

V
(

x−(tk)
)

≤ e−c̄(tk−tk−1)V
(

x(tk−1)
)

. (10)

Moreover, in view of (8) and (9a),

V
(

x(tk)
)

≤ e−d̄V
(

x−(tk)
)

. (11)

Combining (10) and (11), we conclude that

V
(

x(tk)
)

≤ e−d̄e−c̄(tk−tk−1)V
(

x(tk−1)
)

. (12)

Noting that (10) is also true for k = 1, we can iterate (12)
over the N(t, t0) impulses on (t0, t] to obtain the bound

V (x(t)) ≤ e−d̄N(t,t0)−c̄(t−t0)V (x(t0)) (13)

∀ t ∈ (t0, ť1] (cf. [14, Theorem 1.10.2]). Here we assumed
that ť1 < ∞, otherwise the bound holds on (t0,∞).
Combining this with (6), we conclude that

V (x(t)) ≤ eµ̄−λ̄(t−t0)V (x(t0)) ∀ t ∈ (t0, ť1]. (14)

Next we show that for t ≥ ť1, it is possible to con-
struct an upper bound for V (x(t)) that only depends on
‖w‖[t0,t]. On every subinterval of the form [ťi, t̂i) we al-

ready have (9b). If t̂i is not an impulse time, then the
same bound holds for t = t̂i. If t̂i is an impulse time,
then (4b) gives

V (x(t̂i)) ≤ a e−dχ(‖w‖[t0,t̂i)
) + χ(|w−(t̂i)|)

In either case, we have

V (x(t)) ≤
(

a e|d| + 1
)

χ(‖w‖[t0,t]) ∀ t ∈ [ťi, t̂i], i ≥ 1,
(15)

where again the bound holds ∀ t ≥ ťi if t̂i = ∞. Now
consider any subinterval of the form [t̂i, ťi+1), i ≥ 1.
Repeating the argument used to establish (14), with t̂i
in place of t0, and using (15) with t = t̂i, we obtain

V (x(t)) ≤ eµ̄−λ̄(t−t̂i)V (x(t̂i))

≤ eµ̄
(

a e|d| + 1
)

χ(‖w‖[t0,t̂i]
) ∀t ∈ (t̂i, ťi+1], i ≥ 1.

(16)

Combining this with (14) and (15) and noting that µ̄ >
0, we finally obtain the following global bound:

V (x(t)) ≤ max
{

eµ̄−λ̄(t−t0)V (x(t0)),

eµ̄
(

a e|d| + 1
)

χ(‖w‖[t0,t])
}

∀ t ≥ t0. (17)

The ISS estimate (2) follows from this by standard ar-
guments. Namely, since V is positive definite and radi-
ally unbounded, it satisfies α1(|x|) ≤ V (x) ≤ α2(|x|)
for some α1, α2 ∈ K∞. Therefore, (17) implies (2) with

β(r, t) := α−1
1 (eµ̄−λ̄tα2(r)) and γ(r) := α−1

1 (eµ̄(a e|d| +
1)χ(r)). Global existence of solutions also follows from
the so-established boundedness of the state. Uniformity
is also clear, since the functions β and γ do not depend
on the particular choice of the impulse time sequence.

4 ISS with (reverse) ADT

Suppose that an impulsive system has a candidate ex-
ponential ISS-Lyapunov function with rate coefficients c
and d, as in (4). When d < 0, we must necessarily have
c ≥ λ > 0 for (5) to hold. In this case, (4a) says that the
continuous dynamics ẋ = f(x,w) are ISS with respect
to w. Indeed, the existence of an ISS-Lyapunov function
V satisfying ∇V (x) · f(x,w) ≤ −α(V (x)) + χ(|w|) with
α, χ ∈ K∞ is equivalent to ISS [24], and taking α to be
linear is no loss of generality [21].

Since d < 0, the impulses can potentially destroy ISS,
and we must require that they do not happen too fre-
quently. Not surprisingly, in this case the condition (5)
enforces an upper bound on the number of impulses
times: for c = λ it only holds when the number of im-
pulse times is no larger than N0 := µ/|d| and for c > λ
it can be re-written as

N(t, s) ≤
t − s

τ∗
+ N0 ∀ t ≥ s ≥ t0 (18)

for appropriately defined constants τ∗, N0 > 0. This cor-
responds to the concept of average dwell-time (ADT) for
switched systems introduced in [9]. The special case
N0 = 1 reduces to a dwell-time condition in which con-
secutive impulses must be separated by at least τ∗ units
of time.
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Conversely, when c < 0 we must have d > 0 for (5)
to hold. In this case, the condition (4b) says that the
discrete dynamics x(k+1) = g

(

x(k), w(k)
)

are ISS with
respect to w. Indeed, the existence of an ISS-Lyapunov
function V satisfying V (g(x,w)) ≤ −α(V (x)) + χ(|w|)
with α, χ ∈ K∞ is equivalent to discrete-time ISS [12],
and taking α to be linear is no loss of generality 5 . Since
c < 0, the continuous flow can potentially destroy ISS,
so we must require flows to be persistently interrupted
by impulses. In this case, the condition (5) enforces a
lower bound on the number of impulse times and it can
be re-written as

N(t, s) ≥
t − s

τ∗
− N0 ∀ t ≥ s ≥ t0, (19)

for appropriate τ∗, N0 > 0. This is a reverse ADT condi-
tion that demands, on average, at least one impulse per
interval of length τ∗. We remark that the existence of
a function V satisfying (4a) with c < 0 amounts to for-
ward completeness of the continuous dynamics [1, Corol-
lary 2.11]; of course, we need the same function V to also
capture ISS of the discrete dynamics as in (4b).

Let Savg[τ
∗, N0] denote the class of ADT impulse time

sequences which satisfy (18), and let Sr−avg[τ
∗, N0] de-

note the class of reverse ADT impulse time sequences
which satisfy (19). The following result follows from the
above observations:

Corollary 1 (ADT ISS) Let V be a candidate expo-
nential ISS-Lyapunov function for (1) with rate coeffi-
cients c, d ∈ R.

(a) When d < 0 and c > 0, (1) is uniformly ISS over
Savg[τ

∗, N0] for all τ∗ > |d|/c and N0 > 0.
(b) When d > 0 and c < 0, (1) is uniformly ISS over

Sr−avg[τ
∗, N0] for all τ∗ < d/|c| and N0 > 0. 2

Proof of Corollary 1. To prove (a), pick some τ∗ > |d|/c,
N0 > 0 and take an arbitrary impulse time sequence
in Savg[τ

∗, N0]. In view of (18), we have that N(t, s) ≤
(c − λ)(t−s)/|d|+N0 ∀ t ≥ s ≥ t0, for λ := c−|d|/τ∗ >
0, from which we conclude that (5) holds with µ :=
|d|N0. Uniform ISS then follows from Theorem 1.

To prove (b), pick some τ∗ < d/|c| and take an arbitrary
impulse time sequence in Sr−avg[τ

∗, N0]. In view of (19),
we have that N(t, s) ≥ −(c − λ)(t− s)/d−N0 ∀ t ≥ s ≥
t0, for λ := c + d/τ∗ > 0, from which we conclude that
(5) holds with µ := dN0. Uniform ISS then follows from
Theorem 1.

5 This follows from the implication (b) ⇒ (c) in Theorem 2,
which will be stated in Section 5.

5 ISS for arbitrary impulse time sequences

When the rate coefficients of a candidate exponential
ISS-Lyapunov function are both positive, Theorem 1
gives us uniform ISS for arbitrary impulse time se-
quences, because (5) poses no constraints on the impulse
time sequences, as long as we choose λ ≤ c. However, the
system actually exhibits a stronger form of uniform ISS.

To state this property we need the following notion: A
function β : [0,∞)× [0,∞)× [0,∞) → [0,∞) is of class
KLL, and we write β ∈ KLL, when β(·, s, ·) and β(·, ·, s)
are of class KL for each fixed s ≥ 0. We say that the
impulsive system (1) is strongly uniformly ISS if there
exist functions β ∈ KLL and γ ∈ K∞ such that for every
initial condition, every input w, and every sequence of
impulse times 6 the solution to (1) exists globally and
satisfies

|x(t)| ≤ β(|x(t0)|, N(t, t0), t− t0)+ γ
(

‖w‖[t0,t]

)

(20)

∀ t ≥ t0. We emphasize that this property is stronger
than uniform ISS over the set Sall containing all mono-
tone sequences of impulse times that are finite or un-
bounded. For example, the one-dimensional impulsive
system

{

ẋ(t) = −x(t) + w(t), t 6= tk, k ∈ {1, 2, . . . }

x(t) = −x−(t), t = tk, k ∈ {1, 2, . . . }
(21)

is uniformly ISS over Sall, but not strongly uniformly
ISS. This is because (20) would imply that if we were
given a finite time interval [t0, T ], a particular initial
condition x(t0), and the zero input w(t) = 0 ∀t ∈ [t0, T ],
then we could make |x(T )| arbitrarily small by increasing
the number of impulses N(T, t0) on (t0, T ]. However,
with the zero input to (21), the norm of x(T ) will be
exactly the same regardless of how many impulses take
place in (t0, T ].

Remark 1 In the framework of [4], the system (21)
would not be ISS because it accepts a solution for which
the time sequence tk is infinite but bounded, and such
a solution would not converge to zero. It turns out that
strong uniform ISS is essentially the same as ISS in the
framework of [4], as noted in the proof of Theorem 2 be-
low. 2

As mentioned above, when the rate coefficients of a can-
didate exponential ISS-Lyapunov function are both pos-
itive, Theorem 1 gives us uniform ISS over Sall, but the
system is actually strongly uniformly ISS. Moreover, the
existence of such a candidate exponential ISS-Lyapunov
function is also a necessary condition for strong uniform

6 Recall that the sequence of impulse times is always strictly
increasing and either finite or infinite and unbounded.
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ISS. The following result provides a complete character-
ization of this type of stability.

Theorem 2 (strong uniform ISS) Assume that the
impulse map g in (1) is continuous. The following three
statements are equivalent:

(a) (1) is strongly uniformly ISS.
(b) There exist a locally Lipschitz, positive definite, radi-

ally unbounded function U : R
n → R and α, χ ∈ K∞

that satisfy 7

∇U(x) · f(x,w) ≤ −α
(

U(x)
)

+ χ(|w|) ∀x a.e.,∀w
(22a)

U(g(x,w)) ≤ (id − α)
(

U(x)
)

+ χ(|w|) ∀x,w.
(22b)

(c) There exists a candidate exponential ISS-Lyapunov
function V for (1) with positive rate coeffi-
cients. 2

From Theorem 2 we conclude that if the impulsive sys-
tem is strongly uniformly ISS [statement (a)], then both
the continuous and discrete dynamics must be ISS [as
implied by statement (b)]. However, the converse is not
true. In fact, one can even construct impulsive systems
for which the continuous and discrete dynamics are both
exponentially stable in isolation (without inputs), but
the combined impulsive system exhibits unbounded so-
lutions. Such an impulsive system is essentially given in
[5, Example 3.1]. This does not contradict Theorem 2 be-
cause the statement (b) also asks for the continuous and
discrete dynamics to “share” the same ISS-Lyapunov
function, which is shown in Theorem 2 to be a necessary
condition for strong uniform ISS.

Proof of Theorem 2. (a) ⇒ (b) The proof of this impli-
cation relies heavily on results from [4], from which we
borrow the notation and terminology used to define and
characterize properties of hybrid systems. We start by
constructing the following hybrid system:

ż = f(z, u), z ∈ C, z+ = g(z, u), z ∈ D, (23)

with trivial flow and jump sets C = D := R
n, and with

the same functions f and g as in the definition of the
impulsive system (1). Such a hybrid system satisfies [4,
Standing Assumption 1]. We first show that the hybrid
system (23) is forward complete and ISS in the sense of
[4], and then use [4, Theorem 2] to conclude that it must
have an ISS-Lyapunov function in the sense of [4]. This
ISS-Lyapunov function will turn out to satisfy (22a)–
(22b). The key technical difficulty in this argument arises

7 Taking the same functions α and χ in (22a) and (22b) is
no loss of generality, because we could always consider the
minimum of the two α’a and the maximum of the two χ’s.

from the fact that some solutions to the hybrid system
(23) do not have direct correspondence to solutions to
the impulsive system (1). In particular, one must make
sure that ISS of (1) guarantees that even those solutions
to the hybrid system (23) for which there are multiple
jumps at the same time instant or for which the set of
jump times has a finite accumulation point are well be-
haved. To overcome this difficulty, we use a contradiction
argument to show that for a solution to the hybrid sys-
tem (23) to misbehave, the impulsive system (1) would
have to have a (somewhat different, but close) solution
that also misbehaves. Due to space limitations, details
of this proof are omitted; they can be found in [11].

(b) ⇒ (c) To prove this implication we explicitly con-
struct a candidate exponential ISS-Lyapunov function
V from a non-exponential one U . Let V (x) := κ(U(x)),
where κ ∈ K∞ is chosen to be continuously differentiable
with κ′ nonnegative and nondecreasing, and

κ′(s)α(s) ≥ 2κ(s) ∀ s ≥ 0. (24)

Such a function is constructed in [21, pp. 22–23]. From
(24) and (22a), we conclude that

∇V (x) · f(x,w) = κ′(U(x))∇U(x) · f(x,w)

≤ −κ′(U(x))α
(

U(x)
)

+ κ′(U(x))χ(|w|)

≤ −V (x) − κ′(U(x))α
(

U(x)
)

/2 + κ′(U(x))χ(|w|)
(25)

∀x a.e.,∀w. When α
(

U(x)
)

≤ 2χ(|w|), we have

κ′(U(x))χ(|w|) ≤ κ′ ◦ α−1
(

2χ(|w|)
)

χ(|w|) =: χ̄(|w|)

and when α
(

U(x)
)

> 2χ(|w|),

−κ′(U(x))α
(

U(x)
)

/2 + κ′(U(x))χ(|w|) ≤ 0.

In either case, we conclude from (25) that

∇V (x) · f(x,w) ≤ −V (x) + χ̄(|w|) ∀x a.e.,∀w.
(26)

On the other hand, using (24), the Mean Value Theorem,
and the fact that κ′ is nondecreasing, we conclude that

2κ(s) ≤ κ′(s)α(s)/2 + κ(s) ≤ κ(s + α(s)/2)

= κ ◦ (id + α/2)(s) ∀ s ≥ 0.

Specializing this inequality for 8 s := (id−α/2)(r), r ≥ 0
and using the fact that (id− α/2)(r) ≤ (id + α/2)−1(r)

8 The function id − α/2 must be nonnegative, otherwise
we would have a contradiction between (22b) and positive
definiteness of U .
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∀ r ≥ 0, we further obtain

2κ ◦ (id − α/2)(r) ≤ κ(r) ∀ r ≥ 0. (27)

From the definition of V and (22b), we conclude that

V (g(x,w)) ≤ κ
(

(id − α)(U(x)) + χ(|w|)
)

(28)

∀x,w. When α(U(x)) ≤ 2χ(|w|), we have

κ
(

(id − α)(U(x)) + χ(|w|)|
)

≤ κ
(

U(x) + χ(|w|)|
)

≤ κ
(

α−1(2χ(|w|)) + χ(|w|)
)

=: χ̃(|w|)

and when α(U(x)) > 2χ(|w|),

κ
(

(id − α)(U(x)) + χ(|w|)
)

≤ κ ◦ (id − α/2)(U(x)) ≤ V (x)/2

by virtue of (27). In either case, we conclude from (28)
that

V (g(x,w)) ≤
1

2
V (x) + χ̃(|w|) ∀x,w. (29)

This finishes the proof since (26) and (29) show that V is
a candidate exponential ISS-Lyapunov function V with
positive rate coefficients.

(c) ⇒ (a) Since c and d are both positive, we can pick
some λ > 0 sufficiently small so that (5) holds for every
sequence of impulse times. We now proceed as in the
proof of Theorem 1 to conclude that

V (x(t)) ≤ e−d̄ N(t,t0)−c̄(t−t0)V (x(t0))

+ eµ̄
(

a e|d| + 1
)

χ(‖w‖[t0,t]) ∀ t ≥ t0.

This expression is obtained in the same way as (17),
except that now we combined the bounds (13) and (16)
instead of (14) and (16). Since both d̄ and c̄ are positive,
the ISS estimate (20) follows by standard arguments.

Remark 2 (neutral dynamics) It should be clear
from the proof of Theorem 2 [implication (b) ⇒ (c)]
that if (22b) is replaced by U(g(x,w)) ≤ U(x) ∀x,w,
i.e., if the impulses are “neutral” rather than “helpful”
for ISS, then there exists a candidate exponential ISS-
Lyapunov function V with rate coefficients c = 1, d = 0
for which the χ term is absent from (4b) 9 . In this case,
it is straightforward to prove that (1) is uniformly ISS

9 To check that this is so, note that we can always take
c = 1 as in (26). Moreover, when U(g(x, w)) ≤ U(x) ∀x, w,
the equation (28) holds with α = χ = 0, and therefore the
right-hand side of (28) is simply κ(U(x)) = V (x), which
corresponds to d = 0.

over Sall, but it may not be strongly uniformly ISS. The
example in (21) illustrates this situation.

One can also show that when (22b) holds but the contin-
uous dynamics are “neutral,” — i.e., (22a) is replaced by
∇V (x) · f(x,w) ≤ 0 ∀x a.e.,∀w — the impulsive sys-
tem (1) is uniformly ISS, but only over restricted classes
of impulse sequences, for which the number of impulses
N(t, t0) in the interval (t0, t] is bounded from below by an
expression of the form N(t, t0) ≥ η(t − t0) ∀t > t0, for
some function η ∈ K∞.

More interesting situations arise when “neutrality” only
holds for the zero input. This case is treated more thor-
oughly in the next section. 2

6 ISS for arbitrary ADT

We have just seen in Section 5 that when the continuous
and the discrete dynamics are both ISS and share an ISS-
Lyapunov function, we have a strong notion of uniform
ISS for the impulsive system. When only one of these
dynamics is ISS and the other is unstable, the results
in Section 4 tell us that some form of ADT is needed
for ISS. We now consider the “marginal” case in which
one of the dynamics is ISS and the other one is only
marginally stable for the zero input.

Consider the impulsive system (1) and assume that
ẋ = f(x,w) is continuous-time ISS, but x(k + 1) =
g
(

x(k), w(k)
)

is only marginally stable for the zero in-
put w(k) = 0 ∀k. This type of systems occurs, e.g.,
in [16, Section 4] in the context of control with limited
information or in the MEMS device that we discuss in
Section 8.1. For such systems, one should not expect
uniform ISS over Sall because the discrete dynamics lack
ISS, but (4b) will typically still hold for some d < 0 and
part (a) of Corollary 1 thus provides an ISS result in
terms of a minimum ADT τ∗ > |d|/c. However, for these
systems one can often draw stronger conclusions because
d can be made arbitrarily close to zero. Motivated by
this observation, we say that the impulsive system (1)
is ISS for arbitrarily small ADT when it is uniformly
ISS over every class Savg[τ

∗, N0] of ADT impulse time
sequences that satisfy (18) with τ∗ > 0, N0 < ∞.

Alternatively, we consider an impulsive system for
which x(k +1) = g

(

x(k), w(k)
)

is discrete-time ISS, but
ẋ = f(x,w) is only marginally stable for the zero input
w(t) = 0 ∀t. This type of systems occurs, e.g., in the
context of networked control systems such as the one
described in Section 8.2 or in [28] 10 . For such systems

10 The analysis in [28] deals with stochastic disturbances w
and considers more general vector fields. A deterministic ver-
sion of the framework in [28] with marginally stable processes
leads to the class of systems considered here.
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(4a) will typically hold for some c < 0 and part (b) of
Corollary 1 provides an ISS result in terms of a maxi-
mum reverse a.d.t τ∗ := d/(−c), λ > 0. However, also
here one can draw stronger conclusions because typi-
cally c can be made arbitrarily close to zero. Motivated
by this, we say that the impulsive system (1) is ISS for
arbitrarily large reverse ADT when it is uniformly ISS
over every class Sr−avg[τ

∗, N0] of reverse ADT impulse
time sequences that satisfy (19) with τ∗ > 0, N0 < ∞.

It turns out that for both cases discussed above, we need
a little more than marginal stability for the sub-system
that is not ISS, and therefore we introduce the following
terminology: We say that V : R

n → R is non-expansive
for the impulse map g when V is positive definite, ra-
dially unbounded, and for every d < 0 there exists a
function χ ∈ K∞ for which (4b) holds. This terminol-
ogy is motivated by the observation that such a function
must necessarily satisfy V (g(x, 0)) ≤ V (x) ∀x. Its exis-
tence thus guarantees marginal stability of the discrete
dynamics x(k + 1) = g

(

x(k), 0
)

with zero input, but it
actually provides more than that. However, it is not suf-
ficient for ISS of x(k + 1) = g

(

x(k), w(k)
)

with respect
to a nonzero input w(k).

Alternatively, we say that a locally Lipschitz function V
is non-expansive for the vector field f when V is positive
definite, radially unbounded, and for every c < 0 there
exists a function χ ∈ K∞ for which (4a) holds. Such a
function also satisfies ∇V (x) · f(x, 0) ≤ 0 ∀x a.e. and it
therefore guarantees marginal stability of the continuous
dynamics ẋ = f(x, 0) for the zero input, but it is not
enough to guarantee ISS of ẋ = f(x,w) with respect to
w.

The following result follows from Corollary 1:

Corollary 2 (ISS for arbitrary ADT) Let V be a
candidate exponential ISS-Lyapunov function for (1)
with rate coefficients c, d ∈ R.

(a) When c > 0 and V is non-expansive for the im-
pulse map g, (1) is uniformly ISS for arbitrarily small
ADT.

(b) When d > 0 and V is non-expansive for the vector
field f , (1) is uniformly ISS for arbitrarily large re-
verse ADT. 2

The remainder of this section is devoted to the question
of whether or not a given function V is non-expansive.

6.1 Non-expansiveness for impulse maps

To state the following result, we say that a function h :
R

n × R
m → R

n has class-K growth in w uniformly over
x if

|h(x,w)| ≤ γ(|w|) ∀x,w

for some function γ ∈ K, which we call the growth esti-
mate for h. The following result (proved in the appendix)
provides simple conditions that can be used to establish
that a candidate Lyapunov function is non-expansive for
a given impulse map.

Theorem 3 (non-expansiveness for impulse maps)
Consider a locally Lipschitz, positive definite, radially
unbounded function V : R

n → R and an impulse map g
for which V (g(x, 0)) ≤ V (x) ∀x and g(x,w) − g(x, 0)
has class-K growth in w uniformly over x. The function
V is non-expansive for the impulse map g if either of the
following conditions holds:

C1 V is a positive-coefficient linear combination of
functions that are non-expansive for the impulse
map g.

C2 V (x)/|∇V (x)| is radially unbounded a.e.
C3 V is a positive-coefficient linear combination of

homogeneous functions 11 with (possibly different)
degrees larger than or equal to one. 2

Remark 3 Theorem 3 describes a very broad class of
positive definite functions V that are non-expansive. In-
deed, C2 simply requires that the gradient of V be domi-
nated by V itself and C3 says that, e.g., any polynomial
function falls in this class. One may then wonder if in
practice one will ever encounter ISS impulsive systems
with candidate exponential ISS-Lyapunov functions that
do not exhibit the non-expansiveness property. The an-
swer is affirmative and a simple one-dimensional exam-
ple is given by

{

ẋ = − sat(x), t 6= tk, k = 1, 2, . . .

x = x− + sat(w−), t = tk, k = 1, 2, . . . ,

where sat(·) denotes the saturation function limited at±1
and with unit slope on [−1, 1]. This system is uniformly
ISS over the class of ADT impulse time sequences that
satisfy (18) for any τ∗ > 1 because

V (x) :=

{

x2 |x| ≤ 1

e2(|x|−1) |x| > 1
(30)

is a candidate exponential ISS-Lyapunov function with
rate coefficients c = 2 and d = −2. However, it is
not ISS for arbitrarily small ADT since x can explode
with bounded inputs, provided that the impulse times are
closely spaced. As expected, the function (30) does not
satisfy any of the conditions in Theorem 3. 2

The next Corollary covers a useful class of systems,
which includes the case of asymptotically stable lin-
ear continuous dynamics and marginally stable linear
discrete dynamics.

11 We recall that a function V : R
n
→ R is homogeneous of

degree p if V (λx) = λpV (x) ∀λ ≥ 0, x ∈ R
n.
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Corollary 3 (GES vs. ISS for arbitrarily small ADT)
Impulsive systems of the following form are always ISS
for arbitrarily small ADT:

{

ẋ = f1(x) + f2(w), t 6= tk, k = 1, 2, . . .

x = x− + g(x−, w), t = tk, k = 1, 2, . . .

where ẋ = f1(x) is globally exponentially stable, f1 is
globally Lipschitz, f2(0) = 0, and g(x,w) has class-K
growth in w uniformly over x. 2

Proof of Corollary 3. [13, Theorem 4.14] guarantees the
existence of a locally Lipschitz function V satisfying
a1|x|

2 ≤ V (x) ≤ a2|x|
2, ∇V (x) · f1(x) ≤ −a3|x|

2, and
|∇V (x)| ≤ a4|x| a.e., where ai > 0, i = 1, 2, 3, 4. This
implies that

∇V (x) ·
(

f1(x) + f2(w)
)

≤ −a3|x|
2 + a4|x| |f2(w)|,

from which (4a) follows by square completion, for an ap-
propriately chosen rate coefficient c > 0. On the other
hand, since g(x,w) has class-K growth in w uniformly
over x, we must have g(x, 0) = 0 ∀x, from which we con-
clude that V (x+g(x, 0)) = V (x) and that

(

x+g(x,w)
)

−
(

x + g(x, 0)
)

= g(x,w) has class-K growth. This allows
us to use condition C2 in Theorem 3 to conclude that
V is non-expansive for the impulse map x + g(x,w) and
the result then follows from Corollary 2.

6.2 Non-expansiveness for vector fields

The following result (proved in the appendix) provides
simple conditions for establishing that a candidate Lya-
punov function is non-expansive for a given vector field.

Theorem 4 (non-expansiveness for vector fields)
Consider a locally Lipschitz, positive definite, radially
unbounded function V : R

n → R and a vector field f
for which ∇V (x) · f(x, 0) ≤ 0 ∀x and f(x,w) − f(x, 0)
has class-K growth in w uniformly over x. The function
V is non-expansive for the vector field f if either of the
following conditions holds:

C4 V is a positive-coefficient linear combination of
functions that are non-expansive for the vector field
f .

C5 V (x)/|∇V (x)| is radially unbounded a.e.
C6 V is a positive-coefficient linear combination of ho-

mogeneous functions with (possibly different) de-
grees larger than or equal to one. 2

The next Corollary covers a useful class of systems,
which includes the case of asymptotically stable linear
discrete dynamics and marginally stable linear continu-
ous dynamics.

Corollary 4 (GES vs. ISS for arbitrary large rev. ADT)
Impulsive systems of the following form are always ISS
for arbitrarily large reverse ADT:

{

ẋ = f(x,w), t 6= tk, k = 1, 2, . . .

x = g1(x
−) + g2(w

−), t = tk, k = 1, 2, . . .

where x(k+1) = g1(x(k)) is globally exponentially stable,
g1 is globally Lipschitz, g2(0) = 0, and f(x,w) has class-
K growth in w uniformly over x. 2

Proof of Corollary 4. Under the assumptions of the the-
orem, it is not difficult to verify that, for some sufficiently
large integer k > 0, there exists a1 ≥ 1 such that the

function V (x) :=
∑k

i=0 |φ(i, x)| is globally Lipschitz and
satisfies

|x| ≤ V (x) ≤ a1|x|, (31)

V (g1(x)) − V (x) ≤ −|x|/2, (32)

where φ(k, x0) denotes the solution to x(k + 1) =
g1(x(k)) at time k starting at x(0) = x0. Since f(x,w)
has class-K growth in w uniformly over x, we have
that f(x, 0) = 0 and therefore ∇V (x) · f(x, 0) = 0 and
f(x,w) − f(x, 0) has class-K growth in w uniformly
over x. We can then use C5 in Theorem 4 to conclude
that V is non-expansive for the vector field f . Condi-
tion C5 holds because of (31) and the fact that, since
V is globally Lipschitz, there exists a constant a2 > 0
for which |∇V (x)| ≤ a2 a.e. We now use Theorem 3
to show that V satisfies (4b) for some rate coefficient
d > 0. To this end, we consider the auxiliary impul-
sive map ḡ(x̄, w) := x̄ + g2(w) ∀ x̄ ∈ R

n, w ∈ R
m.

Since g2(0) = 0, we have that V
(

ḡ(x̄, 0)
)

= V (x̄)
∀ x̄ and ḡ(x̄, w) − ḡ(x̄, 0) = g2(w) has class-K growth
in w uniformly over x. Since we already established
that condition C2 holds, we conclude that V is non-
expansive for the impulse map ḡ and therefore, for every
d̄ < 0, we can find an appropriate χ̄ ∈ K∞, so that
V

(

ḡ(x̄, w)
)

≤ e−dV (x̄) + χ̄(|w|) ∀ x̄, w. In particular,
for x̄ = g1(x) and using (31)–(32), we obtain

V
(

g1(x) + g2(w)
)

≤ e−d̄V
(

g1(x)
)

+ χ̄(|w|) ≤ e−d̄
(

V (x)

− |x|/2
)

+ χ̄(|w|) ≤ e−d̄(1 − 1/(2a1))V (x) + χ̄(|w|),

from which (4b) follows for some d > 0, provided that

we choose d̄ < 0 sufficiently close to zero so that e−d̄(1−
1/(2a1)) < 1. The result then follows from Corollary 2.

7 Sufficient conditions for integral-ISS

We now provide iISS counterparts to Theorem 1 and
the sufficient condition in Theorem 2. The first result
establishes iISS for suitably constrained impulse time
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sequences under the hypotheses of Theorem 1, and the
second one establishes iISS for arbitrary impulse time
sequences under hypotheses weaker than (22a)–(22b).

Theorem 5 (uniform iISS) Let all hypotheses of The-
orem 1 hold and define the class of impulse time sequences
S[µ, λ], µ, λ > 0 also as in Theorem 1. Then the sys-
tem (1) is uniformly iISS over S[µ, λ]. 2

Proof of Theorem 5. From (4a) and (4b) we see that
V (x(t)) is bounded from above by the (nonnegative) so-
lution v(t) of the impulsive system

{

v̇ = −cv + χ(|w|), t 6= tk, k = 1, 2, . . .

v = e−dv− + χ(|w−|), t = tk, k = 1, 2, . . .

with the initial condition v(t0) = V (x(t0)). Let z(t) be
the (nonnegative and non-decreasing) solution to

{

ż = χ(|w|), t 6= tk, k = 1, 2, . . .

z = z− + χ(|w−|), t = tk, k = 1, 2, . . .

with the initial condition z(t0) = 0. Define y(t) := v(t)−
z(t). Then y satisfies y(t0) = V (x(t0)) and

{

ẏ = −cv = −cy − cz, t 6= tk
y = e−dv− − z− = e−dy− − (1 − e−d)z−, t = tk.

Arguing as in the proof of Theorem 1, with y and z
playing the roles of V and w, respectively, we can show
that this impulsive system is ISS with respect to z with
linear gain:

y(t) ≤ β(y(t0), t − t0) + γz(t) (33)

for some function β ∈ KL and constant γ > 0. Collecting
the above facts, we obtain

V (x(t)) ≤ v(t) = y(t)+z(t) ≤ β(y(t0), t−t0)+(γ+1)z

= β(V (x(t0)), t − t0) +

∫ t

t0

(γ + 1)χ(|w(s)|)ds

+
∑

tk∈[t0,t]

(γ + 1)χ(|w−(tk)|)

from which the iISS estimate (3) follows.

Theorem 6 (uniform iISS for arbitrary sequences)
Suppose that there exists a positive definite, radially
unbounded, locally Lipschitz function V : R

n → R, a
positive definite function α, and a class K∞ function χ
satisfying

∇V (x) · f(x,w) ≤ −α(V (x)) + χ(|w|) ∀x a.e.,∀w

(34a)

V (g(x,w)) ≤ V (x) + χ(|w|) ∀x,w. (34b)

Then the system (1) is uniformly iISS over Sall. 2

Note that this theorem does not require α to be radially
unbounded. This and the relaxation of (22b) to (34b) are
the key differences with respect to the necessary and suf-
ficient conditions for strong uniform ISS in Theorem 2.

Proof of Theorem 6. This is a relatively straightforward
extension of the proof of the corresponding result for
continuous systems given in [2]. From (34a) and (34b)
we see that V (x(t)) is bounded from above by the (non-
negative) solution v(t) of the impulsive system

{

v̇ = −α(v) + χ(|w|), t 6= tk, k = 1, 2, . . .

v(t) = v−(t) + χ(|w−(t)|), t = tk, k = 1, 2, . . .

with the initial condition v(t0) = V (x(t0)). Define z
and y exactly as in the proof of Theorem 5. Then y is
continuous everywhere, non-increasing, and we have

ẏ = −α(v) = −α(y + z), y(t0) = V (x(t0)).

Repeating the argument used to prove [2, Lemma IV.2]
we then conclude 12 that y satisfies (33) with β ∈ KL
and γ = 1, and iISS follows as before.

8 Examples

8.1 MEMS oscillator

The displacement y of Micro-Electro-Mechanical Sys-
tem (MEMS) oscillators can be modeled by the following
two-dimensional system:

mÿ + bẏ + k1y + k3y
3 = v, (35)

where b is a damping coefficient, k1 and k3 linear and
cubic stiffness terms for the restitution force, and v a
driving force. Figure 1 shows a schematic of such a device
and typical parameters values.

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
����������������� y

mÿ + bẏ + k1y + k3y
3 = v

Fig. 1. MEMS device in Example 8.1. The following param-
eter values are consistent with the folded spring device in
[30]: m = 277, b = 0.678, k1 = 7.61, and k3 = .0441 (in units
of µ Newtons, µ meters, µ seconds, and Volts).

12 That lemma is stated for continuous z, but continuity of
z is not actually needed in the proof in [2].
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For experiments in air, Brownian motion due to colli-
sions with air molecules is the main noise source in mass-
sensing applications [18, 29]. The transfer of kinetic en-
ergy between an air molecule and the oscillator due to
a collision at time tk can be modeled by a state-impulse
of the following form:

y(tk) = y−(tk), ẏ(tk) = ẏ−(tk) + n−(tk), (36)

where n−(tk) denotes the change in velocity due to a
collision at time tk. Defining

V (y, ẏ) := y2 + 0.1yẏ + 36.5ẏ2 + 18.25 k3y
4/m, (37)

we have that (4a) holds with c = 10−3 and χ(|v|) :=
v2/2. Moreover, in view of condition C3 in Theorem 3,
the function (37) is non-expansive for the impulse map
(36). We thus conclude from Corollary 2 that the impul-
sive system (35)–(36) is ISS for arbitrarily small ADT.
This means that the system remains ISS no matter how
frequently the collisions occur. The candidate Lyapunov
function (37) was found numerically, using the SOS-
TOOLS MATLAB toolbox [20].

8.2 Networked control system

Consider n one-dimensional linear systems of the form

ẋi = ai xi + bi νi, yi = xi + µi, i ∈ {1, 2, . . . , n},
(38)

where the νi denote input disturbances and the µi de-
note measurement/quantization noise. To build a remote
estimate of all the xi, one is allowed to send one mea-
surement at each time instant {t1, t2, . . . }. Between the
reception of measurements the estimate x̂i of xi evolves
according to ˙̂xi = ai x̂i, t 6∈ {t1, t2, . . . } and, denoting
by ik the index of the measurement yik

that is sent at
time tk, we have

x̂i(tk) =

{

y−
ik

(tk) i = ik
x̂−

i (tk) i 6= ik.

The dynamics of the resulting estimation error ei := x̂i−
xi can be described by the following impulsive system:

ėi = ai e − bi νi, t 6= tk, k = 1, 2, . . . (39a)

ei =

{

µ−
ik

(tk) i = ik
e−i (tk) i 6= ik,

t = tk, k = 1, 2, . . . (39b)

We consider a TOD-like protocol [19, 27] to decide which
measurement to send: ik is the index corresponding to
the largest absolute value of the error x̂−

i −y−
i = e−i −µ−

i ,
i.e.,

|e−ik
− µ−

ik
| ≥ |e−i − µ−

i | ∀ i ∈ {1, 2, . . . , n}. (40)

Defining

V (e) :=

n
∑

i=1

|ei|
2 (41)

it can be shown (see [11]) that for every constant d ∈
(0, log(n/n − 1)) one can find a function χ ∈ K∞ such
that

V
(

e(tk)
)

≤ e−dV
(

e−(tk)
)

+ χ(|µ−(tk)|), (42)

where e and µ are n-vectors obtained by stacking to-
gether all the ei and µi, respectively.

We consider three possible cases: (i) When some of the
systems (38) are unstable — i.e., some ai > 0 — the func-
tion V in (41) is a candidate exponential ISS-Lyapunov
function with rate coefficients

0 < d < log
n

n − 1
, c < −max

i
ai < 0.

We then conclude from Corollary 1 that the error system
(39) is uniformly ISS over the class of reverse ADT im-
pulse time sequences Sr−avg[τ

∗, N0], for all N0 > 0 and

τ∗ <
1

maxi ai
log

n

n − 1
. (43)

In the context of this example this means that mea-
surements must be transmitted at a minimum “average”
rate consistent with (43). (ii) When all the systems (38)
are stable, but not necessarily asymptotically — i.e., all
ai ≤ 0 — we conclude from Condition C6 in Theorem 4
that the function V is non-expansive for the vector field
(39a). In this case, the error system (39) is ISS for arbi-
trarily large reverse ADT because of Corollary 2. For this
example this means that measurements can be trans-
mitted at any positive “average” rate. (iii) When all the
systems (38) are asymptotically stable — i.e., all ai < 0
— the function V in (41) is a candidate exponential ISS-
Lyapunov function with positive rate coefficients. We
now conclude from Theorem 2 that the error system (39)
is strongly uniformly ISS. This means that there are no
constraints posed on the frequency of measurements.

9 Conclusions

We introduced the concepts of ISS and integral-ISS for
impulsive systems and provided Lyapunov-based suffi-
cient conditions for establishing these properties.

When both the continuous and discrete dynamics are
stabilizing, the Lyapunov-based conditions proved to be
necessary and sufficient for strong uniform ISS, but it
is unclear whether the conditions derived are also tight
for the other cases. Investigating this issue is a topic
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for future research. Another topic is the development
of numerically efficient procedures for constructing ISS-
Lyapunov functions for impulsive systems, perhaps re-
lying on semi-definite programming.

A Appendix

Lemma 1 Consider two continuous functions f : R
n ×

R
m → R

n, α : R
n × R

m → R and a locally Lipschitz
function V : R

n → R, with the property that

∇V (x) · f(x,w) ≤ α(x,w) ∀x ∈ R
n \ Ω, w ∈ R

m

(A.1)

for some zero Lebesgue-measure set Ω ⊂ R
n that contains

all points at which x 7→ V (x) is not differentiable. For
every absolutely continuous solution x : [t0, t1) → R

n

to ẋ = f(x,w), with w(t) ∈ R
m locally bounded and

Lebesgue-measurable; we have that t 7→ V (x(t)) is abso-
lutely continuous and

V̇ (x(t)) ≤ α
(

x(t), w(t)
)

, ∀ t ∈ [t0, t1) \ T (A.2)

for some zero Lebesgue-measure set T ⊂ [t0, t1) that con-
tains all points at which t 7→ V (x(t)) is not differentiable.

2

This result is proved in [26, Section 2]. We emphasize
that (A.2) holds even when x(t), t ∈ [t0, t1) lies entirely
in a subset of Ω for which (A.1) does not hold because
the gradient ∇V (x) does not exist.

Proof of Theorem 3. C1. We prove this result for a lin-
ear combination V = α1V1 + α2V2, α1, α2 > 0 of two
functions V1, V2 : R

n → R both non-expansive for the
impulse map g and the general result follows by induc-
tion on the number of functions. Since both V1 and V2

are non-expansive, for any given d < 0 there exist func-
tions χ1, χ2 ∈ K∞ for which

Vi(g(x,w)) ≤ e−dVi(x) + χi(|w|) ∀x,w, i ∈ {1, 2}

and therefore V satisfies (4b) with χ := α1χ1 + α2χ2 ∈
K∞.

C2. For an arbitrary d < 0, consider the auxiliary func-
tion

κd(s) := min
{s

2
, |d| ess inf

|z|≥s/2,∇V (z) 6=0

V (z)

|∇V (z)|

}

. (A.3)

By construction κd is positive for s 6= 0, monotone non-
decreasing, and radially unbounded. The latter property
is due to the hypothesis that V (z)/|∇V (z)| is radially
unbounded. The above construction does not guaran-
tee that κd ∈ K∞, because it may not be continuous

or strictly increasing. However, for simplicity we assume
that κd ∈ K∞, because if this is not the case, we can
always replace it by a smaller function in K∞.

Pick arbitrary x ∈ R
n, w ∈ R

m for which v := g(x,w)−
g(x, 0) is “small” in the sense that

|v| = |g(x,w) − g(x, 0)| < κd(|g(x, 0)|) (A.4)

and define z(τ) := g(x, 0) + τ v ∀τ ∈ [0, 1]. Because of
(A.4) and the fact that κd(s) ≤ s/2 ∀s ≥ 0, we have that

|z(τ)| ≥ |g(x, 0)| − |v|

≥ |g(x, 0)| − κd(|g(x, 0)|) ≥ |g(x, 0)|/2 (A.5)

∀τ ∈ [0, 1]. On the other hand, since V is locally Lip-
schitz, from Rademacher’s Theorem we conclude that
V is differentiable almost everywhere and again using
(A.4), we obtain∇V (z̄)·v ≤ |∇V (z̄)|κd(|g(x, 0)|) ∀z̄ a.e.
If we further restrict our attention to points for which

|z̄| ≥ |g(x,0)|
2 , from the definition of κd we conclude that

|z̄| ≥ |g(x, 0)|/2 ⇒ ∇V (z̄) · v ≤ |d|V (z̄) ∀ z̄ a.e.
(A.6)

Since dz
dτ = v ∀τ ∈ [0, 1] and z(τ) satisfies (A.5), we

can use (A.6) and Lemma 1 to conclude that ∂V (z(τ))
∂τ ≤

|d|V (z(τ)) ∀τ a.e., which leads to

V
(

g(x,w)
)

= V (z(1)) ≤ e|d|V (z(0))

= e−dV
(

g(x, 0)
)

≤ e−dV (x), (A.7)

where we used the fact that V
(

g(x, 0)
)

≤ V (x).

Suppose now that we pick x ∈ R
n, w ∈ R

m for which
v := g(x,w) − g(x, 0) is “large” in the sense that it
satisfies

|g(x, 0)| ≤ κ−1
d (|v|) = κ−1

d (|g(x,w) − g(x, 0)|)

instead of (A.4). We now have

V (g(x,w)) = V
(

v + g(x, 0)
)

≤ α
(

|v| + |g(x, 0)|)

≤ α ◦ (id + κ−1
d )(|v|) ≤ χ(|w|), (A.8)

where α is a class-K∞ function with the property that
V (x) ≤ α(|x|) ∀x ∈ R

n, χ := α ◦ (id + κ−1
d ) ◦ γ, and γ is

the growth estimate of g(x,w) − g(x, 0). The existence
of α ∈ K∞ is guaranteed by the fact that V is positive
definite and radially unbounded. Combining (A.7) with
(A.8), we conclude that (4b) holds for every x and w,
from which C2 follows.

C3. In view of C1, it suffices to show that a homogeneous
function V of degree p ≥ 1 is non-expansive. Suppose

12



that we pick an arbitrary x ∈ R
n for which ∇V (x) exists

and is nonzero and define x̄ := x/|x|. It is well known
that if V is homogeneous of degree p ≥ 1, then its gradi-
ent ∇V is homogeneous of degree p− 1 ≥ 0, from which
we conclude that

V (x)

|∇V (x)|
=

|x|p V (x̄)

|x|p−1 |∇V (x̄)|
=

|x|V (x̄)

|∇V (x̄)|

so V (x)/|∇V (x)| → ∞ as |x| → ∞, because |∇V (x̄)| for
|x̄| = 1 must remain bounded. We thus conclude that V
satisfies C2, which finishes the proof.

Proof of Theorem 4. C4. Similar to the proof of C1
above.

C5. For an arbitrary c < 0, consider the auxiliary func-
tion

κc(s) := −c ess inf
|z|≥s,∇V (z) 6=0

V (z)

|∇V (z)|
.

As argued in the proof of Theorem 3 for the function κd

defined in (A.3), we can assume without loss of generality
that κc ∈ K∞.

We start by picking arbitrary x ∈ R
n, w ∈ R

m for which
∇V (x) exists and z := f(x,w)−f(x, 0) is “small” in the
sense that it satisfies

|z| = |f(x,w) − f(x, 0)| < κc(|x|). (A.9)

Using the fact that ∇V (x) · f(x, 0) ≤ 0, (A.9) and the
definition of κc, we conclude that

∇V (x) · f(x,w) = ∇V (x) · f(x, 0) + ∇V (x) · z

≤ ∇V (x) · z ≤ |∇V (x)|κc(|x|) ≤ −c V (x).
(A.10)

Suppose that we now pick x ∈ R
n, w ∈ R

m for which
∇V (x) exists and z := f(x,w)−f(x, 0) is “large” in the
sense that it satisfies

|x| ≤ κ−1
c (|z|) = κ−1

c (|f(x,w) − f(x, 0)|) (A.11)

instead of (A.9). Since V is locally Lipschitz, there exists
a function α2 ∈ K∞ and a constant k ≥ 0 such that
|∇V (x)| ≤ k + α2(|x|) ∀x a.e. (cf. [6]). Because of this,
the fact that ∇V (x) · f(x, 0) ≤ 0, and (A.11), we now
have

∇V (x) · f(x,w) = ∇V (x) · f(x, 0) + ∇V (x) · z

≤ ∇V (x) · z ≤ k|z| + α2(|x|)|z|

≤ k|z| + α2 ◦ κ−1
c (|z|)|z| ≤ χ(|w|) (A.12)

with χ(s) := kγ(s)+(α2 ◦κ−1
c ◦γ)(s)γ(s) ∀s ≥ 0, where

γ is the growth estimate of f(x,w) − f(x, 0). Combin-
ing (A.10) with (A.12), we conclude that (4a) holds for
almost all x and w, from which C5 follows.

C6. As in the proof of Theorem 3, one can show that C6
follows from C4 and C5.
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