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Abstract

We consider a plant the dynamics of which switch among a faofisystems. Each of these systems has a single stablebemuiipoint.
We assume that a constraint region for the state is assigriedi@ consider the problem of finding suitable limitationslom commutation
speed in order to avoid constraints violations, even in bseace of state measurements. We introduce the conceptsdaf and transition
dwell times which lead to the definition of a dwell time vectord dwell time graph (represented by a proper matrix), isgdy. The
former imposes a minimum permanence on a discrete modeebedonmuting, the latter imposes the minimum permanence adimihe
current mode before switching to a specific new one. Both Idiirek vector and dwell time graph, can be computed via setrdte
techniques. When the systems share a single equilibriure, stability can be assured as a special case. Finallyr uhdessumption of
affine dynamics, non-conservative values are achieved.
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1 Introduction and the latter aswitchedsystems.

It is well established that a fast switching among a family of It is interesting to notice that the stability under dwethé
stable dynamical systems may lead to instability. This phe- admits a Lyapunov characterization; however, in this case
nomenon is peculiar of plants in which the dynamics of the multiple Lyapunov functions must be introducedSome
family are quite different. Stability under arbitrary satiing results have very recently been proposed in the literature t
requires a “common feature”, beyond individual stability, compute lower bounds for the dwell time assuring stabil-
which is known to be the existence of a common Lyapunov ity [10][6][2]. In particular, some contributions aim at fin

function for all the dynamics [17,16], a quite restrictivene ing the optimal dwell time [8] [9]. In some cases, a restric-
dition. tion on the average commutation interval is more reason-

able than a rigid lower bound on the commutation interval.

Consequently, when this condition is not satisfied, it is of 1hiS idealed to the concept aferage dwell timéor which

interest to know under which restrictions on the switching computable lower bounds have been proposed [12]. Several
sequence stability is preserved: in particular, the conoep notions _of dwell time hav_e been discussed [13], stability re
dwell time plays a fundamental role [19,20]. The dwell time SUltS being proposed mainly by means of multiple Lyapunov
can be defined as the minimum time interval in which the functions [7]. From the existing surveys [21][2] and mono-
system is forced to stay in a given logic state, namely the 9aPhs [16][22] itis apparent that there are several ugsblv
smallest interval between two consecutive switchings and i Problems in the computation of proper lower bounds for the
is an important parameter for stability. The notion of dwell dwell time to assure stability or, quite harder, the computa
time is important both in the case of uncontrolled (exoge- tion Of its minimum value, typically possible only in spelcia
nous) switchings and in the case of switchings produced by @5€s [9]-
a supervisor [22]. According to a terminology previously
introduced [3], we refer to the former awitchingsystems  Inthis paper we propose a set-theoretic approach to save th
problem of establishing limits on the commutation sequence

I Corresponding author. Email: blanchini@uniud.it The work is characterized by two main features. First, we

2 A preliminary version of this paper was submitted to CDC— —
CCC, Shanghai, 2009 3 See [21] section 5.2.
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consider not only stability but also safety problem, which available in the literature involve Lyapunov functions &md

is the problem of keeping the state in an assigned regionvariantregions. However, measurements from the system are
and eventually making the trajectory convergence to some,necessary, often including accurate estimation of the stat
not necessarily unique, equilibrium point. This is a more On the contrary, we assungepriori stability and, in turn,
general problem, being switching stability a special case we achieve a device which does not require state estimation,
when the equilibrium is unique. Second, we do not consider since the inclusion in the proper “safe set” is assured by
a single dwell time but several values for the dwell time construction provided that the prescribed dwell time lgmit
which depend on the logic state of the system. We show thatare respected.

these values can be computed via set-theoretic methods and

in some cases non-conservative bounds can be evaluated. . L
2 Problem statement and basic definitions

In details, we consider a finite family of stable dynamics, .

each associated with its own equilibrium point, and we as- 2-1 Notation

sume that an admissible region is assigned. Then the main

results can be summarized as follows. Throughout the paper, script letters (suchzds%, ...) de-
note setsjnt«/ denotes the interior of se¥; R. denotes

e We introduce the concept of modal dwell time, leading to the extended set of non-negative real numbers, namely in-
a dwell time vectorand of transition dwell time, leading ~ cluding+co.
to thedwell time graphThe dwell time vector imposes, at
each time, a minimum permanence on the current discrete2.2 Problem statement
mode. The dwell time graph has weighted arcs so that the
corresponding transitions are enabled only if the proper consider the switched dynamical system
time has elapsed.
e We show how dwell time vector and dwell time graph can X(t) = for (X(1)) (1)
be computed via set-theoretic methods. o® ’
e In the case of affine dynamics, the computation in-
volves polytopes. Necessary and sufficient conditions are
achieved to recover the largest region of initial states.
e Stability is faced as a special case in which the dynamics
share the same equilibrium.
e As an application, the switching limiter, namely a device
which avoids constraint violations without requiring stat
measurement, is proposed.

wherex(t) € R", o(-) is aswitching signalnamely a piece-
wise constant function assuming value in a finite3et N,
and f;, fori € %, is an assigned function; without restric-
tion we assum& = {1,2,...,s} and o right-continuous. In
addition, the following basic assumption is introduced.

Assumption 1 For any i€ %, the functions jfare locally
Lipschitz and each dynamics, correspondingte i, admits
a single equilibrium poing;. Such an equilibrium is globally
1.1 Motivation uniformly asymptotically stable.

The main motivation of the work consists in the following Our goal is to find constraints on t_he switching sequence in
problem. Suppose that the switchings between the differentSuch a way thax(t) belongs to a given set for > 0. To
modes of a family of dynamical systems occur according this aim we introduce three types of dwell-time as follows.
to a switching sequencé. If such a switching system is

not guaranteed to be constraint-violation—free (or evan st Definition 2.1 Letlo, ty,tz, ... &, ..., WithO=to <t; <t2 <

ble) under arbitrary switching sequences, then a switching - -- <t < ..., denote the switching instants.

supervisor, namely a device which limits the switching se-

quence, may be designed (see Figure 1). Such a device basie We say thati(-) is subject to thelwell time T € R, if for

allke Z.
A tp1 —tk>T.
o swirchng | O x=f xX) —— e We say that/(+) is subject to thenodal dwell timet; €
LIMITER o R., associated with the j-th mode of system (1) if for alll
ke Z, such thato(t) = j fort € [tk,tk+1)

Fig. 1. The switching limiter. ot —te> 1)
cally replaces the original switching signalt) with a new
oneao(t) which prevents the system from being in danger.
The idea of a switching supervisor has already been pro-
posed [19] [20] [1]; such a device is important in the pres-
ence of constraints [5], in gain scheduling problems [18] or
to improve performance [15] [23] [6]. Most of the works 1~ = Tjj -

e We say thato(-) is subject to theransition dwell time
Tij € R, relatively to the commutation from j to i, if for
all k such thato(t) = j for t € [tx,tk+1) and o(ty1) =1



For reasons that will soon be clear, we admit that 4o
(as well astjj = 4-0), meaning in this case that no transition
is possible from mod¢ (and, respectively, that no transition
is possible from modg¢ to modei).

Now, consider a compact regiofi” C R" and suppose it
has to be regarded as an operating regiorxfor, namely a
hard constraint for the admissible trajectories. The foiim
guestion concerning dwell-time constraints is analyzed in
the paper.

Problem 2.1 Given a set2” C R", find lower bounds; for
Tj (or 7jj for ;) and proper sets of initial conditiong;,
i € Z, such that

= Xt)eZ, Vt>O0.

X(O) € %0(0) (2)

We will also consider a stronger version of the problem in
which a common initial condition set is required, namely,
2= Zp foralli.

To have a meaningful solution to the above problem, we
make the following assumption.

Assumption 2 The setZ” has a non-empty interior, it¢",
and, forallic , x €int.2Z".

To find a solution to Problem 2.1, we exploit the set-theaoreti
approach, for which the regions introduced next play a fun-
damental role.

Given a pointy € R", let @;(t,%p) denote the solution at
timet corresponding to theth dynamics and to the initial
conditionxg. Given a set¥ C R", let ®;(t,.”) denote the
set of solutions corresponding to theh dynamics and to
an initial condition in the set”:

q)I(tVy) = {¢|(t,y) BAS y}
Definition 2.2 The largest positively invariant sdbr the
systenx= f;j(x), denoted by?j, is the set of all initial states

Xo € 2 such that®j(t,x) € 27, for all t > 0, namely, the
largest set” for which®;(t,.) C 2 for all t.

In the paper the set

2= 2

jex
will play a fundamental role. Standard results for invatian
sets are reported next.
Lemma 2.1 The sets?j are closed (therefore such i&).

Lemma 2.2 The equilibrium points; are in the interior
of the forward propagation of the corresponding domain:
Xj € int®j(t, ;) forallt > 0.

Proof. We first note thak; € int#;. This is due to the fact
that, by assumptior; € int.2", and thatx; is uniformly
asymptotically stable. This proves the lemmatferQ. Since
fj(x) is locally Lipschitz and the solutions are bounded, for
any j we have uniqueness of the solution and continuity on
the initial (and final) data. The”? and ®;(t, &) are iso-
morphic. NowZ? is a closed set with a non—empty interior.
Then a poini(t) of a system trajectory is in the interior of
®j(t,Z) if and only if originates from a poink(0) in the
interior of &2. Thereforex; cannot be on the boundary.

Remark 2.1 Note that the assumption thaf(X) is locally
Lipschitz is crucial in the previous lemma. If we remove the
Lipschitz assumption, the syst&m —/[x| and the interval
[—1,1], provide a simple counterexample to the Lemma since
any trajectory originating in such an interval converges in
finite time to0.

An interesting property concerning the set$; and &,
which is a direct consequence of their definitions, is they th
are maximal sets of initial conditions for the permanence of
the trajectory inZ", as stated in the following result.

Proposition 2.1 The following implications hold.

e X(t) € 2"Vt > 0implies that X0) € ).
e X(t) e Z Vt>0andallg(0) € Z implies X0) € £.

According to Proposition 2.1 we cal(0) a feasible initial
conditionif x(0) € #; ) andsafe initial conditiorif x(0) €
Z; for all i.

3 Safe bounds evaluation for the modal and transition
dwell time

In this section basic set—theoretic techniques to provide
bounds for the modal and transition dwell times are dis-
cussed.

3.1 Properties of the modal dwell time

We begin by showing some some basic properties regarding
the dwell times and the invariant sets which can be exploited
to find bounds for the modal dwell time.

Definition 3.1 Systems (1) isafe under modal dwell times
if there exist a setZp C 2" and finite valuesy, 75,..., 12,
such that condition (2) is assured for all initial conditi®n
X(0) € Zo, any 0(0) € X and for any switching sequence
with modal dwell times; > 7" (for all i € Z).

To provide proper lower bounds for the modal dwell times
we introduce the quantity

T 2inf{r: &, ) c 2, forallt>1}. (3)



Note that, in general, the set appearing on the right handthatt; = « if Xj ¢ & for somei # j and only ifx; ¢ int ;.
side of (3) might be empty and consequently the definition This basically means that no switching to other modes is al-
might be meaningless. In fact, Definition 2.2 only assures lowed, which is a trivial occurrence, as it is equivalentite t
that the trajectories starting i remain in 2" but there system locked to thg-th dynamics. However, safety could

is no guarantee that they ultimately rea¢h It might well still be guaranteed by using the concept of transition dwell
happen that, for any initial condition i87;, x(t) ¢ & for time, as it is done in the next subsection.

arbitrary larget. In this case we sef, = +. With respect

to this matter, a result aSSUI’irT_g< 00 is the fO”OWing. 3.2 Properties of the transition dwell time

Proposition 3.1 7; < +eo if and only it € int2. In the previous subsection a theoretical framework has been

developed for the modal dwell time; here analogous defini-

Proof. (Sufficiencyf x; € int 5, then there exists a neigh- tions are introduced and similar results are proven.

borhood;; C &7. Sincex; is a uniformly stable equilibrium
point for thei-th dynamics, then there exigféxg) > 0 such

, , a = : Definition 3.2 System (1) issafe under transition dwell
:/g?lggjlir(&s?i?sebfﬁxhdfgrcia” t>1i(x). This means that the timesif there exist sets2; C 27, for all i € £ and finite

valuesri’j, foralli € %, j € 2 and i# j, such that condition

int2, then in view of Lemma 2.2, for all> tj(xo) ®;(t, #)) any switching sequence with transition dwell tintgs> 1}
includes points which do not belong 8, hence the condi- (foralli € %, j € Z and i# ).

tion defining the set on the right hand side of Equation (3)

cannot be satisfied for finite. o Note that this definition refers to several sets of feasitile i

B tial conditions, while Definition 3.1 considers a single re-
Proposition 3.2 If x; € int% for all i € Z, then system (1)  gion of safe initial conditions. The essential reason ig,tha

is safe under modal dwell times witfi = ;. as we have seen, under modal dwell time, the®&emust

be non-empty, being the set of admissible initial condition
Proof. Let Zp = £2. With this choice, any initial condi-  Conversely if we consider the transition dwell time the sit-
tion xp € Zp is such thatxg € &, for all i € %; in par- uation is different since the se? might be empty.

ticular xp € 90(0). This implies, by (3), that any switch-
ing sequence with modal dwell timas > 1; is such that Now, by introducing the quantity
X(ty) = ‘Da(o) (t1 —to, @gw)) € Z, hencex(ty) € ‘@U(l)' for

anyo (1) € Z. Repeating this reasoning, it is not difficult to Tj 2inf{t: ®jt, ) C P, foralt>1}, (4)
conclude the proof by induction on the switching instagpts
andtc_;. o the following results can be proven analogously to the proof

- _ of Propositions 3.1 and 3.2.
In the next theorem we show that the quantities defined by

(3) are indeed lower bounds and they are non-conservativepygposition 3.3 Tjj < +oo if and only ifx; € int2, for all
as long as the system is required to evolvedn for all ijes, i

feasible initial state(0) € @ﬁo). We remind that such a

condition is necessary, according to Proposition 3.1. Proposition 3.4 If X; e int#; foralli € %, j € Z, i # j, then
. . . system (1) is safe under transition dwell times wjth= Tij.
Theorem 3.1 The following conditions are equivalent:
Moreover, analogously to Theorem 3.1 the following theo-

i) x(t) € 2" forallx(0) € Zq), for all switching sequences rem can be proven.

subject to the modal dwell times and for all t > 0;
) 1 =1, forall j € 2. Theorem 3.2 The following conditions are equivalent
Proof. ii i). See the last part of the proof of Proposi- . o
tion 3 2”) =1 P P posi i) x(t) € 2" forallx(0) € Z4q), for all switching sequences

o subject to the transition dwell timeag and for all t > 0;
i) = ii). By contradiction, if there exist§ such thatrj < 1j, i) 5j > 7ij, foralli,j e 2.
inview of Lemma 2.2 and (3) there existe &7 andt* > T; _ _
such that®;(t*,x*) ¢ 2. Therefore, if #50 = 2j and 3.3 Relations among dwell times
x(0) = x* the evolution of the trajectory is not guaranteed to
remain in%Z forallt >t*. ¢ One may wonder if there is any relationship between the

_ modal and the transition dwell time bounds described in

The caser; = o means that before switching to another the previous subsections. The answer is provided by the
mode an infinite time-interval has to elapse in order to guar- following proposition the proof of which follows directly
antee safety for switching to any of the other modes. Note from the definitions of; and ;.



Proposition 3.5 The following equality holds for all jiTi=
max Tij.

A lower bound for the safe dwell time may also be defined
as
T=max Tj =max Tj
i j
and an immediate consequence of this definition is the fol-
lowing theorem, reported without proof, which holds when
we impose a single dwell time.

=m
i

Theorem 3.3 The following conditions are equivalent

i) x(t) € 2 for all x(0) € Z4(q), for all 0(0) € Z, for all
switching sequences subject to dwell timand for all
t>0;

i) T>T1.

4 The safe transition graph

Fig. 2. The regions and their equilibria

In general, the transition between modes based on the globals the shaded one. The equilibriuxp = 0 is inside all the

or modal dwell time bounds is not safe if some of the dwell
time bounds are infinite. Precisely:

e if T = o0, violations may occur for some transitions, no
matter how long we wait;

if Tj = oo, violations may occur for some transitions from
modej; thenj is an “unsafe mode”;

if Tij = o and the active mode i violations may occur
when switching to mode

A useful tool to check if a transition from one mode to

another is safe can be constructed by exploiting the notion

of transition weighted graph. L&b(%,.</) be an oriented
graph defined as follows. Its nodes correspond to the descret
modes, in simple words is the set of nodes. Two nodgs
andi are connected ifi; < . Then the set of arcs is defined

as B
o ={(i,)): Tj <o}
Each arch(i, j) from j to i, is associated with the weight

Tij < . Then, a simple representation of the transition graph
is the matrix

0 112... T1s

D1 0 ... Tz

(1>

S}

Tg T ... O

According to Proposition 3.3, af¢, j) exists (i.e. the corre-
sponding entry if finite), if and only if the largest invartan
set.Z; includes the equilibrium point;.

Example 4.1 As an example consider the situation of Fig-
ure 2. There are three regions, nameR (plain boundary),
5 (dashed boundary)??3 (dotted boundary). Regio®’

regions. The equilibriunx; is inside int#?; and outside#s.
The equilibriumxz is inside int%, and outside4?;. The
corresponding matri® is

0 Tip o

©=|11 0 T3,

T3 © 0

while the resulting graph is sketched in Figure 3.

Fig. 3. The graph corresponding to the scenario depictedguré&
2

The importance of the transition graph is evidenced in the
next definition and theorem.

Definition 4.1 Assume that transition dwell time bounds
given by the graph are imposed to the switching sequence.
System (1) igransitableéf for any o(0) € Zand X0) € Zq)

and any i€ Z, there exists a sequencg:) and a time t< o

such thato (t) =i, namely any i can be safely reached.



For any pair of nodes denote by
Tmin(i, j) the value of the shortest path from ngde nodei.
The following theorem holds.

Theorem 4.1 If the transition graph is connectédthen the
system is transitable. Furthermore, at mogin(i, j) time

is necessary to reach the discrete mode i from j from each
initial condition in &7;.

Proof. If X(0) € Z4(o) then the system is safe if no switching
occurs, namely, ib(t) = g(0), for all t. However, ifk is an
adjacent node, after timi;, the condition (4) is satisfied so
a switching to modé is safe. Since the graph is connected,

we can repeat the same reasoning and reach any discrete

mode safely. The boundgin(i, j) follow immediately.c

Remark 4.1 In principle, “safe transitions” could be possi-

ble even if the transition graph were not connected. Assume

that X is on the boundary of?; then Tj; = . However,

for some “special” initial conditions the state, on the mode
o = j could converge ta; on the “safe side” namely inside
Z; so that the commutation to i could be safe. It should be
noticed that the condition of the theorem is “almost neces-
sary” in the sense that if we admit the existence of infinites-
imal perturbation, therx; cannot be on the boundary o7,

for safe commutation.

4.1 Approximated solutions

The main problem with the exposed theory is the construc-
tion of the transition graph, which requires the determina-
tion of the largest invariant set%’; and the computation of
the valuesr;;. Clearly, approximated solutions are possible
if one determines for each dynamia proper invariant set
&, not necessarily maximal, including the corresponding
equilibrium pointx. Then lower bounds for the safe dwell
times can be found as

f 2inf{1: ®(t, ) c P, forallt>1}, (5)
where & = (; 2; for the modal dwell time and
T 2inf{t: ®jt,2) C P, forallt>1} (6)

for the transition dwell time. For the problem to be well
posed, one must assume either

x eint( 2, Vi, 7)
i

or .

X €intZj, Vi,j (8)
4 we remind that an oriented graph is connected for any jpair
there is an oriented path fromto i

As a matter of fact, in general, it_is not easy to check the
conditions (on the trajector®;(t, £%)) used in definitions

(5) and (6). A possible way to ease the task is to assign the
setsZ; as sub-level sets of Lyapunov functions:

D= 2 {x: W(x-%)<a},

whereW;(x— ;) is a positive definite smooth function such
that, for a propek-function® @

Wi (x—%) < —@(|lx—%])). ©)

In fact, under the assumptions (7) and (8), in view of (9),
one can find proper valugs, for alli € %, and 3, for all
€2, jeZ,i#],suchthatforali e X

P ={x: Wi(x-%)<B}c( 1 (10)
j

and, foralli,j e, i+#j

Zij ={x: Wj(x=X)) <Bij} C A (11)

Once these values are found, one can find b&lland %;;
with centersx and radiusp; and pij, respectively, such that

Zi={x: |x=x||<p}C %, foralliez (12)

and
Zij = {x: [Ix=xjll < pij} C Hij » 13)
forallieX,jex,i#]j.

It is not difficult to see that proper approximate bounds can
be found as follows.

Proposition 4.1 Assume that the conditions (7) holds true.
Then for all i€ Z there exist valueg; satisfying (10) and
there existp; satisfying (12). Then

. 0i—f
" ale)

is a safe safe lower bounds for the i-th modal dwell time.
Proof. It follows easily from the fact that outside; the
Lyapunov derivative i&;(x—X) < —@(pi), then

Wix(t) —x) < —@a(p)t + Wi(x(0) —x) < —@ (et + ai.

for all x(0) € «%. Hence, if X0) € o4 and o(t) =i for all
te [O,Ti), X(Ti) € %. o

Analogously, the following result can be proven.

5 a k-function @(&), £ > 0, is a strictly increasing continuous
function with ¢(0) = 0.



Proposition 4.2 Assume that the conditions (8) holds true. where theA;'s are Hurwitz matrices and thg's are given
Thenforallie Z, j € Z, i # |, there exist valuef;; satisfying vectors for alli € . Assume that the se¥” is a convex and

or(11), there exispjj satisfying (13) and compact polyhedron including the equilibrium vectors:
¢ _ A~ By X =—A"beint2 .
W= < -
" alpy)

Assume also that reset square invertible matrikesire as-

is a safe lower bounds for the transition dwell time from i signed for thej—to-i commutation. In this case, set8; are
to j. compact and convex and have non-empty interiors. There-

fore [4] each set¥y can be arbitrarily internally approxi-

mated by a positively invariant polyhedral $&. The com-

5 Reset Maps and mode-dependent constraints putation involve the Euler Auxiliary System (EAS)

An interesting generalization of the presented theoryés th X(k+1) = [I + TAX(K) + Tb;
case in which reset maps are assigned. Assume that the map
Wij (x), defined on?”, is assigned for thg—to transition g the technique proposed in [11]. According to [11], if
so that ifg(t) = j fort <t anda(t) =i for t >> 1, then Fx < g is the “plane description of?”, then the set? is
_ identified by the inequalities
X(t) =i (x(t )

We assume tha¥;; are continuous and invertible. Given a
compact se¥’, define the pre—image as

FIl + TAK(x—%) < g, k=0,1,....K

for some finiteK;. According to [4] this set is the largest
invariant for the (EAS) withinZ", it is positively invariant

¥ for the continuous-time system, and for O it converges

FH(E) = {x: Wi (0 e}
L .. to %,
which is also a compact set. Then the modal and transition

dwell times can be computed as follows Proposition 6.1 Assume that the necessary and sufficient

— A ] 1 conditionsx; € intZ (respectively; € int. %) are satisfied.

T =inf{T 2 @(t, 7)) c WyH(#), forallt>T1}. (14)  Thenthese conditions are met by suitable polyhedral approx
imating sets, precisely € int.?? (respectively; € int.%).

Tj £inf{1: ®j(t,2)) CW;Y(#), forallt>T1}, (15)

It is not difficult to see that the necessary and sufficient
conditions for the well posedness in this case are

Henceforth we assume, without restrictions, that are
polytopes and that; satisfy the above conditions. By using
this approximation, an algorithm to determine the optimal
values for the modal and transition dwell times and, there-

oo~ -1
Xj € IntW;*(2) fore, the transition graph, can be designed. The basic prob-
lem to be faced when determining the quantities defined in
and oy (3) and (4) is to generically compute
Xj € intW;~(#)
respectively. All the developed theory remains essentiall T=inf{1: ®t, &) C R 12 forallt> T}, (17)

unchanged.

for given polytopes? and 2 and a given reset matrii,
As a further extension of interest consider the case of mode—where
dependent constraints, namely o, 2) =M.

Let p,, k=1,2,...,vp» be the vertices of? and gyx <
rn, h=1,2,..., the inequalities representing. Then the

. ) following procedure computes
In this case the theory works as well with the only change

that the sets#; are the largest invariant sets .i#.

X(t) e Zi, if oft)=i

Procedure 6.1

6 Systems with affine dynamics 1) t:=0.
(2) Fork=1,2,...,v% (each vertex):
(a) For each h=1,2,...,v4 (each plane): compute

A case of practical interest in which “almost exact solu-
the value

tions” can be found, is that of systems with piecewise affine
dynamics . t
X(t) = AgX(t) + b (16) 6 :=min{t: g, R <1y, forallt> 1}



(b) If T< O thent:= 6. Remark 6.1 If we consider the convex hull of the ellipsoids

cony & this is obviously invariant for (18). The corre-
Procedure 6.1 produces, in principle, non—conservativeso  sponding induced function, positively homogeneous of the
tions since by means of polytopes we can arbitrarily approx- Second order is a composite quadratic function as proposed
imate the largest invariant set. However, the complexity of in [14]. Note that the one considered here is a special case

the description of the derived polytopic invariant sets lsan
arbitrarily large. As it is known, approximate solutionsica
be always found by considering ellipsoidal invariant sAts.
trivial solution is quite simple and sounds as follows. For
eachx we take an ellipsoid

&=1{x:(x—%)"R(x-%) <1} c &

which is invariant for the translated dynamics

9 (x—%) = A(x=%) = Ax+b

at (18)

since in general the generating ellipsoids do not need to be
separatedly invariant as in our case.

7 Stability under dwell time

A special case of the affine problem is that in which all the
systems share a common equilibrium poiiit=x= 0. In
this case safety is equivalent to stability. Consider ttstesy
According to the theory developed in the previous section,
conditions for the state of the system to be included in a

and the corresponding quadratic functions according to the given 0-symmetric polytopic set” can be established. With

results of Section 4.1. Precisely the transition frpto i is
enabled ifx(t) € &.

A less conservative solution can be found by resorting to
composite quadratic Lyapunov functions [14], by assoogati
different ellipsoids to different transitions.

&i={x:(x-%)"Rj(x—x) <1} c 2
and such thax; € int&j;.
The following proposition holds.

Proposition 6.2 Assume that for every i and4j; are found
which have the following properties

pl) they are invariant for (18);
p2) they are included inZ";

Then foro(0) =i and x0) € cony &jj, where “cony”

little additional effort, asymptotic stability can be assl
as well. Assume, without restrictions, th&; is also a 0-
symmetric polytope.

To ensure asymptotic stability it is sufficient to introduae
arbitrarily small contraction factor & A < 1 and define

T2inf{r: NP cAP, forallt>1}  (23)

and

T 2inf{t: NP c A, forallt>1}. (24)
The following theorem is the concluding result of the paper.
Its proof is conceptually easy but tedious, hence it is not
reported.

Theorem 7.1 Under the modal (resp. transition) dwell
times computed by means of (23) (resp. (24)) and by means
of Procedure 6.1 system (22) is asymptotically stable.

denotes the convex hull of the union, the system is safe under-1 Absolute, modal and transition dwell time: some com-

appropriate transition dwell times; < co.

The proof is guite trivial and omitted. Rather, let us coesid
an ellipsoidx' Q~1x < 1, with Q positive definite, a linear
systemx'= Ax, a pointz and let2 = {x: fTx<1, i=
1,...,vg}. The inclusion of the ellipsoid i2", its invari-
ance and the inclusion of the poinin the ellipsoid, can be
expressed as

fTQfi<1, i=1,..,vy (19)
AQ+QAT <0 (20)
Q7 z<1 (21)

It is easy to show that conditions (20)—(21) are conve®,n
and so findingQ > 0 is efficiently solvable.

ments

As a general remark note that seeking for a single dwell
time instead of modal or transition dwell times can be very
restrictive. We show this fact by means of a simple example.
Consider again the family (22) and suppose that

with a; = 1/4, a = 4 and y; and & positive, whose tra-
jectories are reported in Figure 4. The first dynamics are
associated withg?y, the “vertical” ellipse while the second
with Z2,, the “horizontal” one. Denote by,; the time re-
quired ford(t, 92;) to ultimately enter??, and1;, the time

—Hi

—3a;
25
1/a; —IJi‘| (29)



required ford(t, 42,) to ultimately enter#;. It is not dif-
ficult to see that if§; < &7, thent12 > 112, Thus taking a
common dwell time might be quite penalizing. On the other
hand, if > is small, namely the state associated with the
second dynamics rotates quickly but it is poorly damped, in
practice, to assure stability by means of a single dwell time
one needs to take~ 1,1.

(fast rotation — poor dampin

/21 A

1

Az
low rotation) P.
S
( 2 Fig. 6. Maximal invariant regions for the circuit in Figure 5
T
Denoting byx(t) = {i,_(t) VC(t)} the state variable, the
state equations are

Fig. 4. The trajectories for system (25).

o i 0 |-

1 [XR Y
C ~Ri.C R1.C

2112: X =

8 Example
for the configuration (a) and

We conclude the paper with the following numerical exam- Rea 1
ple. Consider the circuit depicted in Figure 5 whére- .y _ | T 7L
1mH,C = 1mF andV = 0.5V. The system can switch in two e 1 0
ways: between configuration (a) and configuration (b) and in c

each of these it can switch the resistance vaRje= 10Q, . ) . . .
R, — 1000, Ry = 100mQ, Ry = 10mQ. The following four for the switch configuration (b). The corresponding equilib

i i i rium points ar
configurations are possible. um points are

= 0
21 25 23 24 X12 = R(l)‘z X34 = [\71 .
(@) withR; | (a) withR, | (b) with R3 | (b) with R4

The largest invariant sets contained in the 8et= {|X| <
(a) 1} for the different modes are depicted in Figure 6 along
‘ with the steady state values (circles).

12 From the calculated regions and steady state values it turns
out thatx, belongs to every maximal invariant set (though
it is very close to the boundary &?,), whereas; does not
belong toZ,, as evidenced in the resulting transition matrix
R (time inmg

<l
|
i

—

O
|
I

(b) @ 0 0 020
19 0 2002

507 524 0 O
Fig. 5. The switching circuit used in Section 8. +00 1969 46 0
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