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a b s t r a c t

In this paper, output feedback adaptive control is investigated for a class of nonlinear systems in
output-feedback form with unknown control gains. To construct output feedback control, the system
is transformed into the form of the NARMA (nonlinear-auto-regressive-moving-average) model, based
on which future output prediction is carried out. With employment of the predicted future output, a
constructive output feedback adaptive control is given with the discrete Nussbaum gain exploited to
overcome the difficulty due to unknown control directions. Under the global Lipschitz condition of the
system functions, the boundedness of all the closed-loop signals and asymptotical output tracking are
achieved by the proposed control. Simulation results are presented to show the effectiveness of the
proposed approach.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades, the problem of controlling nonlinear
systemswith unknown control directions has received a great deal
of attention for the continuous-time systems (Ge & Wang, 2003;
Ge, Hong, & Lee, 2004; Kaloust & Qu, 1995; Lozano, Collado, &
Mondie, 1990; Nussbaum, 1983; Ryan, 1994; Ye & Jiang, 1998).
The control directions, defined as signs of the control gains,
are normally required to be known a priori in adaptive control
literature. When the signs of control gains are unknown, the
adaptive control problem becomes much more difficult, since we
cannot decide the direction along which the control operates. The
unknown control directions problem had remained open till the
Nussbaum-type gain was first introduced in Nussbaum (1983)
for adaptive control of first order continuous-time systems. Later,
the Nussbaum gain was adopted in the adaptive control of linear
systems with nonlinear uncertainties (Ryan, 1994) to counteract
the lack of a prior knowledge of control directions. Towards high
order nonlinear systems, backstepping with Nussbaum function
was then developed for general nonlinear systems in the triangular
structure, with constant control gains (Ye & Jiang, 1998), and time
varying control gains (Ge &Wang, 2003). Recently, the results have
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also been extended to nonlinear systems with general unknown
nonlinear functions by using neural network parametrization
techniques (Ge et al., 2004). It should be mentioned that besides
Nussbaumgain, someothermethods to dealwith unknowncontrol
directions have also been developed in the literature (Kaloust &Qu,
1995; Lozano et al., 1990), but the application of these methods
is restricted to certain systems and is not as general as Nussbaum
gain.
In contrast to the aforementioned results for continuous-time

systems, their discrete-time counterparts remain largely unex-
plored. In addition, many continuous-time control methods may
be not suitable for discrete-time systems, e.g., the backstepping
design proposed in Krstic, Kanellakopoulos, and Kokotovic (1995),
a crucial ingredient for the development of solutions to many
continuous-time adaptive nonlinear problems, may be not directly
applicable to discrete-time systems (Ge, Li, & Lee, 2003). To develop
a discrete-time counterpart of continuous-time adaptive backstep-
ping, the approach that ‘‘looks ahead’’ and chooses the control law
to force the states to acquire their desired values was proposed in
Yeh and Kokotovic (1995). But the proposed adaptive control is not
applicable to systems with unknown control gains. On the other
hand, the discreteNussbaumgain, a counterpart of the continuous-
time Nussbaum gain, was less exploited since it was proposed
in Lee and Narendra (1986) for adaptive control discrete-time lin-
ear systems. In this paper, we will employ discrete Nussbaum gain
for adaptive output feedback control of a class of discrete-time
nonlinear systems with finite unknown control gains. Under the
global Lipschitz condition of the system functions, the proposed
adaptive control guarantees asymptotical tracking performance.
Throughout this paper, the following notations are used in

order.

http://www.elsevier.com/locate/automatica
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• ‖ · ‖ denotes the Euclidean norm of vectors and induced norm
of matrices.
• [ ]

T represents the transpose of a vector or a matrix.
• 0[p] stands for a p-dimension zero vector.
• (̂ ) and (̃ ) denote the estimate of parameters and estimation
error, respectively.

2. Problem formulation and preliminaries

2.1. System representation

The systems we consider in this paper are in the output-
feedback form with unknown control gains as follows:
x1(k+ 1) = ΘT1Φ1(x1(k))+ g1x2(k)
x2(k+ 1) = ΘT2Φ2(x1(k))+ g2x3(k)
...

xn(k+ 1) = ΘTnΦn(x1(k))+ gnu(k)
y(k) = x1(k)

(1)

where Θi ∈ Rpi are the vectors of unknown constant parameters
and gi ∈ R are unknown control gains, Φi(·) : R →

Rpi , i = 1, 2, . . . , n, are known nonlinear vector functions,
x1(k), x2(k), . . . , xn(k) are the system states, n ≥ 1 is system
order. It is noted that the nonlinearities that are multiplied by the
unknown vector parameters depend only on the output y(k) =
x1(k), which is the only measured state. This justifies the name of
‘‘output-feedback’’ form.

Assumption 1. The system functionsΦi(·) are Lipschitz functions,
i.e., ‖Φi(ε1)− Φi(ε2)‖ ≤ Li‖ε1 − ε2‖, ∀ε1, ε2 ∈ R, 1 ≤ i ≤ n, with
finite constants Li. The control gains gi 6= 0.

It should be noted that neither the sign of gi (the control
direction) nor the upper or lower bound of gi are assumed to be
known in the paper. If the control gains gi’s are all ones, the system
becomes in the so called ‘‘parametric-output-feedback’’ form
studied in Zhao and Kanellakopoulos (2002) where the authors
proposed a parameter estimator that guarantees the estimates
converge to the true values in finite steps. The control objective
in this paper is to design an output feedback control u(k) such that
the output y(k) tracks a bounded reference trajectory yd(k) and all
the closed-loop signals are guaranteed to be bounded.

2.2. Preliminaries

Definition 1 (Chen & Narendra, 2001). Let x1(k) and x2(k) be two
discrete-time scalar or vector signals

• We denote x1(k) = O[x2(k)], if there exist positive constants
m1, m2 and k0 such that ‖x1(k)‖ ≤ m1maxk′≤k ‖x2(k′)‖ +
m2,∀k > k0.
• We denote x1(k) = o[x2(k)], if there exists a discrete-time
function α(k) satisfying limk→∞ α(k) → 0 and a constant k0
such that ‖x1(k)‖ ≤ α(k)maxk′≤k ‖x2(k′)‖, ∀k > k0.
• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and
x2(k) = O[x1(k)].

Lemma 1 (Ge, Yang, and Lee, 2008a). Under Assumption 1, for i =
1, 2, . . . , n, the states and input of system (1) satisfy

ξi(k) = O[y(k+ i− 1)], u(k) = O[y(k+ n)].
Definition 2 (Yang, Ge, Xiang, Chai, and Lee, 2008). Consider a
discrete nonlinear function N(x(k)) defined on a sequence x(k)
with xs(k) = supk′≤k{x(k′)}. N(x(k)) is a discrete Nussbaum gain
if and only if it satisfies the following two properties:

(i) If xs(k) increases without bound, then for any given constant
δ0

sup
xs(k)≥δ0

SN(x(k))
xs(k)

= +∞, inf
xs(k)≥δ0

SN(x(k))
xs(k)

= −∞.

(ii) If xs(k) ≤ δ1, then |SN(x(k))| ≤ δ2 with some positive
constants δ1 and δ2.

where SN(x(k)) is defined with 1x(k) = x(k + 1) − x(k) as
follows:

SN(x(k)) =
k∑
k′=0

N(x(k′))1x(k′). (2)

In this paper, for adaptive control of system (1), the discrete
Nussbaum gain N(x(k)) proposed in Lee and Narendra (1986) will
be exploited, which requires the sequence x(k) to satisfy

x(k) ≥ 0, ∀k, |1x(k)| = |x(k+ 1)− x(k)| ≤ δ0. (3)

Lemma 2 (Ge, Yang, and Lee, 2008b). Let V (k) be a positive definite
function defined ∀k, N(x(k)) be a discrete Nussbaum gain, and θ be a
nonzero constant. If the following inequality holds, ∀k

V (k) ≤
k∑

k′=k1

(c1 + θN(x(k′)))1x(k′)+ c2x(k)+ c3 (4)

where c1, c2 and c3 are some constants, k1 is a positive integer, then
V (k), x(k) and

∑k
k′=k1

(c1+ θN(x(k′)))1x(k′)+ c2x(k)+ c3 must be
bounded, ∀k.

3. System transformation

To facilitate the control design, let us consider a state
transformation such that ξi(k) = xi(k)

∏i−1
j=0 gj with g0 = 1, which

transforms system (1) into the following form:

ξ1(k+ 1) = ΘTf Φf 1(ξ1(k))+ ξ2(k)
ξ2(k+ 1) = ΘTf Φf 2(ξ1(k))+ ξ3(k)
...

ξn(k+ 1) = ΘTf Φfn(ξ1(k))+ gu(k)
y(k) = ξ1(k)

(5)

where the new parameters Θf and g as well as new system
functionsΦfi(·) are defined as

Θf = [Θ
T
f 1, . . . ,Θ

T
fn]
T
∈ Rp, Θfi = Θi

i−1∏
j=0

gj

g =
n∏
j=0

gj,Φfi(·) =
[
0T
[Mi],Φ

T
i (·), 0

T
[Ni]

]T
∈ Rp

withMi =
∑i−1
j=1 pj, Ni =

∑n
j=i+1 pj, p =

∑n
j=1 pj. The transformed

system (5) is very similar to the ‘‘parameter-output-feedback’’
form except that the control gain of u(k) is an unknown constant
g rather than one. The existence of the unknown control gain
makes it impossible to calculate future values of the outputs by the
approach proposed in Zhao and Kanellakopoulos (2002).
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Combining all the equations in (5) together by iterative
substitution, we obtain the following equation

y(k+ n) = ΘTf
n∑
i=1

Φfi(y(k+ n− i))+ gu(k). (6)

To control system (6), one difficulty lies in the unknown control
gain g . Because to avoid the singularity problem, the sign andupper
bound of the gain g are usually required to be known but no a
priori information on the control gain is assumed in this paper. The
other difficulty lies in the future outputs involved in (6). In order
to avoid noncausal problem in the control law, we will consider
future output prediction in the next section.

4. Future output prediction

In this section, future output prediction is proposed to facilitate
the control design. Let Θ̂f (k) denote the estimate of Θf and ĝ(k)
the estimate of g . For convenience, let us define

Ψl(k) =

[
l−1∑
i=1

ΦTfi(ŷ(k+ l− i|k))+
n∑
i=l

ΦTfi(y(k− (i− l))),

u(k− (n− l))
]T
∈ Rp+1, l = 1, 2, . . . , n− 1

¯̂
Θ(k) = [Θ̂Tf (k), ĝ(k)]

T
∈ Rp+1 (7)

where ŷ(k+ l− i|k) is the predicted (i− 1)th future output at the
k-th step that will be defined later.

Step 1: According to (6), we define one-step ahead prediction
ŷ(k+ 1|k), the estimation of y(k+ 1) at the k-th step as follows:

ŷ(k+ 1|k) = ¯̂Θ
T
(k− n+ 2)Ψ1(k). (8)

Step 2: Based on the one-step prediction, ŷ(k+ 1|k), defined in
(8), we define two-step ahead prediction, ŷ(k+2|k), the estimation
of y(k+ 2) at the k-th step as follows:

ŷ(k+ 2|k) = ¯̂Θ
T
(k− n+ 3)Ψ2(k). (9)

Step l: Based on the previous steps predictions ŷ(k + 1|k),
ŷ(k + 2|k), . . ., ŷ(k + l − 1|k), we define the l-step prediction
ŷ(k + 1|k), l = 1, 2, . . . , n − 1, the estimation of y(k + l) at the
k-th step as follows:

ŷ(k+ l|k) = ¯̂Θ
T
(k− n+ l+ 1)Ψl(k). (10)

We see that the prediction procedure is defined in such a way that
the l-step prediction is based the the predictions in previous steps.
The parameter estimates in output prediction are obtained from
the following update law

¯̂
Θ(k+ 1) = ¯̂Θ(k− n+ 2)−

ỹ(k+ 1|k)Ψ1(k)
1+ Ψ T1 (k)Ψ1(k)

¯̂
Θ(0) = 0[p+1], ỹ(k+ 1|k) = ŷ(k+ 1|k)− y(k+ 1). (11)

The following lemma will be used for stability analysis later.

Lemma 3. Consider the outputs prediction given in (8)–(10) with
parameter estimator defined in (11). Define the l-step prediction error
as ỹ(k+ l|k) = ŷ(k+ l|k)− y(k+ l), l = 1, 2, . . . , n− 1, then the
prediction errors satisfy ỹ(k+ l|k) = o[O[y(k+ l− 1)]]. In addition,
the parameter estimate ¯̂Θ(k) is globally bounded.

Proof. See Appendix. �
5. Adaptive control design

5.1. Control and parameter estimation

Using the predicted future outputs in Section 4, the noncausal
problem mentioned in Section 3 can be solved. It is noted in the
following control design that we estimate Θfg = g−1Θf and g−1
instead of Θf and g because the potential controller singularity
problem exists if the estimation of g appear in the denominator
of control law.
The adaptive control for system (1) is given as follows:

u(k) = −Θ̂Tfg(k)
n−1∑
i=1

Φfi(ŷ(k+ n− i|k))

− Θ̂Tfg(k)Φfn(y(k))+ ĝI(k)yd(k+ n) (12)

where Θ̂Tfg(k), ĝI(k) are the estimates of Θfg = g
−1Θf and g−1.

Substituting the adaptive control (12) into (6) which is equivalent
to (1), the following tracking error equation can be obtained:

e(k+ n) = y(k+ n)− yd(k+ n)

= gΘTfg
n∑
i=1

Φfi(y(k+ n− i))− gΘ̂Tfg(k)Φfn(y(k))

− gΘ̂Tfg(k)
n−1∑
i=1

Φfi(ŷ(k+ n− i|k))

+ gĝI(k)yd(k+ n)− gg−1yd(k+ n)
= −gΘ̃Tfg(k)Ψ (k+ n− 1)+ gg̃I(k)yd(k+ n)

− gβ(k+ n− 1) (13)

where Θ̃fg(k), g̃I(k), β(k) and Ψ (k) are defined as

Θ̃fg(k) = Θ̂fg(k)−Θfg , g̃I(k) = ĝI(k)− g−1

β(k+ n− 1) = Θ̂Tfg(k)
n−1∑
i=1

Φ̃fi(k+ n− i)

Ψ (k+ n− 1) =
n∑
i=1

Φfi(y(k+ n− i))

Φ̃fi(k+ n− i) = Φfi(ŷ(k+ n− i|k))− Φfi(y(k+ n− i)).

It is noted that in (13) there is an unknown control gain g ,
which will make parameter estimation difficult, because without
knowledge of the sign of g , we cannot decide to which direction
shall we update the parameter estimates. Thus, the discrete
Nussbaum gain is introduced into the update law to make it
insensitive to the control direction as follows:

ε(k) =
γ e(k)+ N(x(k))ψ(k)β(k− 1)

G(k)

Θ̂fg(k) = Θ̂fg(k− n)+ γ
N(x(k))
D(k)

Ψ (k− 1)ε(k)

ĝI(k) = ĝI(k− n)− γ
N(x(k))
D(k)

yd(k)ε(k)

1ψ(k) = ψ(k+ 1)− ψ(k) =
−N(x(k))β(k− 1)ε(k)

D(k)

1z(k) = z(k+ 1)− z(k) =
G(k)ε2(k)
D(k)

x(k) = z(k)+
ψ2(k)
2

, G(k) = 1+ |N(x(k))| (14)
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where

β(k− 1) = Θ̂Tfg(k− n)
n−1∑
i=1

Φ̃fi(k− i)

Ψ (k− 1) =
n∑
i=1

Φfi(y(k− i))

and the normalization term D(k) is defined as
D(k) = (1+ |ψ(k)|)(1+ |N3(x(k))|)

× (1+ ‖Ψ (k− 1)‖2 + y2d(k)+ β
2(k− 1)+ ε2(k))

and the initial estimates are chosen as Θ̂fg(j) = 0[p], ĝI(j) = 0,
j = 0,−1,−2,−n + 1, z(0) = ψ(0) = 0, ε(k) is introduced as
an augmented error and γ > 0 can be arbitrary positive constant,
N(x(k)) is the discrete Nussbaum gain defined in Lee and Narendra
(1986). From the definition of x(k) in (14), we see x(k) ≥ 0 and we
have

1x(k) = 1z(k)+
ψ2(k+ 1)

2
−
ψ2(k)
2

= 1z(k)+
1
2
[1ψ(k)(1ψ(k)+ 2ψ(k))]

=
G(k)ε2(k)
D(k)

+
N2(x(k))β2(k− 1)ε2(k)

2D2(k)

−
N(x(k))β(k− 1)ε(k)ψ(k)

D(k)
.

Noting the definition of D(k) in (14), we see that1x(k) is bounded,
such that the requirements of sequence x(k) in (3) are well
satisfied.

5.2. Stability analysis

In this subsection, the detailed stability analysis of the closed-
loop systemusing the proposed adaptive controlwill be given. First
of all, let us summarize the stability results when applying the
designed adaptive control to system (1).

Theorem 1. Consider the adaptive closed-loop system consisting
of system (1) under Assumption 1, control (12) with parameter
estimates adaptation law (14), predicted future outputs defined in
from (8) to (10) with parameter estimator (11). All the signals in
the closed-loop system are bounded and the tracking error e(k) will
converge to zero.

Proof. Substituting the error dynamics (13) into the augmented
error ε(k), we have

G(k)ε(k) = −γ gΘ̃Tfg(k− n)Ψ (k− 1)+ γ gg̃I(k− n)yd(k)

−γ gβ(k− 1)+ N(x(k))ψ(k)β(k− 1) (15)

from which it can be obtained that

γ Θ̃Tfg(k− n)Ψ (k− 1)− γ g̃I(k− n)yd(k)

= −
1
g
G(k)ε(k)− γ β(k− 1)+

1
g
N(x(k))ψ(k)β(k− 1). (16)

Consider a positive definite function V (k) as

V (k) =
n∑
j=1

‖Θ̃fg(k− n+ j)‖2 +
n∑
j=1

g̃I
2
(k− n+ j). (17)

By using (14) and (16) and noting that

1x(k) = 1z(k)+ ψ(k)1ψ(k)+
[1ψ(k)]2

2

|N(x(k))|[1ψ(k)]2 =
|N(x(k))|3β2(k− 1)ε2(k)

D2(k)
≤ 1z(k)
we have the difference of V (k) as follows:

1V (k) = V (k)− V (k− 1)

= [Θ̃fg(k)− Θ̃fg(k− n)]T[Θ̃fg(k)− Θ̃fg(k− n)]

+ 2Θ̃Tfg(k− n)[Θ̃fg(k)− Θ̃fg(k− n)]

+ (g̃I(k)− g̃I(k− n))2 + 2g̃I(k− n)(g̃I(k)− g̃I(k− n))

= γ 2
N2(x(k))(Ψ T(k− 1)Ψ (k− 1)+ y2d(k))

D2(k)
ε2(k)

+ 2N(x(k))
γ Θ̃Tfg(k− n)Ψ (k− 1)− γ g̃I(k− n)yd(k)

D(k)
ε(k)

≤ γ 2
G(k)ε2(k)
D(k)

− 2γ
N(x(k))β(k− 1)ε(k)

D(k)

−
2
g
N(x(k))

G(k)ε2(k)
D(k)

+
2
g
N(x(k))ψ(k)

N(x(k))β(k− 1)ε(k)
D(k)

≤ γ 21z(k)+ 2γ1ψ(k)−
2
g
N(x(k))

(
1z(k)

+ψ(k)1ψ(k)+
[1ψ(k)]2

2

)
+
1
|g|
|N(x(k))|[1ψ(k)]2

≤ c11z(k)+ 2γ1ψ(k)−
2
g
N(x(k))1x(k) (18)

where c1 = γ 2 + 1
|g| .

Noting 0 ≤ 1z(k) ≤ 1, 0 ≤ 1ψ(k) < 1 and x(k) =
z(k) + ψ2(k)

2 , then taking summation on both hand sides of (18)
results

V (k) ≤ −
2
g

k∑
k′=0

N(x(k′))1x(k′)+ c1z(k′)+ 2γψ(k′)+ c2

≤ −
2
g

k∑
k′=0

N(x(k′))1x(k′)+ c3x(k′)+ c4 (19)

where c2, c3 and c4 are finite constants. Applying Lemma 2 to (19)
yields the boundedness of V (k), N(x(k)) and x(k), which further
implies the boundedness of Θ̂fg(k), ĝI(k), and G(k). Considering
that bothψ2(k) and z(k) are nonnegative, the boundedness of x(k)
implies the boundedness of both of them.
Notice that e(k) = y(k)−yd(k), where the reference signal yd(k)

is bounded and thuswe obtain y(k) = O[e(k)]. Noting the Lipschitz
condition of function Ψ (·), we have Ψ (k− 1) = O[e(k)].
Consider the boundedness of Θ̂fg(k) and Lemma 3.We have the

following equation for β(k):

‖β(k+ n− 1)‖ ≤ ‖Θ̂Tfg(k)‖
n−1∑
i=1

Li|ỹ(k+ n− i|k)|

= o[O[e(k+ n)]]. (20)

Next, let us sort the order between augmented error ε(k) and
tracking error e(k). According to the boundedness ofN(x(k)),ψ(k),
G(k) and equation (20), it is easy to establish that ε(k) = ce1e(k)+
ce2o[O[e(k)]] and ε(k) ∼ e(k), where ce1 and ce2 are some finite
constants. Moreover, due to the Lipschiz condition on the system
functions Ψ (·), one can easily obtain the relation between the
normalization term D(k) and augmented error ε(k) as D(k) =
O[ε2(k)].
Because z(k) is a nondecreasing positive sequence, the bound-

edness of z(k) implies that 1z(k) = G(k)ε2(k)
D(k) → 0. Noting

the boundedness of G(k) and applying the Key Technical Lemma
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in Goodwin and Sin (1984), we will conclude that ε(k) → 0 and
thus e(k) → 0 according to ε(k) = ce1e(k) + ce2o[O[e(k)]] and
then the boundedness of outputs is obvious. In addition, accord-
ing to Lemma 1, the bounedness of control u(k) and states ξi(k),
i = 1, 2, . . . , n is obtained. This complete the proof of the bound-
edness of all the closed-loop signals and the asymptotical tracking
performance. �

6. Simulation results

The following second order nonlinear plant will be used for
simulation.
ξ1(k) = a1ξ1(k) cos(ξ1(k))+ a2

ξ 21 (k)
1+ ξ 21 (k)

+ g1ξ2(k)

ξ2(k) = b1 sin(ξ1(k))+ b2
ξ 31 (k)
2+ ξ 21 (k)

+ g2u(k)+ d(k)

y(k) = ξ1(k)

(21)

where a1 = 0.2, a2 = 0.1, g1 = 1, b1 = 0.3, b2 = −0.6 and g2 =
∓0.2. The small additive term d(k) = 0.1 cos(0.1k) cos(ξ2(k))
can be regarded as an external disturbance. The control objective
is to make the output y(k) track the desired reference trajectory
yd(k) = 1.5 sin(π5 kT )+1.5 cos(

π
10kT ), T = 0.05. The initial system

states are ξ̄2(0) = [0, 1]T.
To illustrate that the proposed adaptive control is insensitive

to the control direction, the simulation is carried out twice in
such a way that the control is fixed while the simulated system
(21) assumes negative control gain parameter g2 in the first time
and assumes positive value in the second time. The simulation
results are presented in Figs. 1–3. Fig. 1 shows the output y(k)
and the reference signal yd(k). Fig. 2 illustrates the boundedness
of the control input u(k), the estimated parameters ĝI(k) and
Θ̂fg(k). Fig. 3 demonstrates the discrete Nussbaum gain N(x(k))
and the sequence ψ(k) and the augmented error ε(k). In the
simulation results, it is seen that the proposed adaptive control
works well with either negative or positive control gains, and
even in the presence of small additive disturbance and noise. It
demonstrates some degree of robustness of the proposed adaptive
control law. As illustrated in Fig. 3, to detect the control direction,
the discrete Nussbaum gain adapts by searching alternately in the
two directions: when the control gain g is negative, the sign of
N(x(k)) changes frompositive to negative and remains so for good;
when the control gain is positive, the sign ofN(x(k)) keeps positive
without any switch.

7. Conclusion

In this paper, a systematic control method has been developed
for global tracking of a class of nonlinear discrete-time systems
with unknown control directions. The system is transformed
to a class of NARMA system and the unknown control gains
are lumped together. A certainty equivalent control has been
constructed by using predicted future outputs. To counter the
effect of prediction error on closed-loop system stability, an
augmented error is introduced in the parameter estimator, in
which the discrete Nussbaum gain is also employed to make the
output-feedback adaptive control design feasible in the presence
of unknown control direction. The proposed adaptive control
guarantees the boundedness of all the closed-loop signals and
achieves asymptotical tracking performance.
Appendix

Let us introduce the notation of parameter estimation error
Θ̃f (k) = Θ̂f (k)−Θf , g̃(k) = ĝ(k)− g , and ¯̃Θ(k) = [Θ̃Tf (k), g̃(k)]

T.
Then, the one step prediction error, ỹ(k+1|k) = ŷ(k+1|k)−y(k+
1), can be written as

ỹ(k+ 1|k) = ¯̃Θ
T
(k− n+ 2)Ψ1(k) (22)

where Ψ1(k) is defined in (7). Define a Lyapunov function V (k) =∑k
j=k−n+2 ‖

¯̃
Θ(j)‖2. It is easy to derive that

V (k+ 1)− V (k) =
ỹ2(k+ 1|k)‖Ψ1(k)‖2

[1+ ‖Ψ1(k)‖2]2

− 2
ỹ(k+ 1|k) ¯̃Θ

T
(k− n+ 2)Ψ1(k)

1+ ‖Ψ1(k)‖2

≤
ỹ2(k+ 1|k)
1+ ‖Ψ1(k)‖2

− 2
ỹ2(k+ 1|k)
1+ ‖Ψ1(k)‖2

= −
ỹ2(k+ 1|k)
1+ ‖Ψ1(k)‖2

≤ 0 (23)

which yields the following results Goodwin and Sin (1984):

(i) ỹ(k+1|k)D0(k)
∈ L2[0,∞), D0(k) = [1+ ‖Ψ1(k)‖2]1/2

(ii) ¯̂Θ(k) is globally bounded.

According to Lemma 1 and Assumption 1, we have

Ψ1(k) = O[y(k)], D0(k) = O[y(k)]. (24)

Denote α(k) = ỹ(k+1|k)
D0(k)

. The conclusion (i) α(k) ∈ L2[0,∞) implies
α(k)→ 0 as k→∞. Then, we have

ỹ(k+ 1|k) = o[D0(k)] = o[O[y(k)]]. (25)

Now, let us analyze the two-step prediction error ỹ(k + 2|k) =
ŷ(k+ 2|k)− y(k+ 2). Define

y̌(k+ 2|k) = ŷ(k+ 2|k)− ŷ(k+ 2|k+ 1) (26)

then we have ỹ(k+ 2|k) = y̌(k+ 2|k)+ ỹ(k+ 2|k+ 1).
According to the prediction laws in (8) and (9), and the

boundedness of ¯̂Θ(k), we have

‖y̌(k+ 2|k)‖ = ‖ŷ(k+ 2|k)− ŷ(k+ 2|k+ 1)‖

= ‖Θ̂Tf (k− n+ 3)[Φf 1(ŷ(k+ 1|k))− Φf 1(y(k+ 1))]‖

≤ ‖Θ̂Tf (k− n+ 3)‖L1‖ỹ(k+ 1|k)‖ = o[O[y(k)]]. (27)

Furthermore, we have

ỹ(k+ 2|k) = y̌(k+ 2|k)+ ỹ(k+ 2|k+ 1)
= o[O[y(k)]] + o[O[y(k+ 1)]]
= o[O[y(k+ 1)]]. (28)

In the similar manner, let us analyze the l-step prediction, ỹ(k +
l|k) = ŷ(k + l|k) − y(k + l). For convenience, let us introduce the
following definition

y̌(k+ l|k) = ŷ(k+ l|k)− ŷ(k+ l|k+ 1) l = 3, 4, . . . , n− 1.

Consistently, the following derivation can be obtained
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(a) g2 = −0.2. (b) g2 = +0.2.

Fig. 1. Tracking performance.
(a) g2 = −0.2. (b) g2 = +0.2.

Fig. 2. Control and estimations.
(a) g2 = −0.2. (b) g2 = +0.2.

Fig. 3. Discrete Nussbaum gain N(x(k)) and ψ(k) and ε(k).
‖y̌(k+ l|k)‖ = ‖ŷ(k+ l|k)− ŷ(k+ l|k+ 1)‖

=

∥∥∥∥∥Θ̂Tf (k− n+ l+ 1)
×

{
l−2∑
i=1

[Φfi(ŷ(k+ l− i|k))− Φfi(ŷ(k+ l− i|k+ 1))

+ Φf (l−1)(ŷ(k+ 1|k))− Φf (l−1)(y(k+ 1))]

}∥∥∥∥∥
≤ ‖Θ̂f (k− n+ l+ 1)‖
×

{
l−2∑
i=1

‖Φfi(ŷ(k+ l− i|k))− Φfi(ŷ(k+ l− i|k+ 1))‖

+‖Φf (l−1)(ŷ(k+ 1|k))− Φf (l−1)(y(k+ 1))‖

}
≤ ‖Θ̂Tf (k− n+ l+ 1)‖

×

[
l−2∑
i=1

Li‖y̌(k+ l− i|k)‖ + Ll−1‖ỹ(k+ 1|k)‖

]
= o[O[y(k)]]. (29)
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To proceed, we have

ỹ(k+ l|k) = y̌(k+ l|k)+ ỹ(k+ l|k+ 1)
= o[O[y(k)]] + o[O[y(k+ l− 1)]]
= o[O[y(k+ l− 1)]]. (30)

This completes the proof. �
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