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Abstract

We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We
consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformu-
lated in terms of probabilistic constraints. It is shown that, for a suitable parametrization of the control policy, a wide class
of the resulting optimization problems are convex, or admit reasonable convex approximations.
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1 Introduction

This work stems from the attempt to address the optimal infinite-horizon constrained control of discrete-time stochas-
tic processes by a model predictive control strategy [1,14,12,13,15,29,2,4,7]. We focus on linear dynamical systems
driven by stochastic noise and a control input, and consider the problem of finding a control policy that minimizes
an expected cost function while simultaneously fulfilling constraints on the control input and on the state evolu-
tion. In general, no control policy exists that guarantees satisfaction of deterministic (hard) constraints over the
whole infinite horizon. One way to cope with this issue is to relax the constraints in terms of probabilistic (soft)
constraints [25,26]. This amounts to requiring that constraints will not be violated with sufficiently large probability
or, alternatively, that an expected reward for the fulfillment of the constraints is kept sufficiently large.

Two considerations lead to the reformulation of an infinite horizon problem in terms of subproblems of finite horizon
length. First, given any bounded set (e.g. a safe set), the state of a linear stochastic dynamical system is guaranteed
to exit the set at some time in the future with probability one whatever the control policy. Therefore, soft con-
straints may turn the original (infeasible) hard-constrained optimization problem into a feasible problem only if the
horizon length is finite. Second, even if the constraints are reformulated so that an admissible infinite-horizon policy
exists, the computation of such a policy is generally intractable. The aim of this note is to show that, for certain
parameterizations of the policy space [21,6,17] and the constraints, the resulting finite horizon optimization problem
is tractable.

An approach to infinite horizon constrained control problems that has proved successful in many applications is
model predictive control [22]. In model predictive control, at every time t, a finite-horizon approximation of the
infinite-horizon problem is solved but only the first control of the resulting policy is implemented. At the next time
t+1, a measurement of the state is taken, a new finite-horizon problem is formulated, the control policy is updated,
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and the process is repeated in a receding horizon fashion. Under time-invariance assumptions, the finite-horizon
optimal control problem is the same at all times, giving rise to a stationary optimal control policy that can be
computed offline.

Motivated by the previous considerations, here we study the convexity of certain stochastic finite-horizon control
problems with soft constraints. Convexity is central for the fast computation of the solution by way of numerical
procedures, hence convex formulations [8] or convex approximations [23,9] of the stochastic control problems are com-
monly sought. However, for many of the classes of problems considered here, tight convex approximations are usually
difficult to derive. One may argue that non-convex problems can be tackled by randomized algorithms [28,27,30].
However, randomized solutions are typically time-consuming and can only provide probabilistic guarantees. In par-
ticular, this is critical in the case where the system dynamics or the problem constraints are time-varying, since in
that case optimization must be performed in real-time.

Here we provide conditions for the convexity of chance constrained stochastic optimal control problems. We derive and
compare several explicit convex approximations of chance constraints for Gaussian noise processes and for polytopic
and ellipsoidal constraint functions. Finally, we establish conditions for the convexity of a class of expectation-type
constrains that includes standard integrated chance constraints [19,20] as a special case. For integrated chance
constrains on Gaussian processes with polytopic constraint functions, an explicit formulation of the optimization
problem is also derived.

The optimal constrained control problem we concentrate on is formulated in Section 2. A convenient parametrization
of the control policies and the convexity of the objective function are discussed at this stage. Next, two probabilistic
formulations of the constraints and conditions for the convexity of the space of admissible control policies are
discussed: Section 3 is dedicated to chance constraints, while Section 4 is dedicated to integrated chance constraints.
In Section 5, numerical simulations are reported to illustrate and discuss the results of the paper.

2 Problem statement

Let N = {1, 2, . . .} and N0 , N ∪ {0}. Consider the following dynamical model: for t ∈ N0,

x(t+ 1) = Ax(t) +Bu(t) + w(t) (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, A ∈ R
n×n, B ∈ R

n×m, and w(t) is a stochastic noise
input defined on an underlying probability space (Ω,F,P). No assumption on the probability distribution of the
process w is made at this stage. We assume that at any time t ∈ N0, x(t) is observed exactly and that, for given
x0 ∈ R

n, x(0) = x0.

Fix a horizon length N ∈ N. The evolution of the system from t = 0 through t = N can be described in compact
form as follows:

x̄ = Āx0 + B̄ū+ D̄w̄, (2)

where
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Let V : R(N+1)n×Nm → R and η : R(N+1)n×Nm → R
r, with r ∈ N, be measurable functions. We are interested in

constrained optimization problems of the following kind:

inf
ū∈U

E[V (x̄, ū)]

subject to (2) and η(x̄, ū) ≤ 0
(3)

where the expectation E[·] is defined in terms of the underlying probability space (Ω,F,P), U is a class of causal
deterministic state-feedback control policies and the inequality in (3) is interpreted componentwise.

Example 1 In the (unconstrained) linear stochastic control problem [3], w is Gaussian white noise and the aim is
to minimize

E

[

N−1
∑

t=0

(

xT (t)Q(t)x(t) + uT (t)R(t)u(t)
)

+ xT (N)Q(N)x(N)

]

,

where the matrices Q(t) ∈ R
n×n and R(t) ∈ R

m×m are positive definite for all t, with respect to causal feedback
policies subject to the system dynamics (1). This problem fits easily in our framework; it suffices to define

V (x̄, ū) =
[

x̄T ūT
]

M

[

x̄

ū

]

, (4)

with M = diag
(

Q(0), Q(1), . . . , Q(N), R(0), R(1), . . . , R(N − 1)
)

> 0 (the notation M > 0 indicates that M is a
positive definite matrix). In our framework, though, the input noise sequence may have an arbitrary correlation
structure, the cost function may be non-quadratic and, most importantly, constraints may be present.

Standard constraints on the state and the input are also formulated easily. For instance, sequential ellipsoidal
constraints of the type

[

xT (t) uT (t)
]

S(t)

[

x(t)

u(t)

]

≤ 1, t = 0, 1, . . . , N − 1,

xT (N)S(N)x(N) ≤ 1,

with 0 < S(t) ∈ R
(n+m)×(n+m) for t = 0, 1, . . . , N − 1 and 0 < S(N) ∈ R

n×n, are captured by the definition

η(x̄, ū) =
[

η0(x̄, ū) η1(x̄, ū) · · · ηN (x̄)
]T

where, for t = 0, 1, . . . , N ,

ηt(x̄, ū) =
[

x̄T ūT
]

Ξt

[

x̄

ū

]

− 1,

and each matrix Ξt is immediately constructed in terms of the S(t). Our framework additionally allows for cross-
constraints between states and inputs at different times.

2.1 Feedback from the noise input

By the hypothesis that the state is observed without error, one may reconstruct the noise sequence from the sequence
of observed states and inputs by the formula

w(t) = x(t + 1)−Ax(t) −Bu(t), t ∈ N0. (5)

In light of this, and following [21,17,6], we shall consider policies of the form:

u(t) =

t−1
∑

i=0

Gt,iw(i) + dt, (6)

3



where the feedback gains Gt,i ∈ R
m×n and the affine terms dt ∈ R

m must be chosen based on the control objective.
With this definition, the value of u at time t depends on the values of w up to time t−1. Using (5) we see that u(t) is
a function of the observed states up to time t. It was shown in [17] that there exists a (nonlinear) bijection between
control policies in the form (6) and the class of affine state feedback policies. That is, provided one is interested in
affine state feedback policies, parametrization (5) constitutes no loss of generality. Of course, this choice is generally
suboptimal, since there is no reason to expect that the optimal policy is affine, but it will ensure the tractability of
a large class of optimal control problems. In compact notation, the control sequence up to time N − 1 is given by

ū = Ḡw̄ + d̄, (7)

where

Ḡ ,
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; (8)

note the lower triangular structure of Ḡ that enforces causality. The resulting closed-loop system dynamics can be
written compactly as the equality constraint

x̄ = Āx0 + B̄(Ḡw̄ + d̄) + D̄w̄. (9)

Let us denote the parameters of the control policy by θ = (Ḡ, d̄) and write (x̄θ , ūθ) to emphasize the dependence of
x̄ and ū on θ. From now on we will consider the optimization problem

inf
θ∈Θ

E[V (x̄θ , ūθ)] (10)

subject to (7), (9) and (11)

η(x̄θ , ūθ) ≤ 0, (12)

where Θ is the linear space of optimization parameters in the form (8).

Remark 2 With the above parametrization of the control policy, both ūθ and x̄θ are affine functions of the param-
eters θ (for fixed w̄) and of the process noise w̄ (for fixed θ). Most of the results developed below rely essentially on
this property. It was noticed in [5] that a parametric causal feedback control policy with the same property can be
easily defined based on indirect observations of the state, provided the measurement model is linear. The method
enables one to extend the results of this paper to the case of linear output feedback. For the sake of conciseness, this
extension will not be pursued here.

2.2 Optimal control problem with relaxed constraints

In general, no control policy can ensure that the constraint (12) is satisfied for all outcomes of the stochastic input w̄.
In the standard LQG setting, for instance, any nontrivial constraint on the system state would be violated with
nonzero probability. We therefore consider relaxed formulations of the constrained optimization problem (10)–(12)
of the form

inf
θ∈Θ

E[V (x̄θ, ūθ)] (13)

subject to (7), (9) and (14)

E[φ ◦ η(x̄θ, ūθ)] ≤ 0, (15)

where φ : Rr → R
R, with R ∈ N, is a convenient measurable function and the inequality is again interpreted compo-

nentwise. For appropriate choices of φ, this formulation embraces most common probabilistic constraint relaxations,
including chance constraints (see e.g. [23]), integrated chance constraints [19,20], and expectation constraints (see
e.g. [26]).

We are interested in the convexity of the optimization problem (13)–(15). First we establish a general convexity
result.
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Proposition 3 Let (Ω,F,P) be a probability space, Θ be a convex subset of a vector space and D ⊆ R be convex.
Let γ : Ω×Θ → D and ϕ : D → R be measurable functions and define

J(θ) , E[ϕ ◦ γ(ω, θ)].

Assume that:

(i) the mapping γ(ω, ·) : Θ → R is convex for almost all ω ∈ Ω;
(ii) ϕ is monotone nondecreasing and convex;
(iii) J(θ) is finite for all θ ∈ Θ.

Then the mapping J : Θ → R is convex.

Proof: Fix a generic ω ∈ Ω. Since γ(ω, θ) is convex in θ and ϕ is monotone nondecreasing, for any θ, θ′ ∈ Θ and any
α ∈ [0, 1],

ϕ
(

γ(ω, αθ + (1 − α)θ′)
)

≤ ϕ
(

αγ(ω, θ) + (1− α)γ(ω, θ′)
)

.

Moreover, since ϕ is convex,

ϕ
(

αγ(ω, θ) + (1− α)γ(ω, θ′)
)

≤ αϕ
(

γ(ω, θ)
)

+ (1− α)ϕ
(

γ(ω, θ′)
)

.

Since these inequalities hold for almost all ω ∈ Ω, it follows that

E[ϕ
(

γ(ω, αθ + (1− α)θ′)
)

] ≤ E[αϕ
(

γ(ω, θ)
)

+ (1− α)ϕ
(

γ(ω, θ′)
)

]

= αE[ϕ
(

γ(ω, θ)
)

] + (1− α)E[ϕ
(

γ(ω, θ′)
)

],

which proves the assertion. �

Assumption (iii) can be replaced by either of the following:

(iii′) J(θ) ∈ R ∪ {+∞}, ∀θ ∈ Θ.
(iii′′) J(θ) ∈ R ∪ {−∞}, ∀θ ∈ Θ.

Let us now make the following standing assumption.

Assumption 1 V (x̄, ū) is a convex function of (x̄, ū) and E[V (x̄θ , ūθ)] is finite for all θ ∈ Θ.

Proposition 4 Under Assumption 1, E[V (x̄θ, ūθ)] is a convex function of θ.

Proof: First, note that the set Θ of admissible parameters θ is a linear space. Let us write w̄(ω) x̄θ(ω) and ūθ(ω) to
express the dependence of w̄, x̄θ and ūθ on the random event ω ∈ Ω. Fix ω arbitrarily. Since the mapping

θ 7→
[

x̄θ(ω)

ūθ(ω)

]

=

[

Āx0 + B̄(Ḡw̄(ω) + d̄) + D̄w̄(ω)

Ḡw̄(ω) + d̄

]

is affine and the mapping (x̄, ū) 7→ V (x̄, ū) is assumed convex, their combination θ 7→ V (x̄θ, ūθ) is a convex function
of θ. Then, the result follows from Proposition 3 with γ(ω, θ) = V

(

x̄θ(ω), ūθ(ω)
)

and ϕ equal to the identity map. �

By virtue of the alternative assumptions (iii′) and (iii′′) of Proposition 3, the requirement that E[V (x̄θ, ūθ)] be finite
for all θ may be relaxed. A sufficient requirement is that there exist no two values θ and θ′ such that Jx0

(θ) = +∞
and Jx0

(θ′) = −∞. In particular, the result applies to quadratic cost functions of the type (4), with M ≥ 0.

In general, the relaxed constraint (15) is nonconvex even if the components ηi : R
(N+1)n×Nm → R, with i =

1, . . . , r, of the vector function η are convex. In the next sections we will study the convexity and provide convex
approximations of (15) for different approaches to probabilistic relaxation of hard constraints, i.e. for different choices
of the function φ.
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3 Chance Constraints

For a given α ∈ ]0, 1[, we relax the hard constraint η(x̄θ, ūθ) ≤ 0 by requiring that it be satisfied with probability
1− α. Hence we address the optimization problem

inf
θ∈Θ

E[V (x̄θ , ūθ)] (16)

subject to (7), (9) and (17)

P(η(x̄θ , ūθ) ≤ 0) ≥ 1− α. (18)

The smaller α, the better the approximation of the hard constraint (12) at the expense of a more constrained
optimization problem. This problem is obtained as a special case of Problem (13)–(15) by setting R = 1 and defining
φ as

φCC(η) = 1−
r
∏

i=1

1]−∞,0](ηi)− α,

where 1]−∞,0](·) is the standard indicator function. We now study the convexity of (18) with respect to θ.

3.1 The fixed feedback case

First assume that the feedback term Ḡ in (7) is fixed and consider the convexity of the optimization problem (16)–
(18) with respect to the open loop control action d̄. That is, for a given Ḡ in the form (8), the parameter space Θ
becomes the set {(Ḡ, d̄), ∀d̄ ∈ R

Nm}. For the given Ḡ and i = 1, . . . , r define

gi(d̄, w̄) = ηi(Āx0 + B̄(Ḡw̄ + d̄) + D̄w̄, Ḡw̄ + d̄),

where ηi : R
(N+1)n+Nm → R is the i-th element of the constraint function η. Define

p(d̄) = P[g1(d̄, w̄) ≤ 0, . . . gr(d̄, w̄) ≤ 0] (19)

and FCC , {d̄ : p(d̄) ≥ 1− α}. Observe that FCC corresponds to the constraint set dictated by (17)–(18) when Ḡ
is fixed.

Proposition 5 Assume that w̄ has a continuous distribution with log-concave probability density and that, for i =
1, . . . , r, gi : R

Nm+Nn → R is quasi-convex. Then, for any value of α ∈] 0, 1[, FCC is convex. As a consequence,
under Assumption 1 and for any α ∈] 0, 1[, the optimization problem

inf
θ∈Θ

E[V (x̄θ, ūθ)]

subject to (7), (9) and p(d̄) ≥ 1− α

is convex.

Proof: It follows from [24, Theorem 10.2.1] that (19) is a log-concave function of d̄, i.e. the mapping d̄ 7→ log p(d̄) is
concave. Since log is a monotone increasing function, we may write that FCC = {d̄ : log p(d̄) ≥ log(1−α)}. Hence,
FCC is a convex set. The convexity of the optimization problem follows readily from Assumption 1. �

Among others, Gaussian, exponential and uniform distributions are continuous with log-concave probability density.
As for the functions gi, one case of interest where the assumptions of Proposition 5 are fulfilled is when η(x̄, ū) is
affine in x̄ and ū. This is the case of polytopic constraints, which will be treated extensively in the next section.
Apparently, this convexity result cannot be applied to the ellipsoidal constraints treated subsequently in Section 3.3,
nor can it be extended to the general constraint (18) with both d̄ and Ḡ varying. Loosely speaking, the latter is
because the functions gi are not simultaneously quasi-concave in w̄ and Ḡ. In the next sections we will develop
convex conservative approximations of (18) for various definitions of η.

6



3.2 Polytopic Constraint Functions

Throughout the rest of Section 3 we shall rely on the following assumption.

Assumption 2 w̄ is a Gaussian random vector with mean zero and covariance matrix Σ̄ > 0, denoted by w̄ ∼
N (0, Σ̄).

Polytopic constraint functions
η(x̄θ , ūθ) = T xx̄θ + T uūθ − y, (20)

where T x ∈ R
r×(N+1)n, T u ∈ R

r×Nm, and y ∈ R
r, describe one of the most common types of constraints. In light

of (7) and (9),
η(x̄θ , ūθ) = hθ + Pθw̄, (21)

where hθ = (T xĀx0− y)+ (T xB̄+T u)d̄, and Pθ = (T xD̄+(T xB̄+T u)Ḡ). It is thus apparent that η(x̄θ , ūθ) is affine
in the parameters θ. Yet, in general, constraint (18) is nonconvex. We now describe three approaches to approximate
constraints (18) that lead to convex conservative constraints.

3.2.1 Approximation via constraint separation

Constraint (18) requires us to satisfy η(x̄θ , ūθ) ≤ 0 with probability of at least 1−α. Here η ∈ R
r and the inequality

η ≤ 0 is interpreted componentwise. One idea is to select coefficients αi ∈ (0, 1) such that
∑r

i=1 αi = α and to satisfy
the inequalities P(ηi ≤ 0) ≥ 1− αi, with i = 1, . . . , r. Note that this choice is obtained in (15) by setting R = r and
φi(η) = 1− 1]−∞,0](ηi)− αi where, for i = 1, . . . , r, φi : R

r → R denotes the i-th component of function φ.

Let hi,θ and PT
i,θ be the i-th entry of hθ and the i-th row of Pθ, respectively, and let Σ̄

1

2 be a symmetric real matrix

square root of Σ̄.

Proposition 6 Let αi ∈]0, 1[. Under Assumption 2, the constraint

P(ηi(x̄θ, ūθ) ≤ 0) ≥ 1− αi,

with η defined as in (20), is equivalent to the second-order cone constraint in the parameters θ ∈ Θ

hi,θ + βi

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥
≤ 0

where βi =
√
2 erf−1(1− 2αi) and erf−1(·) is the inverse of the standard error function erf(x) = 2√

π

∫ x

0
e−u2

du. As

a consequence, under Assumption 1 and if α1 + . . .+ αr = α, the problem

inf
θ∈Θ

E[V (x̄θ , ūθ)]

subject to (7), (9) and hi,θ + βi

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥
≤ 0, i = 1, . . . , r

is a convex conservative approximation of Problem (16)–(18).

Proof: From Eq. (21) we can write ηi = hi,θ + PT
i,θw̄. Since w̄ ∼ N (0, Σ̄), ηi is also Gaussian with distribution

N (hi,θ, P
T
i,θΣ̄Pi,θ). It is easily seen that, for any scalar Gaussian random variable X with distribution N (µ, σ2),

P(X ≤ 0) ≥ 1− α ⇐⇒ µ+ βσ ≤ 0,

where β =
√
2 erf−1(1− 2α). Hence the constraint P(ηi(x̄θ, ūθ) ≤ 0) ≥ 1−αi is equivalent to hi,θ + βi

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥
≤ 0,

where βi =
√
2 erf−1(1− 2αi). Since hi,θ and Pi,θ are both affine in the parameters θ = (Ḡ, d̄), the above constraint

is a second-order cone constraint in θ. It is easy to see that this choice guarantees that P(η(x̄θ, ūθ) ≤ 0) ≥ 1− α. �
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3.2.2 Approximation via confidence ellipsoids

The approach of Section 3.2.1 may be too conservative since the probability of a union of events is approximated by
the sum of the probabilities of the individual events. One can also calculate a conservative approximation of the union
at once. Constraint (18) with η(x̄θ, ūθ) as in (21) restricts the choice of Pθ and hθ to be such that, with a probability
of 1− α or more, the realization of random vector η(x̄θ , ūθ) lies in the negative orthant η(x̄θ , ūθ) ≤ 0. In general, it
is difficult to describe this constraint explicitly since it involves the integration of the probability density of η over
the negative orthant. However, an explicit approximation of the constraint can be computed by ensuring that the
100(1− α)% confidence ellipsoid of η is contained in the negative orthant. Fulfilling this requirement automatically
implies that the probability of η(x̄θ, ūθ) ≤ 0 is strictly greater than 1− α.

Since w̄ ∼ N (0, Σ̄), it follows that η(x̄θ, ūθ) = hθ + Pθw̄ ∼ N (hθ, Σ̄θ), with Σ̄θ := PθΣ̄P
T
θ . Consider the case where

Σ̄θ is invertible. Define the r-dimensional ellipsoid

E(hθ, Σ̄θ, β) =
{

η ∈ R
r :
∣

∣ (η − hθ)
T Σ̄−1

θ (η − hθ) ≤ β2
}

, (22)

where β > 0 is a parameter specifying the size of the ellipsoid. Notice that, in general, Σ̄θ is invertible when r ≤ Nn
(i.e. the number of constraints is less than the total dimension of the process noise). If r > Nn, as there are Nn
independent random variables in the optimization problem, the following result still holds with Nn in place of r.

Proposition 7 Let α ∈ ]0, 1[. Under Assumption 2, the constraint P[η(x̄θ, ūθ) ≤ 0] ≥ 1−α with η defined as in (20)
is conservatively approximated by the constraint

E
(

hθ, Σ̄θ, β(α)
)

⊂ (−∞, 0 ] r, (23)

where β(α) =
√

F−1(1− α) and F (·) is the probability distribution function of a χ2 random variable with r degrees
of freedom. Moreover, (23) can be reformulated as the set of second-order cone constraints

hi,θ + β(α)
∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥
≤ 0, i = 1, . . . , r. (24)

As a consequence, under Assumption 1, the problem

inf
θ∈Θ

E[V (x̄θ, ūθ)]

subject to (7), (9) and (24)

is a convex conservative approximation of Problem (16)–(18).

Proof: Since η(x̄θ, ūθ) ∼ N (hθ, Σ̄θ), the random variable

(

η(x̄θ, ūθ)− hθ

)T
Σ̄−1

θ

(

η(x̄θ, ūθ)− hθ

)

is χ2 with r degrees of freedom. Then, choosing β such that F (β2) = 1 − α guarantees that E
(

hθ, Σ̄θ, β(α)
)

is the

100(1−α)% confidence ellipsoid for η(x̄θ, ūθ). Finally, under (23), P[η(x̄θ , ūθ) ≤ 0] ≥ P[η(x̄θ, ūθ) ∈ E
(

hθ, Σ̄θ, β(α)
)

] =
1− α, which proves the first claim. To prove the second claim, note that (22) can alternatively be represented as

E
(

hθ, Σ̄θ, β
)

=
{

η ∈ R
r
∣

∣ η = hθ +Mθu, ‖u‖ ≤ 1
}

, (25)

where Mθ = βΣ̄
1

2

θ . Since η ≤ 0 if and only if eTi η ≤ 0, i = 1, · · · , r, where the ei denote the standard basis vectors
in R

r, we may rewrite (23) as
eTi (hθ +Mθu) ≤ 0 ∀ ‖u‖ ≤ 1,

or equivalently

sup
‖u‖≤1

eTi (hθ +Mθu) ≤ 0

8
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Fig. 1. Values of β as a function of the horizon length N for the ellipsoidal method (dashed line) and the constraint separation
method (solid lines). It is assumed that r = N · r̄ · (n+m), where n = 5 is the dimension of the system state and of the process
noise, m = 2 is the dimension of the input u. r̄ reflects the number of constraints per stage; we take r̄ = 2, 10, 100, 1000. The
value of β is invariant with respect to r̄ (single dashed line) for the ellipsoidal method, while it increases with r̄ (multiple solid
lines) for the constraint separation method.

for i = 1, · · · , r. For each i, the supremum is attained with u = MT
θ ei/

∥

∥MT
θ ei
∥

∥; therefore, the above is equivalent

to eTi hθ +
∥

∥MT
θ ei
∥

∥ ≤ 0. Clearly, eTi hθ = hi,θ. Moreover, since Mθ = βΣ̄
1

2

θ , we have

∥

∥MT
θ ei
∥

∥ = β
√

eTi Σ̄θei = β
√

eTi PθΣ̄PT
θ ei = β

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥
.

Therefore, constraint (23) reduces to (24). Since the variables hi,θ and Pi,θ are affine in the original parameters
θ = (Ḡ, d̄), this is an intersection of second order cone constraints. As a result, under the additional Assumption 1,
the optimization of E[V (x̄θ, ūθ)] with (24) in place of (18) is a convex conservative approximation of (16)–(18). �

3.2.3 Comparison of constraint separation and confidence ellipsoid methods

In light of Propositions 6 and 7, both approaches lead to formulating constraints of the form

µi + βσi ≤ 0,

with i = 1, . . . , r, where µi and σi are the mean and the standard deviation of the scalar random variables ηi(x̄θ , ūθ),
and smaller values of the constant β correspond to less conservative approximations of the original chance constraint.
For a given value of α, the value of β depends on the number of constraints r in a way that differs in the two cases. In
the confidence ellipsoid method, in particular, the value of β is determined by Nn (the total dimension of the process
noise) when r ≥ Nn. In Figure 1, we compare the growth of β in the two approaches under the assumption that r
grows linearly with the horizon length N . (For the constraint separation method we choose α1 = . . . = αr = α/r,
so that the value of β is the same for all constraints.) The increase of β is quite rapid in the confidence ellipsoid
method, which is only effective for a small number of constraints. An explanation of this phenomenon is provided
by the following fact, that is better known by the name of (classical) “concentration of measure” inequalities; proofs
may be found in, e.g., [10].

9



Proposition 8 Let Γh,Σ′ be the r-dimensional Gaussian measure with mean h and (nonsingular) covariance Σ′,
i.e.,

Γh,Σ′(dξ) =
1

(2π)r/2
√
detΣ′

exp

(

−1

2

〈

ξ − h,Σ′−1(ξ − h)
〉

)

dξ.

Then for ε ∈ ]0, 1[,

(i) Γh,Σ′

({

ξ

∣

∣

∣

∣

‖ξ − h‖Σ′−1 >

√

r

1− ε

})

≤ e−
rε2

4 ;

(ii) Γh,Σ′

({

ξ
∣

∣ ‖ξ − h‖Σ′−1 <
√

r(1 − ε)
})

≤ e−
rε2

4 .

The above proposition states that as the dimension r of the Gaussian measure increases, its mass concentrates in an
ellipsoidal shell of ‘mean-size’

√
r. It readily follows that since η(x̄θ, ūθ) is a r-dimensional Gaussian random vector,

its mass concentrates around a shell of size
√
r. Note that the bounds corresponding to (i) and (ii) of Proposition 8 in

the case of η(x̄θ, ūθ) are independent of the optimization parameters θ; of course the relative sizes of the confidence
ellipsoids change with θ (because the mean and the covariance of η(x̄θ, ūθ) depend on θ), but Proposition 8 shows
that the size of the confidence ellipsoids grow quite rapidly with the dimension of the noise and the length of the
optimization horizon. Intuitively one would expect the ellipsoidal constraint approximation method to be more
effective than the cruder approximation by constraint separation. Figure 1 and Proposition 8 however suggest that
this is not the case in general; for large numbers of constraints (e.g. longer MPC prediction horizon) the constraint
separation method is the less conservative.

3.2.4 Approximation via expectations

For any r-dimensional random vector η, we have 1 − P
(

η ≤ 0
)

= E
[

1−∏r
i=1 1]−∞,0](ηi)

]

. Using this fact one
can arrive at conservative convex approximations of the chance-constraint (18) by replacing the function in the
expectation with appropriate approximating functions. For ti > 0, i = 1, . . . , r, consider

ϕ(η) =

r
∑

i=1

exp(tiηi).

Lemma 9 For any r-dimensional random vector η, E[ϕ(η)] ≥ 1− P[η ≤ 0].

Proof: For every fixed value of η, it holds that ϕ(η) ≥ 1−∏r
i=1 1]−∞,0](ηi). Hence E[ϕ(η)] ≥ E[1−∏r

i=1 1]−∞,0](ηi)] =
1− P[η ≤ 0]. �

Proposition 10 Under Assumption 2, for η defined as in (20), it holds that

E
[

ϕ
(

η(x̄θ, ūθ)
)]

=

r
∑

i=1

exp
(

tihi,θ +
t2i
2
||Σ̄ 1

2Pi,θ||2
)

.

As a consequence, under Assumption 1 and for any choice of ti > 0, i = 1, . . . , r, the problem

inf
θ∈Θ

E[V (x̄θ, ūθ)]

subject to (7), (9) and

r
∑

i=1

exp
(

tihi,θ +
t2i
2
||Σ̄ 1

2Pi,θ||2
)

≤ α

is a convex conservative approximation of Problem (16)–(18).

10



Proof: It is easily seen that, for any r-dimensional Gaussian random vector η with mean µ and covariance matrix Σ′,
and any vector c ∈ R

r, E
[

exp(cT η)
]

= exp
(

cTµ + 1
2c

TΣ′c
)

. Let us now write ηθ in place of η(x̄θ , ūθ) for shortness.

By the hypotheses on w̄, in the light of (21), ηθ is Gaussian with mean hθ and covariance PθΣ̄P
T
θ . Then, for a vector

ci ∈ R
r with zero entries except for a coefficient ti in the i-th position,

E[exp(cTi ηθ)] = exp
(

cTi hθ +
1

2
cTi PθΣ̄P

T
θ ci

)

= exp
(

tihi,θ +
t2i
2
PT
i,θΣ̄Pi,θ

)

.

Summing up for i = 1, . . . , r yields the first result. In order to prove the second statement, note that

E
[

ϕ(ηθ)
]

≤ α ⇐⇒ logE
[

ϕ(ηθ)
]

≤ logα

⇐⇒ log

(

r
∑

i=1

exp
(

tihi,θ +
t2i
2

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥

2)
)

≤ log(α).

For each i, tihi,θ +
t2i
2

∥

∥

∥
Σ̄

1

2Pi,θ

∥

∥

∥

2

is a convex function of the optimization parameters θ. By [11, Example 3.14],

given convex functions g1(θ), . . . , gr(θ), the function f(θ) = log
(

eg1(θ) + · · ·+ egk(θ)
)

is itself convex. It follows that

logE
[

ϕ(ηθ)
]

is a convex function of θ and that the constraint set

{θ ∈ Θ : logE[ϕ(ηθ)] ≤ logα} = {θ ∈ Θ : E[ϕ(ηθ)] ≤ α}

is convex. Finally, from Lemma 9, if E[ϕ(ηθ)] ≤ α then P[ηθ ≤ 0] ≥ 1−E[ϕ(ηθ)] ≥ 1−α. Together with Assumption 1,

this implies that the optimization problem with constraint
∑r

i=1 exp
(

tihi,θ +
t2i
2 ||Σ̄

1

2Pi,θ||2
)

≤ α in place of (18) is

a convex conservative approximation of (16)–(18). �

This convex approximation of Problem (16)–(18) is obtained in (13)–(15) by setting R = 1 and φ(η) = ϕ(η) − α.
The result that the approximation is conservative relies essentially on the fact that, with this choice, φ(η) ≥ φCC(η)
∀η ∈ R

r (see Lemma 9). This result can be generalized: Given any two functions φ′, φ′′ : R
r → R such that

φ′(η) ≥ φ′′(η) ∀η ∈ R
r, constraint (15) with φ = φ′ is more conservative than the same constraint with φ = φ′′. This

type of analysis can be exploited to compare different probabilistic constraints and to minimize the conservatism of
the convex approximations with respect with the tunable parameters, but is not fully pursued here.

3.3 Ellipsoidal Constraint Functions

Consider the constraint function

η(x̄θ , ūθ) =

([

x̄θ

ūθ

]

− δ

)T

Ξ

([

x̄θ

ūθ

]

− δ

)

− 1,

where Ξ ≥ 0 and δ are given. Then the constraint η(x̄θ , ūθ) ≤ 0 restricts the vector
[

x̄T
θ ūT

θ

]T

to an ellipsoid with

center δ and shape determined by Ξ. We now provide an approximation of the chance constraint (18) that is a
semi-definite program in the optimization parameters θ = (Ḡ, d̄). Similar to §3.2.2, the idea is to ensure that the
100(1− α)% confidence ellipsoid of w̄ is such that (18) holds. To this end, let

yθ =

[

x̄θ

ūθ

]

− δ =

[

Āx0 + B̄(Ḡw̄ + d̄) + D̄w̄

Ḡw̄ + d̄

]

− δ = h′
θ + P ′

θw̄,

where h′
θ =

[

Āx0 + B̄d̄

d̄

]

− δ and P ′
θ =

[

B̄Ḡ+ D̄

Ḡ

]

.

11



Proposition 11 Define Sθ = β(α)Ξ
1

2P ′
θΣ̄

1

2 , with β(α) as in Proposition 7, and ξθ = Ξ
1

2h′
θ. Then









−λ+ 1 0 ξTθ

0 λI (Sθ)
T

ξθ Sθ I









≥ 0, λ > 0, (26)

is a Linear Matrix Inequality (LMI) in the unknown parameters θ and λ. If (θ, λ) is a solution of (26), then θ
satisfies (18). As a consequence, under Assumption 1, the problem

inf
θ∈Θ,λ

E[V (x̄θ, ūθ)]

subject to (7), (9) and (26)

is a convex conservative approximation of Problem (16)–(18).

Proof: The inequality (18) may be equivalently represented as

P
(

yTθ Ξyθ − 1 ≤ 0
)

≥ 1− α

⇐⇒ P
(

‖Ξ 1

2 yθ‖2 − 1 ≤ 0
)

≥ 1− α

⇐⇒ P
(

‖Ξ 1

2 (h′
θ + P ′

θw̄)‖2 − 1 ≤ 0
)

≥ 1− α

⇐⇒ P
(

‖ξθ + S′
θw̄‖2 − 1 ≤ 0

)

≥ 1− α, (27)

where S′
θ = Ξ

1

2P ′
θ. Since w̄ ∼ N (0, Σ̄), one can compute β(α) > 0 such that

∥

∥Σ̄−1/2w̄
∥

∥

2 ≤ β(α)2 specifies the required

100(1− α)% confidence ellipsoid of w̄. Hence, we need to ensure that
∥

∥Σ̄−1/2w̄
∥

∥

2 ≤ β(α)2 ⇒ ‖ξθ + S′
θw̄‖

2 ≤ 1. This
is equivalent to

sup
‖Σ̄−1/2w̄‖2≤β(α)2

‖ξθ + S′
θw̄‖

2 ≤ 1 ⇐⇒ sup
‖v̄‖2≤1

‖ξθ + Sθ v̄‖2 ≤ 1.

It follows from [11, p. 653] that sup‖v̄‖≤1 ‖ξθ + Sθv̄‖2 ≤ 1 if and only if there exists λ ≥ 0 such that

[

−ξTθ ξθ − λ+ 1 ξTθ Sθ

(Sθ)
T ξθ λI − (Sθ)

TSθ

]

≥ 0.

Using Schur complements the last relation can be rewritten equivalently as (26). Therefore, any solution of (26)
implies (18). To verify that (26) is an LMI, note that Sθ and ξθ are affine in the optimization variables. Together
with the assumed convexity of E[V (x̄θ, ūθ)], the last statement of the proposition follows. �

4 Integrated chance constraints

In this section we focus on the problem

inf
θ∈Θ

E[V (x̄θ, ūθ)] (28)

subject to (7), (9) and (29)

Ji(θ) ≤ βi, i = 1, . . . , r (30)

where, for i = 1, . . . , r, Ji(θ) , E[ϕi ◦ ηi(x̄θ , ūθ)], functions ϕi : R → R are measurable and the βi > 0 are fixed
parameters. This problem corresponds to Problem (13)–(15) when setting R = r and φi(η) = ϕi(η) − βi, with
i = 1, . . . , r. For the choice

ϕi(z) =

{

0, if z ≤ 0,

z, otherwise,
(31)
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constraints of the form (30) are known as integrated chance constraints [19,20]. In fact, one may write (dropping the
dependence of ηi on x̄θ and ūθ to simplify the notation)

E[ϕi(ηi)] = E

[
∫ +∞

0

1[0,ηi)(s) ds

]

=

∫ +∞

0

P
(

ηi > s
)

ds,

where 1S(·) is the indicator function of set S and the second equality follows from Tonelli’s theorem [16, Theorem
4.4.5]. Therefore, constraint (30) is equivalent to

∫ +∞

0

P
(

ηi(x̄θ, ūθ) > s
)

ds ≤ βi, (32)

whence the name integrated chance constraint. Note that ϕi plays the role of a penalty (or barrier) function that
penalizes violations of the inequality ηi(x̄, ū) ≤ 0, and βi is a maximum allowable cost in the sense of (32). Of course,
different choices of ϕi will not guarantee the equivalence between (30) and (32). However, they may be useful in
deriving other quantitative chance constraint-type approximations.

4.1 Convexity of Integrated Chance Constraints

We now establish sufficient conditions on the ηi and ϕi for the convexity of the constraint set

FICC , {θ : Ji(θ) ≤ βi, i = 1, . . . , r}. (33)

The result is again a consequence of Proposition 3.

Proposition 12 Let the mappings ηi : R(N+1)n×Nm → R be measurable and convex, and let the ϕi : R → R be
measurable, monotone nondecreasing and convex. Assume that the Ji(θ) are finite for all θ. Then each Ji(θ) is
a convex function of θ and FICC is a convex set. As a consequence, under Assumption 1, (28)–(30) is a convex
optimization problem.

Proof: Fix ω ∈ Ω arbitrarily. Since the mapping θ 7→
(

x̄θ(ω), ūθ(ω)
)

is affine and (x̄, ū) 7→ ηi(x̄, ū) is convex by

assumption, their composition θ 7→ ηi
(

x̄(ω), ū(ω)
)

is a convex function of θ. Using the assumption that ϕi is mono-

tone nondecreasing and convex, we may apply Proposition 3 with γ(ω, θ) = ηi
(

x̄θ(ω), ūθ(ω)
)

and ϕi in place of ϕ to

conclude that Ji(θ) = E[ϕi ◦ γ(ω, θ)] is convex. Hence, for any choice of βi, the set Fi , {θ : Ji(θ) ≤ βi} is convex.
Since FICC =

⋂r
i=1 Fi, the convexity of FICC follows. Together with Assumption 1, this proves that (28)–(30) is a

convex optimization problem. �

It is worth noting that the function ϕ(·) of Section 3.2.4 satisfies analogous monotonicity and convexity assumptions
with respect to each of the ηi, with i = 1, . . . , r. Unlike those of Section 3, this convexity result is independent
of the probability distribution of w̄. By virtue of the alternative assumptions (iii′) and (iii′′) of Proposition 3, the
requirement that J(θ) be finite for all θ may be relaxed. A sufficient requirement is that there exist no two values
θ and θ′ such that J(θ) = +∞ and J(θ′) = −∞. In particular, provided measurable and convex ηi, definition (31)
satisfies all the requirements of Proposition 12.

Example 13 The (scalar) polytopic constraint function:

η(x̄θ , ūθ) = Txx̄θ + Tuūθ − y

fulfills the hypotheses of Proposition 12. Hence, the corresponding integrated chance constraint is convex.

Example 14 Following Example 1, an interesting case is that of ellipsoidal constraints. For an
(

(N+1)n+Nm
)

-size

positive-semidefinite real matrix Ξ and a vector δ ∈ R
(N+1)n+Nm, define

η(x̄θ , ūθ) ,

([

x̄θ

ūθ

]

− δ

)T

Ξ

([

x̄θ

ūθ

]

− δ

)

− 1. (34)
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This is a convex function of the vector
[

x̄T
θ ūT

θ

]T

(it is the composition of the convex mapping ξTΞξ, Ξ ≥ 0, with

the affine mapping ξ =
[

x̄T
θ ūT

θ

]T

− δ) and hence Proposition 12 applies.

Remark 15 A problem setting similar to Example 14 with quadratic expected-type cost function and ellipsoidal
constraints has been adopted in [26], where hard constraints are relaxed to expected-type constraints of the form
E[η(x̄, ū)] ≤ β. This formulation can be seen as a special case of integrated chance constraints with ϕ(z) = z for all
z. The choice of ϕ within a large class of functions is an extra degree of freedom provided by our framework that
may be exploited to establish tight bounds on the probability of violating the original hard constraints, see Lemma 9
for an example.

4.2 Numerical solution of optimization problems with ICC

Even though ICC problems are convex in general, deriving efficient algorithms to solve them is still a major chal-
lenge [19,20]. For certain ICCs, it is possible however to derive explicit expressions for the gradients of the constraint
function. Provided the cost has a simple (e.g. quadratic) form, this allows one to implement standard algorithms
(e.g. interior point methods [11]) for the solution of the optimization problem.

Let w̄ satisfy Assumption 2 with, for simplicity, Σ̄ equal to the identity matrix, i.e. w̄ ∼ N (0, I). Consider the
problem with one scalar constraint (the generalization to multiple (joint) constraints is straightforward):

min
θ

[

x̄T
θ ūT

θ

]

M

[

x̄θ

ūθ

]

subject to (7), (9) and E[ϕ(Txx̄θ + Tuūθ − y)] ≤ β,

(35)

where ϕ is defined as in (31).

Lemma 16 Let z be a Gaussian random variable with mean µ and variance σ2 > 0. Then

E[ϕ(z)] = σg
(µ

σ

)

where

g(x) =
x

2
erfc

(−x√
2

)

+
1√
2π

exp
(−x2

2

)

and erfc(x) = 1− erf(x) is the standard complementary error function.

Proof: Since z ∼ N (µ, σ2) it holds that

E[ϕ(z)] =
1√
2πσ2

∫ ∞

0

t exp

(

− (t− µ)2

2σ2

)

dt.

By the change of variable y = t−µ√
2σ

one gets

E[ϕ(z)] =
1√
π

∫ ∞

−µ√
2σ

(µ+
√
2σy) exp(−y2)dy

=
µ√
π

∫ ∞

−µ√
2σ

exp(−y2)dy + σ

√

2

π

∫ ∞

−µ√
2σ

y exp(−y2)dy

=
µ

2
erfc

( −µ√
2σ

)

+
σ√
2π

exp

(

− µ2

2σ2

)

,

which is equal to σg(µσ ). �
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Simple calculations and the application of this lemma yield the following result.

Proposition 17 Problem (35) is equivalent to

minimize h1(d̄) + h2(Ḡ)

subject to σg
(µ

σ

)

≤ β
(36)

where

µ =(T xĀx0 − ȳ) + (T xB̄ + T u)d̄,

σ =||(T xD̄ + (T xB̄ + T u)Ḡ)T ||2,

h1(d̄) =
[

(Āx0 + B̄d̄)T d̄T
]

M

[

Āx0 + B̄d̄

d̄

]

,

h2(Ḡ) =Tr

(

[

(B̄Ḡ+ D̄)T ḠT
]

M

[

B̄Ḡ+ D̄

Ḡ

])

.

Note that expectations have been integrated out. Now it is possible to put the problem in a standard form for
numerical optimization. Let Ḡi and D̄i be the i-th column of Ḡ and D̄, respectively. Redefine the optimization

variable θ as the vector θ̄ =
[

d̄T ḠT
1 · · · ḠT

Nn

]T

. Define e, f , v and L by

µ = (T xĀx0 − ȳ) + (T xB̄ + T u)d̄ =e+ fT θ̄,

(T xD̄ + (T xB̄ + T u)Ḡ)T =v + Lθ̄.

Corollary 18 Problem (35) is equivalent to

minimize f0(θ̄) =g0(θ̄) +

Nn
∑

i=1

gi(θ̄)

subject to Hθ̄ =0,

f1(θ̄) ≤0

where the matrix H in the equality constraint accounts for the causal structure of Ḡ, while

g0(θ̄) =
(

[

Āx0

0

]

+

[

B̄

I

]

H0θ̄
)T

M
(

[

Āx0

0

]

+

[

B̄

I

]

H0θ̄
)

,

gi(θ̄) =
(

[

D̄i

0

]

+

[

B̄

I

]

Hiθ̄
)T

M
(

[

D̄i

0

]

+

[

B̄

I

]

Hiθ̄
)

,

f1(θ̄) =
∥

∥v + Lθ̄
∥

∥ g
( e+ fT θ̄
∥

∥v + Lθ̄
∥

∥

)

− β ≤ 0,

and H0 and Hi are selection matrices such that H0θ̄ = d̄ and Hiθ̄ = Ḡi.

We conclude the section by documenting the expressions of the gradient and the Hessian of the constraint function
f1(θ̄).

∇f1(θ̄) =
1√
2π

LT v + Lθ̄
∥

∥v + Lθ̄
∥

∥

exp
(

− (e+ fT θ̄)2

2
∥

∥v + Lθ̄
∥

∥

2

)

+
1

2
erfc

(

− e+ fT θ̄√
2
∥

∥v + Lθ̄
∥

∥

)

f
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Fig. 2. A mechanical system with springs and masses.

∇2f1(θ̄) =
1√
2π

exp
(

− (e + fT θ̄)2

2
∥

∥v + Lθ̄
∥

∥

2

)[

J1(θ̄) + J2(θ̄)− J3(θ̄)
]

where

J1(θ̄) =
1

∥

∥v + Lθ̄
∥

∥

(LTL+ ffT ),

J2(θ̄) =
( (e+ fT θ̄)2 −

∥

∥v + Lθ̄
∥

∥

2

∥

∥v + Lθ̄
∥

∥

5

)

(LT (v + Lθ̄)(v + Lθ̄)TL),

J3(θ̄) =
( e+ fT θ̄
∥

∥v + Lθ̄
∥

∥

3

)

(LT (v + Lθ̄)fT + f(v + Lθ̄)TL).

The expressions of gradient and Hessian of the quadratic function f0(θ̄), used e.g. by interior point method solvers,
are quite standard and will not be reported here.

5 Simulation results

We illustrate some of our results with the help of a simple example. Consider the mechanical system shown in
Figure 2. d1, · · · , d4 are displacements from an equilibrium position, u1, · · · , u3 are forces acting on the masses. In
particular, u1 is a tension between the first and the second mass, u2 is a tension between the third and the fourth
mass, and u3 is a force between the wall (at left) and the second mass. We assume all mass and stiffness constants
to be equal to unity, i.e. m1 = · · · = m4 = 1, k1 = · · · = k4 = 1. We consider a discrete-time model of this system
with noise in the dynamics,

x(t+ 1) = Ax(t) +Bu(t) + w(t),

where w is an i.i.d. noise process, w(t) ∼ N (0, σ2I), σ = 0.05 for all t, and x =
[

d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4

]T

. The

discrete-time dynamics are obtained by uniform sampling of a continuous-time model at times t · h, with sampling
time h = 1 and t = 0, 1, 2, . . ., under the assumption that the control action u(t) is piecewise constant over the
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sampling intervals [t · h, t · h+ h). Hence, A = ehAc and B = A−1
c (ehAc − I)Bc, where Ac and Bc, defined as

Ac =

[

04×4 I4×4

Ac,21 04×4

]

, Ac,21 =















−2 1 0 0,

1 −2 1 0

0 1 −2 1

0 0 1 −1















,

Bc =

[

04×3

Bc,21

]

, Bc,21 =















1 0 0

−1 0 −1

0 1 0

0 −1 0















are the state and input matrices of the standard ODE model of the system.

We are interested in computing the control policy that minimizes the cost function

E

[

N−1
∑

t=0

(

x(t)TQx(t) + u(t)TRu(t)
)

+ x(N)TQx(N)

]

,

where the horizon length is fixed to N = 5, the weight matrices are defined as Q =

[

I 0

0 0

]

(penalizing displacements

but not their derivatives) and R = I. The initial state is set to x0 = [0, 0, 0, 1, 0, 0, 0, 0]T . In the absence of constraints,
this is a finite horizon LQG problem whose optimal solution is the linear time-varying feedback from the state

u(t) = −
(

BTP (t+ 1)B +R
)−1

BTP (t+ 1)Ax(t),

where the matrices P (t) are computed by solving, for t = N−1, . . . , 0, the backward dynamic programming recursion

P (t) = Q+ATP (t+ 1)A−ATP (t+ 1)B(BTP (t+ 1)B +R)−1BTP (t+ 1)A,

with P (N) = Q. Simulated runs of the controlled system are shown in Figure 3. We shall now introduce constraints
on the state and the control input and study the feasibility of the problem with the methods of Section 3. The
convex approximations to the chance-constrained optimization problems are solved numerically in Matlab by the
toolbox CVX [18]. In all cases we shall compute a 5-stage affine optimal control policy and apply it to repeated runs
of the system. Based on this we will discuss the feasibility of the hard constrained problem and the probability of
constraint violation.

5.1 Polytopic constraints

Let us impose bounds on the control inputs, |u1(t)| ≤ 0.1, |u2(t)| ≤ 0.3 and |u3(t)| ≤ 0.15, with t = 0, . . . , N − 1,
and bounds on the mass displacements, |di(t)| ≤ 10, for i = 1, · · · , 4 and with t = 1, . . . , N . In the notation of

Section 3.2, these constraints are captured by the equation η(x̄, ū) = T xx̄+ T uū− y ≤ 0 where T x =
[

MT 0
]T

and

T u =
[

0 HT
]T

, with

M =











M1

. . .

M1











, M1 =

[

I4×4 04×4

−I4×4 04×4

]

, H =

[

I

−I

]

,
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Fig. 3. 1000 sample paths of the system with LQG control policy. Above: control input. Below: mass displacements.

and

y =

[

y1

y2

]

, y1 =











10
...

10











, y2 =











y′

...

y′











, y′ =









0.10

0.30

0.15









.

This hard constraint is relaxed to the probabilistic constraint P[η(x̄, ū) ≤ 0] ≥ 1 − α. The resulting optimal control
problem is then addressed by constraint separation (Section 3.2.1) and ellipsoidal approximation (Section 3.2.2).

With constraint separation, the problem is feasible for α ≥ 0.05. For α = 0.1, the application of the suboptimal
control policy computed as in Proposition 6 yields the results shown in Figure 4. With this policy, the control input
saturates within the required bounds whereas the mass displacements stay well below bounds. In fact, although the
required probability of constraint satisfaction is 0.9, constraints were never violated in 1000 simulation runs. This
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Fig. 4. 1000 sample paths of the system with control policy computed via constraint separation. Above: control input. Below:
mass displacements. Horizontal straight lines show bounds.

suggests that the approximation incurred by constraint separation is quite conservative, mainly due to the relatively
large number of constraints. It may also be noticed that the variability of the applied control input is rather small.
This hints that the computed control policy is essentially open-loop, i.e. the linear feedback gain is small compared
to the affine control term.

With the ellipsoidal approximation method, for the same probability level, the problem turns out to be infeasible,
in accordance with the conclusions of Section 3.2.3. For the sake of investigation, we loosened the bounds on the
mass displacements to |di(t)| ≤ 100 for all i and t. The problem of Proposition 7 is then feasible and the results
from simulation of the controlled system are reported in Figure 5. Although the controller has been computed under
much looser bounds, the control performance is similar to the one obtained with constraint separation, a clear sign
that the ellipsoidal approximation is overly conservative in this case. Another evidence of inaccuracy is the fact that,
while the control inputs get closer to the bounds, the magnitude of the displacements is not reduced. As in the case
of constraint separation, the applied control input is insensitive to the specific simulation run, i.e. the control policy
is essentially open loop.

5.2 Ellipsoidal constraints

Consider the constraint function

N
∑

k=1

(

d1(k)
2 + d2(k)

2 + d3(k)
2 + d4(k)

2
)

+ ‖ū‖2 ≤ N · c

with c = (12 +12+12 +12 +0.12 +0.152+0.32) = 4.1225. Unlike the previous section, we do not impose bounds on
di(k) and ui(k) at each k but instead require that the total “spending” on x and u does not exceed a total “budget”.
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Fig. 5. 1000 sample paths of the system with control policy computed via ellipsoidal approximation. Above: control input.
Below: mass displacements. Horizontal straight lines show bounds.

This constraint can be modelled in the form of Section 3.3, namely

η(x̄, ū) =

([

x̄

ū

]

− δ

)T

Ξ

([

x̄

ū

]

− δ

)

− 1 ≤ 0,

with δ = 0 and Ξ = 1
N ·c

[

L 0

0 I

]

, where

L =











L1

. . .

L1











, L1 =

[

I4×4 04×4

04×4 04×4

]

.

The constrained control policy for N = 5 and α = 0.1 is computed by solving the LMI problem of Proposition 11.
Results from simulations of the closed-loop system are reported in Figure 6. Once again, constraints were not
violated over 1000 simulated runs, showing the conservatism of the approximation. It is interesting to note that
the displacements of the masses are generally smaller than those obtained by the controller computed under affine
constraints, at the cost of a slightly more expensive control action. In contrast with the affine constraints case, the
control action obtained here is much more sensitive to the noise in the dynamics, i.e. the feedback action is more
pronounced.
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Fig. 6. 1000 sample paths of the system with control policy computed via ellipsoidal constraints. Above: control input. Below:
mass displacements. Horizontal straight lines show bounds.

6 Conclusions

We have studied the convexity of optimization problems with probabilistic constraints arising in model predictive
control of stochastic dynamical systems. We have given conditions for the convexity of expectation-type objective
functions and constraints. Convex approximations have been derived for nonconvex probabilistic constraints. Results
have been exemplified by a numerical simulation study.

Open issues that will be addressed in the future are the role of the tunable parameters (e.g. the αi in Section 3.2.1,
the ti of Section 3.2.4 and the βi in Section 4) in the various optimization problems, and the effect of different choices
of the ICC functions ϕi (Section 4). Directions of future research also include the extension of the results presented
here to the case of noisy state measurements, the exact or approximate solution of the stochastic optimization
problems in terms of explicit control laws and the control of stochastic systems with probabilistic constraints on the
state via bounded control laws.
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