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Abstract

We consider a plant the dynamics of which switch among a family of systems. Each of these systems has a single stable equilibrium point.
We assume that a constraint region for the state is assigned and we consider the problem of finding suitable limitations onthe commutation
speed in order to avoid constraints violations, even in the absence of state measurements. We introduce the concepts of modal and transition
dwell times which lead to the definition of a dwell time vectorand dwell time graph (represented by a proper matrix), respectively. The
former imposes a minimum permanence on a discrete mode before commuting, the latter imposes the minimum permanence timeon the
current mode before switching to a specific new one. Both dwell time vector and dwell time graph, can be computed via set theoretic
techniques. When the systems share a single equilibrium state, stability can be assured as a special case. Finally, under the assumption of
affine dynamics, non-conservative values are achieved.
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1 Introduction

It is well established that a fast switching among a family of
stable dynamical systems may lead to instability. This phe-
nomenon is peculiar of plants in which the dynamics of the
family are quite different. Stability under arbitrary switching
requires a “common feature”, beyond individual stability,
which is known to be the existence of a common Lyapunov
function for all the dynamics [17,16], a quite restrictive con-
dition.

Consequently, when this condition is not satisfied, it is of
interest to know under which restrictions on the switching
sequence stability is preserved; in particular, the concept of
dwell time plays a fundamental role [19,20]. The dwell time
can be defined as the minimum time interval in which the
system is forced to stay in a given logic state, namely the
smallest interval between two consecutive switchings and it
is an important parameter for stability. The notion of dwell
time is important both in the case of uncontrolled (exoge-
nous) switchings and in the case of switchings produced by
a supervisor [22]. According to a terminology previously
introduced [3], we refer to the former asswitchingsystems

1 Corresponding author. Email: blanchini@uniud.it
2 A preliminary version of this paper was submitted to CDC–
CCC, Shanghai, 2009

and the latter asswitchedsystems.

It is interesting to notice that the stability under dwell time
admits a Lyapunov characterization; however, in this case
multiple Lyapunov functions must be introduced3 . Some
results have very recently been proposed in the literature to
compute lower bounds for the dwell time assuring stabil-
ity [10][6][2]. In particular, some contributions aim at find-
ing the optimal dwell time [8] [9]. In some cases, a restric-
tion on the average commutation interval is more reason-
able than a rigid lower bound on the commutation interval.
This idea led to the concept ofaverage dwell timefor which
computable lower bounds have been proposed [12]. Several
notions of dwell time have been discussed [13], stability re-
sults being proposed mainly by means of multiple Lyapunov
functions [7]. From the existing surveys [21][2] and mono-
graphs [16][22] it is apparent that there are several unsolved
problems in the computation of proper lower bounds for the
dwell time to assure stability or, quite harder, the computa-
tion of its minimum value, typically possible only in special
cases [9].

In this paper we propose a set-theoretic approach to solve the
problem of establishing limits on the commutation sequence.
The work is characterized by two main features. First, we

3 See [21] section 5.2.
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consider not only stability but also safety problem, which
is the problem of keeping the state in an assigned region
and eventually making the trajectory convergence to some,
not necessarily unique, equilibrium point. This is a more
general problem, being switching stability a special case
when the equilibrium is unique. Second, we do not consider
a single dwell time but several values for the dwell time
which depend on the logic state of the system. We show that
these values can be computed via set-theoretic methods and
in some cases non-conservative bounds can be evaluated.

In details, we consider a finite family of stable dynamics,
each associated with its own equilibrium point, and we as-
sume that an admissible region is assigned. Then the main
results can be summarized as follows.

• We introduce the concept of modal dwell time, leading to
a dwell time vectorand of transition dwell time, leading
to thedwell time graph. The dwell time vector imposes, at
each time, a minimum permanence on the current discrete
mode. The dwell time graph has weighted arcs so that the
corresponding transitions are enabled only if the proper
time has elapsed.

• We show how dwell time vector and dwell time graph can
be computed via set-theoretic methods.

• In the case of affine dynamics, the computation in-
volves polytopes. Necessary and sufficient conditions are
achieved to recover the largest region of initial states.

• Stability is faced as a special case in which the dynamics
share the same equilibrium.

• As an application, the switching limiter, namely a device
which avoids constraint violations without requiring state
measurement, is proposed.

1.1 Motivation

The main motivation of the work consists in the following
problem. Suppose that the switchings between the different
modes of a family of dynamical systems occur according
to a switching sequencêσ . If such a switching system is
not guaranteed to be constraint–violation–free (or even sta-
ble) under arbitrary switching sequences, then a switching
supervisor, namely a device which limits the switching se-
quence, may be designed (see Figure 1). Such a device basi-

σ σSWITCHING

LIMITER σx=f (x)

Fig. 1. The switching limiter.

cally replaces the original switching signalσ̂(t) with a new
oneσ(t) which prevents the system from being in danger.
The idea of a switching supervisor has already been pro-
posed [19] [20] [1]; such a device is important in the pres-
ence of constraints [5], in gain scheduling problems [18] or
to improve performance [15] [23] [6]. Most of the works

available in the literature involve Lyapunov functions andin-
variant regions. However, measurements from the system are
necessary, often including accurate estimation of the state.
On the contrary, we assumea-priori stability and, in turn,
we achieve a device which does not require state estimation,
since the inclusion in the proper “safe set” is assured by
construction provided that the prescribed dwell time limits
are respected.

2 Problem statement and basic definitions

2.1 Notation

Throughout the paper, script letters (such asA , B, . . . ) de-
note sets;intA denotes the interior of setA ; R+ denotes
the extended set of non-negative real numbers, namely in-
cluding+∞.

2.2 Problem statement

Consider the switched dynamical system

ẋ(t) = fσ(t)(x(t)) , (1)

wherex(t) ∈ R
n, σ(·) is aswitching signal, namely a piece-

wise constant function assuming value in a finite setΣ ⊂N,
and fi , for i ∈ Σ, is an assigned function; without restric-
tion we assumeΣ = {1,2, . . . ,s} andσ right-continuous. In
addition, the following basic assumption is introduced.

Assumption 1 For any i∈ Σ, the functions fi are locally
Lipschitz and each dynamics, corresponding toσ = i, admits
a single equilibrium point̄xi . Such an equilibrium is globally
uniformly asymptotically stable.

Our goal is to find constraints on the switching sequence in
such a way thatx(t) belongs to a given set for allt > 0. To
this aim we introduce three types of dwell-time as follows.

Definition 2.1 Let t0,t1,t2, . . . ,tk, . . . , with 0= t0 < t1 < t2 <
.. . < tk < .. ., denote the switching instants.

• We say thatσ(·) is subject to thedwell timeτ ∈ R+ if for
all k ∈ Z+

tk+1− tk ≥ τ .

• We say thatσ(·) is subject to themodal dwell timeτ j ∈
R+, associated with the j-th mode of system (1) if for all
k∈ Z+ such thatσ(t) = j for t ∈ [tk,tk+1)

tk+1− tk ≥ τ j .

• We say thatσ(·) is subject to thetransition dwell time
τi j ∈ R+, relatively to the commutation from j to i, if for
all k such thatσ(t) = j for t ∈ [tk,tk+1) andσ(tk+1) = i

tk+1− tk ≥ τi j .
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For reasons that will soon be clear, we admit thatτ j = +∞
(as well asτi j = +∞), meaning in this case that no transition
is possible from modej (and, respectively, that no transition
is possible from modej to modei).

Now, consider a compact regionX ⊂ R
n and suppose it

has to be regarded as an operating region forx(t), namely a
hard constraint for the admissible trajectories. The following
question concerning dwell–time constraints is analyzed in
the paper.

Problem 2.1 Given a setX ⊂R
n, find lower bounds̄τ j for

τ j (or τ̄i j for τi j ) and proper sets of initial conditionsXi ,
i ∈ Σ, such that

x(0) ∈ Xσ(0) ⇒ x(t) ∈ X , ∀ t > 0. (2)

We will also consider a stronger version of the problem in
which a common initial condition set is required, namely,
Xi = X0 for all i.

To have a meaningful solution to the above problem, we
make the following assumption.

Assumption 2 The setX has a non-empty interior, intX ,
and, for all i∈ Σ, x̄i ∈ intX .

To find a solution to Problem 2.1, we exploit the set-theoretic
approach, for which the regions introduced next play a fun-
damental role.

Given a pointx0 ∈ R
n, let Φi(t,x0) denote the solution at

time t corresponding to thei-th dynamics and to the initial
conditionx0. Given a setS ⊂ R

n, let Φi(t,S ) denote the
set of solutions corresponding to thei-th dynamics and to
an initial condition in the setS :

Φi(t,S ) = {Φi(t,y) : y∈ S } .

Definition 2.2 The largest positively invariant setfor the
systeṁx= f j (x), denoted byP j , is the set of all initial states
x0 ∈ X such thatΦ j (t,x0) ∈ X , for all t > 0, namely, the
largest setS for whichΦ j(t,S ) ⊆ X for all t.

In the paper the set

P =
⋂

j∈Σ
P j

will play a fundamental role. Standard results for invariant
sets are reported next.

Lemma 2.1 The setsP j are closed (therefore such isP).

Lemma 2.2 The equilibrium points̄x j are in the interior
of the forward propagation of the corresponding domain:
x̄ j ∈ intΦ j(t,P j) for all t ≥ 0.

Proof. We first note that ¯x j ∈ intP j . This is due to the fact
that, by assumption ¯x j ∈ intX , and that ¯x j is uniformly
asymptotically stable. This proves the lemma fort = 0. Since
f j(x) is locally Lipschitz and the solutions are bounded, for
any j we have uniqueness of the solution and continuity on
the initial (and final) data. ThenP andΦ j(t,P) are iso-
morphic. NowP is a closed set with a non–empty interior.
Then a pointx(t) of a system trajectory is in the interior of
Φ j(t,P) if and only if originates from a pointx(0) in the
interior of P. Therefore ¯x j cannot be on the boundary.⋄

Remark 2.1 Note that the assumption that fj(x) is locally
Lipschitz is crucial in the previous lemma. If we remove the
Lipschitz assumption, the systemẋ=−

√

|x| and the interval
[−1,1], provide a simple counterexample to the Lemma since
any trajectory originating in such an interval converges in
finite time to0.

An interesting property concerning the setsP j and P,
which is a direct consequence of their definitions, is that they
are maximal sets of initial conditions for the permanence of
the trajectory inX , as stated in the following result.

Proposition 2.1 The following implications hold.

• x(t) ∈ X ∀ t > 0 implies that x(0) ∈ Pσ(0).
• x(t) ∈ X ∀ t > 0 and all σ(0) ∈ Σ implies x(0) ∈ P.

According to Proposition 2.1 we callx(0) a feasible initial
conditionif x(0)∈Pσ(0) andsafe initial conditionif x(0)∈
Pi for all i.

3 Safe bounds evaluation for the modal and transition
dwell time

In this section basic set–theoretic techniques to provide
bounds for the modal and transition dwell times are dis-
cussed.

3.1 Properties of the modal dwell time

We begin by showing some some basic properties regarding
the dwell times and the invariant sets which can be exploited
to find bounds for the modal dwell time.

Definition 3.1 Systems (1) issafe under modal dwell times
if there exist a setX0 ⊂ X and finite valuesτ∗1 ,τ∗2 , . . . ,τ∗s ,
such that condition (2) is assured for all initial conditions
x(0) ∈ X0, any σ(0) ∈ Σ and for any switching sequence
with modal dwell timesτi ≥ τ∗i (for all i ∈ Σ).

To provide proper lower bounds for the modal dwell times
we introduce the quantity

τ̄i , inf{τ : Φi(t,Pi) ⊂ P, for all t ≥ τ} . (3)
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Note that, in general, the set appearing on the right hand
side of (3) might be empty and consequently the definition
might be meaningless. In fact, Definition 2.2 only assures
that the trajectories starting inPi remain inX but there
is no guarantee that they ultimately reachP. It might well
happen that, for any initial condition inPi , x(t) /∈ P for
arbitrary larget. In this case we set̄τi = +∞. With respect
to this matter, a result assurinḡτi < +∞ is the following.

Proposition 3.1 τ̄i < +∞ if and only if x̄i ∈ intP.

Proof. (Sufficiency) If x̄i ∈ intP, then there exists a neigh-
borhoodUx̄i ⊂P. Since ¯xi is a uniformly stable equilibrium
point for thei-th dynamics, then there exists̄ti(x0) > 0 such
that Φi(t,Pi) ∈ Ux̄i for all t > t̄i(x0). This means that the
value in(3) is bounded.

(Necessity). The necessity comes from the fact that if ¯xi 6∈
intP, then in view of Lemma 2.2, for allt > t̄i(x0) Φi(t,Pi)
includes points which do not belong toP, hence the condi-
tion defining the set on the right hand side of Equation (3)
cannot be satisfied for finiteτ. ⋄

Proposition 3.2 If x̄i ∈ intP for all i ∈ Σ, then system (1)
is safe under modal dwell times withτ∗i = τ̄i .

Proof. Let X0 = P. With this choice, any initial condi-
tion x0 ∈ X0 is such thatx0 ∈ Pi , for all i ∈ Σ; in par-
ticular x0 ∈ Pσ(0). This implies, by (3), that any switch-
ing sequence with modal dwell timesτi ≥ τ̄i is such that
x(t1) = Φσ(0)(t1− t0,Pσ(0)) ∈ P, hencex(t1) ∈ Pσ(1), for
anyσ(1) ∈ Σ. Repeating this reasoning, it is not difficult to
conclude the proof by induction on the switching instantstk
andtk−1. ⋄

In the next theorem we show that the quantities defined by
(3) are indeed lower bounds and they are non-conservative
as long as the system is required to evolve inX for all
feasible initial statesx(0) ∈ Pσ(0). We remind that such a
condition is necessary, according to Proposition 3.1.

Theorem 3.1 The following conditions are equivalent:

i) x(t)∈X for all x(0)∈Pσ(0), for all switching sequences
subject to the modal dwell timesτ j and for all t > 0;

ii) τ j ≥ τ̄ j , for all j ∈ Σ.

Proof. ii) ⇒ i). See the last part of the proof of Proposi-
tion 3.2.

i) ⇒ ii). By contradiction, if there existsj such thatτ j < τ̄ j ,
in view of Lemma 2.2 and (3) there existx∗ ∈P j andt∗ > τ j
such thatΦ j(t∗,x∗) /∈ P. Therefore, ifPσ(0) = P j and
x(0) = x∗ the evolution of the trajectory is not guaranteed to
remain inX for all t > t∗. ⋄

The caseτ̄ j = ∞ means that before switching to another
mode an infinite time-interval has to elapse in order to guar-
antee safety for switching to any of the other modes. Note

that τ̄ j = ∞ if x̄ j 6∈Pi for somei 6= j and only if x̄ j 6∈ intPi.
This basically means that no switching to other modes is al-
lowed, which is a trivial occurrence, as it is equivalent to the
system locked to thej-th dynamics. However, safety could
still be guaranteed by using the concept of transition dwell
time, as it is done in the next subsection.

3.2 Properties of the transition dwell time

In the previous subsection a theoretical framework has been
developed for the modal dwell time; here analogous defini-
tions are introduced and similar results are proven.

Definition 3.2 System (1) issafe under transition dwell
times if there exist setsXi ⊂ X , for all i ∈ Σ and finite
valuesτ∗i j , for all i ∈ Σ, j ∈ Σ and i 6= j, such that condition
(2) is assured for all initial conditions x(0) ∈Xσ(0) and for
any switching sequence with transition dwell timesτi j ≥ τ∗i j
(for all i ∈ Σ, j ∈ Σ and i 6= j).

Note that this definition refers to several sets of feasible ini-
tial conditions, while Definition 3.1 considers a single re-
gion of safe initial conditions. The essential reason is that,
as we have seen, under modal dwell time, the setP must
be non-empty, being the set of admissible initial condition.
Conversely if we consider the transition dwell time the sit-
uation is different since the setP might be empty.

Now, by introducing the quantity

τ̄i j , inf{τ : Φ j(t,P j) ⊆ Pi , for all t ≥ τ} , (4)

the following results can be proven analogously to the proof
of Propositions 3.1 and 3.2.

Proposition 3.3 τ̄i j < +∞ if and only if x̄ j ∈ intPi , for all
i, j ∈ Σ, i 6= j.

Proposition 3.4 If x̄ j ∈ intPi for all i ∈ Σ, j ∈ Σ, i 6= j, then
system (1) is safe under transition dwell times withτ∗i j = τ̄i j .

Moreover, analogously to Theorem 3.1 the following theo-
rem can be proven.

Theorem 3.2 The following conditions are equivalent

i) x(t)∈X for all x(0)∈Pσ(0), for all switching sequences
subject to the transition dwell timesτi j and for all t > 0;

ii) τi j ≥ τ̄i j , for all i, j ∈ Σ.

3.3 Relations among dwell times

One may wonder if there is any relationship between the
modal and the transition dwell time bounds described in
the previous subsections. The answer is provided by the
following proposition the proof of which follows directly
from the definitions of̄τi and τ̄i j .
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Proposition 3.5 The following equality holds for all j:̄τ j =
maxi τ̄i j .

A lower bound for the safe dwell time may also be defined
as

τ̄ = max
j

τ̄ j = max
i j

τ̄i j

and an immediate consequence of this definition is the fol-
lowing theorem, reported without proof, which holds when
we impose a single dwell time.

Theorem 3.3 The following conditions are equivalent

i) x(t) ∈ X for all x(0) ∈ Pσ(0), for all σ(0) ∈ Σ, for all
switching sequences subject to dwell timeτ and for all
t > 0;

ii) τ ≥ τ̄.

4 The safe transition graph

In general, the transition between modes based on the global
or modal dwell time bounds is not safe if some of the dwell
time bounds are infinite. Precisely:

• if τ̄ = ∞, violations may occur for some transitions, no
matter how long we wait;

• if τ̄ j = ∞, violations may occur for some transitions from
mode j; then j is an “unsafe mode”;

• if τ̄i j = ∞ and the active mode isj, violations may occur
when switching to modei.

A useful tool to check if a transition from one mode to
another is safe can be constructed by exploiting the notion
of transition weighted graph. LetG(Σ,A ) be an oriented
graph defined as follows. Its nodes correspond to the discrete
modes, in simple wordsΣ is the set of nodes. Two nodesj
andi are connected ifτi j < ∞. Then the set of arcs is defined
as

A =
{

(i, j) : τ̄i j < ∞
}

Each arch(i, j) from j to i, is associated with the weight
τi j < ∞. Then, a simple representation of the transition graph
is the matrix

Θ ,















0 τ̄12 . . . τ̄1s

τ̄21 0 . . . τ̄2s

: : . . . :

τ̄s1 τ̄s2 . . . 0















.

According to Proposition 3.3, arc(i, j) exists (i.e. the corre-
sponding entry if finite), if and only if the largest invariant
setPi includes the equilibrium point ¯x j .

Example 4.1 As an example consider the situation of Fig-
ure 2. There are three regions, namelyP1 (plain boundary),
P2 (dashed boundary),P3 (dotted boundary). RegionP

P

P

3

2

1

X

x

x
x

1

2

3

P

Fig. 2. The regions and their equilibria

is the shaded one. The equilibrium̄x1 = 0 is inside all the
regions. The equilibrium̄x2 is inside intP1 and outsideP3.
The equilibriumx̄3 is inside intP2 and outsideP1. The
corresponding matrixΘ is

Θ =









0 τ̄12 ∞

τ̄21 0 τ̄23

τ̄31 ∞ 0









,

while the resulting graph is sketched in Figure 3.

1 2

3
Fig. 3. The graph corresponding to the scenario depicted in Figure
2

The importance of the transition graph is evidenced in the
next definition and theorem.

Definition 4.1 Assume that transition dwell time bounds
given by the graph are imposed to the switching sequence.
System (1) istransitableif for anyσ(0)∈Σ and x(0)∈Pσ(0)

and any i∈ Σ, there exists a sequenceσ(·) and a time t< ∞
such thatσ(t) = i, namely any i can be safely reached.
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For any pair of nodes denote by

Tmin(i, j) the value of the shortest path from nodej to nodei.

The following theorem holds.

Theorem 4.1 If the transition graph is connected4 then the
system is transitable. Furthermore, at most Tmin(i, j) time
is necessary to reach the discrete mode i from j from each
initial condition in P j .

Proof. If x(0)∈Pσ(0) then the system is safe if no switching
occurs, namely, ifσ(t) = σ(0), for all t. However, ifk is an
adjacent node, after timēτk j, the condition (4) is satisfied so
a switching to modek is safe. Since the graph is connected,
we can repeat the same reasoning and reach any discrete
mode safely. The boundsTmin(i, j) follow immediately.⋄

Remark 4.1 In principle, “safe transitions” could be possi-
ble even if the transition graph were not connected. Assume
that x̄ j is on the boundary ofPi then τ̄i j = ∞. However,
for some “special” initial conditions the state, on the mode
σ = j could converge tōx j on the “safe side” namely inside
Pi so that the commutation to i could be safe. It should be
noticed that the condition of the theorem is “almost neces-
sary” in the sense that if we admit the existence of infinites-
imal perturbation, then̄x j cannot be on the boundary ofPi
for safe commutation.

4.1 Approximated solutions

The main problem with the exposed theory is the construc-
tion of the transition graph, which requires the determina-
tion of the largest invariant setsPi and the computation of
the valuesτ̄i j . Clearly, approximated solutions are possible
if one determines for each dynamici a proper invariant set
P̃i , not necessarily maximal, including the corresponding
equilibrium pointx̄i . Then lower bounds for the safe dwell
times can be found as

τ̃i , inf{τ : Φi(t,P̃i) ⊂ P̃, for all t ≥ τ}, (5)

whereP̃ =
⋂

j P̃ j for the modal dwell time and

τ̃i j , inf{τ : Φ j(t,P̃ j) ⊆ P̃i , for all t ≥ τ} (6)

for the transition dwell time. For the problem to be well
posed, one must assume either

x̄i ∈ int
⋂

j

P̃ j , ∀ i, (7)

or
x̄i ∈ intP̃ j , ∀ i, j (8)

4 we remind that an oriented graph is connected for any pairj , i
there is an oriented path fromj to i

As a matter of fact, in general, it is not easy to check the
conditions (on the trajectoryΦi(t,P̃i)) used in definitions
(5) and (6). A possible way to ease the task is to assign the
setsP̃i as sub-level sets of Lyapunov functions:

P̃i = Ai , {x : Ψi(x− x̄i) ≤ αi} ,

whereΨi(x− x̄i) is a positive definite smooth function such
that, for a properκ-function5 φi

Ψ̇i(x− x̄i) ≤−φi(‖x− x̄i‖) . (9)

In fact, under the assumptions (7) and (8), in view of (9),
one can find proper valuesβi, for all i ∈ Σ, andβi j , for all
i ∈ Σ, j ∈ Σ, i 6= j, such that for alli ∈ Σ

Bi = {x : Ψi(x− x̄i) ≤ βi} ⊂
⋂

j

}A j (10)

and, for alli, j ∈ Σ, i 6= j

Bi j = {x : Ψ j(x− x̄ j) ≤ βi j } ⊂ Ai (11)

Once these values are found, one can find ballsRi andRi j
with centers ¯xi and radiusρi andρi j , respectively, such that

Ri = {x : ‖x− x̄i‖ ≤ ρi} ⊂ Bi , for all i ∈ Σ (12)

and
Ri j = {x : ‖x− x̄ j‖ ≤ ρi j } ⊂ Bi j ,

for all i ∈ Σ , j ∈ Σ , i 6= j.
(13)

It is not difficult to see that proper approximate bounds can
be found as follows.

Proposition 4.1 Assume that the conditions (7) holds true.
Then for all i∈ Σ there exist valuesβi satisfying (10) and
there existρi satisfying (12). Then

τ̃i =
αi −βi

φi(ρi)

is a safe safe lower bounds for the i-th modal dwell time.
Proof. It follows easily from the fact that outsideBi the
Lyapunov derivative iṡΨi(x− x̄i) ≤−φi(ρi), then

Ψi(x(t)− x̄i) ≤−φi(ρi)t + Ψi(x(0)− x̄i) ≤−φi(ρi)t + αi .

for all x(0) ∈ Ai . Hence, if x(0) ∈ Ai and σ(t) = i for all
t ∈ [0, τ̃i), x(τ̃i) ∈ Bi . ⋄

Analogously, the following result can be proven.

5 a κ-function φ(ξ ), ξ ≥ 0, is a strictly increasing continuous
function with φ(0) = 0.
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Proposition 4.2 Assume that the conditions (8) holds true.
Then for all i∈Σ, j ∈Σ, i 6= j, there exist valuesβi j satisfying
or(11), there existρi j satisfying (13) and

τ̃i j =
α j −βi j

φ j(ρi j )
.

is a safe lower bounds for the transition dwell time from i
to j.

5 Reset Maps and mode–dependent constraints

An interesting generalization of the presented theory is the
case in which reset maps are assigned. Assume that the map
Ψi j (x), defined onX , is assigned for thej–to–i transition
so that ifσ(t) = j for t < tk andσ(t) = i for t >≥ tk then

x(t+k ) = Γi j (x(t
−
k ))

We assume thatΨi j are continuous and invertible. Given a
compact setC , define the pre–image as

Ψ−1
i j (C )

.
= {x : Ψi j (x) ∈ C }

which is also a compact set. Then the modal and transition
dwell times can be computed as follows

τ̄ j , inf{τ : Φ j (t,P j) ⊂ Ψ−1
i j (P), for all t ≥ τ} . (14)

τ̄i j , inf{τ : Φ j(t,P j) ⊆ Ψ−1
i j (Pi), for all t ≥ τ} , (15)

It is not difficult to see that the necessary and sufficient
conditions for the well posedness in this case are

x̄ j ∈ intΨ−1
i j (P)

and
x̄ j ∈ intΨ−1

i j (Pi)

respectively. All the developed theory remains essentially
unchanged.

As a further extension of interest consider the case of mode–
dependent constraints, namely

x(t) ∈ Xi , if σ(t) = i

In this case the theory works as well with the only change
that the setsPi are the largest invariant sets inXi .

6 Systems with affine dynamics

A case of practical interest in which “almost exact solu-
tions” can be found, is that of systems with piecewise affine
dynamics

ẋ(t) = Aσ(t)x(t)+bσ(t) (16)

where theAi ’s are Hurwitz matrices and thebi ’s are given
vectors for alli ∈ Σ. Assume that the setX is a convex and
compact polyhedron including the equilibrium vectors:

x̄i = −A−1
i bi ∈ intX .

Assume also that reset square invertible matricesRi j are as-
signed for thej–to–i commutation. In this case, setsP j are
compact and convex and have non-empty interiors. There-
fore [4] each setPk can be arbitrarily internally approxi-
mated by a positively invariant polyhedral setP̂ j . The com-
putation involve the Euler Auxiliary System (EAS)

x(k+1) = [I + τAi ]x(k)+ τbi

and the technique proposed in [11]. According to [11], if
Fx ≤ g is the “plane description ofX , then the setP̂i is
identified by the inequalities

F [I + τAi]
k(x− x̄i) ≤ g, k = 0,1, . . . ,Ki

for some finiteKi . According to [4] this set is the largest
invariant for the (EAS) withinX , it is positively invariant
for the continuous–time system, and forτ → 0 it converges
to P̂i .

Proposition 6.1 Assume that the necessary and sufficient
conditionsx̄i ∈ intP (respectivelȳxi ∈ intP j ) are satisfied.
Then these conditions are met by suitable polyhedral approx-
imating sets, preciselȳxi ∈ intP̂ (respectivelȳxi ∈ intP̂ j ).

Henceforth we assume, without restrictions, thatPi are
polytopes and that ¯xi satisfy the above conditions. By using
this approximation, an algorithm to determine the optimal
values for the modal and transition dwell times and, there-
fore, the transition graph, can be designed. The basic prob-
lem to be faced when determining the quantities defined in
(3) and (4) is to generically compute

τ̄ = inf{τ : Φ(t,P) ⊂ R−1
Q for all t ≥ τ} , (17)

for given polytopesP andQ and a given reset matrixR,
where

Φ(t,P) = eAt
P .

Let pk, k = 1,2, . . . ,νP be the vertices ofP and qhx ≤
rh, h = 1,2, . . . , the inequalities representingQ. Then the
following procedure computes̄τ .

Procedure 6.1

(1) τ̄ := 0.
(2) For k= 1,2, . . . ,νP (each vertex):

(a) For each h= 1,2, . . . ,νQ (each plane): compute
the value

θ := min{τ : qh ReAtvk ≤ rk, for all t ≥ τ}
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(b) If τ̄ < θ then τ̄ := θ .

Procedure 6.1 produces, in principle, non–conservative solu-
tions since by means of polytopes we can arbitrarily approx-
imate the largest invariant set. However, the complexity of
the description of the derived polytopic invariant sets canbe
arbitrarily large. As it is known, approximate solutions can
be always found by considering ellipsoidal invariant sets.A
trivial solution is quite simple and sounds as follows. For
each ¯xi we take an ellipsoid

Ei =
{

x : (x− x̄i)
TPi(x− x̄i) ≤ 1

}

⊂ X

which is invariant for thei translated dynamics

d
dt

(x− x̄i) = Ai(x− x̄i) = Aix+bi (18)

and the corresponding quadratic functions according to the
results of Section 4.1. Precisely the transition fromj to i is
enabled ifx(t) ∈ Ei .

A less conservative solution can be found by resorting to
composite quadratic Lyapunov functions [14], by associating
different ellipsoids to different transitions.

Ei j =
{

x : (x− x̄i)
TPi j (x− x̄i) ≤ 1

}

⊂ X

and such that ¯x j ∈ intEi j .

The following proposition holds.

Proposition 6.2 Assume that for every i and jEi j are found
which have the following properties

p1) they are invariant for (18);
p2) they are included inX ;

Then for σ(0) = i and x(0) ∈ convj Ei j , where “convj ”
denotes the convex hull of the union, the system is safe under
appropriate transition dwell times̄τi j < ∞.

The proof is quite trivial and omitted. Rather, let us consider
an ellipsoidxTQ−1x≤ 1, with Q positive definite, a linear
system ˙x = Ax, a pointz and letX = {x : f T

i x ≤ 1, i =
1, . . . ,νQ}. The inclusion of the ellipsoid inX , its invari-
ance and the inclusion of the pointz in the ellipsoid, can be
expressed as

f T
i Q fi ≤ 1, i = 1, . . . ,νQ (19)

AQ+QAT < 0 (20)
zTQ−1z< 1 (21)

It is easy to show that conditions (20)–(21) are convex inQ,
and so findingQ > 0 is efficiently solvable.

Remark 6.1 If we consider the convex hull of the ellipsoids
convi Ei j this is obviously invariant for (18). The corre-
sponding induced function, positively homogeneous of the
second order is a composite quadratic function as proposed
in [14]. Note that the one considered here is a special case
since in general the generating ellipsoids do not need to be
separatedly invariant as in our case.

7 Stability under dwell time

A special case of the affine problem is that in which all the
systems share a common equilibrium point ¯x j = x̄ = 0. In
this case safety is equivalent to stability. Consider the system

ẋ(t) = Aσ(t)x(t) . (22)

According to the theory developed in the previous section,
conditions for the state of the system to be included in a
given 0-symmetric polytopic setX can be established. With
little additional effort, asymptotic stability can be assured
as well. Assume, without restrictions, thatPi is also a 0-
symmetric polytope.

To ensure asymptotic stability it is sufficient to introducean
arbitrarily small contraction factor 0< λ < 1 and define

τ̄i , inf{τ : eAitPi ⊂ λP, for all t ≥ τ} (23)

and

τ̄i j , inf{τ : eA j tP j ⊂ λPi , for all t ≥ τ} . (24)

The following theorem is the concluding result of the paper.
Its proof is conceptually easy but tedious, hence it is not
reported.

Theorem 7.1 Under the modal (resp. transition) dwell
times computed by means of (23) (resp. (24)) and by means
of Procedure 6.1 system (22) is asymptotically stable.

7.1 Absolute, modal and transition dwell time: some com-
ments

As a general remark note that seeking for a single dwell
time instead of modal or transition dwell times can be very
restrictive. We show this fact by means of a simple example.
Consider again the family (22) and suppose that

Ai = ξi

[

−µi −ai

1/ai −µi

]

(25)

with a1 = 1/4, a2 = 4 and µi and ξi positive, whose tra-
jectories are reported in Figure 4. The first dynamics are
associated withP1, the “vertical” ellipse while the second
with P2, the “horizontal” one. Denote byτ21 the time re-
quired forΦ(t,P1) to ultimately enterP2 andτ12 the time
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required forΦ(t,P2) to ultimately enterP1. It is not dif-
ficult to see that ifξ1 ≪ ξ2, thenτ12 ≫ τ12. Thus taking a
common dwell time might be quite penalizing. On the other
hand, if µ2 is small, namely the state associated with the
second dynamics rotates quickly but it is poorly damped, in
practice, to assure stability by means of a single dwell time
one needs to takeτ ≈ τ21.

(fast rotation − poor damping)

(slow rotation)

P1

P2

A

A

2

1

Fig. 4. The trajectories for system (25).

8 Example

We conclude the paper with the following numerical exam-
ple. Consider the circuit depicted in Figure 5 whereL =
1mH,C= 1mF andV̄ = 0.5V. The system can switch in two
ways: between configuration (a) and configuration (b) and in
each of these it can switch the resistance value:R1 = 10Ω,
R2 = 100Ω, R3 = 100mΩ, R4 = 10mΩ. The following four
configurations are possible.

Σ1 Σ2 Σ3 Σ4

(a) with R1 (a) with R2 (b) with R3 (b) with R4

V
_ 12

R
C

R
34

L

(b)
(a)

(b)

(a)

Fig. 5. The switching circuit used in Section 8.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

i
L

v C

P
3

P
1

x
3,4

_

x
1

P
4

__

P
2

x
2

Fig. 6. Maximal invariant regions for the circuit in Figure 5.

Denoting byx(t) =
[

iL(t) vC(t)
]T

the state variable, the

state equations are

Σ1,2 : ẋ =





0 1
L

− 1
C − 1

R1,2C



x+





0
1

R1,2C



V̄

for the configuration (a) and

Σ3,4 : ẋ =

[

−
R3,4

L − 1
L

1
C 0

]

x+

[

1
L

0

]

V̄

for the switch configuration (b). The corresponding equilib-
rium points are

x̄1,2 =





V̄
R1,2

0



 x̄3,4 =

[

0

V̄

]

.

The largest invariant sets contained in the setX = {|x|∞ ≤
1} for the different modes are depicted in Figure 6 along
with the steady state values (circles).

From the calculated regions and steady state values it turns
out thatx̄2 belongs to every maximal invariant set (though
it is very close to the boundary ofP4), whereas ¯x1 does not
belong toP4, as evidenced in the resulting transition matrix
(time in ms)

Θ =















0 0 0.2 0

1.9 0 2.0 0.2

50.7 524 0 0

+∞ 1969 4.6 0














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4

3 2

1
0

1,950,7

0,2

2,0

4,6

0

524,0

0
1968,8

0,2

Fig. 7. Transitions graph for the circuit in Figure 5.

corresponding to the transition graph in Figure 7. The cor-
responding dwell–time vector is

[ ∞ 1968 4.6 0.2 ]

which means that no modal dwell time exist which assure
safe transition from the first mode, which is motivated by
the fact that ¯x1 6∈ P4.

9 Conclusion

The problem of a switching plant in the presence of con-
straints has been investigated. The dynamics involved are
assumed stable but they are possibly associated with dif-
ferent equilibria. We have proven that an efficient way to
meet the constraints is to compute the modal and the transi-
tion dwell time, which are less restrictive then the standard
global dwell time. We have presented a set-theoretic meth-
ods for the computation and we have shown that the tran-
sition dwell time leads to the concept of dwell-time graph
which allow safe transitions between modes. The switching
limiter is proposed as an application. In the case of sys-
tems with affine dynamics, a computation algorithm based
on polyhedral computation has been presented. Stability un-
der switching is analyzed as special case.

References

[1] D. Angeli and E. Mosca, “Lyapunov-based switching supervisory
control of nonlinear uncertain systems”,IEEE Trans. Automat.
Control, vol. 47, no. 3, pp. 500–505, 2002.

[2] P. Antsaklis and H. Lin, “Stability and stabilizabilityof switched
linear systems”IEEE Trans. Automat. Control, vol. 58, no. 2, 2009.

[3] F. Blanchini and C. Savorgnan, “Stabilizability of switched linear
systems does not imply the existence of convex Lyapunov functions”,
Automatica, vol. 44, no. 4, pp. 1166–1170, April 2008.

[4] F. Blanchini and S. Miani, “Constrained stabilization of continuous-
time linear systems”,Systems Control Lett., vol. 28, no. 2, pp. 95–
102, 1996.

[5] F. Blanchini, F. A. Pellegrino and L. Visentini, ”Control of
manipulators in a constrained workspace by means of linked invariant
set”, International Journal on Robust and Nonlinear Control, vol 14,
pp. 1185–1505, 2004.

[6] F. Blanchini and S. Miani, “Set theoretic methods in control”,
Birkhauser, Boston, 2008.

[7] M. S. Branicky, “Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems,”IEEE Trans. Automat.
Control, vol. 43, no. 4, pp. 475–482, 1998.

[8] P. Colaneri and J.C. Geromel “H and dwell time specification of
switched linear systems”, Proceedings of the 47th Conference on
decision and Control, Cancun, pp. 5318–5323, Dec. 2008,.

[9] G. Chesi, P. Colaneri, J.C. geromel, R. Middleton, and R.Shorten,
“On the minimum dwell time for linear switching systems”,
submitted.

[10] R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson,
“Perspectives and results on the stability and stabilizability of hybrid
systems,”Proceedings of the IEEE, vol. 88, no. 7, pp. 1069–1082,
2000.

[11] E. G. Gilbert and K. K. Tan, “Linear systems with state and control
constraints: the theory and the applications of the maximaloutput
admissible sets”,IEEE Trans. Automat Control, vol. 36, no. 9, pp.
1008–1020, 1991.

[12] J. J.P. Hespanha and A. S. Morse, “Stability of switching systems
with average dwell time”, Proceedings of the 38 CDC, pp. 2655–
2660, 1999.

[13] J.P. Hespanha “Uniform Stability of switched Linear Systems:
Extension of LaSalle’s Invariance Principle”,IEEE Trans. Automat
Control, vol. 49, no. 4, April 2004.

[14] T. Hu and Z. Lin, “Composite quadratic Lyapunov functions for
constrained control systems,”IEEE Trans. on Automat. Contr., Vol.48,
No. 3, pp.440-450, 2003.

[15] I.V. Kolmanovski and E.G. Gilbert. “Multimode regulators for
systems with state and control constraints and disturbanceinput”, In
A.S. Morse, editor,Lecture Notes in Control and Inform. Sci, 222,
Control using logic-based switching, pp. 104–117, Springer-Verlag
Ltd., London, 1997.

[16] D. Liberzon, Switching in System and Control, ser. Systems and
Control: Foundations & Applications. Boston: Birkhauser,2003.

[17] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,”IEEE Contr. Syst. Mag., vol. 19, no. 5, pp.
59–70, 1999.

[18] M. W. McConley, B.D. Appleby, M. A. Dahleh and E. Feron, “A
computationally efficient Lyapunov-based scheduling procedure for
control of nonlinear systems with stability guarantees”,IEEE Trans.
Automat Control, vol. 45, no. 1, pp. 33–49, 2000.

[19] A. S. Morse, “Supervisory control of families of linearset-point
controllers. I: Exact matching,”IEEE Trans. Automat. Control,
vol. 41, no. 10, pp. 1413–1431, 1996.

[20] ——, “Supervisory control of families of linear set-point controllers.
II: Robustness,”IEEE Trans. Automat. Control, vol. 42, no. 11, pp.
1500–1515, 1997.

[21] R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, “Stability Criteria
for Switched and Hybrid Systems”. SIAM review, vol. 49, no. 4, pp.
545–592, 2007.

[22] Z. Sun and S. Ge,Switched Linear Systems Control and Design,
ser. Communications and Control Engineering. London: Springer-
Verlag, 2005.

[23] G.F. Wredenhagen and P.R. Belanger, “Piecewise–linear LQ control
for systems with input constraint”,Automatica J. IFAC, vol. 30, no.
3, pp. 403–416, 1994.

10


