
ExplicitPredictiveControlwithNon-ConvexPolyhedral

Constraints

Emilio Pérez aCarlos Ariño aF.Xavier Blasco bMiguel A. Mart́ınez b

aDepartamento de Ingenieŕıa de Sistemas Industriales y Diseño, Universitat Jaume I, Avenida Vicent Sos Baynat, s/n. 12071
Castelló de la Plana, Spain.

bInstituto Universitario de Automática e Informática Industrial. Universidad Politécnica de Valencia. Camino de Vera S/N
46022 - Valencia, Spain.

Abstract

This paper proposes an explicit solution to the model predictive control of linear systems subject to non-convex polyhedral
constraints. These constraints are modeled as the union of a finite number of convex polyhedra. The algorithm is based on
calculating the explicit solution to a modified problem with linear constraints defined as the convex hull of the original ones
and classifying its regions by their relation with the regions of the explicit solution to the original problem. Some of the regions
are divided and a procedure based on sum-of-squares programming is designed to determine which of the possible solutions are
in fact optimal. Finally, the online algorithm is shown to be better in terms of computational cost and memory requirements
than an algorithm based on obtaining and comparing the solutions of the problem using as constraints the polyhedra which
union form the non-convex regions, both theoretically and by the results of an example.

Key words: Model Predictive Control, Multiparametric Programming, Non-convex Constraints, Sum-of-squares

1 Introduction

A special class of non-convex constraints are the so
called non-convex polyhedral constraints, defined as
the non-convex union of a finite number of polyhe-
dra. Non-convex polyhedral constraints arise naturally
in problems such as obstacle avoidance, which is in-
herently non-convex. Model predictive control (MPC)
approaches for this kind of systems exist, but they re-
quire solving a mixed integer quadratic program online,
which may be excessively time consuming.

Another field of application of non-convex polyhedral
constraints comes from linear systems with non-linear
constraints. These problems usually arise when control-
ling Hammerstein-Wiener systems by inversion of static
non-linearities and an appropriate controller, such as

! This paper was not presented at any IFAC meeting. Cor-
responding author E.Pérez Tel. +34 964 728179 Fax +34 964
728170

Email addresses: pereze@esid.uji.es (Emilio Pérez),
arino@esid.uji.es (Carlos Ariño), xblasco@isa.upv.es
(F.Xavier Blasco), mmiranzo@isa.upv.es (Miguel A.
Mart́ınez).

MPC, for the linear part [3]. They also appear in feed-
back linearization control with linear constraints [12]. In
both cases, constraints on the system inputs have to be
transformed by the non-linearity in order to be coped
with by a linear MPC. If these non-linear constraints
are non-convex, precise approximation requires the use
of several polyhedra with a non-convex union.

Linear systems with non-convex polyhedral constraints
can also be treated as piecewise affine (PWA) systems.
For this kind of models, finite-time constrained optimal
control (FTCOC) and MPC have been active research
fields in the recent years.

A completely explicit solution of the FTCOC problem
with a quadratic cost was first obtained in [2], where au-
thors show that the partition of the state-space in the
general case is not polyhedral, but defined by linear and
quadratic inequalities. The procedure is based on dy-
namic programming, and in each iteration it requires the
solving of a number of multiparametric quadratic pro-
grams (mpQP). However, the comparison of quadratic
objective functions to possibly eliminate regions is not
treated in a systematic way. A different approach was
proposed in [8] where all the possible switching sequences
are enumerated and, for each of them, the PWA dynam-

Preprint submitted to Automatica 28 July 2011

ics are treated as a time-varying system. Several FTCOC
are solved then via mpQP and objective functions com-
pared online, which in general increases the CPU time
spent.

Although the system with non-convex polyhedral con-
straints can be modeled as PWA, fully exploiting the
structure of the initial problem presents several advan-
tages. First, the calculation of the regions of the explicit
solution can be simplified by solving an intermediate lin-
ear constrained problem for the convex hull of the origi-
nal constraints. Furthermore, the systematic elimination
of non-optimal solutions allows us to reduce the num-
ber of regions of the explicit solution. Lastly, from the
detailed explicit solution we develop efficient online al-
gorithms based on binary search tree strategies [14].

2 Problem statement

Let us consider the problem of regulating to the origin
a discrete-time linear time invariant system of the form
xk+1 = Axk + Buk with input and states constraints
defined as the non-convex union of a finite number of
convex polyhedra:

(xk, uk) ∈ Ω̄ =
⋃

i

Ωi

The proposed MPC scheme for this system with an hori-
zon N requires to solve an optimization problem with
quadratic weighting on the input and the states. Then,
MPC uses only the first element of the optimizer in a
receding horizon fashion. It can be shown that the opti-
mization problem can be written as

PN (x) :V OPT
N (x) := min

u

1

2
uTHu+ uTFx

subject to:

(xk, uk) ∈ Ω̄ for k = 0, . . . , N − 1,
xk = fk(x, u0, . . . , uk−1) for k = 1, . . . , N − 1,

xN = fN(x,u) ∈ X̄f

where u = [uT
0 , u

T
1 , . . . , u

T
N−1]

T is the optimization vec-
tor, fk reflect the dependence of the state at each sample
time on previous control actions and X̄f is the terminal
constraint set. In order to give stability guarantees, the
optimal choice for this set is the maximum input admis-
sible positively invariant set. For our kind of systems,
this set is also a non-convex polyhedron. A procedure
for its calculation is given in [11].

As all the constraints are now expressed in terms of the
optimization variables uk, they can be rewritten in a sin-
gle non-convex polyhedron (T) which can be calculated
by finding the feasible sets of all possible constraints

combinations. Then, the optimization problem can be
formulated as:

PT(x) : V OPT
N (x) := min

u

1

2
uTHu+ uTFx,

subject to:

(u, x) ∈ T =
⋃γ

i=0 Ti

(1)

where Ti are convex polyhedra.

The most direct way to solve problem (1) is to rewrite it
in the form of (2), solve problems PTi

and compare each
sample time the objective function for each optimum
uopt
Ti

.

PT(x) : V OPT
N (x) := min

i

{

V OPT
iN (x)

}

where:

PTi
(x) : V OPT

iN (x) := min
u

1

2
uTHu+ uTFx,

subject to:

(u, x) ∈ Ti

(2)

This approach is equivalent to the algorithm of [8] for
PWA systems which we use as a base case for comparison
purposes.

3 Explicit solution

The objective in this section is to provide a piecewise
affine solution to problem (1).To do so, we first calculate
the convex hull of T, denoted as conv(T).

Now, considering conv(T) as a new constraint set, we
can define the following optimization problem:

PC(x) : V OPT
N (x) := min

u

1

2
uTHu+ uTFx,

subject to:

(u, x) ∈ conv(T)

(3)

As conv(T) is by definition a convex set, it has been
shown in [1] that if matrix H is positive definite, there
exists a piecewise affine solution of PC of the form:

uopt
C (x) = uopt

Ci (x) = GC
i x+ hC

i , for x ∈ XC
i

(4)

where XC
i = {x ∈ R

n|LC
i x ≤ WC

i }

Our goal is to obtain the explicit solution to PT from
the already known solution to PC . To do so, it is useful
to notice that if uopt

C (x) is feasible in T it will also be
the optimal solution of PT. Therefore we can establish
a classification of the regions of the explicit solution to
PC ,XC

i , by their relation with the regions of the explicit
solution to PT, Xj .

2

3.1 Regions classification

• Coincident regions: Regions in which affine expres-
sion of the optimum is feasible in T for every x ∈ XC

i
and are exactly equal to one of the regions Xj

XC
i = Xj

• Subset regions: Regions in which affine expression
of the optimum is feasible in T for every x ∈ XC

i and
are a strict subset of one of the regions Xj

XC
i ⊂ Xj

• Non-subset regions:Regions in which affine expres-
sion of the optimum is not feasible in T for some
x ∈ XC

i .

In order to perform the classification of regions, the
first step is to identify non-subset regions by determin-
ing feasibility of the optimal solution in T. This can
be done by solving the linear programs that check if
there exists any x ∈ XC

i such that uopt
Ci (x) ∈ T∗, where

T∗ = conv(T)\T.

As non-subset regions have an unknown solution to prob-
lem PT, for some x in these regions the explicit solution
can be the same that the one in adjacent regions. There-
fore these adjacent regions are subset regions, while the
rest are coincident. Further details on regions classifica-
tion can be found in [10].

3.2 Division of non-subset regions

Once the classification of regions is made we have two
types of regions, coincident and subset regions, for which
the optimal solution to problem PT is known and a third
type, non-subset regions, for which it is unknown. In this
and the following subsection we present an approach to
obtain the solution in this regions too.

Given a non-subset region Xj , the procedure starts by
taking one of the constraint sets Ti and dividing Xj in
subregions for which the solution to PTi

is characterized
by a different set of active constraints, Xji1

1 . If this is
done for every non-subset regions, different Xji1 can be
found to have the same active set. Therefore, it can be
checked if their union is convex and be treated from this
point as a single region. Once this first step is completed,
all the non-subset regions are divided in subregions with
different optimal solutions to problemPTi

. At this point,
we can consider a new constraint set, Ti+1. Following the
same philosophy, regions Xji1 can be divided in subre-
gions depending on the optimal solution to PTi+1

they
have. This way, we get a new set of regions, Xji1i2 , for
which solution to problems PTi

and PTi+1
have different

explicit solutions. In some cases, one of the two possi-
ble solutions is the global optimum for the whole region,
and therefore it is not necessary to keep the other one.

1 Possibly including several regions with no solution for PTi

(X∗ in Algorithm 1)

A procedure to eliminate these non-optimal solutions is
described in Section 3.3. After this elimination, some re-
gions might have the same set of explicit solutions. If
these regions have a convex union, they can be replaced
by it.

Following this approach with the γ different Ti sets, we
will finally have the state space covered by the non-
subset regions divided in a number of regions Xji1i2...iγ

with a set of several explicit solutions each.

Analyzing the proposedmethodology, it can be seen that
it is based in solving repeatedly three different prob-
lems.The first one is, given a region, obtain all the pos-
sible subregions in its interior defined by different ac-
tive sets for a given constraint set. This is a well known
problem in explicit MPC with linear constraints and has
been solved in different ways, e.g. [13],[5]. The second
problem is the elimination of non-optimal solutions in
a given region, and is described in Section 3.3. The last
problem is the union of regions with the same set of so-
lutions, for which efficient algorithms, such as [4], exist
in the literature.

The complete procedure to divide all non-subset region
is summarized in Algorithm 1.

It can be noticed that a procedure like the designed one
could have been proposed from the beginning without
the need of obtaining the convex hull and classificat-
ing regions of PC (3). Nevertheless, doing that would in
general imply a higher number of Xji1i2...iγ regions and
would be more computationally expensive.

3.3 Elimination of non-optimal solutions

The objective in this subsection is to check if all of
the possible optimums for a given region are really the
global optimum in a subset of it, or some of them can
be discarded from the beginning. That is, given a region
Xr = {x ∈ Rn|Lrx ≤ Wr} with λ possible optimums,
each of them with a corresponding objective function
V OPT
Ni (x), we aim to know if every possible optimum

gives the minimum objective function somewhere inside
Xr.

This can be achieved by checking the feasibility of the
following system:

{

Wr − Lrx ≥ 0

V OPT
Nj (x) − V OPT

Ni (x) ≥ 0 j = {1 . . . λ}\i
(5)

Problem (5) can be solved by means of a sum-of-squares
(SOS) program based on the Positivstellensatz theorem
[9]. This theorem allows to prove that system (5) is
empty if and only if there exist SOS polynomials sα(x)

3

Algorithm 1 Exploration of non-subset regions

(1) Initialize constraint sets not explored, T =
{T1, . . . , Tγ}.

(2) Initialize set of regions to explore with all non-
subset regions of PC : X = {Xj}.

(3) While T &= ∅, take Ti ∈ T:
(a) Initialize set of new regions to explore: Y = ∅.
(b) Take X ∈ X:

(i) Search x ∈ X and find its active region in
problem PTi

: X1.
(ii) Initialize set of known regions R := {X1}

and set of unexplored regions U := {X1}.
(iii) While U &= ∅:

(A) Take U ∈ U and make U = U\U .
(B) Search facets of U , f |f ∈ int(X).
(C) For each f :

• Search regions from explicit so-
lution to PTi

adjacent to U
through f :Si.

• U = U ∪ {Si\R}.
• R = R ∪ Si.

(iv) X∗ = X\R.
(v) Y = Y ∪R ∪X∗.
(vi) X = X\X .

(c) If X &= ∅: go back to 3.b.
(d) If X = ∅:

• For every region in Y, check if any of the
possible solutions can be eliminated (Sec-
tion 3.3).

• Find regions in Y with the same set of
explicit solutions, check if union is convex
and if so, keep only the union in Y [4].

• X = Y, T = T\Ti, go back to 3.

such that:

s0 +
∑

i

sigi+
∑

i,j

sijgigj +
∑

i,j,k sijkgigjgk + . . . = −1

(6)
where gi are the inequalities in (5).

Positivstellensatz provides strong alternatives, that is, if
SOS polynomials sα satisfying (6) are found, there exists
a refutation of (5) and uopt

i (x), the optimum solution
corresponding to objective function V OPT

Ni (x), can be
discarded. However, for a practical implementation, the
degree of these polynomials has to be bounded. There-
fore, if SOS polynomials satisfying (6) are not found,
it still may be possible that higher degree polynomials
exist. Then, feasibility of (5) cannot be assured. This
means that we cannot guarantee that uopt

i (x) is not the
optimum for some subset of Xr, and therefore it cannot
be discarded.

Obviously, once a given solution is discarded for a given
Xr it can be omitted in subsequent feasibility checks,
making more simple the subsequent SOS problems to be
solved.

4 Online algorithm

For our particular problem PT, we have proposed in Sec-
tion 3 a procedure that finds an explicit solution in the
form of a polyhedral partition with several optimal so-
lutions for each region.

Our approach for the online algorithm is, given some x,
determine which region of the polyhedral partition it be-
longs to and later finding which of the possible solutions
has a minimum cost.

The first step can be done efficiently by generating a bi-
nary search tree. In this context, binary trees were intro-
duced in [14] as an alternative to less efficient sequential
search.
Binary trees are data structures formed by several nodes,
each of them with a corresponding inequality d(x) and
two child nodes, in the case of non-leaf nodes, or a set
of possible solutions, in the case of leaf nodes. The tree
is traversed by starting from the root node and decid-
ing which child node to go to by checking the sign of the
inequality. The process is repeated until a leaf node is
encountered.

It is interesting to note here that many of the compu-
tationally expensive offline operations to construct the
binary tree, i.e. finding the regions of the original par-
tition that satisfy a given set of inequalities, will have
already been solved for the algorithm for the union of
regions of [4].

For the second step, we propose storing all the objective
functions and find the minimum, although other strate-
gies, such as storing difference of objective functions or
even building binary trees with quadratic curves inside
each linear region, are possible.

4.1 Algorithm performance

As seen in Section 2 problem PT can be rewritten as a set
of subproblems with convex constraints PTi

and a com-
parison of objective functions (2). These subproblems
can be solved by obtaining a polyhedral piecewise affine
solution, for which an efficient online algorithm can be
developed by computing a binary search tree. Our goal
is to compare the performance of such an algorithm with
the one proposed in this section. This basic algorithm
can be divided in the following tasks: traverse γ binary
trees, compute γ objective functions, find the minimum
and apply the corresponding affine law. The computa-
tional cost of these tasks, formulated in terms of elemen-
tal operations (additions, products and comparisons) is:

• (2n + 1)Di for the evaluation of Di hyperplanes in
each binary tree (n additions, n products and a com-
parison), where Di is the tree depth.

4

• (n+ 1)(2n+ 1)− 1 for evaluating each quadratic ob-
jective function xTMx+Nx+ 1.

• γ − 1 comparisons for finding the minimum objective
function.

• 2nm for the computation of the affine expression.

This way, the total computational cost of the basic al-
gorithm can be expressed as

C1 = (2n+ 1)

(

γ
∑

i=1

Di + γ(n+ 1)

)

+ 2nm− 1 (7)

In our proposed algorithm, we traverse a single binary
tree with a depth D, and, in the worst-case, we search
the minimum objective function between the maximum
number of possible solutions, nmax

s

C2 = (2n+ 1) (D + nmax
s (n+ 1)) + 2nm− 1 (8)

Substracting (8) from (7)

C1 −C2 = (2n+1)

(

γ
∑

i=1

Di −D + (γ − nmax
s)(n+ 1)

)

By definition nmax
s is the maximum number of solution

in a polyhedral region, and therefore (γ−nmax
s ≥ 0). So

C1 − C2 ≥ (2n+ 1)

(

γ
∑

i=1

Di −D

)

(9)

On the other hand, from the way the polyhedral par-
tition in our proposed algorithm is constructed, it can
be seen that, in the worst case in which every combina-
tion of solutions of PTi

is possible, it has a maximum
of

∏γ Ni regions, so we can express the total number of
regions as Nt = η

∏γ Ni, with η ≤ 1. In [14] it is shown
that depth of a binary tree is logarithmic in the number
of regions, so we can write

D =

⌈

−
lnNt

lnα

⌉

=

⌈

ln η +
∑γ

i=1 lnNi

− lnα

⌉

where α ∈ [0.5 1) is a parameter representing how well
the tree is balanced.

From properties of the ceiling function,)x*+)y* − 1 ≤
)x+ y* ≤)x*+)y*, it follows

⌈

ln η

− lnα

⌉

+
γ
∑

i=1

⌈

lnNi

− lnα

⌉

−γ ≤ D ≤

⌈

ln η

− lnα

⌉

+
γ
∑

i=1

⌈

lnNi

− lnα

⌉

(10)

As α is unknown until the binary tree is built, authors
in [14] propose as a conservative estimate α = 2/3. If we

consider the same estimate for every tree, we have

⌈

lnNi

− lnα

⌉

= Di

Substituting in (10) and taking into account)−x* =
−+x,

⌊

ln η

lnα

⌋

≤
γ
∑

i=1

Di −D ≤

⌊

ln η

lnα

⌋

+ γ

As η ≤ 1 and α ≤ 1, it follows
⌊

ln η
lnα

⌋

≥ 0.

Substituting in (9) we have

C1 − C2 ≥ (2n+ 1)

⌊

ln η

lnα

⌋

≥ 0

i.e., our algorithm has a lower computational cost.

Apart from the computational cost, another fundamen-
tal criterion to analyze the algorithm performance is the
memory requirement, which is often the critical bottle-
neck for explicit MPC [6].

For binary trees, an efficient way to store all the neces-
sary data is by means of a table that contains all the hy-
perplanes, another table containing all the control laws,
and pointers to the table of hyperplanes and the child
nodes for non-leaf nodes, and to the control law table for
leaf nodes as in [14].

For our basic algorithm we need to store γ binary trees,
but also all the quadratic objective functions that will
have to be compared.

Our proposed algorithm, on the other hand, saves mem-
ory due to the following advantages: elimination of sub-
optimal control laws, elimination of hyperplanes from
the explicit solution to problems PTi

in the process of
union of regions and, most importantly, the fact that
only a small subset of objective functions need to be
stored (inside non-subset regions with more than one
possible solution).

5 Example

In this section, the control of an inverted pendulum is
proposed. The system is described by the non-linear
equations:

ẋ1 = x2

ẋ2 =
gsin(x1)− amlx2

2sin(2x1)/2

4l/3− amlcos2(x1)
+

−acos(x1)

4l/3− amlcos2(x1)
u

y= h(x) = x1

5

where x1 is the pendulum vertical angle, x2 the angular
speed, g = 9.8 m/s2, m = 2 kg the pendulum mass,
2l = 4m the pendulum length, u the force applied to the
cart (in Newtons) and a = 1/(m+M), where M = 8 kg
is the mass of the cart. We consider constraints on the
applied force of −300 ≤ u ≤ 300.

In order to control the system, input-output feedback
linearization is applied. The linearizing control law is
defined as:

u =
4l/3− amlcos2(x1)

−acos(x1)

(

amlx2
2sin(2x1)/2− gsin(x1)

4l/3− amlcos2(x1)
+ v

)

Once the constraints are translated to the new input v,
a non-linear function depending on x is obtained. These
constraints are then approximated by three convex in-
terior polyhedra (figure 1). The system is sampled with

Fig. 1. Non-linear constraints and non-convex polyhedral
approximation.

Ts = 50ms for the design of an MPC with parameters
R = 1, Q = diag(10, 1) and N = 7. Next, a terminal
region and controller for guaranteeing stability are com-
puted following [11].

At this point, for the selected horizon constraint set T
is computed, defined by the union of 15 convex Ti sets.
The proposed methodology is started by computing the
convex hull and solving the corresponding mpQP (67
regions). Next, Algorithm 1 is applied for the non-subset
regions. After solving 2082 SOS problems, 1011 non-
optimal solutions are eliminated. Finally a polyhedral
partition of 510 regions is found (441 of these regions
with just one solution). This explicit solution is shown
in Figure 2.

A simulation of the closed-loop system from the stable
equilibrium point (π, 0) is performed. The trajectory is
shown in Figure 2 (dashed line). It can be seen that the
system is correctly driven to the origin.

The proposed controller is compared with standard
MPC approaches with convex constraints. If they are

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

x1

x 2

Fig. 2. Final polyhedral partition, closed-trajectory with pro-
posed MPC (dashed line) and closed-loop trajectory with
standard MPC (dotted line).

defined as the central region in Figure 1, it does not
exist any control action v outside |x1| ≤ π/2. On the
other hand, if they are defined as the convex hull of the
initial constraints, stability cannot be guaranteed for
saturated control actions, as seen in the trajectory in
Figure 2 (dotted line).

Furthermore, the problem can also be formulated as a
PWA system and solved by the approach of [2], im-
plemented in the MATLAB MPT toolbox [7]. The ex-
plicit solution consists of 679 overlapping regions. When
implemented online following [2], the affine expressions
have to be stored in an orderedway.Therefore, the worst-
case online cost is linear in the number of regions instead
of logarithmic, requiring the computation of 13453 ele-
mental operations.

For our proposed algorithm, an efficient online perfor-
mance can be achieved by computing a binary tree of
the polyhedral partition, obtaining a depth D = 13 and
C2 = 98 elemental operations. The algorithm based on
solving subproblems PTi

, needs the computation of 15
binary trees leading to C1 = 738 operations. This way,
the computational effort is reduced an 85.7%. Memory
requirements are 8388 real numbers and 4279 pointers
for the basic algorithm, and 2949 real numbers and 3553
pointers for our proposal, reducing a 55.1% when imple-
mented in a 16-bit microcontroller.

6 Conclusions

In this paper, we have presented a procedure to obtain
an explicit solution to the problem of MPC with non-
convex polyhedral constraints. An explicit solution of
the problem which constraints are the convex hull of the
non-convex polyhedra is computed. Then, a classifica-
tion and division of the regions of this explicit solution is
performed, and non-optimal solutions in each of the re-
gions are eliminated by means of SOS programming. An

6

online algorithm that exploits the structure of the ob-
tained explicit solution has also been presented, and its
performance compared to an enumeration algorithm. By
theoretical analysis and example results, the presented
approach has been shown to significantly improve this
enumeration algorithm both in terms of computational
effort and memory requirements.

Acknowledgment

This work was partially funded by projects DPI2008-
02133 and DPI2008-06731-C02-01(and -02)/DPI Minis-
terio de Ciencia e Innovación - Spanish Government.

References

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pis-
tikopoulos. The explicit linear quadratic regulator
for constrained systems. Automatica, 38(1):3–20,
2002.

[2] F. Borrelli, M. Baotic, A. Bemporad, and
M. Morari. Dynamic programming for constrained
optimal control of discrete-time linear hybrid sys-
tems. Automatica, 41(10):1709–1721, 2005.

[3] K. P. Fruzzetti, A. Palazoglu, and K. A. McDonald.
Nonlinear model predictive control using Hammer-
stein models. Journal of Process Control, 7(1):31–
41, 1997.

[4] T. Geyer, F. D. Torrisi, and M. Morari. Optimal
complexity reduction of polyhedral piecewise affine
systems. Automatica, 44(7):1728–1740, 2008.

[5] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari.
Computation of the constrained infinite time linear
quadratic regulator. Automatica, 40(4):701–708,
2004.

[6] T. A. Johansen, W. Jackson, R. Schreiber, and
P. Tøndel. Hardware synthesis of explicit model
predictive controllers. IEEE Transactions on Con-
trol Systems Technology, 15(1):191, 2007.

[7] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari.
Multi-parametric toolbox (MPT). Hybrid Systems:
Computation and Control, 2993:448–462, 2004.

[8] D. Q. Mayne and S. V. Rakovic. Optimal control of
constrained piecewise affine discrete time systems
using reverse transformation. In Decision and Con-
trol, 2002, Proceedings of the 41st IEEE Conference
on, volume 2, 2002.

[9] P. A. Parrilo. Structured semidefinite programs and
semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of
Technology, 2000.

[10] E. Pérez. Control Predictivo sujeto a restricciones
poliédricas no convexas: Solución expĺıcita y esta-
bilidad. PhD thesis, Universidad Politécnica de Va-
lencia, 2011.

[11] E. Pérez, C. Ariño, F. X. Blasco, and M. A.
Mart́ınez. Maximal closed loop admissible set for

linear systems with non-convex polyhedral con-
straints. Journal of Process Control, 21(4):529–537,
2011.

[12] J. J. E. Slotine andW. Li. Applied nonlinear control.
Prentice-Hall Englewood Cliffs, NJ, 1991.

[13] J. Spjøtvold, E. C. Kerrigan,C. N. Jones, P. Tøndel,
and T. A. Johansen. On the facet-to-facet property
of solutions to convex parametric quadratic pro-
grams. Automatica, 42(12):2209–2214, 2006.

[14] P. Tøndel, T. A. Johansen, and A. Bemporad. Eval-
uation of piecewise affine control via binary search
tree. Automatica, 39(5):945–950, 2003.

7

