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Abstract 

Energy production is one of the largest sources of air pollution. A feasible method to reduce the harmful flue gas 

emissions and to increase the efficiency is to improve the control strategies of the existing thermoelectric power plants. 

This makes the Nonlinear Model Predictive Control (NMPC) method very suitable for achieving an efficient 

combustion control. Recently, an explicit approximate approach for stochastic NMPC based on a Gaussian process 

model was proposed. The benefits of an explicit solution, in addition to the efficient on-line computations, include also 

verifiability of the implementation, which is an essential issue in safety-critical applications. This paper considers the 

application of an explicit approximate approach for stochastic NMPC to the design of an explicit reference tracking 

NMPC controller for a combustion plant based on its Gaussian process model. The controller brings the air factor 

(respectively the concentration of oxygen in the flue gas) on its optimal value with every change of the load factor and 

thus an optimal operation of the combustion plant is achieved. 

Keywords: Model predictive control, stochastic systems, probabilistic models, multi-parametric nonlinear 

programming, power plants. 
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1. Introduction. 

Energy production is one of the largest sources of air pollution. Therefore a rational and ecological 

use of energy is the main task of the thermoelectric power plants. A feasible method to reduce the 

NOx, CO, CO2 emissions and to increase the efficiency is to improve the control strategies of 

existing power plants, i.e. to optimize the combustion process (Čretnik & Gumprecht, 2006). The 

objectives for the improvement of the power plant combustion process are energy saving, pollution 

reduction, longer plant lifetime, less downtime and maintenance effort, increased safety in 

operation, i.e. overall cost reduction. These goals can be achieved through application of modern 

control algorithms with low on-line computational complexity and high reliability of the 

implementation. Feedback combustion control is possible since continuous flue gas analyzers are 

available (Čretnik & Gumprecht, 2006). For control purposes it would be ideal to measure all flue 

gas components. But the price for such realization would be too high in comparison with the 

savings achieved. Therefore the control of the oxygen fraction in the flue gas, measured on-line by 

the well known in-situ ZrO2 analyzers, is often the best solution (Čretnik, 1994). Based on that, 

different algorithms for combustion control have been studied in (Slevin, 1984; Čretnik, 1992; 

Bitenc, Čretnik, Petrovčič & Strmčnik, 1992; Čretnik, 1994; Kocijan, 1997) and more recent in e.g. 

(Rangaswamy, Shanmugan, Mohammed & Thyagarajan, 2005; Dong, Wang & Zhao, 2005). It 

should be noted that these methods assume that the combustion model is known exactly. However, 

the mathematical models are only an approximation of the real process and they usually contain 

some amount of uncertainty (unknown additive disturbances and/or uncertain model parameters). In 

order to achieve a robust performance of the control system it would be necessary to take into 

account the uncertainty when designing the controller. 

Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve 

complex control problems related to process industries (Mayne, Rawlings, Rao & Scokaert, 2000; 

Allgöwer & Zheng, 2000; Kouvaritakis & Cannon, 2001). It involves the solution at each sampling 

instant of a finite horizon optimal control problem subject to nonlinear system dynamics and state 

and input constraints. Stochastic NMPC problems are formulated in the applications where the 
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system to be controlled is described by a stochastic model. Thus, the approaches in (Lee & Cooley, 

1998; van Hessem, Scherer & Bosgra, 2001; Yan & Bitmead, 2005) are based on linear state space 

models with stochastic parameters and/or additive noise and they optimize the expected value of the 

cost function subject to hard input constraints (Lee & Cooley, 1998) or probabilistic constraints 

(van Hessem, Scherer & Bosgra, 2001; Yan & Bitmead, 2005). In (Kouvaritakis, Cannon &  

Couchman, 2006; Couchman, Kouvaritakis & Cannon, 2006; Couchman, Cannon & Kouvaritakis, 

2006; Couchman, Cannon & Kouvaritakis, 2005), stochastic MPC approaches incorporating a 

probabilistic cost and probabilistic constraints are developed. The method suggested in 

(Kouvaritakis, Cannon &  Couchman, 2006) is based on a moving average (MA) model with 

random coefficients. It was further extended to linear time-varying MA models (Couchman, 

Kouvaritakis & Cannon, 2006) and to state space models with stochastic uncertainty in the output or 

the input map (Couchman, Cannon & Kouvaritakis, 2006; Couchman, Cannon & Kouvaritakis, 

2005). It should be noted that the mentioned stochastic MPC approaches are based on parametric 

probabilistic models. Alternatively, the stochastic systems can be modeled with non-parametric 

models which can offer a significant advantage compared to the parametric models. This is related 

to the fact that the non-parametric probabilistic models provide information about prediction 

uncertainties which are difficult to evaluate appropriately with the parametric models. The 

Gaussian process model is an example of a non-parametric probabilistic black-box model and up to 

now it has been applied to model mainly static nonlinearities. The use of Gaussian processes in the 

modelling of dynamic systems is a recent development e.g. (Kocijan, Girard, Banko & Murray-

Smith, 2005; Solak, Murray-Smith, Leithead, Leith & Rasmussen, 2003). In (Kocijan & Murray-

Smith, 2005; Likar & Kocijan, 2007; Murray-Smith, Sbarbaro, Rasmussen & Girard, 2003), an on-

line optimization approach for stochastic NMPC based on Gaussian process model is proposed. 

It has recently been shown that the feedback solution to linear and quadratic constrained MPC 

problems has an explicit representation as a piece-wise linear (PWL) state feedback defined on a 

polyhedral partition of the state space (Bemporad, Morari, Dua & Pistikopoulos, 2002). The 

benefits of an explicit solution, in addition to the efficient on-line computations, include also 
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verifiability of the implementation, which is an essential issue in safety-critical applications. For 

nonlinear and stochastic MPC the prospects of explicit solutions are even higher than for linear 

MPC, since the benefits of computational efficiency and verifiability are even more important. In 

(Grancharova, Kocijan & Johansen, 2007), an approach for off-line computation of explicit 

suboptimal stochastic NMPC controller for constrained nonlinear systems based on a Gaussian 

process model has been proposed. The approach is based on the multi-parametric Nonlinear 

Programming (mp-NLP) ideas (Fiacco, 1983) and represents an extension of the approximate 

methods in (Johansen, 2004; Grancharova, Johansen & Tøndel, 2005). 

In this paper, a Gaussian process model of a combustion plant (a steam boiler PK 401 at 

Cinkarna Celje Company, Celje, Slovenia) is obtained. Then, the approximate mp-NLP approach 

(Grancharova, Kocijan & Johansen, 2007) is applied to design an explicit reference tracking NMPC 

controller that brings the air factor of the combustion plant on its optimal value with every change 

of the load factor. Thus, an efficient on-line optimization of the combustion plant is achieved where 

both the economic and the environmental aspects are taken into account. Because of the operation 

security of the considered combustion plant, the results obtained in the paper are based on 

simulation data. However, the paper shows the potential use of the presented approximate mp-NLP 

approach to the optimal control of industrial combustion plants. 

The paper is structured as follows. In section 2, the techno-economical and environmental 

viewpoints of combustion plant operation are considered. The modelling of dynamic systems with 

Gaussian processes is described in section 3, where a Gaussian process model of a specific 

combustion plant is obtained. In section 4, the approximate approach to explicit stochastic nonlinear 

predictive control based on Gaussian process models is presented. The design and the closed-loop 

performance of an explicit reference tracking NMPC controller for the considered combustion plant 

are described in section 5. The conclusions are gathered in section 6. 

The following abbreviation and notation will be used in the paper. The nonlinear model 

predictive control problem based on Gaussian process model will be referred to as GP-NMPC 

problem. 0A  means that the square matrix A  is positive definite. For nx∈ , the Euclidean 
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norm is Tx x x=  and the weighted norm is defined for some symmetric matrix 0A  as 

T
A

x x Ax= . For a random variable y  with Gaussian distribution, 2( ), ( ))( y yµ σN  denotes its 

probability distribution, and ( )yµ  and 2 ( )yσ  are respectively its mean and variance. 

 

2. Optimal operation of combustion plants. 

Fuel composition can be expressed with percentage of carbon C, hydrogen H, oxygen O, nitrogen 

N, sulphur S, ash A and water W (Čretnik, Strmčnik & Zupančič, 1985): 

C+H+O+N+S+A+W=100%      (1) 

Composition of the air is usually expressed only with the percentage of oxygen O2 and nitrogen N2: 

2 2O +N =21% + 79%=100%      (2) 

The combustion process is schematically shown in Fig. 1. 

 

 
 
 
 

COMBUSTION 

Fuel 
(C+H+O+N+S+A+W) 

Air 
(O2 + N2) 

Incomplete combustion 
CO, CO2, H2O, O2, N2 

NOx, SOx 

Complete combustion 
CO2, H2O, O2, N2 

NOx, SOx 

Heat 

 

Fig. 1. Input and output flows of the combustion process. 

 

The limited fuel sources, considerable increase in the fuel prices and the enormous environment 

pollution require decreasing the fuel use, the heat losses and the amount of harmful flue-gas 

emissions, i.e. to optimize the combustion process (Čretnik, 1992). It has been shown in (Čretnik, 

1992) that in order to achieve an optimal operation of the combustion plants, it is necessary to 

optimize the air factor λ  defined as: 
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,

air

air steh

V
V

λ =       (3) 

where airV  is the volume of the air which goes into the combustion chamber and ,air stehV  is the 

stehiometrically required volume of the air necessary for complete combustion of 1 kg fuel. The 

combustion plant is working with air deficiency when 1λ < , and with air excess when 1λ > . Fig. 2 

from (Čretnik, 1992) shows the aspects of the optimal combustion of fuel. From techno-economical 

viewpoint, the losses of the combustion can be reduced in two ways: 1) by reducing the quantity of 

the unburned fuel and 2) by reducing the quantity of the flue gases, i.e. of the heat losses. This leads 

to the optimal value ,opt tλ  of the air factor (cf. Fig. 2, left).  From environmental viewpoint, it is 

desired to minimize the quantity of the harmful emissions and the corresponding optimal value of 

the air factor is ,opt eλ  (cf. Fig. 2, left). By taking into account both the techno-economical and the 

environmental aspects of combustion operation, it follows that the value λ  of the air factor should 

be kept within the interval , ,[ ; ]opt t opt eλ λ .  

   

 

λopt

β 

1

1βmin 

stehiometrically required 
volume of air 

 

Fig. 2. Left: Techno-economical and environmental viewpoints of combustion (Čretnik, 1992). Right: The dependence 

of the optimal air factor on the load factor (Čretnik, 1992). 
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It has been also shown in the praxis that the optimal air factor optλ  depends on the load factor β  

defined as: 

,max

fuel

fuel

β
Φ

=
Φ

      (4) 

where fuelΦ  and ,maxfuelΦ  are respectively the current and the maximal allowed fuel flowrate. The 

relation ( )opt fλ β=  is shown in Fig. 2 (right), where it can be seen that the optimal operation of the 

combustion plant is achieved with an air excess. 

Therefore, the goal is to apply control algorithms that will maintain the air factor on its 

optimal value with every change of the load factor. Due to the importance of the described issue 

from economic and also environmental aspect, the combustion control is the field of constant 

development and research. This is also the driver for the development of the modeling and control 

approaches presented in the next sections. 

 

3. Modelling of combustion plants with Gaussian process models. 

3.1. Modelling of dynamic systems with Gaussian processes. 

A Gaussian process is an example of the use of a flexible, probabilistic, nonparametric model which 

directly provides us with uncertainty predictions. Its use and properties for modelling are reviewed 

in (Rasmussen & Williams, 2006). 

A Gaussian process is a collection of random variables which have a joint multivariate 

Gaussian distribution. Assuming a relationship of the form ( )y f z=  between an input Dz∈  and 

output y∈ , we have (1), (2), ... , ( )~ (0, )y y y M KN , where 

Cov( ( ), ( )) ( ( ), ( ))pqK y p y q C z p z q= =  gives the covariance between the output points ( )y p  and 

( )y q  corresponding to the input points ( )z p  and ( )z q . Thus, the mean ( )zµ  (usually assumed to 

be zero) and the covariance function ( ( ), ( ))C z p z q  fully specify the Gaussian process. Note that the 

covariance function ( ( ), ( ))C z p z q  can be any function with the property that it generates a positive 

definite covariance matrix. A common choice is the Gaussian covariance function (Williams, 1998; 
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Rasmussen & Williams, 2006): 

2
1 0

1

1( ( ), ( )) exp ( ( ) ( ))
2

D

i i i pq
i

C z p z q v w z p z q v α
=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑    (5) 

where 1 0 1[ , ... , , , ]Dw w v vΘ =  is a vector of parameters called hyperparameters and iz  denotes the i-

th component of the D -dimensional input vector z . The hyperparameter 1v  controls the magnitude 

of the covariance and the hyperparameters iw  represent the relative importance of each component 

iz  of vector z . The part 0 pqv α  represents the covariance between outputs due to white noise, where 

pqα  is the Kronecker operator and 0v  is the white noise variance (when assuming different kinds of 

noise the covariance function should be changed appropriately, e.g. (Gibbs, 1997)). For a given 

problem, the hyperparameters are learned (identified) using the data at hand. After the learning, one 

can use the w  parameters as indicators of ‘how important’ the corresponding input components 

(dimensions) are: if iw  is zero or near zero it means that the inputs in dimension i  contain little 

information and could possibly be removed. 

Consider a set of M  D -dimensional input vectors [ (1), (2),..., ( )]Tz z z M=Z  and a vector of 

output data [ (1), (2), ... , ( )]TY y y y M= . Based on the data ( , )YZ , and given a new input vector *z , 

we wish to estimate the probability distribution of the corresponding output *y . Unlike other 

models, there is no model parameter determination as such, within a fixed model structure. With 

this model, most of the effort consists in tuning the parameters of the covariance function. This is 

done by maximizing the log-likelihood: 

11 1( ) log( ( | )) log( ) log(2 )
2 2 2

T Mp Y Y Y π−Θ = = − − −Z K KL   (6) 

with the vector of hyperparameters Θ  and M M×  training covariance matrix K , where the 

hyperparameters distribution ( | , )p YΘ Z  is approximated with their most likely values. The 

optimization requires the computation of the derivative of L  with respect to each of the parameters: 

1 1 1( ) 1 1trace
2 2

T

i i i

Y Y
θ θ θ

− − −⎛ ⎞∂ Θ ∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

K KK K KL     (7) 
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Here, it involves the computation of the inverse of the M M×  covariance matrix K  at every 

iteration, which can be computationally demanding for large M . The reader is referred to 

(Rasmussen & Williams, 2006) for a detailed description of the parameter optimization methods. 

Given that the hyperparameters are known, we can estimate the probability distribution of the 

corresponding output *y  at some new input vector *z : 

*
* * ( , )( | , , )

( | )
p Y yp y Y z
p Y

=Z
Z

      (8) 

It can be shown that this distribution is Gaussian with mean and variance (Williams, 1998): 

* * 1( ) ( )Tz k z Yµ −= K        (9) 

2 * * * 1 *
0 0( ) ( ) ( ) ( )Tz k z k z k z vσ −= − +K     (10) 

where * * *( ) [ ( (1), ), ..., ( ( ), )]Tk z C z z C z M z=  is the 1M ×  vector of covariances between the test 

input and the training inputs and * * *
0 ( ) ( , )k z C z z=  is the autocovariance of the test input. The 

vector * 1( )Tk z −K  in (9) can be interpreted as a vector of smoothing terms which weights the 

training outputs Y  to make a prediction at the test point *z . If the new input is far away from the 

data points, the term * 1 *( ) ( )Tk z k z−K  in (10) will be small, so that the predicted variance 2 *( )zσ  

will be large. Thus, from the system identification point of view equation (9) provides the model 

prediction and equation (10) its confidence. 

Gaussian processes can be used to model static nonlinearities and can therefore be used for 

modelling of dynamic systems if delayed input and output signals are used as regressors (Kocijan, 

Girard, Banko & Murray-Smith, 2005). In such cases an autoregressive model is considered, such 

that the current predicted output depends on previous estimated outputs, as well as on previous 

control inputs: 

ˆ ˆ ˆ( ) [ ( 1), ( 2), ... , ( ), ( 1), ( 2), ... , ( )]
ˆ( ) ( ( )) ( )

Tz t y t y t y t L u t u t u t L
y t f z t tη

= − − − − − −
= +

   (11) 

where t denotes consecutive number of data sample, L  is a given lag, and ( )tη  is the prediction 

error. The quality of the predictions with a Gaussian process model is assessed by computing the 
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average squared error (ASE): 

2

1

1 ˆ[ ( ( )) ( )]
M

i
ASE y i y i

M
µ

=

= −∑      (12) 

and by the log predictive density error (LD) (Kocijan, Girard, Banko & Murray-Smith, 2005): 

2
2

2
1

ˆ1 1 [ ( ( )) ( )]ˆlog(2 ) log[ ( ( ))]
ˆ2 2 ( ( ))

M

i

y i y iLD y i
M y i

µπ σ
σ=

⎛ ⎞−
= + +⎜ ⎟

⎝ ⎠
∑   (13) 

In (12), (13), ˆ( ( ))y iµ  and 2 ˆ( ( ))y iσ  are the prediction mean and variance, ( )y i  is the system’s 

output and M  is the number of the training points. 

The Gaussian process model now not only describes the dynamic characteristics of the non-

linear system, but at the same time provides information about the confidence in the predictions. 

The Gaussian process can highlight areas of the input space where prediction quality is poor, due to 

the lack of data, by indicating the higher variance around the predicted mean. 

 

3.2. Gaussian process model of a combustion plant. 

The system under investigation is a process of combustion in a steam boiler PK 401 at Cinkarna 

Celje Company, Celje, Slovenia. Since it was not possible to perform experiments on this plant 

because of the security of plant operation, the Gaussian process model identification was based on 

simulation data generated by adding a Gaussian disturbance to the analytical model developed in 

(Čretnik, Strmčnik & Zupančič, 1985). 

The fuel composition is expressed with the percentages of carbon C, hydrogen H, oxygen O, 

nitrogen N, sulphur S, ash A and water H2O (denoted respectively with C
fuelx , H

fuelx , O
fuelx , N

fuelx , 

S
fuelx , A

fuelx , 
2H O

fuelx ): 

2C H O N S A H O 100%fuel fuel fuel fuel fuel fuel fuelx x x x x x x+ + + + + + =     (14) 

The composition of the air is assumed to be 21% oxygen and 79% nitrogen. The equations of the 

developed analytical model (Čretnik, Strmčnik & Zupančič, 1985) are based on the stoichiometric 

chemical reactions of combustion: 
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2 2 1C O CO Q+ → +       (15) 

2 2
1C O CO
2

Q+ → +       (16) 

2 2 2 32H O 2H O Q+ → +      (17) 

2 2 4S O SO Q+ → +       (18) 

where 1Q , 2Q , 3Q , 4Q  are the heats of the reactions. The composition of the flue gasses, resulting 

from the combustion process, is expressed in the following way (Čretnik, Strmčnik & Zupančič, 

1985): 

2 2 2 2 2O CO CO SO N H O 100%x x x x x x+ + + + + =      (19) 

where 
2Ox , COx , 

2COx , 
2SOx , 

2Nx  and 
2H Ox  are the volume percentages of oxygen, carbon monoxide, 

carbon dioxide, sulphur dioxide, nitrogen and water. Then, the volume balances for the separate 

components of the flue gasses are described by the following equations (Čretnik, Strmčnik & 

Zupančič, 1985): 

2

2

O
O

1 { [ ( )] 21 100 }air fuel d o air o fuel
k

dx
x V V V

dt V
= − Φ +Φ − + Φ − Φ    (20) 

CO
CO C

1 { [ ( )] 1.866 }fuel
air fuel d o fuel

k

dx x V V ax
dt V

= − Φ +Φ − + Φ     (21) 

2

2

CO
CO C

1 { [ ( )] 1.866(1 ) }fuel
air fuel d o fuel

k

dx
x V V a x

dt V
= − Φ +Φ − + − Φ    (22) 

2

2

SO
SO S

1 { [ ( )] 0.699 }fuel
air fuel d o fuel

k

dx
x V V x

dt V
= − Φ +Φ − + Φ     (23) 

2

2

N
N N

1 { [ ( )] 79 0.8 }fuel
air fuel d o air fuel

k

dx
x V V x

dt V
= − Φ +Φ − + Φ + Φ    (24) 

2

2 2

H O
H O H H O

1 { [ ( )] 11.117 1.244 }fuel fuel
air fuel d o fuel fuel

k

dx
x V V x x

dt V
= − Φ +Φ − + Φ + Φ  (25) 

In (20)–(25), kV  is the volume of the combustion chamber [m3], fuelΦ  is the normalized total flow 

of fuel [kg s-1], airΦ  is the normalized total flow of air [Nm3s-1], oV  is the theoretically required 
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oxygen volume for the combustion of one unit of fuel [Nm3kg-1], dV  is the theoretically obtained 

gas volume from one unit of fuel [Nm3kg-1], a  is the relative portion of carbon converted into CO. 

The model (20)–(25) enables the simulation of the six flue-gas components. However, for 

control design purposes only its O2-part (equation (20)) named also O2-model is used (Čretnik, 

1992; Čretnik, 1994). The input to the O2-model is the angle position of the damper, which is used 

to control the air flow airΦ . The model output is the oxygen concentration in the flue gasses. As the 

damper is a part of the closed-loop, it has to be modeled and added to the O2-model (20). The 

dependence of the air flow airΦ  on the angle φ  of the damper is given by the following relation 

(Čretnik, 1992): 

,max 3( 45)exp , 0 45
2 45

air
air

φ φ
Φ −⎛ ⎞Φ = ≤ ≤⎜ ⎟

⎝ ⎠
    (26) 

,max 3( 45)2 exp , 45 90
2 45

air
air

φ φ
Φ ⎛ − − ⎞⎛ ⎞Φ = − ≤ ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   (27) 

where ,maxairΦ  is the maximum flow of air. 

The O2-model (20) is a deterministic model, which does not take into account the stochastic 

disturbances (e.g. change in the fuel composition, change of the humidity of the air flow) that may 

influence the combustion process. In order to consider the stochastic nature of plant operation, the 

dynamics of 
2Ox  is represented by the following stochastic discrete-time model: 

2 2O O( 1) ( ( ), ( ), ( )) ( )fuelx t f x t t t tφ ξ+ = Φ +     (28) 

Here, ( )tξ ∈  is a Gaussian disturbance which represents the additive effect of the unmeasured 

stochastic disturbances. The sampling time, determined according to system dynamics, was selected 

to be 1 [s]sT = . 

The signals φ   and fuelΦ  for identification were generated by random number generators with 

normal distributions and the signal 
2Ox  was computed from the O2-model (20). The φ  signal 

blocking was 5 sT Tφ = , i.e. it is kept constant for 5 time instants. The fuelΦ  signal blocking was 
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100
fuel sT TΦ = . The number M  of the signals samples used for the identification determines the 

dimension of the covariance matrix. In our case, 1000M = . A Gaussian disturbance ξ  with zero 

mean and variance 0.05 was used. Based on the generated data set, the discrete-time system (28) is 

approximated with Gaussian process with the following hyperparameters: 

1 2 3 0 1[ , , , , ] [0.01346,0.02847,0.00036,0.21984,55.56554]w w w v vΘ = =   (29) 

The maximum likelihood framework was used to determine the hyperparameters. The optimization 

method applied for identification of the Gaussian process model was the conjugate gradient method 

with line searches (Girard & Murray-Smith, 2005). 

The response of the Gaussian process model to the identification signal is shown in Fig. 3. 

The associated average squared error and log density error are respectively 0.6051ASE =  and 

143.4835LD = . 

The signals φ   and fuelΦ  for validation were generated by random number generator with 

normal distribution and rate of change that is different from the one used for the identification 

signals. The response of the Gaussian process model to the validation signals is shown in Fig. 4. 

The associated prediction errors are 0.9177ASE =  and 188.8626LD = . 
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Fig. 3. Response of the Gaussian process model to the excitation signal used for identification. 
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Fig. 4. Response of the Gaussian process model to the excitation signal used for validation. 

 

 

4. Approximate explicit stochastic nonlinear predictive control based on 

Gaussian process models 

4.1. Formulation of the GP-NMPC problem as an mp-NLP problem. 

Consider a stochastic nonlinear discrete-time system: 

( 1) ( ( ), ( )) ( )x t f x t u t tξ+ = +      (30) 

where ( ) nx t ∈  and ( ) mu t ∈  are the state and input variables, ( ) ntξ ∈  are Gaussian 

disturbances, and : n m nf × →  is a nonlinear continuous function. Suppose that a Gaussian 

process model of the system (30) is obtained by applying the approach described in the previous 

section. Suppose the initial state |( ) t tx t x=  and the control inputs ( ) , 0,1, ... , 1t ku t k u k N++ = = −  

are given. Then, the probability distribution of the predicted states 1| , 0,1, ... , 1t k tx k N+ + = −  which 

correspond to the given initial state |t tx  and control inputs , 0,1, ... , 1t ku k N+ = −  can be obtained 

(Girard & Murray-Smith, 2005): 
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2
1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1
t k t t k t t k t k t t k tx x u x x

k N

µ σ+ + + + + + + +

= −

N
    (31) 

The 95% confidence interval of the random variable 1|t k tx + +  is 

1| 1| 1| 1|[ ( ) 2 ( ); ( ) 2 ( )]t k t t k t t k t t k tx x x xµ σ µ σ+ + + + + + + +− + , where 1|( )t k txσ + +  is the standard deviation. 

Here, we consider a reference tracking NMPC problem based on a Gaussian process model 

(GP-NMPC) where the goal is to have the state vector ( )x t  track the reference signal ( ) nr t ∈ . In 

the problem formulation, the type of the cost function is like the one used in (Bemporad, Morari, 

Dua & Pistikopoulos, 2002). Suppose that a full measurement of the state ( )x t  is available at the 

current time t. For the current ( )x t , the reference tracking GP-NMPC solves the following 

optimization problem: 

Problem P1: 

*( ( ), ( ), ( 1)) min ( , ( ), ( ), ( 1))
U

V x t r t u t J U x t r t u t− = −     (32) 

subject to | ( )t tx x t=  and: 

| | min( ) 2 ( ) , 1, ... ,t k t t k tx x x k Nµ σ+ +− ≥ =      (33) 

| | max( ) 2 ( ) , 1, ... ,t k t t k tx x x k Nµ σ+ ++ ≤ =      (34) 

min max , 0,1, ... , 1t ku u u k N+≤ ≤ = −       (35) 

min max , 0,1, ... , 1t ku u u k N+∆ ≤ ∆ ≤ ∆ = −      (36) 

| | | |max{ ( ) 2 ( ) ( ) , ( ) 2 ( ) ( ) }t N t t N t t N t t N tx x r t x x r tµ σ µ σ δ+ + + +− − + − ≤  (37) 

1, 0,1, ..., 1t k t k t ku u u k N+ + + −∆ = − = −       (38) 

2
1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1
t k t t k t t k t k t t k tx x u x x

k N

µ σ+ + + + + + + +

= −

N
     (39) 

with 1 1[ , ,..., ]t t t NU u u u+ + −=  and the cost function given by: 

1 2 22
| |

0
( , ( ), ( ), ( 1)) ( ) ( ) ( ) ( )

N

t k t t k t N tRQ P
k

J U x t r t u t x r t u x r tµ µ
−

+ + +
=

⎡ ⎤− = − + ∆ + −⎢ ⎥⎣ ⎦∑     (40) 

Here, N is a finite horizon and , , 0P Q R . From a stability point of view it is desirable to choose 



 16

δ  in the terminal constraint (37) sufficiently small (Mayne, Rawlings, Rao & Scokaert, 2000). If 

the horizon N  is large and the Gaussian process model has a small prediction uncertainty, then it is 

more likely that the choice of a small δ  will be possible. 

It should be noted that a more general stochastic MPC problem is formulated in (Kouvaritakis, 

Cannon &  Couchman, 2006; Couchman, Kouvaritakis & Cannon, 2006; Couchman, Cannon & 

Kouvaritakis, 2006; Couchman, Cannon & Kouvaritakis, 2005), where a probabilistic formulation 

of the cost is introduced that includes the probabilistic bounds of the predicted variable. The 

stochastic MPC problem considered in this paper (problem P1) is of a more special form since the 

cost function (40) includes the mean value of the random variable. However, the approximate 

approach to the explicit solution of problem P1 (presented in section 4.2) can be easily extended to 

the more general case of stochastic MPC problem formulation where the optimization is performed 

on the expected value of the cost function. 

We introduce an extended state vector: 

( ) [ ( ), ( ), ( 1)] nx t x t r t u t= − ∈ , 2n n m= +      (41) 

Let x  be the value of the extended state at the current time t . Then, the optimization problem P1 

can be formulated in a compact form as follows: 

Problem P2: 

*( ) min ( , ) subject to ( , ) 0
U

V x J U x G U x= ≤     (42) 

The GP-NMPC problem defines an mp-NLP, since it is NLP in U  parameterized by x . An optimal 

solution to this problem is denoted * * * *
1 1[ , ,..., ]t t t NU u u u+ + −=  and the control input is chosen according 

to the receding horizon policy *( ) tu t u= . Define the set of N-step feasible initial states as follows: 

{ | ( , ) 0 for some }n Nm
fX x G U x U= ∈ ≤ ∈    (43) 

If δ  in (37) is chosen such that the problem P1 is feasible, then fX  is a non-empty set. 
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In parametric programming problems one seeks the solution *( )U x  as an explicit function of 

the parameters x  in some set n
fX X⊆ ⊆  (Fiacco, 1983). The explicit solution allows us to 

replace the computationally expensive real-time optimization with a simple function evaluation. 

 

4.2. Approximate mp-NLP approach to explicit GP-NMPC. 

In general, the exact solution of problem P2 can not be found. In this section, the computational 

method (Grancharova, Kocijan, & Johansen, 2007) for constructing an explicit PWL approximate 

solution of the reference tracking GP-NMPC problem is described. 

4.2.1. Close-to-global solution of mp-NLP. 

In general, problem P2 can be non-convex with multiple local minima. Therefore, it would be 

necessary to apply an efficient initialization of problem P2 so to find a close-to-global solution. One 

possible way to obtain this is to find a close-to-global solution at a point 0 0v X∈  by comparing the 

local minima corresponding to several initial guesses and then to use this solution as an initial guess 

at the neighbouring points 0 1, 1, 2, ... ,iv X i N∈ = , i.e. to propagate the solution. The following 

procedure is used to generate a set of points { }10 0 1 2, , , ... , NV v v v v= , where 

0 1, 0,1, 2, ... ,iv X i N∈ = . 

Procedure 1 (generation of set of points): 

Consider any hyper-rectangle 0 fX X⊆  with vertices { }1 2

0 0 0 0, , ... , Nλ
λ λ λΛ =  and center point 0v . 

Consider also the hyper-rectangles 0 0 , 1, 2,...,j
jX X j N⊂ =  with vertices respectively 

{ }1 2
, , ... , , 1, 2,...,j j j j

N jj N
λ

λ λ λΛ = = . Suppose 1 2
0 0 0... jNX X X⊂ ⊂ ⊂ . For each of the hyper-

rectangles 0X  and 0 0 , 1, 2,...,j
jX X j N⊂ = , determine a set of points that belongs to its facets and 

denote this set { }1 2, , ... , , 0,1, 2, ...,j j j j
N jj N
φ

φ φ φΦ = = . Define the set of all points 

{ }10 0 1 2, , , ... , NV v v v v= , where 1
0 0

, 1, 2, ... ,
j jN N

j j
i

j j

v i N
= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪∈ Λ Φ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∪∪ ∪ . 
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The following procedure is applied to find a close-to-global solution at the points 

0 1, 0,1,2, ... ,iv V i N∈ = : 

Procedure 2 (close-to-global solution of problem P2): 

Consider any hyper-rectangle 0 fX X⊆  with a set of points { }10 0 1 2, , , ... , NV v v v v=  determined by 

applying Procedure 1. Then: 

 a). Determine a close-to-global solution of problem P2 at the center point 0v  through the 

following minimization: 

{ }1

*
0 0

,...,
( ) arg min ( , )

local local local
i NU

local
i

U U U
U v J U v

∈
= ,      (44) 

where , 1, 2, ... ,local
i UU i N=  correspond to local minima of the cost function 0( , )J U v  obtained for 

a number of initial guesses 0 , 1, 2, ... ,i UU i N= . 

 b). Determine a close-to-global solution of problem P2 at the points 0 1, 1, 2, ... ,iv V i N∈ =  

in the following way: 

1. Determine a close-to-global solution of problem P2 at the center point 0v  by solving problem 

(44). Let 1i = . 

2. Let { }20 1 2 0, , , ... ,s
NV v v v v V= ⊂  be the subset of points at which a feasible solution of problem 

P2 has been already determined. 

3. Find the point sv V∈  that is most close to the point iv , i.e. arg min
s i

v V
v v v

∈
= − . Let the 

solution at v  be *( )U v . 

4. Solve problem P2 at the point iv  with initial guess for the optimization variables set to *( )U v . 

5. If a solution of problem P2 at the point iv  has been found, mark iv  as feasible and add it to the 

set sV . Otherwise, mark iv  as infeasible. 

6. Let 1i i= +  . If 1i N≤ , go to step 2. Otherwise, terminate. 
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4.2.2. Computation of feasible PWL solution. 

Definition 1 (Feasibility on a discrete set): 

Let { }1 2, , ... , n
QX v v v= ⊂  be a discrete set. A function ( )U x  is feasible on X  if 

{ }( ( ), ) 0, 1, 2, ... ,i iG U v v i Q≤ ∈ . 

We restrict our attention to a hyper-rectangle nX ⊂  where we seek to approximate the optimal 

solution *( )U x  to problem P2. We require that the state space partition is orthogonal and can be 

represented as a k – d tree. The main idea of the approximate mp-NLP approach is to construct a 

feasible piecewise linear (PWL) approximation ˆ ( )U x  to *( )U x  on X , where the constituent affine 

functions are defined on hyper-rectangles covering X . In case of convexity, it suffices to compute 

the solution of problem P2 at the 2n  vertices of a considered hyper-rectangle 0X  by solving up to 

2n  NLPs. In case of non-convexity, it would not be sufficient to impose the constraints only at the 

vertices of the hyper-rectangle 0X . One approach to resolve this problem is to include some interior 

points in addition to the set of vertices of 0X  (Grancharova, Johansen, & Tøndel, 2005). These 

additional points can represent the vertices and the facets centers of one or more hyper-rectangles 

contained in the interior of 0X . Based on the solutions at all points, a feasible local linear 

approximation 0 0 0
ˆ ( )U x K x g= +  to the optimal solution *( )U x , valid in the whole hyper-rectangle 

0X , is determined by applying the following procedure: 

Procedure 3 (computation of explicit approximate solution): 

Consider any hyper-rectangle 0 fX X⊆  with a set of points { }10 0 1 2, , , ... , NV v v v v=  determined by 

applying Procedure 1. Compute 0K  and 0g  by solving the following NLP: 

Problem P3: 

1

0 0

2* *
0 0 0 0 2, 0

min ( ( , ) ( ) ( ) )
N

i i i i iK g i
J K v g v V v K v g U vβ

=

+ − + + −∑     (45) 

subject to: 
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( )0 0 0, 0 ,i i iG K v g v v V+ ≤ ∀ ∈      (46) 

In (45), the parameter 0β >  is a weighting coefficient. 

 

4.2.3. Estimation of error bounds. 

Suppose that a state feedback 0
ˆ ( )U x  that is feasible on 0 0V X⊆  has been determined by applying 

Procedure 3. Then, for the cost function approximation error in 0X  we have: 

*
0 0

ˆ( ) ( ) ( ) ,x V x V x x Xε ε= − ≤ ∈      (47) 

where 0
ˆ ˆ( ) ( ( ), )V x J U x x=  is the sub-optimal cost and *( )V x  denotes the cost corresponding to the 

close-to-global solution *( )U x , i.e. * *( ) ( ( ), )V x J U x x= . The following procedure can be used to 

obtain an estimate 0ε̂  of the maximal approximation error 0ε  in 0X . 

Procedure 4 (computation of the error bound): 

Consider any hyper-rectangle 0 fX X⊆  with a set of points { }10 0 1 2, , , ... , NV v v v v=  determined by 

applying Procedure 1. Compute an estimate 0ε̂  of the error bound 0ε  through the following 

maximization: 

{ }1

*
0 0,1,2, ... ,

ˆˆ max ( ( ) ( ))i ii N
V v V vε

∈
= −      (48) 

 

4.2.4. Approximate mp-NLP algorithm for explicit GP-NMPC. 

Assume the tolerance 0ε >  of the cost function approximation error is given. The following 

algorithm is proposed to design explicit reference tracking GP-NMPC: 

Algorithm 1 (explicit reference tracking GP-NMPC) 

1. Initialize the partition to the whole hyper-rectangle, i.e. { }XΠ = . Mark the hyper-rectangle 

X  as unexplored. 

2. Select any unexplored hyper-rectangle 0X ∈Π . If no such hyper-rectangle exists, 

terminate. 
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3. Compute a solution to problem P2 at the center point 0v  of 0X  by applying Procedure 2a. If 

problem P2 has a feasible solution, go to step 4. Otherwise, split 0X  into two hyper-rectangles 1X  

and 2X  by applying the heuristic rule 2 from (Grancharova, Johansen, & Tøndel, 2005). Mark 1X  

and 2X  unexplored, remove 0X  from Π , add 1X  and 2X  to Π , and go to step 2. 

4. Define a set of points { }10 0 1 2, , , ... , NV v v v v=  by applying Procedure 1. Compute a solution 

to problem P2 for x  fixed to each of the points 1, 1, 2, ... ,iv i N=  by applying Procedure 2b. If 

problem P2 has a feasible solution at all these points, go to step 6. Otherwise, go to step 5. 

5. Compute the size of 0X  using some metric. If it is smaller than some given tolerance, mark 

0X  infeasible and explored and go to step 2. Otherwise, split 0X  into hyper-rectangles 1X , 2X , …, 

sNX  by applying the heuristic rule 1 from (Grancharova, Johansen, & Tøndel, 2005). Mark 1X , 

2X , …, 
sNX  unexplored, remove 0X  from Π , add 1X , 2X , …, 

sNX  to Π , and go to step 2. 

6. Compute an affine state feedback 0
ˆ ( )U x  using Procedure 3, as an approximation to be used 

in 0X . If no feasible solution was found, split 0X  into two hyper-rectangles 1X  and 2X  by 

applying the heuristic rule 3 from (Grancharova, Johansen, & Tøndel, 2005). Mark 1X  and 2X  

unexplored, remove 0X  from Π , add 1X  and 2X  to Π , and go to step 2. 

7. Compute an estimate 0ε̂  of the error bound 0ε  in 0X  by applying Procedure 4. If 0ε̂ ε≤ , 

mark 0X  as explored and feasible and go to step 2. Otherwise, split 0X  into two hyper-rectangles 

1X  and 2X  by applying Procedure 4 from (Grancharova, Johansen, & Tøndel, 2005). Mark 1X  and 

2X  unexplored, remove 0X  from Π , add 1X  and 2X  to Π , and go to step 2. 

The presented approximate mp-NLP approach is a practical computational method to handle 

non-convex mp-NLP problems. It does not necessarily lead to guaranteed properties like feasibility 

and closed-loop stability, but when combined with verification and analysis methods gives a 

practical tool for development and implementation of explicit NMPC. It also should be noted that in 

contrast to the conventional MPC based on real-time optimization, the explicit MPC makes the 
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rigorous verification and validation of the controller performance much easier (Johansen, 2004). 

Hence, problems due to lack of convexity and numerical difficulties can be addressed during the 

design and implementation. 

 

5. Explicit stochastic predictive control of combustion plants. 

Here, an explicit reference tracking GP-NMPC controller for the combustion plant considered in 

section 3.2 is designed. The block-scheme of the control system is shown in Fig. 5. The controller 

brings the air factor (respectively the concentration of oxygen in the flue gas) on its optimal value 

with every change of the load factor and thus an optimal operation of the combustion plant is 

achieved. 

 
Combustion 

plant 

( )fuel tΦ  

Reference 
generator 

2O ( )fuelr f= Φ

 
Explicit GP-NMPC 
reference tracking 

controller 
2O ( )r t  

2O ( )x t

( )tφ

q-1

( 1)tφ −  

2O ( )x t  

  

Fig. 5. Block scheme of the control system. 

 

The control input is u φ=  (the angle of the damper for the air flow), the state variable is 
2Ox x=  

(the percentage of O2 in the flue gases), and the reference signal is 
2Or r=  (the required percentage 

of O2 in the flue gases). For this particular combustion plant, the reference values 
2Or  corresponding 

to different values of the fuel flowrate fuelΦ  have been obtained by experiments and are given in a 

table form as follows (Čretnik, 1992): 
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Table 1. Reference values for the percentage of O2 in the flue gases. 

fuelΦ [kg s-1] 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

2Or  [vol %] 4.5 4.1 3.7 3.4 3.2 3.0 2.8 

 

In case the fuel flowrate fuelΦ  does not take a value from this table, then the reference value 
2Or  is 

computed through linear interpolation between the neighbouring points in the table. 

The mp-NLP approach described in section 4.2 is applied to design an explicit reference 

tracking GP-NMPC controller for the combustion plant based on its Gaussian process model 

obtained in section 3.2: 

2 2 2 2

2
O O O O( 1)| ( ), ( ), ( ) ~ ( ( ( 1)), ( ( 1)))fuelx t x t t t x t x tφ µ σ+ Φ + +N   (49) 

The following control input and rate constraints are imposed on the plant: 

30 60 ; 3 3φ φ≤ ≤ − ≤ ∆ ≤     (50) 

The prediction horizon is 10N =  and the terminal constraint is: 

2 2O O( ( )) ( ) 0.001x t N r tµ + − ≤     (51) 

The weighting matrices in the cost function (40) are 20Q = , 1R = , 20P = . The GP-NMPC 

minimizes the cost function (40) subject to the Gaussian process model (49) and the constraints 

(50), (51). The formulated GP-NMPC problem results in optimization problem P2 with 10 

optimization variables and 41 constraints. One internal region 1
0 0X X⊂  is used in Procedures 1, 2, 

3 and 4. This results in problem P3 which has 40 optimization variables and 349 constraints. In 

(45), it is chosen 10β = . The extended state vector is 
2

3
O( ) [ ( ), ( ), ( 1)]fuelx t x t t tφ= Φ − ∈ , which 

leads to a 3-dimensional state space to be partitioned. The latter is defined by 

[0;7] [0.7;1.3] [30;60]X = × × . The cost function approximation tolerance is chosen as 

0

*
0( ) max( , min ( ))a r x X

X V xε ε ε
∈

= , where 0.005aε =  and 0.1rε =  are the absolute and the relative 

tolerances, respectively. The partition of the explicit GP-NMPC controller is shown in Fig. 6. It has 

513 regions and 12 levels of search. Totally, 18 arithmetic operations are needed in real-time to 
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compute the control input (12 comparisons, 3 multiplications and 3 additions). 

The performance of the closed-loop system was simulated for the following change in the fuel 

flowrate: 

-1 -1 -1( ) 1.1[kgs ], [0;50]; ( ) 1.25[kgs ], [51;100]; ( ) 1.05[kgs ], [101;150]fuel fuel fuelt t t t t tΦ = ∈ Φ = ∈ Φ = ∈    (52) 

and initial conditions for the state and control variable 
2O (0) 3.3 [vol%]x =  and (0) 46φ = , 

respectively. The resulting closed-loop response is depicted in Fig. 7 and Fig. 8. 
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Fig. 6. State space partition of the explicit approximate GP-NMPC controller. 
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Fig. 7. Left: Change of the fuel flowrate. Right: The control input with the approximate explicit GP-NMPC (the red 
solid curve) and with the exact GP-NMPC (the blue dotted curve). 
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Fig. 8. Left: The mean value of the state variable predicted with the Gaussian process model.  Right: The 95% 
confidence interval of the state variable predicted with the Gaussian process model. The red solid curves are with the 
approximate explicit GP-NMPC, the blue dotted curves are with the exact GP-NMPC and the black solid curve is the 

set point. 
 

The results show that the exact and the approximate solutions are almost indistinguishable. 

 

6. Conclusions. 

In this paper, an approximate approach for explicit stochastic NMPC is applied to design an explicit 

reference tracking NMPC controller for a combustion plant based on its Gaussian process model. 

The controller brings the air factor (respectively the concentration of oxygen in the flue gases) on its 

optimal value with every change of the load factor and thus an optimal operation of the combustion 

plant is achieved. Simulations of the closed-loop system show the high quality performance of the 

explicit stochastic NMPC controller. Although the obtained results are based on simulation data, the 

paper shows the potential use of the considered approach to the efficient on-line optimization of 

industrial combustion plants. 
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