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Abstract
Electrical muscle stimulation demonstrates potential for restoring functional movement and
preventing muscle atrophy after spinal cord injury (SCI). Control systems used to optimize
delivery of electrical stimulation protocols depend upon mathematical models of paralyzed muscle
force outputs. While accurate, the Hill-Huxley-type model is very complex, making it difficult to
implement for real-time control. As an alternative, we propose a modified Wiener-Hammerstein
system to model the paralyzed skeletal muscle dynamics under electrical stimulus conditions.
Experimental data from the soleus muscles of individuals with SCI was used to quantify the model
performance. It is shown that the proposed Wiener-Hammerstein system is at least comparable to
the Hill-Huxley-type model. On the other hand, the proposed system involves a much smaller
number of unknown coefficients. This has substantial advantages in identification algorithm
analysis and implementation including computational complexity, convergence and also in real
time model implementation for control purposes.

Keywords
system identification; nonlinear systems; wiener-hammerstein systems; medical applications

1 Introduction
After spinal cord injury (SCI), the loss of volitional muscle activity triggers a range of
deleterious adaptations. Muscle cross-sectional area declines by as much as 45% in the first
6 weeks after injury, with further additional atrophy occurring for at least 6 months [1].
Muscle atrophy impairs weight distribution over bony prominences, predisposing
individuals with SCI to pressure ulcers which is potentially a life-threatening secondary
complication [2]. The diminution of muscular loading through the skeleton precipitates
severe osteoporosis in paralyzed limbs. The lifetime fracture risk for individuals with SCI is
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twice the risk experienced by the non-SCI population [3]. Rehabilitation interventions to
prevent post-SCI muscle atrophy and its sequel are an urgent need.

Electrical muscle stimulation after SCI is an effective method to induce muscle hypertrophy
[4], [7], fiber type and metabolic enzyme adaptations [5], [6], and improvements in torque
output and fatigue resistance [7],[8], [9]. New evidence suggests that an appropriate
longitudinal dose of muscular load can be an effective anti-osteoporosis countermeasure [7],
[10]. Electrical muscle stimulation also has potential utility for restoration of function in
tasks such as standing, reaching, and ambulating. The myriad applications for electrical
stimulation after SCI have created a demand for control systems that adjust stimulus
parameters in real-time to accommodate muscle output changes (potentiation, fatigue) or
inter-individual force production differences. To facilitate the refinement of control system
algorithms, mathematical models or system identification of muscle torque output are
continuously being developed to successfully adapt stimulus parameters to real-time muscle
output changes.

Over the last decades, researchers have developed a number of muscle models aimed at
modeling muscle force outputs [11], [12], [13]. The Hill-Huxley-type model [12] is the most
advanced and accurate model so far [14], [15]. Compared to other models, the Hill-Huxley-
type model represents muscle dynamics well. However, its complexity undermines its
usefulness for real time implementation for control. Identification of a Hill-Huxley-type
model is non-trivial because it is time-varying, high dimensional and nonlinear. Local
minimum versus global minimum is always a difficult issue for Hill-Huxley model
identification. Users must tune identification algorithm parameters patiently (including the
initial estimates) in order to have a good result.

Our goal is to develop a model that is comparable to or outperforms the Hill-Huxley-type
model, but at a much reduced complexity. We propose a modified Wiener-Hammerstein
system that resembles the Hill-Huxley-type structure but has a much smaller number of
unknown parameters and enjoys a high degree of accuracy. The purpose of this work is to
describe the modified Wiener-Hammerstein system for modeling paralyzed skeletal muscle
dynamics under electrical stimulation. By using actual soleus force data from 14 subjects
with SCI, we demonstrate that advantages of the proposed model over previous models are
theoretically justified and experimentally verified. Equally important is another
demonstration of the usefulness of block oriented nonlinear systems in a real world
application.

2 Problem statement and collection of SCI patient data
Fourteen subjects with chronic SCI provided written informed consent, as approved by the
University of Iowa Human Subjects Institutional Review Board. A detailed description of
the stimulation and force transducing system has been previously reported [7], [8], [9],
(Figure 1). In brief, a subject sat in a wheelchair with the knee and ankle positioned at ninety
degrees. The foot rested upon a rigid metal plate, and the ankle was secured with a soft cuff
and turnbuckle connectors. Padded straps over the knee and forefoot ensured isometric
conditions. The tibial nerve was supramaximally stimulated in the popliteal fossa using a
nerve probe and a custom computer-controlled constant-current stimulator. Stimulation was
controlled by digital pulses from a data-acquisition board (Metrabyte DAS 16F, Keithley
Instruments Inc., Cleveland, OH) housed in a microcomputer under custom software control.
The simulator was programmed to deliver a 10-pulse train (15 Hz train with duration
667ms). The electrical stimulation input and the corresponding muscle force output are
recorded as shown in Figure 2. 15 Hz stimulus is justified for two reasons. First, recall that
we design the muscle stimulus training protocol according to three main design criteria: to
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“overload” the muscle to induce hypertrophy, to repetitively stress the muscle to increase
endurance, and to exceed a dose of compressive load hypothesized to be osteogenic for the
distal tibia. In a previous study [23] of the torque frequency relationship of acutely and
chronically paralyzed muscle, it was reported that these goals can be achieved by 15 Hz
stimulus because muscular overload (60% of maximal torque) can be generated via 15 Hz
supra-maximal stimulus. Secondly, the purpose of the modeling is for the subsequent
subjects controlled exercise with work-rest cycles. It was reported that eliciting muscle
contractions with an 1 on 2 off work-rest cycle (Burke like protocol) with 15 Hz frequency
induces significant low-frequency fatigue without compromising neuromuscular
transmission [7].

The purpose of identification or modeling is to find a model which predicts the output based
on the input in some optimal ways.

3 Hill-Huxley-type model
Among several muscle models developed in the last two decades [11], [12], [13], the Hill-
Huxley-type model [12] is the most advanced and accurate one [14], [15]. The Hill-Huxley-
type nonlinear model describes the stimulated muscle behavior in the continuous time
domain by means of two time varying nonlinear differential equations (3.1) and (3.2)
connected nonlinearly

(3.1)

where 

(3.2)

In (3.1) and (3.2), ti is the time of i th stimulus input and CN is the (internal) variable, while
y(t) is the force output. Note that no actual input amplitude is directly used but only the
input time sequence ti is used. The effect of the input amplitude is automatically adjusted by
the parameters Ri and τc. The model incorporates six parameters A, R0, and Km as gains,
and τ1, τ2 and τc as the time constants as well as a sequence of coefficients ti’s that describe
the exact time and the interval of electrical pulse inputs.

Note there is a pure delay d between the electrical stimulus and the force response.
Rigorously speaking, the model is a function of delay. Practically, however, this delay is
usually first detected and then compensated in identification. Therefore, the delay does not
explicitly appear in the model.

4 Modified Wiener-Hammerstein system
For easy implementation of digital computers and equipments, our model is in the discrete
time domain. The input u(kT ) is the electrical stimulus (in volts) at time kT where T = 0.2
ms is the sampling interval and the output y(kT ) is the muscle force at time kT.

The proposed modified Wiener-Hammerstein system is shown in Figure 3(a) with the
nonlinearity w = f (v) denoted by , where B and A are unknown parameters which vary
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for each individual subject. The internal signals v(kT ) and w(kT ) are unavailable for
identification purpose.

The model in Figure 3 is expressed in terms of z-transform which can be written
equivalently as

(4.1)

(4.2)

While the parameters B and A in the nonlinear block are necessary to account for individual
variations, the overall system in Figure 3(a) is however unnecessary. Observe that the
nonlinear block in the middle of Figure 3(a) can be decomposed into three blocks, two
constant gains and a known nonlinearity, as shown in Figure 3(b). Further, the gains B and
A/B can be absorbed by the linear systems, which results in the system in Figure 3(c), where
a2 = a0B and . This normalization process greatly simplifies the identification
problem, reducing the number of unknown parameters from six to four. It is important to
comment that the system in Figure 3(c) is identical to the system in Figure 3(a) from input to
output point of view, though the complexity is greatly reduced.

So far, the model is a standard Wiener-Hammerstein system [17], [18], [20], [19], [21], [22]
with four unknown parameters. From the actual input and output response shown in Figure
2, it is obvious that the output drops exponentially when the input stimulus is no longer
present. The decrease of the output in this region can be well modeled by a first order linear
system with zero input. This observation can be incorporated into the choice of a1. To this
end, we set

(4.3)

where tlast is the end time of the last input pulse, 1/15(sec) is the time interval between two
pulses and d is the delay between the input and output which was detected before
identification as done in the Hill-Huxley-type model case. The idea behind this choice of a1
is that a new input pulse should have arrived at τ = tlast + 1/15 + 2d if the input stimulus
continues. If the input stimulus stops, the model should be switched to reflect exponential
drop y((k + 1)T ) = b1y(kT ) as shown in Figure 2. This is no longer a standard Wiener-
Hammerstein mode but has a linear time varying block in which the pole a1 switches from a
non-zero value to zero after input stops. We call this model a modified Wiener-Hammerstein
system.

We comment that applications of the block oriented nonlinear systems including
Hammerstein and Wiener models for skeletal muscle modeling are not new and have been
proposed [13,14,16]. In [16], a Hammerstein model was suggested which was simple but the
performance was not satisfactory. In [13] and later in [14], a time-varying Wiener-
Hammerstein model was proposed. It contains two systems inter-connected by a nonlinear
static block. To accommodate individual variations, the nonlinear static block has two
unknown parameters. Unlike the model proposed in this paper, however, there two
parameters can not be absorbed by dynamic systems resulting in a larger number of
unknown parameters. Further, to compensate exponential drops of the output in the absence
of the input, a nonlinear time varying equation with three unknown parameters was used in
[13] while the proposed model in this paper uses a switched linear system with two
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parameters. In summary, the model of [13] has a similar complexity as the Hill-Huxley
model including the same number of unknown parameters and thus, suffers from the same
complexity related issues in identification. The model proposed in this paper, that can be
viewed as an improvement over the model of [13], has a much reduced complexity and at
the same time, outperforms the Hill-Huxley model which is well documented [15] to
perform better than or at least to be comparable with the model of [13].

5 Identification algorithm and convergence analysis
Let θ = [a1, a2, b1, b2] denote the unknown system parameters of the modified Wiener-
Hammerstein system and &thetas;̂ = [â1, â2, b̂1, b̂2] its estimate. Let ŷ(kT ) be the predicted
output calculated using the estimates

(5.4)

where z is the z-transform, i.e., z−1y(kT ) = y((k −1)T ), and  is the known
nonlinearity. Further, from the stability and physiology constraints, we may set 0 < a1, a2, b1
≤ 1 and 0 < b2. Now the identification problem is to find the best parameter set

 which minimizes the sum of squared errors between the actual output
y(kT ) and the predicted output ŷ (kT ) of the proposed model

(5.5)

subject to 0 < â1, b̂1 ≤ 1 and 0 < â2, b̂2, where y(kT ) is the actual force output.

Obviously, because (5.5) is nonlinear, local minimum versus global minimum is always an
issue. We solve this problem by utilizing the structure of the proposed model and then
design an identification algorithm which guarantees the global minimum. The idea is to
divide this 4-dimensional problem into an 1-dimensional and a 2-dimension problems in two
stages.

Let s be the minimum integer that satisfies sT ≥ τ. Suppose the values of â1 and â2 are given,
the internal signal

can be calculated, where ŵ depends on the choice of â1 and â2. Based on this internal signal
and the model ŷ((k + 1)T ) = b̂1ŷ(kT ) + b̂2 ŵ(kT ) or equivalently

the optimal b̂1 and b̂2 with given values of â1 and â2 are the solution of
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(5.6)

By taking derivative of the cost function with respect to b̂2 and setting it to zero yields

(5.7)

Now replacing b̂2 by g(b̂1), (5.6) becomes 1-dimensional,

(5.8)

for fixed â1 and â2. Since (5.8) is 1-dimensional, the global minimum can be easily detected
by plotting the cost function versus b̂1 ∈ (0, 1] as shown in Figure 4 for Subject 1 data.
Then, the optimal b̂2 is obtained from b̂1 as in (5.7). This process guarantees a unique

optimal pair  for given âi, i = 1, 2, and the minimization problem (5.5) of
four parameters becomes the minimization problem of two parameters

(5.9)

Similarly, the optimization (5.9) is 2-dimensional and the cost function J versus â1 and â2
can be easily plotted and visualized as shown in Figure 5 illustrated by Subject 1 data where
clearly the global minimum lies in the region a1 ∈ [0.95, 1] and a2 ∈ (0, 0.1]. Then any
nonlinear optimization algorithm can be use to find the global minimum locally as shown in
Figure 6. This demonstrates that though the original optimization is 4-dimensional and
nonlinear, the algorithm developed guarantees the global minimum. We now summarize the
algorithm as follows.

Identification algorithm: Given the data set u(kT ), y(kT ), k = 1, 2, ..., N.

Step 1: For each â1 and â2, find the optimal b̂1 of (5.8) or equivalently (5.6) substituting b̂2 =
g(b̂1). Calculate b̂2 from (5.7).

Step 2: Plot the cost function J(â1 â2, h(â1, â2)) versus 0 < â1, â2 ≤1. Locate the region in
which the global minimum lies.

Step 3: Apply any nonlinear optimization algorithm in this region to find the optimal â1 and
â2, and compute the corresponding b̂1 and b̂2.

Theorem 5.1 Consider the modified Wiener-Hammerstein model under the electrical
stimulus. Then, the above identification algorithm produces  that
achieve the global minimum of (5.5) provided that

Bai et al. Page 6

Automatica (Oxf). Author manuscript; available in PMC 2013 March 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5.10)

Proof: For 0 < â1 ≤ 1, â2 ≤ 1, ŵ (kT ) is always positive. The assumption (5.10) implies that
the solution b̂2 of (5.7) is unique and positive. The rest of the proof follows from the
discussion provided above.

We make two comments here.

• The assumption (5.10) is always satisfied in applications because b̂1 > 0, ŵ (kT ) >
0 for k ≤ s or ŵ (kT ) = 0 for k > s and the actual force output y(kT ) is dominantly
positive and only in a negligible region y(kT ) could be negative with a very small
magnitude as shown in Figure 2.

• The algorithm is designed to avoid local minimums at a price of efficiency. In the
case that the optimization (5.6) has only one (local and global) minimum which is
the case for all 14 subjects tested, solving the optimization (5.9) directly appears
more efficient. Of course, success in all 14 subjects does not mean the optimization
(5.6) always has only one minimum for all future subjects. For a practical
application, we suggest to solve (5.9) directly first. Only if the fitting result is
unsatisfactory that is an indication of local minimum, the above algorithm should
be applied to avoid trapping in a local minimum. In our work, we use the modified
MATLAB program ”fminsearchbnd” to solve the nonlinear optimization problem.
The MAT-LAB program ”fminsearchbnd” is Nelder-Mead simplex approach based
and is able to deal with simple upper-bound and lower-bound constraints.

6 Results and discussion
6.1 Comparison criteria

Comparisons are made against the Hill-Huxley-type nonlinear model, the most accurate
model available in the literature. We identified both the modified Wiener-Hammerstein
system and the Hill-Huxley-type model using soleus force data from subjects with SCI. The
modified Wiener-Hammerstein system is identified based on the algorithm presented above.
For identification of the Hill-Huxley-type nonlinear model, much care had to be taken to
avoid a local minimum. To this end, the estimates were first manually tuned until the model
output has a relatively good fit to the actual force output. Then the resultant parameters were
used as initial values for ”fminsearch”, which refines the fitness further. The output
of ”fminsearch” was further perturbed to generate a cluster of initial estimates which were
fed into ”fminsearch” again. The best solution was considered as the Hill-Huxley-type
model.

For comparison, the standard goodness-of-fit (gof)

(5.11)

and the normalized mean absolute error
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(5.12)

are used, where N is the total number of data length, and ŷ (kT ) and ȳ(kT ) are the
predicted force output by the model and the mean of the actual force output, respectively.

6.2 Fitting performance
Figure 7 and Figure 8 show the actual force outputs (solid), the predicted force outputs by
the modified Wiener-Hammerstein (dashed) system and the Hill-Huxley-type model (dash-
dotted), respectively, under 15 Hz electrical stimulus for fourteen subjects. The goodness-of-
fits (gof) and the normalized mean absolute errors (nmae) are shown in Table 1. Table 2
shows identified parameters of the modified Wiener-Hammerstein model and the Hill-
Huxley-type model. Though both the modified Wiener-Hammerstein model and the Hill-
Huxley-type model provide excellent results, the proposed modified Wiener-Hammerstein
system seems to perform slightly better for most subjects as shown in Figure 9 of the
standard boxplot, where the boxes have lines at the lower quartile, median and upper
quartile values. The whiskers are lines extending from each end of the box. Recall that the
higher the better for gof and the lower the better for nmae.

6.3 Discussion
The utility of control systems for electrical stimulus of paralyzed muscle depends in a large
measure on the fit capabilities of the underlying muscle model. Although the Hill Huxley
model is the most advanced and accurate model in the literature, it is not easy to identify and
is difficult to incorporate into real time control algorithms due to the number of parameters
involved [15]. A simpler model with comparable fit capabilities would have greater
usefulness in real patient exercise control applications. Compared to the Hill-Huxley-type
model, the proposed Wiener-Hammerstein system possesses the following attractive
properties.

• Simplicity: The proposed system consists of four parameters. On the other hand,
the Hill-Huxley-type model is described by six unknown parameters.

• Competitive performance: Both the modified Wiener-Hammerstein system and the
Hill-Huxley-type model provide good fitting performance. For all the fourteen
subjects, the proposed modified Wiener-Hammerstein model performs slightly
about 3% better in terms of goodness-of-fit (0.9398 vs. 0.9105) and 34% better in
terms of normalized mean absolute error (0.0184 vs. 0.0278). In general, it is safe
to say that the proposed modified Wiener-Hammerstein system is at least
comparable to the Hill-Huxley-type model in terms of performance but with a
smaller number of unknowns.

• Easy to Identify: The proposed modified Wiener-Hammerstein system together
with its identification algorithm developed has no problem of local minimum while
identification performance of the Hill-Huxley-type model relies heavily on the
initial estimates. Therefore, some time-consuming and very fine adjustments have
to be made in order to avoid the local minimum problem.

A key in achieving the global minimum is a decomposition step that decomposes
the original and higher dimensional optimization problem into an one dimensional
problem J(b̂1), 0 < b̂1 ≤ 1 and a two dimensional problem J(â1, â2), 0 < a ^1, a ^2 ≤
1. The decomposition is possible because of the structure of the proposed model.
Then, these one and two dimensional problems are solved by an exhaustive search.
Note that there is a huge difference between an exhaustive search of an one or two
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dimensional problem and an exhaustive search of a higher dimensional problem
simply because an one or two dimensional problem can be easily visualized. For
instance, for solving min J(b̂1), 0 < b̂1 ≤ 1, the objective function J (b̂1), 0 < b̂1 ≤ 1,
is plotted and the global minimum can be easily determined by a visual inspection.
A similar statement can be made about min J(â1, â2), 0 < â1, â2 ≤ 1. This
observation is however not true for a general optimization problem of higher
dimensions as the original problem or the one in the case of the Hill-Huxley model.
Further, for both the one dimensional J(b̂1) and two dimensional J (â1, â2)
problems, there is one and only one local (or global) minimum for all 14 subjects
tested. Though not a proof, it seems to suggest that practically these one and two
dimensional problems can be solved by any optimization algorithms and no
exhaustive search is needed.

• Easy to implement: The ultimate goal of the skeletal muscle model is to be
implemented in the control algorithm. The proposed modified Wiener-
Hammerstein system possesses a smaller number of unknown parameters and
requires much less computational expense. This makes the proposed system much
easier to incorporate into a control scheme.

7 Conclusions
The proposed modified Wiener-Hammerstein model performs well compared to the most
advanced and accurate Hill-Huxley-type model with a much smaller number of unknowns. It
is a very competitive alternative in modeling skeletal muscle dynamics and has great
potential to be incorporated into control systems, which we are working on currently. The
identification algorithms developed accordingly are very efficient for paralyzed skeletal
muscle modeling.
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Fig. 1.
Schematic representation of the limb fixation and force measurement system.
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Fig. 2.
Electrical stimulus input(blue solid) and corresponding output (red dashed) at 15 Hz
frequency.
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Fig. 3.
(a): Wiener-Hammerstein muscle model. (b): The middle nonlinear block of (a) can be
decomposed into three parts. (c): The simplified Wiener-Hammerstein muscle model.
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Fig. 4.
The cost function J2(b̂1) vs b̂1.
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Fig. 5.
The cost function J (a1, a2, h(a1, a2)) vs a1 and a2.
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Fig. 6.
The cost function J (a1, a2, h(a1, a2)) vs. a1 and a2. It is a zoomed-in version of Figure 5.
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Fig. 7.
The force outputs of the Wiener-Hammerstein system (red dashed), the Hill-Huxley-type
model (black dash-dotted), and the actual force output (blue solid) under 15Hz electrical
stimulus for subject 1 to 8.
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Fig. 8.
The force outputs of the Wiener-Hammerstein system (red dashed), the Hill-Huxley-type
model (black dash-dotted), and the actual force output (blue solid) under 15Hz electrical
stimulus for subject 9 to 14.
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Fig. 9.
Comparison between the proposed model and Hill-Huxley-type model fitting performance
in terms of (a) goodness-of-fit (gof) and (b) normalized mean absolute error (nmae).
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Table 1

Goodness-of-fit (gof) and normalized mean absolute error (nmae) of the proposed modified Wiener-
Hammerstein model and the Hill-Huxley-type model, respectively.

Subject proposed model Hill-Huxley-type model

gof nmae gof nmae

1 0.9506 1.70% 0.9477 1.88%

2 0.9517 1.42% 0.9518 1.33%

3 0.9375 1.71% 0.9151 2.29%

4 0.8946 3.75% 0.8747 4.57%

5 0.9566 1.20% 0.9228 2.31%

6 0.9583 1.36% 0.9172 2.34%

7 0.9324 2.05% 0.8388 4.82%

8 0.9319 1.88% 0.9247 2.43%

9 0.9611 0.89% 0.9207 2.19%

10 0.8996 3.34% 0.8757 4.48%

11 0.9572 1.42% 0.9005 3.11%

12 0.8948 3.15% 0.8315 4.84%

13 0.9672 0.82% 0.9658 1.02%

14 0.9644 1.00% 0.9607 1.24%

mean 0.9388 1.84% 0.9105 2.78%

Automatica (Oxf). Author manuscript; available in PMC 2013 March 03.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bai et al. Page 22

Ta
bl

e 
2

Id
en

tif
ie

d 
pa

ra
m

et
er

s 
of

 th
e 

pr
op

os
ed

 m
od

if
ie

d 
W

ie
ne

r-
H

am
m

er
st

ei
n 

m
od

el
 a

nd
 th

e 
H

ill
-H

ux
le

y-
ty

pe
 m

od
el

.

Su
bj

ec
t

pr
op

os
ed

 m
od

el
H

ill
-H

ux
le

y-
ty

pe
 m

od
el

a 1
a 2

b 1
b 2

A
τ 1

τ 2
τ c

K
m

R
0

1
0.

99
84

0.
00

90
0.

99
50

0.
03

56
45

.3
48

7
0.

02
43

0.
16

06
0.

01
26

0.
05

20
13

.3
25

1

2
0.

99
87

0.
00

41
0.

99
50

0.
05

38
45

.8
25

5
0.

02
09

0.
17

04
0.

01
44

0.
05

82
11

.1
04

0

3
0.

99
86

0.
00

42
0.

99
63

0.
03

93
38

.1
71

9
0.

05
37

0.
17

60
0.

01
29

0.
05

16
9.

82
50

4
0.

99
85

0.
00

96
0.

99
64

0.
02

83
45

.7
25

7
0.

05
93

0.
18

37
0.

01
11

0.
04

96
9.

33
85

5
0.

99
83

0.
00

75
0.

99
53

0.
02

92
35

.2
77

5
0.

05
06

0.
17

39
0.

01
12

0.
05

98
10

.2
67

1

6
0.

99
80

0.
04

95
0.

99
59

0.
01

56
36

.9
68

2
0.

06
29

0.
13

40
0.

01
06

0.
06

30
10

.7
14

1

7
0.

99
75

0.
01

04
0.

99
27

0.
01

91
24

.1
94

1
0.

06
63

0.
25

38
0.

00
71

0.
06

56
10

.0
86

7

8
0.

99
99

0.
03

60
0.

99
61

0.
01

68
37

.9
51

7
0.

04
39

0.
20

95
0.

01
15

0.
06

13
9.

06
18

9
0.

99
92

0.
01

83
0.

99
58

0.
03

41
49

.1
07

2
0.

05
30

0.
23

21
0.

01
04

0.
04

00
10

.0
30

3

10
1.

00
00

0.
04

36
0.

99
69

0.
00

71
18

.1
68

4
0.

06
50

0.
20

37
0.

00
83

0.
01

85
8.

09
68

11
0.

99
86

0.
01

40
0.

99
52

0.
02

14
26

.6
33

5
0.

06
08

0.
21

63
0.

00
98

0.
05

55
8.

71
64

12
0.

99
77

0.
01

51
0.

99
40

0.
02

82
31

.8
08

2
0.

06
37

0.
20

37
0.

00
83

0.
05

83
10

.6
44

4

13
0.

99
86

0.
00

85
0.

99
33

0.
06

81
44

.9
60

7
0.

01
80

0.
20

78
0.

01
14

0.
04

48
11

.0
86

9

14
0.

99
88

0.
01

58
0.

99
50

0.
04

43
54

.7
63

7
0.

02
34

0.
17

64
0.

01
33

0.
05

55
11

.1
72

7

Automatica (Oxf). Author manuscript; available in PMC 2013 March 03.


