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Abstract

We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with
disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices
of the switched linear system into a convenient form satisfying certain properties. The method provides ultimate bounds
and invariant sets in the form of polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the
aforementioned transformation is obtained, and provides a new sufficient condition for practical stability. We show that the
transformation required by our method can easily be found in the well-known case where the subsystem matrices generate a
solvable Lie algebra, and we provide an algorithm to seek such transformation in the general case. An example comparing the
bounds obtained by the proposed method with those obtained from a common quadratic Lyapunov function computed via
linear matrix inequalities shows a clear advantage of the proposed method in some cases.
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1 INTRODUCTION

Switched systems are a special type of dynamical sys-
tems that combine a finite number of subsystems by
means of a switching rule [13,11]. Switched systems
constitute a convenient description for many systems
of practical importance, including many industrial pro-
cesses, aircraft control, control of mechanical systems
in general, and power systems. The stability and sta-
bilizability of switched systems is an area where con-
siderable research effort has been spent in recent years
[12,2,16,13]. Different stability problems for switched
systems arise depending on whether stability should
hold for every admissible switching signal (arbitrary
switching), for every switching signal within some class
(constrained switching) or for a specific switching sig-
nal (switching stabilization). This paper focuses on the
arbitrary switching case.

In general, most attention has been devoted to analysing
or ensuring the asymptotic stability of an equilibrium
point for the switched system [12,2,16,13]. However,
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there exist numerous reasons why asymptotic stability
may be prevented in a realistic setting. One such reason
is that switching may be employed to drive the state of
the switched system close to a point that is not an equi-
librium point of all subsystems [18]. Another reason is
that nonvanishing perturbations (also named persistent
disturbances) may act on the system [8, Ch. 9]. When
asymptotic stability is not possible, ensuring some type
of practical stability such as the ultimate boundedness
of the state trajectories becomes important.

Some results have been reported on the practical stabil-
ity of switched systems. In [17], a switched discrete-time
system is considered where switching is state-dependent
and the problem is that of finding controls that steer the
state from a set of initial states to a set of “safe” states.
References [21] and [20] address control design to en-
sure uniform ultimate boundedness for switched linear
systems with parametric uncertainties under arbitrary
switching by means of a common Lyapunov function ap-
proach. In [22], the authors address the design of both
the control and switching strategy to achieve uniform
ultimate boundedness of the system state. Most exist-
ing ultimate bound computation methods either make
use of level sets of a Lyapunov function or employ some
norm of the system state to compute the ultimate bound
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set. For switched linear systems, a quadratic Lyapunov
function common to all subsystems can be computed via
linear matrix inequalities (LMIs) in case it exists (see, for
example, Section 4.3 of [16] and the references therein).

In this paper, we address the computation of ultimate
bounds and invariant sets for switched continuous-time
linear systems. We derive a novel computation method
that is based on componentwise analysis and extends
previous results presented by the authors in [9], [5]. The
proposed method provides a new sufficient condition for
practical stability and relies on the existence of a trans-
formation that takes all matrices of the switched linear
system into a form satisfying certain properties. These
properties relate to the concept of Metzler matrices and
an associated matrix operation [see (1) in the Nota-
tion subsection below]. The use of these new tools and
comparison-type results based on these tools distinguish
the present paper from our previous results for non-
switched continuous-time systems [9,5] and, thus, con-
stitute one of this paper’s novel aspects. We show that
the transformation required by the proposed method can
be found in the well-known case where the subsystem
matrices of the switched linear system generate a solv-
able Lie algebra. More importantly, another contribu-
tion of the present paper is to provide an algorithm to
seek the desired transformation that is not restricted to
the solvable Lie algebra case. Note that obtaining the
required transformation in the switched-linear case is a
much more difficult task than in the non-switched case
treated in [9], [5], where the transformation was simply
a change of coordinates to the Jordan canonical form.

Advantages of the proposed method include its complete
systematicity and that it requires neither the computa-
tion of a Lyapunov function nor the use of a norm for
the system state. An interesting feature of the method
is that the ultimate bounds obtained are polyhedral if
the required transformation is real, and of a mixed poly-
hedral/ellipsoidal form if the transformation is complex.
To illustrate the results, we provide an example where
the matrices of the switched linear system do not gener-
ate a solvable Lie algebra. We show that the algorithm is
able to find the transformation required by our method,
which yields ultimate bounds that are tighter than those
obtained by means of a common quadratic Lyapunov
function computed via LMIs. A preliminary conference
version of parts of the results presented here, as well as
parallel results for discrete-time switched linear systems,
was published in [6].

The componentwise ultimate-bound computation
method of [9], [5] has been successfully applied to the
analysis of sampled-data systems with quantisation [4]
and to the development of new controller design meth-
ods [10]. Moreover, a novel application in fault tolerant
control systems has been recently reported in, e.g.,
[15,14] and [19]. In these papers, the method of [9] has
been employed to obtain invariant sets where the sys-

tem behaviour under “healthy” and “faulty” operation
can be confined; fault tolerance can be achieved when-
ever those sets are “separated” in some sense. Thus,
the results presented in the current paper have rele-
vance in fault tolerant control systems and we envisage
their application in the analysis and design of improved
strategies with fault tolerance guarantees.

Notation. R, R+, N0 and C denote the reals, nonneg-
ative reals, nonnegative integers and complex numbers,
respectively, and j the imaginary unit (j2 = −1). If
x(t) is a vector-valued function, then lim supt→∞ x(t)
denotes the vector obtained by taking lim supt→∞ of
each component of x(t), and similarly for ‘max’. |M |,
Re(M) and Im(M) denote the elementwise magnitude,
real part, and imaginary part, respectively, of a matrix or
vector M . The (i, k)-th entry of M is denoted Mi,k and
its k-th column (M):,k. If X,Y ∈ Rn×m, the expression
‘X � Y ’ denotes the set of componentwise inequalities
Xi,k ≤ Yi,k, i = 1, . . . , n, k = 1, . . . ,m, and similarly for
X � Y . Given matrices M`1 , M`2 , . . . , M`n , the nota-
tion

(∏r=`1
r=`n

Mr

)
denotes the product M`1M`2 . . .M`n .

Given a matrixM ∈ Cn×n, ρ(M) denotes its spectral ra-
dius, that is, the maximum magnitude of its eigenvalues.
A matrix M ∈ Rn×n is Metzler if Mi,k ≥ 0 for all i 6= k.
M is Metzler if and only if eMt � 0 for all t ≥ 0. Given an
arbitrary matrix N ∈ Cn×n, we define M(N) ∈ Rn×n
as the matrix whose entries satisfy

[M(N)]i,k =
{

Re{Ni,k} if i = k,
|Ni,k| if i 6= k.

(1)

Note thatM(N) is Metzler for every N ∈ Cn×n.

2 Main results

Consider the continuous-time switched system

ẋ(t) = Aσ(t)x(t) + Eσ(t)w(t), (2)

where x(t) ∈ Rn is the system state, w(t) ∈ Rp is a
perturbation, and

σ : R+ → {1, 2, . . . ,n} (3)

is the piecewise constant switching function, assumed to
have a finite number of discontinuities in every bounded
interval. The evolution of the perturbationw is unknown
but assumed to have a componentwise bound

|w(t)| � w, for all t ≥ 0, (4)

where w ∈ Rp+ is a known constant vector.

Theorem 1 below derives transient and ultimate bounds
on the switched continuous-time system state that are
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valid for any realization of the switching function σ and,
in addition, can take the componentwise form of the per-
turbation bound (4) into account. The proof of Theo-
rem 1 is a minor modification of that of Theorem 2 in
[6] and is omitted for the sake of conciseness.

Theorem 1 Consider the switched system (2) with
switching function (3) and componentwise perturbation
bound (4). Let V ∈ Cn×n be invertible and define

Λi , V −1AiV, Λ , max
i=1,...,n

M(Λi), (5)

z , max
i=1,2,...,n

[
max

w:|w|�w
|V −1Eiw|

]
(6)

whereM(·) is the operation defined in (1). Suppose that
Λ is Hurwitz and define

φ , max{|V −1x(0)|,−Λ−1z}, and η , φ+ Λ−1z. (7)

Then, the states of system (2)–(4) are bounded as

|V −1x(t)| � −Λ−1z + eΛtη, (8)

for all t ≥ 0, and ultimately bounded as

lim sup
t→∞

|V −1x(t)| � −Λ−1z. (9)

We next present two corollaries which provide, respec-
tively, componentwise bounds and an invariant set for
the states of the linear switched system (2)–(4).

Corollary 2 Under the conditions of Theorem 1,
the states of the linear switched continuous-time sys-
tem (2)–(4) are componentwise bounded as |x(t)| �
|V |(−Λ−1z + eΛtη) for all t ≥ 0, and componentwise
ultimately bounded as lim supt→∞ |x(t)| � |V |(−Λ−1z).

PROOF. Immediate from the bounds (8) and (9) and
the inequality |x(t)| � |V ||V −1x(t)|. 2

Corollary 3 Under the conditions of Theorem 1, the set
Sc , {x ∈ Rn : |V −1x| � −Λ−1z} is invariant for the
state trajectories of the linear switched continuous-time
system (2)–(4).

PROOF. Suppose x(0) ∈ Sc. Then |V −1x(0)| �
−Λ−1z and φ and η defined in (7) satisfy φ = −Λ−1z
and η = 0. Substituting the latter into (8) yields
|V −1x(t)| � −Λ−1z for all t ≥ 0; that is, x(t) ∈ Sc for
all t ≥ 0 and the result then follows. 2

Theorem 1 presents a systematic method to compute
transient and ultimate bounds for the continuous-time

switched system (2)–(4). These bounds were used to
obtain componentwise bounds (Corollary 2) and an in-
variant set (Corollary 3) for the switched system. The
method relies on a transformation V such that a function
[given by the operationM(·) defined in (1)] of the trans-
formed matrices V −1AiV , for i = 1, . . . ,n, is bounded
by a Metzler Hurwitz matrix. Note that the latter also
consitutes a novel sufficient condition for practical sta-
bility. Such a transformation can be found in some spe-
cial cases of interest; for example, when the matrices
A1, . . . , An of system (2) generate a solvable Lie alge-
bra [1]. The simplest such case is when n = 1, i.e.,
when switching becomes immaterial because the system
is comprised of only one subsystem. In this simple case,
it is straightforward to show that the current results are
consistent with those in [9] and [5] for non-switching sys-
tems, and that the hypotheses of Theorem 1 incur no
loss of generality. In the more general solvable Lie al-
gebra case, let V ∈ Cn×n be the transformation that
renders Λi = V −1AiV upper triangular for i = 1, . . . ,n
and consider Λ in (5). Since the Λi are all upper trian-
gular, then the eigenvalues of Λi are its main-diagonal
entries, and those of M(Λi) are the real parts of those
of Λi. Note then that Λ is Hurwitz if and only if the Λi
are all Hurwitz. Therefore, note that also in this case,
the hypotheses of Theorem 1 incur no loss of generality.

3 Systematic Bound Computation

The results of Section 2 require a matrix V so that some
conditions be satisfied. As we have shown, the existence
of such matrix V is ensured whenever the subsystem ma-
trices A1, . . . , An generate a solvable Lie algebra. How-
ever, in the general case such Lie algebra is most likely to
not be solvable, and no simple procedure for finding the
required V exists. In this section, we give a systematic
method to seek a matrix V that satisfies the hypotheses
of Theorem 1, i.e., such that Λ in (5) is Hurwitz.

We begin by explaining the rationale of the proposed
method. Suppose that A1, . . . , An are Hurwitz and gen-
erate a solvable Lie algebra. Since (5) is continuous on
the entries of Ai for a fixed V , and since the eigenval-
ues of a matrix are continuous on its entries, then if Λ is
Hurwitz, it will also be Hurwitz for small perturbations
of the entries of A1, . . . , An, even if the Lie algebra gen-
erated by the latter matrices will no longer be solvable,
i.e., even if A1, . . . , An will no longer be simultaneously
triangularizable. Given A1, . . . , An, for V ∈ Cn×n, de-
compose V −1AiV uniquely as follows

V −1AiV = T u
i (V ) + T l

i (V ), (10)

where T u
i (V ) is upper triangular and T l

i (V ) is strictly
lower triangular. Recalling (5), (1), and employing (10),
we have

Λ = max
i
M(T u

i (V )) + max
i
|T l
i (V )|. (11)
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If A1, . . . , An generate a solvable Lie algebra and V
achieves simultaneous triangularization, then T l

i (V ) = 0
for all i and, as we have established in Section 2, Λ
Hurwitz ⇔ Ai Hurwitz for all i. Hence the condition of
Theorem 1 is ensured because the subsystem matrices
Ai are necessarily stable. In the case where A1, . . . , An

are Hurwitz but do not generate a solvable Lie algebra,
no V can achieve simultaneous triangularization. How-
ever, V can be said to achieve “approximate” simulta-
neous triangularization if the entries of T l

i (V ) are small
enough, since in such case (10) shows that V −1AiV
will be close to T u

i (V ) and (11) that Λ will be close to
maxiM(T u

i ), so that Λ will be Hurwitz.

We next develop a method to seek V such that the en-
tries of T l

i (V ) are minimized in some appropriate way.
In the exact triangularization case there is no loss of gen-
erality in choosing V unitary, i.e. such that V ∗V = I. In
the approximate triangularization case, we will restrict
our search to a unitary V due to several numerical ad-
vantages that will become clear in the sequel. We next
introduce the method and subsequently show precisely
in what sense the entries of T l

i (V ) are minimized. Our
method is shown in pseudocode as Algorithm 1.

Algorithm 1: Iterative approximate triangularisation
Data: Ai ∈ Rn×n for i = 1, . . . ,n
begin Initialisation

A1
i , Ai, U1 , I, U = [ ] (empty), `← 0

repeat

`← `+ 1

v`1 ← argmin
v∈Cn−`+1

v∗v=1

n∑
i=1

(
v∗(A`i)

∗A`iv − |v∗A`iv|2
)

(12)

(U):,` ←

(
r=1∏
r=`

Ur

)
v`1 = U1U2 · · ·U`v`1 (13)

if ` < n then
Construct an orthonormal basis for Cn−`+1:

{v`1, . . . , v`n−`+1} (14)

Assign U`+1 ← [v`2| · · · |v`n−`+1], (15)

A`+1
i ← U∗`+1A

`
iU`+1. (16)

until ` = n;
Algorithm returns U .

The matrix U returned by Algorithm 1 is a candidate
V for Theorem 1. We next establish the relationship
between U and the minimization of the entries of T l

i (U).
We need a preliminary lemma, whose proof follows from
previous definitions and properties of unitary matrices.

Lemma 4 Let V1, V2 ∈ Cn×n satisfy V ∗1 V1 = V ∗2 V2 = I
and suppose that (V1):,k = (V2):,k for k = 1, . . . , `. Then,
for i = 1, . . . ,n and k = 1, . . . , `,

‖ (T l
i (V1)):,k ‖ = ‖ (T l

i (V2)):,k ‖. (17)

Lemma 4 shows that, for any unitary V ∈ Cn×n, the
norm of the k-th column of T l

i (V ), namely ‖ (T l
i (V )):,k ‖,

depends only on the first k columns of V . Consequently,
if vk denotes the k-th column of V , we can define, for
k = 1, . . . , n, the function

F ki (v1, . . . , vk) , ‖ (T l
i (V )):,k ‖

2. (18)

We are ready to state the main result of this section.

Theorem 5 Consider the matrix U returned by Algo-
rithm 1 and let uk denote the k-th column of U . Then,

i) U∗U = I.
ii) For k = 1, . . . , n, uk satisfies

n∑
i=1

F ki (u1, . . . , uk) = min
z

n∑
i=1

F ki (u1, . . . , uk−1, z),

(19)
where the minimum above is taken over all z ∈ Cn
such that z∗z = 1 and, if k > 1, also

z∗ur = 0, for r = 0, 1, . . . , k − 1. (20)

PROOF. i) Straightforward from previous definitions
and properties of unitary matrices. ii) From the defini-
tion of T l

i in (10), we can write

(T l
i (U)):,k =

[
0k×k 0

0 In−k

]
U∗Aiuk =

 0k×n

u∗k+1

...
u∗n

Aiuk.
(21)

From (13),

uk =

(
r=1∏
r=k

Ur

)
vk1 . (22)

Using (22), (15), and (16),

(T l
i (U)):,k =

 0k×(n−k+1)
w∗2
...

w∗n−k+1

Aki vk1 , (23)

where wr =
(∏s=k+1

s=r+k−1 Us

)
vr+k−1

1 , for r = 2, . . . , n −
k + 1. Define w1 , vk1 and let W be the ma-
trix whose columns are w1, . . . , wn−k+1. Note that
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W ∗W = WW ∗ = In−k+1 by i). Rewrite (23) as

(T l
i (U)):,k =

[
0k×1 0

0 In−k

]
W ∗Aki v

k
1

=


0(k−1)×(n−k+1)

In−k+1 −

[
1 0

0 0(n−k)×(n−k)

]W ∗Aki vk1
Operating on the result above yields

‖ (T l
i (U)):,k ‖

2 = (vk1 )∗(Aki )∗Aki v
k
1−|(vk1 )∗Aki v

k
1 |2, (24)

where we have used the fact that WW ∗ = In−k+1 and
w1 = vk1 . By (18), we also know that

‖ (T l
i (U)):,k ‖

2 = F ki (u1, . . . , uk−1, uk). (25)

Comparing (24) with (25), we note that the minimiza-
tion (12) is equivalent to minimizing the right-hand side
of (25) with respect to vk1 . Noting that u1, . . . , uk−1 do
not depend on vk1 , and recalling that uk and vk1 are re-
lated by (22), we then have

vk1 = argmin
v∗v=1

n∑
i=1

F ki

(
u1, . . . , uk−1,

(
r=1∏
r=k

Ur

)
v

)
.

(26)
By i), all vectors uk that satisfy (20) and u∗kuk = 1

are parameterised as
(∏r=1

r=k Ur

)
v with v∗v = 1, v ∈

Cn−k+1. Again, note that Ur, for r = 1, . . . , k do
not depend on uk. Therefore, (26) leads to uk =
argminz

∑n
i=1 F

k
i (u1, . . . , uk−1, z), where the minimiza-

tion is performed over z satisfying (20) and z∗z = 1,
whence (19) follows. 2

Theorem 5 i) shows that the matrix U returned by Algo-
rithm 1 is indeed unitary and Theorem 5 ii) establishes
the relationship between such matrix and the minimiza-
tion of the entries of T l

i (U), the strictly lower triangular
part of U−1AiU . This relationship can be expressed as
follows. Each column of U is selected so that the sum of
the squared norm of the corresponding column of T l

i (U)
is minimized, given the previous columns of U . Note that
in the solvable Lie algebra case Algorithm 1 is guaran-
teed to return a matrix U satisfying T l

i (U) = 0.

Combining the results of the previous sections, the pro-
posed systematic method for ultimate bound and invari-
ant set computation can be summarized as follows: given
the matrices A1, . . . , An of the switched linear system,
apply Algorithm 1 to seek the transformation U that
achieves simultaneous “approximate” triangularization;
letting V = U , check if V satisfies the conditions re-
quired by Theorem 1 and, if so, compute the ultimate
bounds and invariant sets using the explicit formulas
given in such theorem and its corollaries.

4 EXAMPLE

Consider the open-loop unstable system

ẋ(t)=Ax(t)+Bu(t), A=

[
0 1 0

2798 0 −19.6
0 0 −24.39

]
, B=

[
0
0

2.439

]
,

which models a magnetic ball levitation system, with
same parameters and states as in [7, Ch. 4.7], and lin-
earized around the same operating point. The state
components represent the ball vertical position, vertical
speed, and coil current, respectively. Assuming that the
full state is available for measurement, two different
stabilising feedback matrices are designed according to
different performance objectives: K1 = [ 10316 |195 |−49 ]
and K2 = [ 9048.8 |171.1 |−43.4 ]. Noise is assumed to af-
fect the measured state x̂ = x+w, with componentwise
bound |w(t)| � w = [0.1 |1 |1]T · 10−3, corresponding to
uncertainty of ±0.1 mm in position, ±1 mm/s in speed
and ±1 mA in coil current. Application of the feedback
control u = −Kix̂ yields, for i = 1, 2,

ẋ(t) = Aix(t) + Eiw(t), Ai = A+BKi, Ei = BKi,

Knowing whether the controller can switch between con-
trollers without affecting stability is desired, jointly with
an ultimate bound for the system state. Computation of
the unitary matrix U as in Section 3 yields

U =
[

0.0147 −0.0023 −0.9998
−0.7802 0.0021 −0.0189
−0.0046 −0.6253 0.0036

]
+ j

[−0.0118 0.0029 0
0.6252 −0.0046 0
0.0022 0.7803 0

]
,

for which maxi=1,2M(U−1AiU) is Hurwitz [see (5)].
This implies that the switched system ẋ = Aix is stable
for arbitrary switching. Application of Theorem 1 and
Corollary 2 with V = U yields

lim sup
t→∞

|V −1x(t)| � b ,
[

0.106
0.385
0.001

]
, and

lim sup
t→∞

|x(t)| �
[

4.1
107.9
385.2

]
· 10−3. (27)

Applying Corollary 3 yields that the set Sd = {x ∈ R3 :
|U−1x| � b} is invariant for the state trajectories of the
linear switched system under arbitrary switching.

We next compare the bound (27) with that obtained via
a common quadratic Lyapunov function (CQLF). We
follow a bounding procedure similar to that in [8, Ch. 9]
but adapted to switched systems. To compute a CQLF
for this system, we seek P = PT > 0 and Q = QT > 0
so that ATi P + PAi + Q < 0, for i = 1, 2. Solving such
LMIs via Matlab’s feasp function yields

P =
[

2.698 0.0669 −0.0087
∗ 0.0028 −0.0003
∗ ∗ 4.94·10−5

]
, Q =

[
4.3231 −0.018 −0.0264
∗ 0.0417 0.0007
∗ ∗ 0.0004

]
where the corresponding CQLF is V (x) = xTPx.
Straightforward calculations show that an attractive
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invariant set for this system is given by{
x ∈ R3 : xTPx ≤ 4λmax(P )p

λ2
min(Q)

≈ 117
}
, (28)

where p = maxi=1,2 max|w|�w ‖PEiw‖
2 = 7.34 · 10−4.

From (28) we can derive the following ultimate bound
on the state norm

lim sup
t→∞

‖x(t)‖ ≤ 2.86 · 103. (29)

Note that a componentwise bound several times larger
than (27) can still fit in the regions given by (29) or (28).

5 CONCLUSIONS

We have presented a novel componentwise ultimate
bound and invariant set computation method for
continuous-time switched linear systems with distur-
bances under arbitrary switching. The method requires
a transformation matrix satisfying certain properties.
We have also provided an algorithm that seeks such
transformation matrix. The matrix provided by the al-
gorithm is guaranteed to allow the application of our
method when the evolution matrices of the switching
subsystems either generate or are close, in some appro-
priate sense, to generating a solvable Lie algebra. In ad-
dition, we have presented a practical example for which
the bounds obtained by our method are tighter than
those obtained via a common quadratic Lyapunov func-
tion approach. One interesting question for future re-
search is the analysis of the applicability of our method,
e.g., determining whether our method can be applied
to a larger, smaller, or different class of switching lin-
ear systems than those which admit a CQLF. Another
future research question is determining in what cases
our method yields tighter bounds than those obtained
by other existing methods such as CQLF. As discussed,
our results apply to the arbitrary switching case and,
as such, they can be interpreted as worst-case results
over all possible switching sequences. In addition, the
switched system is assumed to be autonomous, that is,
without a control input. An important topic for future
work is then the design of suitable switching sequences
and/or control inputs to assign ultimate bounds or
obtain bounds that are minimal in some sense. Some
initial work along a related line has been reported in [3].
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